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Abstract

This study aims to investigate the current knowledge of unmanned aerial vehicle (UAV)‐

based simultaneous localization and mapping (SLAM) in outdoor environments and to

discuss challenges and limitations in this field. A literature search was conducted in three

online databases (Web of Science, Scopus, and IEEE) for articles published before

October 2022 related to UAV‐based SLAM. A scoping review was carried out to

identify the key concepts and applications, and discover research gaps in the use of

algorithm‐oriented and task‐oriented, open‐source studies. A total of 97 studies met

the criteria after conducting a two‐step screening by a systematic method followed the

Preferred Reporting Items for Systematic Reviews and Meta‐Analyses. Among eligible

studies, 97 were classified into two main categories: algorithm‐oriented studies and

task‐oriented studies. The analysis of the literature revealed that the majority of the

studies were focused on the development and implementation of new algorithms and

algorithms. This review highlights the significance and diversity of sensors utilized in

UAVs in different tasks and applications scenarios that employ different types of

sensors. The evaluation method is able to show the real results and performance of the

new algorithms in the target scenarios compared with the evaluation method by the

public data set and simulation platform.
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1 | INTRODUCTION

Robots of various shapes and sizes are available to assist people in

their daily lives. From small drones and household cleaning robots to

large self‐driving cars, industrial robots, and Mars rovers, there is a

wide range of robotic technologies available. Among these

technologies, unmanned aerial vehicles (UAVs) have emerged as a

versatile tool in industry, agriculture, geoscience, and remote sensing

due to their flexibility and cost‐effectiveness, making them a

preferred choice over other platforms (Nex et al., 2022). UAVs can

be classified into two types based on their usage scenarios: indoor

UAV, such as search and rescue in indoor spaces, and outdoor UAV,
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such as construction and infrastructure monitoring, as well as

precision farming. However, compared with indoor UAV, the

application of outdoor UAV involves more challenges due to

changing variables, such as illumination conditions, dynamic environ-

ments, unexpected obstacles, changing weather conditions, and so

forth (Shalal et al., 2013). These challenges increase the difficulty of

UAVs' perception of their surroundings, making their operation and

navigation more complex.

The robots' perception capabilities are primarily designed to

support the robots' localization of itself in the environment and to

map the observed environment. Normally, autonomous navigation of

mobile robots is map‐based. Although known maps are feasible for

autonomous navigation and localization (Kim et al., 2007), the robot

typically works in unknown environments (Li et al., 2012), especially

for UAVs. In general, the navigation of UAVs uses simultaneous

localization and mapping (SLAM) or beacon‐based system for indoors

and global positioning system (GPS)‐based method for outdoors.

However, obstacles such as tree canopies, walls, and buildings, as

well as satellite availability can greatly affect the GPS positioning

capability for outdoor UAVs' navigation. Therefore, SLAM has been

identified as a crucial method for a UAV system to achieve

localization, navigation, and mapping in unknown environments.

SLAM is a fundamental task in robotics, which allows a robot to

navigate autonomously in an unknown or changing environment.

SLAM algorithms typically use sensor data to create a map of the

environment and estimate the robot's position and orientation

relative to that map (Khairuddin et al., 2015). The theoretical basis

for the SLAM algorithm is the paper published by Smith and

Cheeseman in 1986 on the estimation of the position of objects in

their environment (Smith & Cheeseman, 1986). This study demon-

strated the mathematical feasibility of position estimation of objects

in the environment, which provided a theoretical basis for using

sensors to observe other objects in an unknown environment and to

estimate their position and pose of themselves with the observed

objects. On the basis of this theory, the field of SLAM has been

further elaborated and different studies have developed SLAM

algorithms that use a variation of sensors (e.g., radar, Light Detection

and Ranging [LiDAR], monocular camera, binocular camera, RGB‐D,

sonar, inertial measurement unit [IMU], GPS, etc.) to provide

observations for SLAM in an unknown environment. SLAM was

initially used for the navigation and location of robots indoors due to

the lack of GPS positioning information indoors. SLAM is also used in

outdoor robots due to its complementary performance in robot

localization and navigation work in GPS‐denied environments.

However, compared with general robots and mobile ground vehicles,

UAV‐based SLAM may have some challenges in outdoor environ-

ments such as the various application scenarios, different types of

sensors, and the evaluation method due to the limited payload

capacity and high flexibility of UAVs.

This study aims to investigate the current knowledge of UAV‐

based SLAM in outdoor environments and to discuss the challenges

and limitations in this field. Although previous studies have already

been summarized, compared, and analyzed on SLAM, most of the

SLAM studies have targeted a specific sensor, such as LiDAR (Smith &

Cheeseman, 1986) or visual sensor (Siegwart et al., 2011), and have

not been constrained to only specific types of robots. The findings in

this review will be investigated by conducting a scoping review with a

systematic method to the application of UAV‐based SLAM in outdoor

environments. Three main research questions (RQs) have been

defined to extract interesting aspects of UAV‐based SLAM methods

applied to outdoor environments:

RQ1. What is the contribution of UAV‐based SLAM within the

current framework in outdoor environments?

RQ2. What is the framework of UAV‐based SLAM, including

sensors, platforms, algorithms, and evaluation method, and their

strengths and weaknesses?

RQ3. What are the challenges, research gaps, and perspectives

on the potential use of UAV‐based SLAM in outdoor

environments? The review analysis and discussion have been

elaborated based on the formulated RQs. And this paper is

organized as follows. Section 2 introduces the framework and

background of SLAM. Section 3 describes the method for this

review. Section 4 presents the quantitative results in the selected

literature. Section 5 discusses the results according to the RQ of

this study. Finally, Section 6 is the conclusion of this paper.

2 | AN OVERVIEW OF SLAM

The SLAM method (Khairuddin et al., 2015) is employed by

autonomous vehicles, such as ground mobile vehicles and UAVs, to

concurrently create a map of their environment and determine their

position within it. This allows the vehicle to navigate and avoid

obstacles without relying on prior maps or external localization

systems. SLAM algorithms integrate sensor information, such as

LiDAR or visual data, and intricate mathematical calculations to

generate the map and estimate the vehicle's location. SLAM is

generally comprised of five distinct components (sensor, odometry,

back‐end optimization, loop closure, and map) that work together to

form a sophisticated system (Figure 1). In the following paragraphs,

these different components are explained in more detail.

2.1 | Sensors

The first step in implementing SLAM involves acquiring data from

GPS and hardware devices, such as cameras, LiDAR, sonar sensors,

and IMU. These sensors gather information on landmarks, including

features and objects in the environment (Khairuddin et al., 2015). In

general, the sensors can be categorized into three groups based on

the information they acquire: range sensors that actively emit and

receive energy and signals to measure distance to objects in the

environment (e.g., LiDAR, sonar sensor, time‐of‐flight [ToF] camera,
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and structured light sensor), passive sensors that passively receive

and measure radiation emitted by natural or artificial sources instead

of actively emitting energy or signals (e.g., monocular camera, stereo

camera, and RGB‐D camera) and orientation sensors which measure

the orientation or rotation of the robot or vehicle (e.g., IMU)

(Siegwart et al., 2011). Early SLAM methods primarily used range

sensors, such as acoustic sensors or LiDAR, which can provide

accurate depth data (Dissanayake, Newman, et al., 2001; Zaffar

et al., 2018). However, since 2005, research into visual SLAM has

gained momentum, particularly in the use of RGB cameras due to the

increasing ubiquity of cameras (Karlsson et al., 2005). Although visual

sensors offer abundant feature information, they lack depth or

distance information (Zaffar et al., 2018). However, depth informa-

tion can be acquired from stereo cameras or RGB‐D cameras. As a

result, visual SLAM has become a prominent research topic and

practical application area.

