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Granular materials are ubiquitous in nature and industry; their mechanical
behavior has been a subject of academic and engineering interest for
centuries. One of the reasons for their rather complex mechanical behavior is
that stresses exerted on a granular material propagate only through contacts
between the grains. These contacts can change as the packing evolves. This
makes any deformation and mechanical response from a granular packing a
function of the nature of contacts between the grains and the material response
of the material the grains are made of. We present a study in which we isolate the
role of the grain material in the contact forces acting between two particles
sliding past each other. By using hydrogel particles, we find that a viscoelastic
material model, in which the shear modulus decays with time, coupled with a
simple Coulomb friction model, captures the experimental results. The results
suggest that particle material evolution itself may play a role in the collective
behavior of granular materials.
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1 Introduction

Particle packings composed of soft elements are relevant for many systems, from battery
electrolytes to emulsions and biological cells. These particle packings are found to behave
very differently from packings primarily made up of rigid particles. For instance,
deformable particle packings will reach a higher packing fraction than equivalent
packings made up of rigid particles, as found already in the classic work on pea
packings by Weaire and Aste [1] as well as in recent 2D simulations by Cárdenas-
Barrantes et al. [2]. The flow properties of soft particle packings are also different from
their rigid particle counterparts, as shown by van der Vaart et al. [3] and Campbell [4]. To
better understand soft particle packings, it is instructive to understand how one particle
interacts with another via a single contact. After all, for a packing to undergo any bulk
deformation, either the constitutive grains must squeeze or extend, or the constitutive
particles need to rearrange. For any sort of rearrangement to occur, at least one of the
particles must slide past another as the particles deform. Additionally, in packings made of
grains, under any kind of slow, quasi-static load application, force balance on particles is
maintained at all times via an appropriate redistribution of contact forces during the
structural deformation in the packing. Any time dependence in the contact mechanics of the
material or the contacts disrupts such a force balance. The relaxation of bulk material
properties that is so typical for soft materials can give rise to spontaneous force imbalance
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situations in static packings made of soft grains. Soft granular
packings can therefore experience particle motion, resulting in
macroscopically observable (slow) changes in strain, such as
creep. In this mechanism, the observed creep would occur
without any change in the grain’s arrangement or fracture of the
grains constituting the packing. The time dependence of particle
contacts is a mechanism not often associated with granular creep, as
illustrated in previous studies such as Andò et al. [5], Vandamme
and Ulm [6], Lade and Liu [7], and Leung et al. [8], which mostly
focus on harder grains. Particle interactions were conducted before
Nardelli and Coop [9], in a study examining the evolution of normal
and tangential forces as particles slid past each other. However, this
study was limited to relatively hard grains, and the effect of
deformability could not be studied in this experiment. Tsai and
Tsai [10] studied the evolution of tangential and normal loading for
deformable polydimethylsiloxane (PDMS) spheres immersed in a
mixture of glycerol and water for sphere passing and fixed depth
experiments. Giustiniani et al. [11] studied the deformation
evolution of two droplets enclosed in an elastic adhesive film in
shear and found a time-dependent exponential decay relationship
for the angle between the surface of the drop and the needle holding
the drop. This study also provides an insight into why such a
relationship exists for such a system and compares the
deformation in the experiment with a surface tension-driven
simulation. Louf and Datta [12] also tracked the relaxation of the
shape of a hydrogel bead in a bed of harder spheres and were able to
find a timescale associated with it. The present study describes the
experimental force response during a sliding event for a pair of
initially spherical particles capable of significant deformation.
Specifically, the study examines the evolution of horizontal and
vertical forces of low friction, highly deformable particles immersed
in water with undetectably small inter-particle adhesion.

2 Description of the experiment

The evolution of forces during contact formation and contact
loss between a pair of soft particle spheres was investigated using two
custom setups. A plate–plate compression setup is used to look at the
force response of a particle as a function of time at a fixed overlap. In
this case, the particles were loaded normally (i.e., center-to-center),
and the evolution of the normal force was measured as a function of
time. The custom inter-particle shear setup is used to investigate the
change in contact forces as particles slide past each other, as in the
case of particle rearrangement in a packing. In this setting, the
particles are loaded obliquely (i.e., there is shear and compression),
and both components of the response forces are expected to change
in magnitude. The model materials used in this experiment were
polyacrylamide hydrogel spheres produced by Educational
Innovations Inc. (GB-710). The setups used are custom-made
and described in the following sections.

2.1 Sample preparation

The hydrogels are grown in Milli-Q water. They typically have a
diameter of 18.5 mm after swelling. The hydrogel spheres to be
tested are half-dyed with Nile blue perchlorate, and their dimensions

perpendicular to the dye front are measured. Measurements of the
hydrogel sphere diameter are taken three times. The gels are then
placed with the dye front visible on the shell (as described below)
and fastened in place with the collar. The dimensions, from the
bottom of the shell to the tip of the gel sphere, are measured using
Vernier calipers.