F IGURE 1 Overall SLAM framework consisting of five major components: sensors, odometry, back‐end optimization, loop closure, and
mapping. The sensors provide data to odometry, after data processing in odometry, the processed data would optimize and detect loop closure.
Finally, the map of surroundings can be generated into different forms. SLAM, simultaneous localization and mapping. [Color figure can be
viewed at wileyonlinelibrary.com]
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2.2 | Odometry

Sensors supply data with landmarks such as features and objects for

SLAM (Khairuddin et al., 2015) which can be used to initialize the

position of the robot (Cadena et al., 2016; Khairuddin et al., 2015).

Odometry involves measuring the movement of the robot or sensor

over time and estimating its distance traveled by extracting the

features and landmarks and calculating the changes in them (Zhang &

Singh, 2015). By monitoring changes in movements, the robot can

determine its position within a known map of the environment or

create a map from scratch.

Odometry, including visual odometry, and LiDAR odometry, can

use various sensors to obtain features and estimate motions. Two

common visual odometry methods are currently available: the

feature‐based method, and the appearance‐based method (Aqel

et al., 2016; Nistér et al., 2004; Scaramuzza & Fraundorfer, 2011).

The camera captures individual images in a sequence, which can be

created into video frames, and the feature‐based method tracks

distinctive features (e.g., points, lines, and planes) extracted from

video frames to match and track the distinctive ones among the

extracted features, which can estimate sensor motion (Naroditsky

et al., 2011; Nistér et al., 2006). Currently, there are many different

feature points (such as oriented fast and rotated brief [ORB] points,

Rublee et al., 2011; scale‐invariant feature transform points,

Lowe, 2004; speeded up robust features points, Bay et al., 2006)

which can be used in visual odometry. Instead of extracting and

tracking features, the appearance‐based method monitors changes in

the appearance of acquired images and the intensity of pixel

information within the images (Bellotto et al., 2008; Gonzalez

et al., 2012, 2013). Normally, the optical flow‐based method

computes the displacement of brightness patterns from one image

frame to another by using the intensity values of neighboring pixels

(Barron et al., 1994; Campbell et al., 2004). Similar to visual

odometry, LiDAR odometry acquires distance feature information

(Point to Point, Point to Plane, or Point to Edge) from LiDAR point

cloud data and estimates the motion and the position of the sensors

(Ji & Singh, 2014).

2.3 | Back‐end optimization and loop closure

Odometry can be quite accurate in predicting the robot's position and

orientation over a short time interval but can be subject to drift and

accumulated errors over longer distances and time. However,

solutions like back‐end optimization and loop closure are required

to overcome the drift and accumulated error.

In the back end of SLAM, the mapping and localization process is

performed recursively by computing the movements from the

features and landmarks extracted from input data (Khairuddin

et al., 2015). To optimize the estimation of movement, the extended

Kalman filter (EKF) method was first introduced in SLAM as EKF‐

SLAM (Leonard & Durrant‐Whyte, 1991). EKF can handle nonlinear

systems, reducing the impact of noise on the estimation and

prediction of the SLAM system (Bar‐Shalom et al., 2001). Later,

Fast‐SLAM was introduced by integrating particle filter (PF) and EKF

(Montemerlo et al., 2002), further improving the accuracy of motion

and position estimation. However, unavoidable noise (such as sensor

observation noise and odometry noise) can still lead to inaccuracies in

the estimation of SLAM over time. To reduce these errors, loop‐

closure detection was introduced (Ho & Newman, 2007). With loop

closure, the robot can recognize when it returns to a previously

visited location and make the necessary corrections to the global

error. Currently, popular loop‐closure detection methods include bag

of words (Sivic & Zisserman, 2008), pose graph (Lu & Milios, 1997),

and bundle adjust (Triggs et al., 2000).

2.4 | Mapping

When the SLAM is executed, many local maps and submaps

(Figure 1) containing local coordinate systems are generated for the

estimation of motion (Khairuddin et al., 2015). These maps are

processed every few seconds or per frame. Eventually, various

representations of maps are generated in SLAM, such as point cloud

map (Rusu & Cousins, 2011), Octomap (Hornung et al., 2013), and

occupancy grid map (Fankhauser & Hutter, 2016). The resulting maps

can be used in different fields for path planning, obstacle avoidance,

remote sensing, and 3D reconstruction.

2.5 | Milestones of SLAM

In the last three decades, the field of SLAM has made significant

progress based on the theory of object position estimation (Smith &

Cheeseman, 1986). Currently, there are various architectures of

SLAM algorithms using different types of sensors. To clearly illustrate

the differences between different SLAM algorithms and to show the

evolution of SLAM, the flowchart in Figure 2 presents the SLAM

milestones and main algorithms from the first complete SLAM

method (EKF‐SLAM) (Smith, 1988) to the most recent approaches.

We divide SLAM methods into two categories according to

the sensors: visual SLAM and LiDAR SLAM. Initially SLAM was

conducted in ground vehicles, but as UAVs became vehicles for

remote sensing‐based monitoring, SLAM also started to be devel-

oped for UAV‐based applications. The adoption of SLAM for

UAV‐based sensors with monocular camera started to emerge in

2003 (Kim & Sukkarieh, 2003), this was also the beginning of visual

SLAM (Davison, 2003).

Until the introduction of MonoSLAM (Davison, 2003) in 2003,

LiDAR was the dominant sensor in SLAM. Furthermore, filtering

methods such as EKF and PF were also the main optimization

solution in SLAM. After that, both LiDAR and visual SLAM came to

several eras and there were some milestone studies, which are

explained in the following subsections.

4 | WANG ET AL.
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2.5.1 | Filtering methods or smoothing methods

In SLAM, filtering methods are used to estimate the state of the

system based on sensory information, while smoothing methods are

used to improve the accuracy of these estimates over time. Filtering

methods, such as Kalman filtering and particle filtering, use a

mathematical model of the system and sensory information to

estimate the state of the system at a particular point in time.

Smoothing methods, on the other hand, use information about the

past history of the system to improve the accuracy of these

estimates. While filtering methods focus on estimating the state of

the system at a single point in time, smoothing methods take into

account the entire history of the system to produce more accurate

estimates.

From 2003 to 2011, many visual SLAM algorithms, such as EKF

(PTAM; Klein & Murray, 2007), multistate constraint Kalman filter

(MSCKF; Mourikis & Roumeliotis, 2007), dense tracking and mapping

(Newcombe et al., 2011) tried to compare which method is better or

combine the advantages of filtering methods and smoothing methods

among them. Meanwhile, LiDAR SLAM also experienced a similar

period to determine whether filter‐based or smoothing‐based

methods, such as Gmapping (Grisetti et al., 2005), Karto‐SLAM

(Konolige et al., 2010), and Cartographer (Hess et al., 2016).

2.5.2 | Direct visual odometry or indirect visual
odometry

Direct visual odometry involves using visual sensors, such as

cameras, to directly measure the motion of a vehicle or robot. This

is typically done by tracking the features of the images from the

cameras and using that information to estimate the movement of

the vehicle. Indirect visual odometry, on the other hand, involves

using visual sensors to indirectly estimate the motion of a vehicle

or robot by comparing the images from the cameras to a prebuilt

map of the environment. This allows the vehicle or robot to

localize itself within the map and use that information to estimate

its motion over time.

There are several open‐source SLAM algorithms using direct

method or indirect method in visual odometry, such as large‐scale

direct (LSD)‐SLAM (Engel et al., 2014), ORB‐SLAM (Mur‐Artal

et al., 2015), semidirect visual odometry (SVO; Forster et al., 2014),

and open keyframe‐based visual‐inertial SLAM (OKVIS, Leutenegger

et al., 2015) and robust visual inertial odometry (ROVIO, Bloesch

et al., 2015).