The sample (in this case the hydrogel sphere) is placed in a
custom 3D-printed geometry. The geometry was inspired by the
container devised by Tsai and Tsai [10]. The geometry consists of a
cylindrical block with a hemispherical cutout (shell) that fits the
hydrogel sphere to be tested. The spheres are held in place with a
collar that has a hemispherical cutout matching that of the shell. The
hydrogel sphere is held in position by screwing the collar to the
block. Measurements for 3D-printed geometry are provided via a 2D
drawing in a supplementary AutoCAD file.

2.2 Inter-particle shear

The inter-particle shear setup was built based on previous work
by Workamp and Dijksman [13] and Rudge et al. [14]. A schematic
of the setup used in the set of experiments described in this study is
shown in Figure 1A. A custom 3D cylindrical container is placed on
the rheometer (Anton Paar MCR 501). A shell described in Section
2.1 is screwed in place to the cylindrical container. Since the
container is 3D-printed and the spots to screw in the shells are
pre-determined, this fixes the position of the shell relative to the
center of the cylinder and rheometer tool. Another shell is screwed
to a rotating arm, which can be connected to the rheometer. The
distance between the spots to screw the fixed shell and the axis of
rotation was set to 27 mm in the 3D model of the rotating arm to
ensure that the shell in the container and the shell in the rotating arm
slide over each other. The dimensions of the rotating arm and
cylinder, along with the position of the screws, are also provided in
the 2D AutoCAD file attached with this paper.

2.2.1 Protocol
The cylindrical container is placed on the rheometer, and a zero

gap is performed with the custom axis fixed to the rotating arm. The
tool and rotating arm are then moved up and removed. The half-
dyed hydrogel spheres are then placed into their respective shells,
and the collar is screwed into the shell. To test for a snug fit, we
manually try and rotate the hydrogel in the shell and collar assembly.
If the hydrogel sphere rotates in the shell, a larger, half-dyed sphere
is used. We also attempt to rotate the new hydrogel in the shell. The
process is repeated until we find a hydrogel sphere large enough such
that it does not rotate within the shell–collar while being manually
tested. Themanual rotation tests involve much larger forces than the
rheometric tests, establishing that no rotation of the fixed spheres
occurs. Then the shells with the spheres can be fixed onto the
container and the rotating arm and placed back into the measuring
system. For the measurements shown in this study, the diameter of
the upper hydrogel sphere is 18.4 ± 0.195 mm and the diameter of
the lower hydrogel sphere is 19.1 ± 0.265 mm, as established by
caliper measurements on different sides of the used spheres. The
height of the shell and upper hydrogel sphere together is 29.53 mm,
and the height of the shell with the lower hydrogel sphere is
31.25 mm. Thus, the tool is brought down to a gap of 65 mm to
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ensure the particles are not in contact. Milli-Q water is poured into
the container until both the shells and the rotating arm are
completely immersed.

The tool is then lowered 1 mm at a time and manually rotated to
check for contact. Once contact is detected by observing a finite
torque needed to rotate the tool, the probe is moved 1 mm up and
locked at the instrument’s deflection angle reference position.

The tool is first rotated at 0.5 rpm. During this rotation, when a
torque of 0.2 mNm is detected, the rotating arm is forced to
stop. This torque is small enough to detect contact but larger
than the initial torque that the rheometer has to apply in order
to start the experiment from rest. If the specified torque level is not
detected, the tool will move down 0.1 mm. This procedure was
carried out to obtain an estimate of where the contact would occur in
terms of displacement. Once the displacement required to obtain
contact is known, further testing could be done using this
displacement as a reference point. At low rotational velocities,
this would mean that we would only need to conduct the test
between known displacements, avoiding extraneous movement and
time. The process is repeated until contact is detected using this
procedure. Once contact is detected, the moment arm will rotate
back to a fixed angle. Then, the tool will rotate at a speed of 2.38 ×
10−5 m/s (8 × 10−4 [rpm]) for 3,000 s in the clockwise direction, stay
fixed in the final position for 1 min, rotate back at the same speed for the
same duration, and wait another minute. This process is repeated at
speeds of 4.75 × 10−5, 1.19 × 10−4, and 2.37 × 10−4 m/s. Once a repetition
is completed, the tool is moved down 0.1 mm (i.e., the overlap is
increased by 0.1 mm). The whole process is repeated at the same set of
speeds. A total of five overlap levels, each 0.1 mm apart, were explored.
A sample dataset obtained from the measurement is shown in
Figure 1B, which shows the horizontal force response (Fh) to sliding
as a function of the linear angular displacement (θ). Here, θ is the
product of the angular displacement (in radians) and the length of the
moment arm (which is 0.027 m). Figure 1C shows the vertical force
response (Fv) as a function of θ during the same experiment.

2.3 Plate–plate compression

The setup for the plate–plate compression was a modified
version of a previously existing custom-built setup used to
conduct indentation tests on polymer samples. A schematic of
the setup is shown in Figure 2A. The setup consists of an
actuator (Thorlabs Z825BV) connected to a moving stage
(Thorlabs MT1) controlled by a motor controller (Kinesis KDC
101) that can interact with a MATLAB platform. The moving stage
is connected to a metallic rod using a Wheatstone bridge-based
S-beam load sensor (FUTEK LSB200 FSH03871). The bridge is
supplied with a constant voltage, and the output bridge signal is
amplified using an amplifier, both of which were built into a strain
gauge input signal conditioner (ICP DAS SG-3016). The amplified
signal is then filtered using a low-pass RC filter (10Ω resistor and
10 nF capacitor). The filtered signal is then converted to a digital
signal using a 14-bit analog-to-digital converter (ADC) present in a
National Instruments data acquisition instrument (NI DAQ 6001).
The digital signal can then be read into a computer using aMATLAB
interface. The sampling frequency for the load cell was set to 1 kHz.
The load cell is attached to a flat plate that is used to press the
sample. The operation of the custom-built setup is also described by
Boots et al. [15].

2.3.1 Protocol
The shell with the sample is held in place in a larger container

with double-sided tape. The container is then filled with water. The
compression plate with the load cell is lowered into the container
until the entire compression plate is underwater but does not touch
the sample to be tested. An indentation test is performed with the
compression plate moving down 0.5 mm at a speed of 0.3 mm/s to
find the location of contact. The test results in a displacement (δ) vs.
vertical force (Fv) plot are shown in Figure 2B. Once contact is
found, the compression plate can be retracted, and the test is
repeated to confirm the location of the contact point.

FIGURE 1
(A) Experimental setup: inter-particle shear. (B) Forces in the horizontal direction (Fh) vs. linear angular displacement (θ) in the rotational direction. As
the moving particle approaches the stationary particle, as shown by the diagram on the bottom left, Fh acts toward the right, which is defined as the
positive force. As the moving particle moves away from the stationary particle, Fh acts toward the left, which consequently gives a negative force. (C)
Forces in the vertical direction (Fv) vs. linear angular displacement (θ) in the rotational direction.
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Once the point of contact is ascertained, the compression plate is
moved to the location of contact, and a strain of 6% is applied at a
strain rate of 0.002/s. For this experiment, the diameter of the
hydrogel sphere was 18.63 ± 0.17 mm, as established by caliper
measurements on different sides of the used sphere. It was
compressed by 1.12 mm. The exact velocities and indentation
distance are calculated based on the diameter of the particle
being tested. Then the compression plate is held static for
3,000 s. Forces are recorded from the load cell during this entire
process at a rate of 1000 Hz. After separating the forces during
indentation, a typical force relaxation curve is observed, as shown
in Figure 2C.

3 Theoretical model

Herein, we explain the models used to analytically describe our
experimental results. The following assumptions are applied to the
model: (i) the particles in contact are perfectly spherical. (ii) The
material in the experiment is perfectly homogeneous. (iii) The arc of
rotation in the inter-particle shear experiment is sufficiently large to
consider the difference between a linear particle pass and a circular
path to be negligible. With these assumptions, the response of the
bulk volumetric strain of the particle is calculated as a sum of two
factors: the elastic response (modeled by a Hertzian model) and a
dissipative response (modeled as a viscoelastic model). There is a
long history of considering viscoelastic contact mechanics for
spheres, particularly for use in discrete element methods. For a
brief discussion on the history, we refer to Brilliantov et al. [17]. The
combined model used here is based, among others, on the work and
subsequent research done by Jian et al. [16], which takes a
Kelvin–Voigt approach while also taking into account the
relaxation effect of viscoelastic materials. Here, for simplicity, it is
typically assumed that there is one dominant timescale. In brief, it
assumes that the effective shear modulus of a particle is

G t( ) � Ge + Ĝ t( ), (1)
F⊥ t( ) � Fe + F̂ t( ), (2)

where G(t) is the total effective shear modulus, Ge and Ĝ are the
elastic and relaxable parts of the shear modulus, respectively, and Ĝ
is modeled as

Ĝ t( ) � Gl · e− t
τ , (3)

G t( ) � Ge + Gl · e− t
τ . (4)

Here, F⊥(t) is the net center-to-center force of repulsion between the
centers of the particles. Fe and F̂(t) are, respectively, the forces due to the
constant elastic part of the shear modulus Ge and the time-dependent
dissipative part of the shear modulus Ĝ(t). Gl is a pre-factor to the
exponential function corresponding to the maximum value Ĝ(t) can
take. τ refers to the relaxation time characteristic of the material of the
grain, and t is simply the time passed since the moment of contact.