2.5.3 | Two‐dimensional (2D) and 3D LiDAR

When LiDAR SLAM research argued whether filtering methods or

smoothing methods were better, 2D and 3D LiDAR SLAM also

started to be debated. The difference between 2D and 3D LiDAR is

that 2D LiDAR measures the distance to objects in a single plane

while 3D LiDAR measures in multiple planes. LiDAR odometry and

mapping (LOAM; Ji & Singh, 2014) is one of the most important

milestones in 3D LiDAR SLAM, which proposed a complete and pure

LiDAR sensor SLAM framework. Lego‐LOAM (Shan & Englot, 2018)

was developed as a lightweight model and better optimization based

on LOAM.

2.5.4 | Inertial fusion era

Inertial fusion is an approach that combines information from inertial

sensors, such as gyroscopes, accelerometers, IMUs, with other types

of sensors, such as cameras, to improve the accuracy of SLAM.

F IGURE 2 The history and milestones of general SLAM, the path to SLAM divided into LiDAR‐based (green blocks) and Visual‐based (blue
blocks). The red blocks show the beginning of UAV‐based SLAM in 2003, the explosion of UAV applications, and the new era of UAV‐based
SLAM. The path in LiDAR‐based SLAM was through 2D versus 3D LiDAR era, and the path in visual SLAM was through Filtering versus
Smoothing era, Direct versus Indirect era, and Inertial Fusion era. And the next stage for LiDAR‐based and visual SLAM was deep learning era
and sensor fusion. 2D, two dimensional; LiDAR, Light Detection and Ranging; SLAM, simultaneous localization and mapping; UAV, unmanned
aerial vehicle. [Color figure can be viewed at wileyonlinelibrary.com]
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Previous studies in visual SLAM, such as monocular visual‐inertial

system (VINS‐Mono; Qin et al., 2018) and VINS‐Fusion (Qin

et al., 2019), have reported that inertial sensors provide high‐

frequency information about the motion of robot or sensor, which

can be used to improve the accuracy of the SLAM estimates over

time. Inertial sensors also help correct drift and accumulate errors.

Moreover, inertial fusion allows SLAM to be more robust to individual

sensor errors or failures, which can improve the overall reliability of

SLAM. A similar era also occurred in LiDAR SLAM, such as LiDAR

inertial odometry via smoothing and mapping (LIO‐SAM; Shan

et al., 2020) and LiDAR‐inertial 3D plane SLAM (Geneva et al., 2018),

which proposed to make fusion with LiDAR and inertial sensor to

improve the robustness and accuracy of SLAM.

3 | METHODOLOGY

The purpose of the scoping review approach (Arksey & O'Mal-

ley, 2005; Munn et al., 2018) is to survey and outline the key

concepts, types of evidence, and research gaps in a specific subject

area. It is typically performed at the start of a research project to

pinpoint the most pertinent and significant studies and to determine

areas in need of further investigation. Unlike a systematic review,

which is a comprehensive and thorough review of the literature, a

scoping review is broader and has more exploratory approach aimed

at gaining an overview of the state of research in a particular field.

With this in mind, a scoping review was carried out to identify the key

concepts and applications, and discover research gaps in the use of

SLAM for outdoor UAV‐based applications.

This scoping review adopted a systematic approach in designing

search strategies and selection criteria to ensure rigor, credibility,

transparency, and reproducibility. The designing, searching, and

implementation of the systemic method were conducted in October

2022. The screening workflow followed the Preferred Reporting

Items for Systematic Reviews and Meta‐Analyses (PRISMA) guide-

lines (Moher et al., 2009).

3.1 | Search strategy

The search strategy for this scoping review was designed according

to the guidelines of Peters et al. (2015) for conducting systematic

scoping reviews. A literature search was conducted in three online

databases (Web of Science, Scopus, and IEEE) for articles published

before October 2022 related to UAVs, SLAM, and outdoors. Detailed

literature search terms are described in Table 1 and the search

expressions used in the databases can also be found in Appendix A.

The search strategy was specifically designed to identify

literature related to UAV‐based SLAM in outdoor environments,

using a combination of keywords, synonyms, and abbreviations to

maximize the retrieval of relevant studies. The resulting literature was

then imported into EndNote 20.04 for further screening and

literature management.

3.2 | Inclusion/exclusion criteria for screening
searched literature

This study employed a systematic approach to carry out a scoping

literature review of the published literature in the field of UAV‐based

SLAM. Duplicates were removed, and a five‐step literature screening

strategy was implemented with defined inclusion and exclusion

criteria, as detailed in Table 2. The screening process involved two

stages (Figure 3), with the first being a rapid screening based on

criteria A–E that only evaluates the title, abstract, and keywords. The

second stage was a thorough screening based on criteria B–E, where

the full text of the literature that passed the first stage was evaluated.

3.3 | Screening results and data extraction

After the removal of the duplicate literature (n = 205) and literature

cannot be accessed (n = 12) from the searching result (n = 575), there

are 113 literatures fromWeb of Science, 271 literature from Scopus,

and 191 literature from IEEE (Figure 3). And 97 literature met the

criteria after conducting a two‐step screening. Some necessary

information such as the title of the studies, publish year, author,

journal and conference, country, sensors used in the studies, SLAM

simulation platforms, UAV platforms, flight height, and so forth was

extracted from the selected literature to an excel file, which can be

found in Appendix A.

4 | RESULTS

4.1 | Overview of the reviewed papers

Overall, this review analyzed 97 studies on UAV‐based outdoor

applications with SLAM published in a range of journals (n = 58)

(Figure A1) over a span of 19 years (2003–2022) (Figure 4). These

TABLE 1 The search terms and expressions used for searching
the selected literature databases.

Facet A SLAM

SLAM OR simultaneous localization and mapping

Facet B UAV platform

UAV OR UAS OR MAV OR microaerial vehicle OR
unmanned aerial vehicle OR unmanned aerial
system OR drone

Facet C Outdoor

Outdoor OR field OR orchard OR forest OR vineyard
OR park OR mountain OR grassland OR

(GPS‐denied NOT indoor)

Combined A AND B AND C

Abbreviations: GPS, global positioning system; UAS, unmanned aircraft
system; UAV, unmanned aerial vehicle.

6 | WANG ET AL.
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TABLE 2 Inclusion/exclusion criteria for a two‐step screening of the searched literature.

A The article is written in English. If yes, proceed to the next criterion.

If not, tag as “not English,” retain butexclude.

B The study is concerned with the SLAM algorithm. If yes, proceed to the next criterion.

If not, tag as “not SLAM,” retain but exclude.

C The study is concerned with new algorithms, including improvements or applications to existing

algorithms, proposing completely new algorithms, excluding review, and survey.

If yes, proceed to the next criterion.

If not, tag as “not new,” retain but exclude.

D The study is concerned with a single UAV, which means that the sensors will be deployed on
UAV to implement SLAM algorithms.

If yes, proceed to the next criterion.

If not, tag as “not UAV or not single UAV,”
retain but exclude.

E The study is concerned with outdoor sceneries, including park, orchard, forest, university,
factory, and simulated outdoor scenes, where SLAM will be evaluated and applied.

If yes, proceed to the next criterion.

If not, tag as “not outdoor,” retain but exclude.

Abbreviations: SLAM, simultaneous localization and mapping; UAV, unmanned aerial vehicle.

F IGURE 3 PRISMA 2020 flow diagram for updated systematic scoping reviews, which included searches of databases, registers, and other
sources. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta‐Analyses; SLAM, simultaneous localization and mapping; UAV,
unmanned aerial vehicle. [Color figure can be viewed at wileyonlinelibrary.com]
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studies were conducted in 29 countries, with the largest number of

studies coming from the USA (n = 20), China (n = 19), Germany

(n = 13), Switzerland (n = 12), and Spain (n = 11).