3.1 Hertz’s contact model

The elastic response resulting from the bulk compression of the
particle volume is modeled using a Hertz model:

Fe t( ) � 4Ge

��
R

√
3 1 − ]( )δ

3/2 t( ), (5)

Ge � E*
2 1 + ]( ), (6)

1
E*

� 1 − ]21
E1

+ 1 − ]22
E2

, (7)
1
R
� 1
R1

+ 1
R2
, (8)

where Ge is the elastic part of the shear modulus of the system, R is
the effective radius, δ is the overlap between the two interacting spheres
in the center-to-center direction, ] is the Poisson’s ratio of the sphere, E*
is the effective elastic modulus of the system, E1 is the Young’s modulus
of the upper sphere, and E2 is the Young’s modulus of the lower sphere.
In the case of the inter-particle shear experiment, we assume E1 = E2 = E
(since the interacting spheres are made of the samematerial. In the case
of the plate–plate compression experiment, we assume E1 = E and E2 =
∞, assuming that the plate stiffness is infinitely larger than the hydrogel

FIGURE 2
(A) Experimental setup: particle compression. (B) Typical force (Fv) vs. displacement curves (δ) during indentation. (C) Typical force (Fv) vs. time (t)
curves when compressive strain is held static.
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sphere stiffness. In reality, the Young’s modulus of the hydrogel particle
is approximately 8 kPa, and the Young’s modulus of the compressing
plates and the shells holding the hydrogel is approximately 2.8 GPa, as
specified by the data sheet from the 3D printing supplies manufacturer.
For both experiments, it is assumed that ]1 = ]2 = ] = 0.5: hydrogels do
not deswell in the context of the modest pressures exerted; the osmotic
pressure of the gels is much higher than the local stress Schulze et al.
[18]. R1 is the radius of the upper sphere, and R2 is the radius of the
lower sphere. For the inter-particle shear test, R1 = 9.2mm and R2 =
9.96mm. It is also to be noted that in the case of plate–plate
compression, R1 = 9.3mm as the sphere is being compressed with a
flat plate and R2 = ∞.

3.2 Viscous dissipative model

The time-dependent response seen with the experimental data is
modeled using the viscous dissipative model from Jian et al. [16].
Their model calculates the dissipative part of the force response as

F̂ t( ) � 4
��
R

√
3 1 − ]( )∫

t

0
Ĝ t − s( ) d δ3/2 s( )[ ], (9)

where s is the integration factor integrated from the moment of
contact t = 0.

In addition to this model, a cutoff was implemented in the model
such that the resultant forces from center-to-center Fe and F̂(t) were
always repulsive or zero to prevent attractive forces, as observed in all of
the experiments performed. The need for this addition is explained in
more detail together with the experimental results described in Section
4.1.1. Finally, it is assumed that the contact resistance is purely frictional,
and thus, the classical Coulomb friction model is used to interpret the
tangential interactions. It states that

Ff t( ) � μF⊥ t( ), (10)

where Ff(t) is the total frictional force tangential to the surfaces
in contact and μ is the coefficient of friction.

4 Results and discussion

4.1 Inter-particle shear experiment results

In this section, we examine how timescales affect force responses
in the direction of motion and perpendicular to the direction of
motion during a particle sliding event. Typical force responses in the
direction of motion (hereafter referred to as the horizontal direction)
and perpendicular to the direction of motion can be seen in Figures
1B, C, respectively. The following sections examine the various
characteristics to be observed in such data and how the models
described in Section 3 can help us interpret the experimental results.

4.1.1 Horizontal component of forces
4.1.1.1 Constant central overlap and velocity

We first examine the horizontal force response from the inter-
particle shear experiment in a fixed gap and at a constant velocity, as
shown in Figure 3A. In this figure, the upper particle is moved in a
clockwise direction. Figure 3A plots the change in force in the

horizontal plane (Fh) as a function of the linear angular distance
traveled (θ) from the rheometer’s zero deflection angle reference
point. Here, the increase in Fh on the left marks the formation of a
contact. The detachment is marked by the return of the forces to a
constant baseline. We can therefore establish the total distance of
contact as the difference between the θ value at the point of contact
and the θ value at the point of detachment. We refer to this distance as
the deformed contact length (lc). This length, along with the points of
contact and detachment, is visualized in Figure 3A. We call lc the
deformed contact length, as the length determination is affected by the
strain on the hydrogel sphere and sliding velocity. The figure also clearly
shows that the peak magnitude of the force response (indicated with
←p) as themoving particle approaches the stationary particle’s center is
larger than the trough magnitude (indicated with t→) as the moving
particle moves away from the stationary particle’s center. Thus, an
asymmetry in the force response in the horizontal direction is observed.

After the deformed contact length determination in one rotation
direction, we can rotate in the opposite direction to establish the true
contact length. Figure 3B shows the horizontal force responses (Fh) when
the test is repeated with the upper particle being moved in the opposite
direction (the anticlockwise (AC) direction) in red, along with results
from Figure 3A, where the upper particle was moved clockwise (C) in
blue. The anticlockwise (AC) experiment measured the undeformed
contact point of the hydrogel, which is needed to establish the
undeformed contact length (referred to as the geometric contact
length if the particle were perfectly rigid) lg. It needs to be kept in
mind that the point of contact for the blue curve is on the left of the curve
and the point of contact for the red curve is on the right side. To clarify
why we need two length definitions, we can take a closer look at the data
in Figure 3. Here, we notice that the point of detachment as the rotating
arm is moved in the clockwise direction (blue data) does not spatially
coincide with the position of the point of contact detected as the rotating
arm is moved in the anticlockwise direction. The point of detachment in
the AC direction is similarly different from the point of contact in the C
direction. These observations mean that lg is longer than lc in both the
clockwise and anticlockwise directions. For context, the difference
between the deformed contact lengths lc in the clockwise and
anticlockwise directions was only 5.5 μm, whereas the difference
between the average contact length lc and geometric length lg was
219.2 μm for the dataset shown in this figure.