The number of publications peaked in 2021 (n = 13) with

fluctuations in the field, although there was a dip in 2022 due to

the search period limitations (by October 8, 2022). Rapid growth

after 2010 could probably be due to the improvement of UAV

technologies and the increased availability of off‐the‐shelf UAV

systems. Due to the sharply increasing interest in UAVs after 2010

(Nex et al., 2022), there was a definite upward trend in UAV‐based

SLAM research after 2010. Most studies were published in robotics

and remote sensing‐related journals and conferences (Figure A1),

including IEEE International Conference on Robotics and Automation

(n = 8), IEEE Transactions on Robotics (n = 7), Journal of Field

Robotics (n = 5), Journal of Intelligent and Robotic Systems (n = 5),

and IEEE/RSJ International Conference on Intelligent Robots and

Systems (n = 5).

4.2 | Objectives of UAV‐based outdoor SLAM
studies

To illustrate the research objectives of UAV‐based outdoor SLAM, 97

studies were divided into two main categories: algorithm‐oriented

studies and task‐oriented studies (Figure 5). In this review, algorithm‐

oriented studies meant that the research objectives and results were

the development and implementation of new SLAM algorithms. While

the task‐oriented studies meant the research objectives and results

aimed to achieve specific tasks using SLAM and UAV. The task‐

oriented studies contained seven different tasks, including detection

task (n = 13), navigation task (n = 21), mapping task (n = 7), UAV

control task (n = 5), forest assessment task (n = 4), and other tasks

(n = 6). Specifically, the UAV detection tasks involve printed landmarks

(Kim & Sukkarieh, 2003), smoke and fire (Campoy et al., 2009), civilian

and industrial objects (Birk et al., 2011; Ellenberg et al., 2015; Jung

et al., 2020; Ma et al., 2021; Medeiros et al., 2021; Pinto et al., 2021;

Silva et al., 2020; Usenko et al., 2020; Yang, Li, et al., 2017), and scene

changes (Nourani‐Vatani & Pradalier, 2010) detection. Other tasks

contained three 3D reconstruction studies (Gee et al., 2016; Kaul

et al., 2016; Wendel et al., 2012), one calculation of 3D geodetic

coordinates of the target study (Li et al., 2016), and two performance

analysis studies of SLAM methods (Diep et al., 2022; Hansen

et al., 2022). Some researchers (Hyyppä et al., 2020) evaluated the

methods of data collection in forests by handheld devices, UAV flying

under the canopies, and UAV flying above the canopies, concluding

that features collected by UAV flying under the canopies are more

accurate. As a result, the flight height of a UAV is employed as an

important evaluation indicator when performing a UAV task. This

topic can best be treated under five levels: low altitude (height<10m),

medium‐low altitude (10–30m), medium altitude (30–50m), medium‐

high altitude (50–100m), and high altitude (height >100m). It was

shown clearly that the proportion of flight heights that were less than

10m accounted for the greatest number (n = 52) of tasks in every

UAV mission.

4.3 | Application scenarios of task‐oriented studies

In both task‐oriented and algorithms‐oriented studies, the application

scenarios can be classified into aquatic, agricultural, industrial, urban,

F IGURE 4 The publication trend in the field of UAV‐based SLAM from 2003 to 2022. The publications per year of five main countries are
shown in this figure. SLAM, simultaneous localization and mapping; UAV, unmanned aerial vehicle. [Color figure can be viewed at
wileyonlinelibrary.com]
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rural, forest, and hybrid (indoor and outdoor) environments on the

basis of the experiment and application scenarios (Figure 5). Among

the seven types of scenarios mentioned above, urban environments

(n = 46) were the most used for evaluation, experiments, or

applications. While the aquatic scenario was only used by two

studies (Yang, Dani, et al., 2017; Yang et al., 2011). Although this

review focused on SLAM in outdoor environments, there were many

studies that evaluated SLAM in indoor environments or indoor open‐

source data sets first, and then conduct experiments in outdoor

environments. Therefore, hybrid (indoor and outdoor) environment

(n = 26) also accounted for a relatively large proportion of the

application scenarios.

4.4 | Experimental methods in SLAM

To illustrate how the SLAM algorithms have been typically evaluated,

the experimental methods are categorized in three ways: public data

sets, simulation platforms experiments, and field experiments

(Figure 6). Although some studies implemented both public data

sets, simulation platforms, or field experiments, overall, field

experiments (n = 66) for evaluating SLAM performance accounted

for the vast majority in the selected papers compared with the public

data set and simulation platform experiment methods. Generally,

field experiments carry out SLAM with UAVs and some necessary

equipment such as ground computing platform and sensors to

targeted scenarios mentioned in Figure 6. This method is able to

show the real results and performance of SLAM in the target

scenarios compared with evaluating SLAM by the public data set and

simulation platform. However, the use of public data sets and

simulation platforms is very efficient in developing new SLAM

algorithms and is convenient to carry out benchmark to other SLAM

algorithms.

There are some famous public data sets for SLAM evaluation

shown in Table 3. Among them, evaluating SLAM with the KITTI

data set (Geiger et al., 2012) accounts for the largest number in

the selected papers (n = 7). And the EuRoC data sets (Burri

et al., 2016) were used to evaluate SLAM in the selected papers in

large numbers (n = 6) as well. In addition, only one study using the

ICL‐NUIM data set for evaluation (Forster et al., 2016) and one

study using the NewCollege data set for evaluation (Mur‐Artal

et al., 2015). While LILI‐OM (Li, Li, et al., 2021), LIO‐SAM (Shan

et al., 2020), utbm (Yan et al., 2020), ulhk (Wen, Zhou, et al., 2020),

and nclt (Carlevaris‐Bianco et al., 2016) were only used in one

study (Xu et al., 2022).

To evaluate SLAM in a specific scenario, simulation platforms can

also be used to perform SLAM experiments. The investigation of

simulation platforms has shown that Gazebo (n = 8) (Koenig &

Howard, 2004), which is an open‐source software library for robotics

developers was the most popular simulation platform in the eligible

papers. It provides an essential robotic toolbox to simulate robots

accurately and efficiently in complex indoor and outdoor environ-

ments. However, other simulation platforms accounted for a very

small proportion. Airsim is a simulator developed by Microsoft for

drones and cars based on Unreal Engine, which was used by two

studies (Nguyen et al., 2021; Xie et al., 2021) in eligible papers. In

addition, there was one study using Unity engine (Liu et al., 2022) and

one study using Xplane 10 (Yang et al., 2019).

F IGURE 5 Overview of application characteristics in the eligible studies, flowing from Research Objectives, Task Categories, UAV flight
height (“not mentioned” means the investigated study did not mention the flight height), and Application Scenarios (“urban” includes city,
university, highway, “rural” includes village, suburb, “hybrid” includes indoor and outdoor, “forest” includes jungle, forest, rainforest, “industrial”
includes wind power station, ship, factory, bridge, “agricultural” includes crop field, “aquatic” includes river, lake, ocean, “unknown” means the
investigated studies did not mention the scenarios). UAV, unmanned aerial vehicle. [Color figure can be viewed at wileyonlinelibrary.com]
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4.5 | Hardware for UAV‐based outdoor SLAM

4.5.1 | UAV platforms

The UAV platforms adopted in the selected studies can be

categorized based on commercial or self‐made into quadrotor,

hexacopter, octorotor, helicopter, and fixed wing. The ratio of

commercial UAVs to self‐made UAVs in the eligible papers was

almost 1:1 (Figure 6). It was shown that quadrotor UAVs accounted

for a very high proportion in both commercial (n = 30) and self‐made

(n = 30). Fixed‐wing UAVs accounted for a small percentage of UAV‐

based SLAM studies compared with multirotor UAVs, with two

(a) (b)

F IGURE 6 Experiments methods categories, the chord chart (a) indicated the relationship and proportion among experimental methods
(fieldwork, simulation, and open‐source data set), type of UAVs (commercial and self‐developed) and the number of rotors of UAVs (quadrotor,
hexacopter, octorotor, fixed wing, and helicopter), the tree chart (b) illustrated the detailed simulation platforms and open‐source data sets in
experimental methods as well as their proportion used in the literature by the size of the squares. UAV, unmanned aerial vehicle. [Color figure
can be viewed at wileyonlinelibrary.com]

TABLE 3 Public data sets for UAV‐based SLAM used in the selected papers, including the name of data sets, publication year, number of
the data sets used in the selected papers, detailed sensor categories, original reference, and the link to the data sets.

Name Year Number
Sensor categories

Reference LinkCamera IMU LiDAR

KITTI 2012 7 Color stereo N/A Velodyne‐64 1 https://www.cvlibs.net/datasets/kitti/

Gray stereo

EuRoC 2016 6 Gary stereo N/A N/A 2 https://projects.asl.ethz.ch/datasets/doku.php?id=

kmavvisualinertialdatasets

TUM‐RGBD 2012 4 RGB‐D N/A N/A 3 https://cvg.cit.tum.de/data/datasets/rgbd-dataset

TUM‐VI 2018 2 Gray stereo True N/A 4 https://cvg.cit.tum.de/data/datasets/visual-inertial-dataset

ICL‐NUIM 2014 1 RGB‐D N/A N/A 5 https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html

NewCollege 2009 1 Gray stereo True Sick‐2D 6 https://ori-drs.github.io/newer-college-dataset/

LILI‐OM 2021 1 N/A True Velodyne‐64 7 https://isas-server.iar.kit.edu/lidardataset/

LIO‐SAM 2020 1 N/A True VLP‐16 8 https://github.com/TixiaoShan/LIO-SAM

utbm 2020 1 N/A True Velodyne‐32 9 https://epan-utbm.github.io/utbm_robocar_dataset/

ulhk 2020 1 N/A True Velodyne‐32 10 https://github.com/weisongwen/UrbanLoco

nclt 2016 1 Color omni True Velodyne‐32 11 http://robots.engin.umich.edu/nclt/

Hokuyo‐2D

Abbreviations: IMU, inertial measurement unit; LiDAR, Light Detection and Ranging; SLAM, simultaneous localization and mapping; UAV, unmanned aerial
vehicle.
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studies (Bryson & Sukkarieh, 2006; Kim & Sukkarieh, 2003) using

commercial fixed‐wing UAVs and three studies (Hinzmann et al., 2016;

Suzuki, Amano, & Hashizume, 2011; Suzuki, Amano, Hashizume, &

Suzuki, 2011) using self‐made fixed‐wing UAVs.

4.5.2 | Sensor categories

The sensors used in the eligible studies can be classified into three

categories based on their sensing principles: camera, LiDAR, and

others (Figure 7). Monocular cameras (n = 68) were the most popular

sensors used in SLAM. Both LiDAR (n = 21) and stereo camera

(n = 15) accounted for 11.5%. Depth camera (Li‐Chee‐Ming &

Armenakis, 2018) and offline reference map (Shao et al., 2021) were

only used in one study each.

Monocular cameras accounted for a significant portion of UAV‐

based SLAM research using only cameras. In SLAM research involving

sensor fusion, monocular cameras, and LiDAR account for the largest

share. No studies for outdoor applications have been combining

cameras, LiDAR, and other sensors yet.

Table 4 provides an overview of the major sensor types with

sensing principle and basic parameters of the sensors.

4.6 | SLAM algorithms

SLAM could be classified according to the name of the open‐source

architecture into 16 categories in the selected studies (Figure 8).

Among the existing SLAM methods, studies using EKF‐SLAM (n = 24)

and ORB‐SLAM (n = 23) represented the largest proportion of the

selected papers. Depending on the type of sensors, the highest

number of LiDAR‐based SLAM studies used LOAM (n = 5) in the

investigated studies, while ORB‐SLAM (n = 18) accounted for the

largest proportion in visual‐based SLAM. Among the remaining SLAM

algorithms in the selected studies, most were visual SLAM, such as

SVO (n = 5), LSD‐SLAM (n = 5), PTAM (n = 10), VINS‐Mono (n = 3),

VINS‐Fusion (n = 1), MSCKF (n = 2), and FAST‐LIO (n = 1) was based

on LiDAR SLAM.

In addition to using efficient optimization algorithms to reduce

processing times and improve accuracy, having a powerful processing

unit such as a high‐performance CPU or GPU is also crucial for the

real‐time performance of SLAM. Therefore, to better illustrate the

computational performance of SLAM, the computational platform

was classified in terms of the chip architecture and computation into

CPU and GPU (Table 5). Approximately three‐quarters of papers

(Figure 8) in the eligible studies used only the CPU (n = 76) in their

SLAM implementations. Only a very small proportion of the studies

involved GPU (n = 8) in UAV‐based SLAM.

In the field of SLAM, the availability of open‐source code is

significant for community development. Yet, only one in five of all

investigated studies accounted for open‐source studies. Both task‐

oriented and algorithm‐oriented, open‐source studies played a signifi-

cant role in the eligible studies in this review. Although the proportion of

open‐source studies was relatively small to the total research, these

open‐source studies have become milestones in SLAM.

5 | DISCUSSION

There have been reputable studies pointing out some issues in current

SLAM research (Cadena et al., 2016). For example, there are problems in

robustness and scalability under long‐term autonomy, such as the failure

F IGURE 7 The distribution of sensors in the investigated studies. The sensors were divided into camera‐based, LiDAR‐based and others. The
red dots on the left columns indicate the studies using a single type of sensor, and green dots indicate the studies using two types of sensors.
LiDAR, Light Detection and Ranging. [Color figure can be viewed at wileyonlinelibrary.com]
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and recovery of SLAM and metric relocalization. Additionally, metric

maps, semantic map models, SLAM combined with deep learning, and

novel and unconventional sensors (e.g., range camera, light‐field camera,

and event camera) all have some limitations to be addressed in SLAM

research. And when it comes to UAV‐based SLAM, these issues will

remain and may give rise to new challenges.

To enable the comparison and discussion among the selected

studies with the same scenarios, a data synthesis for UAV‐based

SLAM was prepared (Figure 9). This data synthesis provides a

blueprint and guidance to researchers new to the field of UAV‐based

SLAM. New researchers can refer to the setups to prepare their

studies and experiments according to the synthesis. The categories of

F IGURE 8 The distribution of the SLAM algorithms using UAVs. The y‐axis is algorithms ordered by the published year (earlier year at the
lower end of the y‐axis), excepted for “Not Mention” and “Kaarta Stencil SLAM.” For the computational platform, “Only CPU” means the studies
only use CPU to run, test, and evaluate SLAM algorithms, “CPU and GPU” means the studies use both CPU and GPU to run, test, and evaluate
SLAM algorithms, “Not mentioned” means the studies did not specify the computational platforms used. CPU, central processing unit; EKF,
extended Kalman filter; FAST‐LIO, fast direct lidar‐inertial odometry; GPU, graphics processing unit; LOAM, LiDAR odometry and mapping; LSD,
large‐scale direct; MSCKF, multistate constraint Kalman filter; PTAM, parallel tracking and mapping; SLAM, simultaneous localization and
mapping; SVO, semidirect visual odometry; UAV, unmanned aerial vehicle; VINS‐mono, monocular visual‐inertial system. [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 5 CPU and GPU model examples used in UAV‐based SLAM.

Note: The number of symbols “*” in this table represents the level of computational performance, power consumption, and price cost.

Abbreviations: CPU, central processing unit; GPU, graphics processing unit; SLAM, simultaneous localization and mapping; UAV, unmanned aerial vehicle.
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scenarios in the synthesis were based on the results of this review

(Figure 5).

To better illustrate the challenges of UAV‐based SLAM in different

scenarios, the following sections of this discussion focused on the

issues, including sensors, algorithms, and tasks, and application scenarios

and factors impacting UAV‐based SLAM explored in these studies.