Furthermore, if we zoom in to the center of the geometric
contact in Figure 3B inset, it can be noticed that the zero-crossing in
the horizontal forces (the point where the horizontal forces change
from positive to negative or vice versa) is not at the center of the
contact distance. The zero-crossing moves away from the point of
contact toward the point of detachment in both directions. This
implies that there is a finite but small horizontal force acting on the
particles, even when they are directly on top of each other.

4.1.1.2 Velocity dependence of the contact force
Figure 4A compares the horizontal force response of spherical

hydrogels in response to sliding at different constant velocity levels. The
first feature that is apparent from this figure is that the amplitude of the
troughs for the different sliding velocities does not coincide. On closer
inspection, we notice that the amplitude of these troughs is greater for
larger velocities. The same is also true for the peaks, but this feature is
less pronounced in the plot as the relaxation is contact duration-
dependent, and at the peaks, the contact is younger. Thus, a clear
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velocity-dependent response can be observed. When we recall Eq. 4,
which essentially models the effective shear modulus as a decaying
function with time, this experimental model makes sense. Experiments
done at lower sliding velocities take a longer time and therefore work
with a lower effective shear modulus; thus, their force response to the
same strain or overlap is lower.

Another feature of interest can be seen at the very end of the
contact. The force response just before the two particles detach is
highlighted in the inset in Figure 4A.Here, we see that even though all of
these tests were performed on the same set of particles, the points of

detachment at different velocities do not coincide. The particle seems to
detach earlier when the particles move slower relative to each other.
This is also consistent with the model explained in Eq. 4. In Figure 4B,
we plot the geometric contact length (lg) and deformed contact length
(lc) obtained at the different sliding speeds (v) at which the experiments
were performed. Here, we clearly see that the variation in lg at different
speeds is much lower than the variation in lc. Furthermore, we see that lc
seems to grow at larger sliding speeds and approaches lg. This trend is
consistent when the experiment is performed in either direction, as can
also be seen in Figure 4.

FIGURE 3
(A) Horizontal forces (Fv) at constant maximum δmax overlap and constant rotational velocity (v), as the probe moves clockwise. (B)Main: horizontal
forces (Fv) at constant maximum δmax overlap and constant rotational velocity (v), as the probemoves clockwise (C: in blue) and anticlockwise (AC: in red);
inset: force response at the center of the geometric contact length (the original area is highlighted in green).

FIGURE 4
(A) Main: horizontal force (Fh) response at a constant maximum overlap (δmax = 0.78 mm, mean particle diameters of 19.1 and 18.4 mm, and
maximum strain (ϵmax)=0.0208) but at different velocities (v)m/s in the clockwise direction; inset: force response toward the end of the geometric contact
length (the original area is highlighted in green); (B) change in contact lengths (l [mm]) as a function of rotational velocity (vm/s), where the geometric
contact length is lg (in yellow) and deformed contact length is lc, and the directions are specified as C (clockwise) and AC (anticlockwise) at a constant
maximum overlap (δmax = 0.78 mm).
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4.1.1.3 Recreating experimental features using the
analytical model

Figure 5 describes how the forces from the model described in
Section 3 are vectorially resolved so that they can be compared to the
data observed in the experiment. The two-dimensional analytical model
consists of measuring the effective overlap of two circles moving past
each other. The upper circle is moving from left to right at a velocity v,
and the lower circle is fixed. Figure 5A shows the geometric quantities
involved in calculating the total forces in the horizontal and vertical
directions at contact. At contact, the distance between the particle centers
is R1 + R2. δmax is the maximum overlap between the particles. Thus, the
vertical distance between the particle centers is R1 + R2 − δmax. β is the
angle between the horizontal plane and the line joining the two particle
centers and can be calculated using the triangle shown in Figure 5A. ψ is
the horizontal distance between the particle centers, which can also be
calculated from the same figure at the moment of contact ψ = ψ0. At this
moment (at t = 0), the overlap (δ) is zero. After this moment, t grows
from 0 and ψ =ψ0 − vt. The vertical distance between the particle centers
remains R1 + R2 − δmax, and a new distance between particle centers can
be calculated as

�����������������������(R1 + R2 − δmax) + (ψ0 − vt)√
. These quantities are

also used to calculate a new β. Similarly, δ � (R1 + R2) −�����������������������(R1 + R2 − δmax) + (ψ0 − vt)√
for any instant of time t, when the

horizontal displacement θ = vt.
These geometric quantities are then used to calculate the F⊥(t)

values using the equations described in Section 3. The values of the
shear moduli Ge and Gl and timescale τ were manually fit to the
experimental vertical and horizontal forces independently. The
values reported here are the ones that fit the experimental
vertical and horizontal forces best at all the velocities and
overlaps explored in this work. Figure 5B shows the vector
resolution of F⊥ into its horizontal component Fh

⊥ and vertical
component Fv

⊥ when the upper circle approaches the fixed lower
circle from the left. Figure 5C shows the vector resolution of F⊥when
the upper circle moves away from the pinned lower circle. It can be
noted that for undeformable circles, as assumed in this diagram, the
direction of the vertical components remains the same regardless of
whether the moving circle approaches or moves away from the
pinned circle, whereas the direction of the horizontal components
reverses. As we will see, the elastic deformation of the spheres will
induce an asymmetry in the force response, to which we will return
below in the consideration of contact length determinations.