5.1 | Sensor

This review highlights the significance and diversity of sensors

utilized in UAV‐based SLAM (Figure 7). Studies using LiDAR

accounted for 20% of the total investigated studies. LiDAR

accounted for a large proportion of all application scenarios except

for the aquatic environments. This may be likely due to its extreme

accuracy, simple error model, and robustness in various illumination

conditions (Huang, 2021), especially for forest and industrial

applications that may involve very high accuracy measurements

tasks such as forest growth estimation and industrial scene modeling.

Although LiDAR was currently accurate enough and can be applied to

most tasks and application scenarios, it had limitations (Table 4) due

to the high cost, large size, and single type of acquired information

from LiDAR (Huang, 2021).

In comparison, visual sensors such as monocular camera (70.7%),

stereo camera (15.5%), and RGB‐D camera (3.1%) were widely used

in all kinds of scenarios for UAV‐based outdoor SLAM (Figure 7).

RGB‐D camera can acquire both depth information and visual

information directly, which was very suitable for SLAM research.

F IGURE 9 Synthesis for UAV‐based SLAM studies, based on the selected 97 papers, the sequences of the terms in each block emphasize
the number of studies, from top to bottom decreasing. 3D, three dimensional; EKF, extended Kalman filter; FAST‐LIO, fast direct lidar‐inertial
odometry; GPS, global positioning system; LiDAR, Light Detection and Ranging; LOAM, LiDAR odometry and mapping; LSD, large‐scale direct;
MSCKF, multistate constraint Kalman filter; PTAM, parallel tracking and mapping; SLAM, simultaneous localization and mapping; SVO,
semidirect visual odometry; UAV, unmanned aerial vehicle; VINS‐mono, monocular visual‐inertial system. [Color figure can be viewed at
wileyonlinelibrary.com]
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However, some studies (Jin et al., 2019) pointed out that since the

acquisition of depth information is based on structured light or ToF

sensors, the measurement accuracy can be easily affected by

environmental illumination changes, which meant that RGB‐D

camera was not reliable for outdoor environment. The monocular

camera was more stable and robust than RGB‐D cameras in complex,

light‐changing environment. Moreover, it was low cost, and had

simple structure, small size and can be easily mounted on all kinds of

robot platforms. Although monocular cameras cannot directly acquire

depth information to determine the absolute scale from images in

SLAM, many studies illustrated that the absolute scale issue can be

solved from IMU data (Nützi et al., 2011) or estimated by detected

objects (Sucar & Hayet, 2018) and self‐induced oscillations in hover

control of SLAM (Lee & de Croon, 2018). In addition, stereo camera

was inspired from human eye, which can use the disparity of two

camera images in the same scene to calculate depth information and

did not suffer from the problem of scale‐drift in monocular camera 4.

However, this review found that only 20% of the investigated studies

used stereo camera in UAV‐based outdoor SLAM. This may be

caused by the complexity and difficulty of initial configuration, the

calibration of stereo camera and its large size compared with

monocular camera for all types of robot platforms, especially

for UAV.

Overall, UAV platforms equipped with visual sensors, especially

monocular cameras accounted for the majority of the outdoor SLAM

studies investigated. And compared with other robotic platforms, this

may be due to the characteristics of UAVs, such as limited payload,

specific flight motion modes, and limited power.

5.2 | Algorithm

5.2.1 | Conventional SLAM

Regardless of visual sensors or LiDAR sensors, almost all the

investigated studies at the algorithmic level were based on geometric

features (such as points, lines, and planes) for outdoor UAV‐based

SLAM applications (Figure 8). Among them, the ORB‐SLAM series

(18. 6%) were the most popular visual SLAM algorithms in UAV‐

based outdoor SLAM studies. ORB‐SLAM (Mur‐Artal et al., 2015) was

a SLAM algorithm based on the PTAM framework (Klein &

Murray, 2007), which used ORB features (Rublee et al., 2011) with

better angular invariance instead of a fast corner detector and

incorporates closure loop detection to eliminate drift error accumu-

lation. Mur‐Artal and Tardos also proposed ORB‐SLAM2 (Mur‐Artal

& Tardós, 2017) and ORB‐SLAM3 (Campos et al., 2021), which

supported for stereo cameras, RGB‐D cameras, and fisheye cameras.

As for LiDAR SLAM, Cartographer (Hess et al., 2016) was the current

mainstream algorithm of 2D LiDAR SLAM which was a graph‐based

optimization algorithm for indoor map construction. However, 2D

LiDAR has limitations in handling complex outdoor environments

with factors, such as smoke, dust, and rain. The introduction of

LOAM (Ji & Singh, 2014) addressed these challenges with 3D LiDAR.

LOAM proposed a novel feature extraction (edge and planar features)

and developed a motion compensation for SLAM using timestamps

but did not achieve back‐end optimization to improve mapping

accuracy. To avoid trajectory drift and further improve the accuracy

of pose estimation and map construction, LeGO‐LOAM (Shan &

Englot, 2018) utilized Georgia tech smoothing and mapping (gtsam)

as back‐end optimization. Although these traditional SLAM algo-

rithms performed well on current tasks, SLAM still lacked intelligent

perception capability (Figure 2), especially for some specific scenarios

and tasks. For example, to solve the problem that the monocular

camera cannot acquire depth information which leads to scale

uncertainty (Table 4), a monocular depth estimation solution

(Kuznietsov et al., 2017) was proposed by using a semisupervised

deep learning model. In addition, in some tasks with special

requirements (Figure 5) such as detection, recognition, classification,

conventional geometric feature‐based SLAM cannot handle these

tasks. Thus, semantic information can be combined with SLAM by

deep learning (Li et al., 2017; McCormac et al., 2017). Although there

were some works reporting such solutions, they have been mostly

used with ground vehicles or other handheld equipment (Lategahn

et al., 2011; Quan et al., 2021; Roussillon et al., 2011). When

addressing this problem with UAVs, none or few studies have been

found due to the complexities and features of UAV such as the

limited payload capacity, flight time, and energy consumption, as

stated by some studies (Abeywickrama et al., 2018; Cabreira

et al., 2019).

Dealing with high dynamic and unstructured surroundings is one

of the most difficult issues in UAV‐based SLAM. For example, UAVs

are typically operated in open outdoor areas where illumination

conditions may vary rapidly and wind can severely impair the UAVs'

stability and control (Floreano & Wood, 2015). Thus, the robustness

of SLAM is more critical for UAV‐based SLAM than ground‐based

SLAM (Ravankar et al., 2018). However there are more factors

affecting UAV‐based SLAM compared with other platforms (e.g.,

ground vehicle, handheld equipment, and backpack device). For

example, the relatively short flight time of UAVs limited by the

batteries might restrict the quantity of data acquired by the sensors

making it difficult to generate reliable maps of the area (Hardin &

Jensen, 2011). As a result relocalization capability for UAVs from the

previous SLAM results can also be a challenge, which was also

reported in a previous study (Zaffar et al., 2018).

In comparison to UAV‐based SLAM which can involve working in

various environments (Figure 9) with complex features (Opromolla

et al., 2016; Semsch et al., 2009) ground vehicles are often used in

more controlled settings such as indoor or outdoor locations with

well‐defined paths and prominent landmarks (Bostelman et al., 2015;

Kumar et al., 2021; Martínez‐Barberá & Herrero‐Pérez, 2010). This is

because ground vehicles typically follow predetermined routes and

rely on pre‐existing maps or landmarks for navigation, which can limit

their flexibility in unstructured environments (Lynch et al., 2018;

Shahzadi et al., 2021). Although both UAVs and ground vehicles may

encounter obstacles in their navigation leading to mission failure, the

excellent maneuverability (Dvorak et al., 2015) and cross‐terrain
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capabilities (Sujiwo et al., 2016) of UAVs make it easier to deal with

obstacles and uneven terrain. However these characteristics of UAVs

also add many challenges at the algorithmic level of SLAM. For

example, when performing highly maneuverable UAV tasks (e.g.,

rescue, military mission, and rapid navigation), the geometric feature‐

based SLAM algorithm mentioned above (e.g., ORB‐SLAM) may fail

to initialize or fail to extract features due to the interference with

sensors when tracking features with excessive speed of the UAV

(Esfahlani, 2019). Therefore SLAM algorithms should be optimized

for different tasks in different application scenarios to increase their

robustness.

5.2.2 | Deep learning SLAM

Compared with the conventional geometric feature‐based SLAM,

Deep Learning can extract feature from low level in shallow layer to

high level in deep layer can be more robust for visual SLAM in the

challenging environments (Taisho & Kanji, 2016). Except for improv-

ing feature extraction, deep learning such as Convolutional Neural

Networks (CNNs) can also provide semantic information for both

visual and LiDAR SLAM. Monocular depth estimation with CNN

model solves the issue that SLAM with monocular camera cannot

obtain depth information from images directly (Steenbeek &

Nex, 2022). There are different ways to build the monocular depth

estimation model, such as Unsupervised Learning (Zhan et al., 2018),

Semisupervised Learning (Kuznietsov et al., 2017), and Self‐

supervised Learning (Godard et al., 2019). Moreover, some computer

vision models can extract semantic information from environments

for understanding surroundings, improving pose estimation accuracy,

and supporting loop‐closure detection (Qin et al., 2021; Tateno

et al., 2017). There are also some deep learning models for LiDAR

SLAM. For instance, Chen et al. introduced a novel semantic mapping

method to detect dynamic object and improve pose estimation

accuracy with LiDAR solely (Chen et al., 2019).

5.3 | Tasks and application scenarios

As mentioned in this review, most of the tasks in the analyzed studies

were focused on navigation and detection, and most of the

application scenarios were also focused on urban, rural, and forest

(Figure 5). Our analysis revealed some interesting patterns in the use

of UAV‐based SLAM in different scenarios. Specifically, we found

that algorithm‐oriented research is often carried out in urban and

rural scenarios, such as university campuses or parks. These scenarios

are usually not chosen for specific applications in these scenarios for

SLAM algorithm implementation but only for algorithm evaluation in

outdoor open spaces. For other scenarios such as forest, agriculture,

industry, aquatic, the selection of these scenarios aimed to address

some challenges found in the specific scenarios (Cui et al., 2014;

Schultz et al., 2016; Yang, Dani, et al., 2017). However, the number of

selected studies worked in forest, agriculture, industry, aquatic is

much less than in urban and rural. This suggests that more work is

needed to explore the potential applications of UAV‐based SLAM in

real‐world and task‐oriented settings in these environments, such as

mapping and monitoring of infrastructure, precision agriculture, and

disaster response scenarios. And since algorithm‐oriented tasks

account for 40% of all tasks (Figure 5), most algorithm‐oriented

tasks are evaluated in public data sets rather than in field

experiments. The benefit of conducting SLAM evaluations on public

data sets was a uniform SLAM algorithms benchmark (Bujanca

et al., 2019) can be established to illustrate the differences in

algorithm performance. But excluding algorithm‐oriented tasks, most

other studies tended to conduct field experiments (60%). A possible

explanation for this could be that these experimented SLAM

algorithms may perform well in only a few specific scenarios and

do not achieve comparable performance in other scenarios. Another

possible explanation is that UAV has high experimental requirements,

such as pilot specialists to operate the UAVs, ground equipment to

assist the SLAM in collecting and processing data, and safety issues of

the UAV. And some studies (Kim & Eustice, 2013; Porav et al., 2019)

have also conducted specific field experiments for different tasks

(inspection, detection), and scenarios (rainy weather, underwater).

Therefore, the possible explanation that field experiments of specific

scenarios will be determinant in task‐oriented SLAM research is

further supported.

In addition, this review found significant differences in the flight

height of UAVs in different tasks or application scenarios (Figure 5).

Another important finding was that the flight height of UAVs under

10m accounted for almost 50% of both task‐oriented and algorithm‐

oriented studies. Some studies have found that low‐flying UAVs

perform well in tasks, such as identifying ruts and potholes (Saad &

Tahar, 2019), precision weed management (Huang et al., 2018), and

crop characterization (Uto et al., 2013). It seems possible that these

results are due to the fact that UAVs with low‐altitude flight height

are able to acquire more precise and detailed information. These

results matched those observed in earlier studies. However, some

studies have also pointed out that high altitudes are more beneficial

in other UAV tasks, such as digital elevation model mapping (Ageed &

Abulrahman, 2020), georeferenced mosaics of wheat (Gómez‐

Candón et al., 2014), and single tree height estimation in broadleaf

forests (Sadeghi & Sohrabi, 2019). Thus, a low UAV flight altitude

may be more beneficial in some tasks with high accuracy require-

ments while a high UAV flight altitude may be more beneficial in

some tasks with high efficiency requirements and a large‐scale range.

5.4 | Exploring experimental factors affecting
UAV‐based SLAM

Experimental Factors that influence the performance of SLAM in UAV

applications can be divided into hardware, software, and external factors

based on the components of UAV‐based SLAM (Figure 10).

In terms of hardware, there are several experimental factors to

consider for UAV‐based SLAM. The sensor is one of the most
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important hardware components that can affect the performance of

SLAM. All investigated studies clearly mentioned the sensors

(Figure 7) in their experiment setup. SLAM performance relies on

the data from sensors to map the environment and estimate the

UAV's location and orientation. The quality of the raw data dictates

the upper limit of SLAM performance (Aguilar‐Moreno &

Graña, 2022; Zaffar et al., 2018). If the raw data is noisy, inaccurate,

or missing, the result of SLAM including the map and pose

estimations will be correspondingly less accurate (Moosmann &

Stiller, 2011). The computational platform (Figure 8) can also be a

relatively crucial factor for SLAM in UAV applications. 81% of studies

stated the detailed experiment setup of computational platform

including the type of CPU or GPU (such as Intel Atom, Intel i7‐

4900MQ, Nvidia Jeston TX1, Nvidia GeForce GTX‐650, etc.) which

can satisfy the requirements of real‐time processing capacity for

massive sensor data. Nearly 1% of the studies involved both GPU and

CPU to process SLAM due to some SLAM algorithms combining deep

learning and computer vision models. High‐performance computa-

tional platforms can enhance the processing efficiency of SLAM

(Tuna et al., 2012), especially for some deep learning‐based SLAM

(McCormac et al., 2017; Rosinol et al., 2020). In addition, different

types of UAVs can affect the performance of SLAM due to their

different flight styles.

In terms of software, sensor calibration and the UAV control

system could be considered in the SLAM experiment setup. Only one

investigated study focused on sensor calibration, which developed a

self‐calibration system for visual SLAM (Heng et al., 2015). Sensor

calibration is a preprocessing procedure for conducting SLAM, which

is very crucial for obtaining accurate data from sensors (Sturm

et al., 2012; Trejos et al., 2022). However, sensor calibration is

ignored in some SLAM studies for UAV applications. This is mainly

because most of the UAVs used in the studies were commercial

products (Figure 6a) that did not require secondary development and

whose sensors were calibrated at the factory in advance. Another

software factor can be the control system of the UAV, which contains

communication modules, flight control modules, mission planning

modules, and so forth (Figure 10). For example, software that

controls the UAV's flight path and the timing of sensor measurements

can affect consistency and quality of sensor data (He et al., 2006)

which can in turn affect SLAM performance.

For external experimental factors, flight environment conditions

and UAV flight setup can impact SLAM in UAV applications. All

investigated studies illustrated scenarios during flying UAV with

SLAM (Figure 5), but none or few showed detailed information about

environment conditions. The flight environment, such as terrain,

wind, weather, and illumination conditions can impact sensor data

quality and consistency (Mohammed et al., 2020; Vargas et al., 2021).