Figure 5D shows the vector resolution of Ff, which is the frictional
force between the circles calculated using Eq. 10 into its horizontal
component Fh

f and vertical component Fv
f when the upper circle

approaches the pinned lower circle from the left. Figure 5E describes the
vector resolution of Ff as the upper moving particle moves away from
the pinned circle. Here, the direction of the vertical component of the
force Ff reverses when the moving circle moves away from the pinned
circle compared to when the moving circle approaches the pinned
circle. This reversal, however, will be visible in the resultant vertical force
as the magnitudes of Ff are linked to F⊥, and F⊥ will be small toward the
end of the contact. The direction of the horizontal components,
however, remains the same and leads to an offset in Fhz at the
center of the contact, as shown in the inset of Figure 3B.

Figure 6 describes how each element of themodel adds up to explain
the various features we see in the experiment. Figure 6A simply shows the
sine-like change inFh as a function of the linear angular displacement (θ=
angular displacement [rad]× moment arm 0.027 [m]) after the vector
resolution of the elastic force with changing β and overlap δ. In Figure 6B,
we add the viscoelastic response from Jian’s model described in Section
3.2 to introduce the velocity dependence we observe in Section 4.1.1.
However, using the model as is induces an adhesive force toward the end
of the contact. This does notmatch our experimental results, as we see no
adhesion. Thus, the cutoff described in Section 3.2 is implemented so as to
remove any adhesive forces. This gives us both a velocity-dependent force
response and a velocity-dependent contact length lc. Here, it is interesting
to note that the velocity-dependent lc results as a by-product of the
integration scheme and adhesion cutoff. The model itself still assumes
that the overlap between the particles is positive in this region and that the
rate of change of overlap is negative. Therefore, switching to a different
viscous force law cannot give us a zero force response when both the
overlap (δ) and the rate of change of overlap ( _δ) are non-zero. However,
even with these models, zero-crossing in Fh still remains at the center of
the geometric contact length lg. If we look at the inset in Figure 3B, this is
not the case in our experiments, meaning that Fh is not zero when the
sliding particles are on top of each other. Therefore, the center-to-center
force responses from the elastic and dissipative force laws are coupled
with a friction model, which allows us to model a non-zero horizontal
force (Fh) at the center of the geometric contact length lg. This can be seen
in Figure 6C, especially in the inset where Fh at zero-crossing has been
zoomed into. For reference, the elastic Hertzian response is plotted in
blue, and we see that this response passes through the center of lg.

FIGURE 5
Resolution of force components. (A)Determination of the angle between horizontal and center-to-center force vectors (β). (B) Resolution of elastic
and dissipative forces (acting between particle centers), as the moving particle approaches the stationary particle. (C) Resolution of elastic and dissipative
forces (acting between particle centers), as the moving particle moves away from the stationary particle. (D) Resolution of friction forces (acting
tangentially), as the moving particle approaches the stationary particle. (E) Resolution of friction forces (acting tangentially), as the moving particle
moves away from the stationary particle.
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4.1.1.4 Robustness with increased particle overlap
Figure 7A shows the horizontal force response of five inter-particle

shear tests carried out in incremental amounts of maximum overlap
(δmax) at a sliding speed of 2.38 × 10−5 m/s in the clockwise direction.
Similar data were also measured for sliding speeds for all four speed
levels and in the anticlockwise direction, as in the previous experiments.
In this figure, we see that both the contact lengths and the amplitude of
horizontal force responses grow as a function of maximum overlap. It is
also notable to see that the point where the sign of the amplitude flips
for all velocities almost coincides. This shows that the particles did not
appreciably move in the horizontal direction between these
experiments: the shell and collar hold the particles firmly in place.

The results obtained in Figure 7A by themselves are
expected, as the force response increases when the overlap or
strain between two particles is increased. However, given that
the geometric contact length and actual length are different and
velocity-dependent, as shown in Figure 4B, the results of how
these might scale with an increase in overlap are interesting.
Since the contact lengths obviously must scale with the overlap, a
direct comparison is difficult. Thus, we normalize lc by lg (since lg
is a geometrical parameter that scales with particle radii and
δmax). Thus,

lc
lg
is plotted against the sliding speed in Figure 7B.

The plot reveals that the average deformed contact length (lc)
does indeed scale with sliding speed (v) and grows toward lg as
v increases.

The results seen in the experiments can also be qualitatively
reproduced using the model described in Section 3, as can be seen in
Figures 7C, D. These figures can be compared directly to the
experimental results in Figures 7A, B, respectively. However,
since the particles used in this experiment are not perfectly
round, there are deviations in the radii of particles and
maximum overlap used in the experiment and model. These are
clearly visible from the difference in overlaps shown in the
experimental results and the results from the model. The
parameters for obtaining these results were G0 = 0.4 × 104 Pa,
Gl = 5 × G0, and τ = 2000 s.

4.1.2 Fv at constant overlap
Figure 8A shows the vertical component of the force between the

particles as a function of probe displacement for a sliding spherical

hydrogel at the same maximum experimental overlap. From this
figure, we see that the normal force responses for the different sliding
velocities at a constant overlap are slightly velocity-dependent.
However, the velocity dependence is difficult to distinguish
because of the noise level in the normal force data. The
determination of lg is similarly affected by the noise and is hence
not shown.

Figure 8B shows the numerically obtained vertical component of
the forces using the combination of models described in Section 3
and is able to reproduce similar velocity-dependent trends, as shown
by the experimental data in Figure 8A. The parameters used to
obtain these results were G0 = 0.4 × 104 Pa, Gl = 4 × G0, and τ =
2000 s. The values of G0, Gl, and τ are obtained from a manual fit
procedure to best match the experimental results shown in
Figure 8A. Here, Gl for the vertical force component that
resulted in the best amplitude match to the experimental results
was 4/5th of Gl for the horizontal force components. We believe that
this anisotropy in Gl in the horizontal and vertical force components
is due to the difference in geometrical constraints in the two force
directions. This is because when the upper particle slides over the
fixed particle, the horizontal component of the compressive forces
will make the hydrogels expand in the vertical direction, which is
possible because the top of the gels are largely unrestrained.
Similarly, the vertical component of the compressive force will
try to make the hydrogels expand in the lateral direction. This
will not be possible because the gel is restrained by the shell and
collar assembly, creating confinement. This induces a confining
stress that limits the viscous response of the hydrogels.

Additionally, we can extract the horizontal forces at the center of
the geometric contact length (lg) shown in Figure 3B and the vertical
forces at the center of the geometric contact length (lg) by fitting a
second-degree polynomial to 20 data points left and right of the
center of (lg). The ratio of these forces gives us a way to calculate the
coefficient of friction (μ) at the point where we know the overlap (δ)
and where the vertical and horizontal forces theoretically align with
the normal and tangential components of forces. Figure 8C plots μ
obtained against the sliding velocities for the different overlaps
tested. While a master curve is not obtained, the plot shows how
μ changes at different velocities. This is reasonable because all the
tests shown in this study consist of lubricated contacts, as the

FIGURE 6
Fh responses from the model after vector resolution from (A) the elastic Hertz model (H) alone and (B) the elastic model (H) added to the Jian’s
dissipative model (D), with the cutoff eliminating adhesive forces implemented in it. (C) Elastic (H) and dissipative (D) force responses coupled to the
Coulomb’s friction model (F). Here, the coefficient of friction (μ) used is 5×10−3.
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hydrogels used make underwater contact and are also poroelastic.
The frictional force in lubricated contacts can be a function of
normal load, viscosity, and velocity in contacts, as already
experimentally shown by Stribeck [19]. A more complete
treatment of the hydrogel–hydrogel friction is outside the scope
of this work but can be found in other works, e.g., Gong [20], Pitenis
et al. [21], and Workamp and Dijksman [13].

4.2 Plate–plate compression

Section 4.1 establishes a timescale for the force response in the
tangential and center-to-center directions during a rearrangement
event. In this section, we show that a similar force response can be
found when the particle is under a fixed level of vertical compressive
strain. We already see that the vertical force response decays in time
during the sliding test in Figure 2C. We use the vertical force

evolution with a time dataset similar to Figure 2C at a constant δ
and back-calculate the elastic moduli of the material at each time
step using Eqs 5–8 (assuming a linear elastic model). Thus, we get a
shear modulus G at each time step. Figure 9A shows results for this
shear modulus (G) as a function of time for a particle that is
compressed between two flat plates. Figure 9B plots the extracted
shear modulus (G) as a function of time (t) when the same hydrogel
sphere is placed in the custom 3D-printed geometry described in
Section 2.1 that was also used for the inter-particle shear experiments.
As can be seen by comparing Figures 9A, B, this leads to a difference in
the calculated G values, even though the sphere being tested is the
same. For the experiments in which the hydrogel sphere is confined to
the 3D-printed geometry, we interpret the difference as arising from
the fact that the sphere could not extend laterally and had a larger
contact with the 3D-printed geometry.

The back-calculated shearmodulusG vs. time t plots in Figure 9 are
then fitted to a decaying exponential function shown in Eq. 4. These fits

FIGURE 7
Results from the experiment: (A) horizontal force (Fh) response at different maximum overlaps (δmaxm) at the sliding speed (v)=2.38×10−5 m/s in the
clockwise direction vs. the distance at which this force was observed from the reference point; (B) change in the ratio of the deformed contact length (lc)
and geometric contact length (lg) as a function of sliding velocities (v) for experiments done on the same particle pairs at different maximum overlaps
(δmax); results from the numerics. (C)Horizontal force (Fh) response at different maximum overlaps (δmaxm) at the sliding speed (v) = 2.38 × 10−5 m/s
in the clockwise direction vs. the distance at which this force was observed from the reference point; (D) change in the ratio of the deformed contact
length (lc) and geometric contact length (lg) as a function of sliding velocities (v) for experiments done on the same particle pairs at different maximum
overlaps (δmaxm).
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are shown in red. For Figure 9A, this results in a Ge of 7,146 Pa, a Gl of
630 Pa, and a τ of 1,413 s. In Figure 9B, for a hydrogel sphere placed in a
3D-printed custom geometry compressed by a flat plate, we see that a
single timescale is inadequate to capture the response. The single-
exponent fit described by Eq. 4 deviates from the data both at the start
and end of the dataset. Thus, a second exponent was added to Eq. 4 to fit
the entire data series, changing it to Ĝ(t) � Ge + Gl1e

(− t
τ1
) + Gl2e

(− t
τ2
).

The fit resulted in a Ge of 13,915 Pa, Gl1 of 2,540 Pa, τ1 of 1,898 s, Gl2 of
504 Pa, and τ2 of 172 s. Here, Gl1 > Gl2, so the timescale being
considered is 1,898 s. Therefore, the experiments together establish a
consistent timescale of response at the particle scale of approximately
1,500 s, which is similar to the timescale used to model the shear
experiments in Section 4.1.

5 Discussion

Our results show that contact mechanics between soft, almost
frictionless grains, even in a single contact, are affected by a
combination of the grain’s volumetric and surface properties and
its geometry. Both the inter-particle shear tests and the plate–plate
compression tests reveal that there is a long relaxation timescale. We
believe the timescale to be associated with the grain material
property. The second, faster timescale seen in the plate–plate
compression tests is not explored in the work here, as the shear
experiments were done at a very slow speed, making the short
relaxation mode unobservable in the sliding force dynamics. It must
also be noted that the velocity and overlap ranges explored in this

FIGURE 8
Vertical component of forces (Fv) during a shear experiment at different sliding velocities (v) in (A) the experiment and (B) the model. (C) Variation in
coefficients of friction (μ) as a function of sliding velocity (v) for different overlaps.

FIGURE 9
(A) Decay in elastic moduli vs. time when the hydrogel is compressed between two plates: blue points are the calculated elastic moduli assuming
perfect Hertzian contact and their supposed evolutionwith time; the red line is fit with Eq. 4 (in red); inset: force response toward the end of the relaxation
experiment. (B) Decay in elastic moduli vs. time when the hydrogel is placed in a 3D-printed shell described in Section 2.1 and compressed using a plate:
blue points are the calculated elastic moduli assuming perfect Hertzian contact and their supposed evolution with time; inset: force response
toward the end of the relaxation experiment; the red line is fit with Eq. 4 (in red); and the yellow line is an additional fit with a second exponential time to
better account for the systematic deviation from the single-exponent fit at the beginning and end of the experiment that is more obviously visible in
the inset.
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experiment are limited, which means that more timescales and
potentially a whole spectrum of modes are potentially present in
the hydrogel (contact) mechanics, as can be observed in other
studies Malkin and Masalova [22]; Xu et al. [23]. The relaxation
already observed may be playing a role in the observed slow (creep)
dynamics in soft particle packings: slow contact force evolution
affects force balance and can therefore induce particle motion
Dijksman and Mullin [24].

6 Conclusion

We constructed a custom rheometric tool to measure the
contact forces between two submersed hydrogels sliding past
each other at different overlap amplitudes and different sliding
velocities. We also measure the compressive force response of
single-hydrogel beads. We use Jian et al. [16]’s dissipative model
to rationalize the observations on center-to-center forces
between particles during shear and couple them with
tangential forces using simple Coulomb friction. We are also
able to describe our experimental observations with five
parameters: the constant elastic part of the modulus, the
maximum relaxable part of the shear modulus, a single
relaxation time, a Poisson’s ratio, and a coefficient of friction.
By qualitatively matching the data from the model to those of the
experiments, we can show that these five constants can describe
forces evolving in both center-to-center and tangential
directions. Our results establish a time-dependent contact
dynamics framework for single-hydrogel particle contacts that
lets the material properties of the contacting particles evolve from
the moment of contact. The results of our experimental work and
numerical validation show that in (numerical and theoretical)
soft particle contact mechanics, not only the particle position
dynamics should be taken into account in the evolution of the
contact forces and the network structure but also the relaxation
effects of the bulk material out of which the particles are
composed. Further work will concentrate on how these moduli
propagate into bulk properties. We will also investigate whether
the framework described above can indeed be used to obtain a
microscopic understanding of properties such as creep in
hydrogel packings, as observed by Dijksman and Mullin [24].
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