For example, in poor light environments, camera sensors may

produce low‐quality images leading to inaccuracies in feature

identification and matching in erroneous pose estimations and poor

F IGURE 10 Experimental factors impacting on UAV‐based SLAM, the first column (blue) shows the hardware factors, including sensor,
processing power, and UAV types, the second column (orange) shows software factors, including the sensor calibration, SLAM control system,
and the third column (green) shows the external factor which includes flight environment (e.g., wind and weathers), and UAV flight setup (e.g.,
speed and flight height). Some examples mentioned these factors in the selected literature. LiDAR, Light Detection and Ranging; SLAM,
simultaneous localization and mapping; UAV, unmanned aerial vehicle. [Color figure can be viewed at wileyonlinelibrary.com]
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map quality (Laible et al., 2012). Furthermore, flying UAVs in windy or

turbulent environments might cause them to move unpredictably

resulting in errors in estimating UAV's position and orientation

(Kothari et al., 2014). In addition, terrain can also have an impact on

the performance of the SLAM algorithm. For example, in environ-

ments with numerous identical or repetitive features such as forests

or agricultural fields, the SLAM algorithm may struggle to distinguish

between different features leading to errors in feature matching and

pose estimation (Zhu et al., 2021). Flight setup including speed and

flight height of UAV can also have an impact on SLAM (Figure 5).

Motion of UAV especially speed has a considerable influence on

SLAM (Henein et al., 2020; Zhou et al., 2021). If UAV is moving too

quickly it may not be able to acquire enough sensor measurements to

accurately estimate its position and orientation which can result in

errors and drift in the estimates leading to poor navigation and

control performance (Dissanayake, Sukkarieh, et al., 2001). Also in

case of cameras motion blur can occur if the UAV is moving too

quickly to blurry or distorted images that are more difficult to process

and use for SLAM (Hayakawa & Ishikawa, 2016). Accuracy of data

acquired by sensors may be affected when the UAV is flying at

different altitudes, which can also influence SLAM (Hyyppä

et al., 2020).

5.5 | Strengths and limitations

There are several strengths and weaknesses of UAV‐based SLAM

limited by the advantages and disadvantages of the UAV platform.

UAVs are high‐speed and have excellent capability to cross terrain

and obstacles compared with ground vehicles. Moreover, UAVs are

able to have an advantageous view from high altitude which cannot

be available to ground‐based equipment (Mohr & Fitzpatrick, 2008).

More importantly, the use of UAVs has less damage to the ecosystem

(Kushleyev et al., 2013). However, current technologies of UAVs

have some limitations. Due to the vibrations caused by the wind at

high flight altitudes, the center of gravity will shift rapidly, and there

is a high risk of losing control (Coppola et al., 2020). Also, due to

limited flight time, limited remote controlling distance, and limited

power consumption, UAVs cannot be used in critical missions,

particularly for UAVs weighing less than 4 kg (Nieto et al., 2003).

In terms of algorithms, there are plenty of SLAM algorithms with

high performance and robustness in UAV applications currently

(Figure 8). However, there are some challenges for UAV‐based SLAM

in specific scenes. For example, limitations appear when UAVs

implement long‐term autonomy SLAM which may cover a large scale

and span a long period, such as environmental monitoring in ocean or

land exploration and large‐scale precision agriculture. Due to the

dynamic and harsh environment outdoors, data association in SLAM

may fail easily (Martinez‐Cantin & Castellanos, 2005; Sossalla

et al., 2022). And there are many parameters tuned when initializing

the SLAM, but unchanged parameters may cause failures of SLAM

when environments change (Saeedi et al., 2019). Besides, hardware

including sensors and UAV platforms may have some errors when

implementing tasks. This can cause some disasters, such as falling

UAV or the lost UAVs. In addition, computational time and memory

footprint are constrained by resources of UAV due to the extremely

limited payload which may consume lots of resources when

generating maps.

At the hardware level, the main sensors in SLAM are LiDAR and

cameras (Figure 7). Limitations of LiDAR sensors are lack of variety of

information acquired while for visual sensors limitation is small field

of view leading to incomplete information acquisition. There are

some SLAM studies trying to address challenges in sensors such as

solving the lack of information from LiDAR by fusion of different

sensors (Xu et al., 2022) or developing new sensors such as event

cameras (Gehrig et al., 2020) or smell sensor to decrease computa-

tional requirement in algorithmic level. However, most current

attempts do not focus on SLAM in UAV applications so there are

still many research gaps on UAV‐based SLAM. Also payload capacity

of UAVs is not comparable to that of ground vehicles and handheld

devices. Larger LiDARs and high‐performance mobile computing

devices are difficult to mount on UAV platforms so development of

miniaturized sensor devices, real‐time computing platforms, and

refinement of SLAM algorithms are current research challenges in

field of UAV‐based SLAM.

There were other challenges on evaluation method in UAV‐

based SLAM. Currently most public data sets for evaluating the

performance of SLAM were collected by handheld equipment or

ground vehicles. Compared with other robot platforms (e.g., autono-

mous cars and mobile ground robots), few public data sets available

for UAVs. From now on there are only seven public data sets

available for evaluating UAV‐based SLAM, including ICL (Delmerico

et al., 2019), EuRoC (Burri et al., 2016), UZH–FPV Drone Racing

(Majdik et al., 2017), Zurich Urban MAV (Oettershagen et al., 2016),

Solar‐powered UAV Sensing and Mapping data set (Oettershagen

et al., 2016), Kagaru Airborne Stereo data set (Warren et al., 2014),

and Event‐Camera Data set (Mueggler et al., 2017). Lack of UAV data

sets has led to lack of benchmark evaluations of UAV‐based SLAM.

However, most algorithm‐oriented studies have heavily relied on

public data sets for implementation and evaluation. And some public

data sets are overexposed which may lead to biased evaluation (Liu,

Fu, et al., 2021). In addition most public data sets cannot adequately

reflect real‐world circumstances that a UAV might face in a new

environment because environments in public data sets are fre-

quently preselected. Therefore how to avoid evaluation bias to

improve robustness and generalizability of SLAM algorithms is a

challenge. Moreover, most public data sets only include a single

type of basic sensors, which is not the same as a real‐world UAV

would have access to. For example Middlebury (Seitz et al., 2006),

EPFL (Strecha et al., 2008), TUM MonoVO data sets (Engel

et al., 2016) only provide video data captured by cameras, and

KinectFusion (Meister et al., 2012), TUM RGB‐D (Sturm et al., 2012),

and ETH RGB‐D (Oleynikova et al., 2017) data sets only equip with

RGB‐D sensors.
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5.6 | Future study

On the basis of the results and discussions, there are some research

points for UAV‐based SLAM in future studies. In terms of sensors,

multisensor fusion can better support the robustness, stability, and

accuracy of SLAM. For UAV‐based SLAM, sensor miniaturization and

the development of new sensors are major challenges for future

research. For example, wide field‐of‐view cameras such as fisheye

cameras or omnidirectional cameras (Caruso et al., 2015) allow for

observing and reconstructing a wider scene. Event cameras (Vidal

et al., 2018) are robust to motion blur and have very high dynamic

range. With the miniaturization of sensors, it is possible to carry a

wider variety of sensors in a SLAM with limited payload. The fusion

of multiple sensors will not only improve the accuracy of SLAM but

will also provide diverse feature that may be suitable for different

specific tasks. Thus, SLAM with fusion of multiple sensors (LiDAR,

cameras, IMU, GPS, sonar) will likely be the next research points in

UAV‐based SLAM (De Pazzi et al., 2022; Zhang et al., 2012).

For UAV platforms, although current UAV devices are suffi-

ciently stable and have a wide range of exploration, fast battery

consumption, lack of durability, and limited communication range for

SLAM are issues that need to be addressed in future research (Galkin

et al., 2019; Olsson et al., 2010). Furthermore, UAV swarm

collaboration and collaboration between UAVs and ground vehicles

will also address individual UAV shortcomings (Zhou et al., 2022). For

example, UAV swarm can increase coverage area, enhance fault

tolerance, and provide higher mission efficiency than single UAV

(Zhou et al., 2020, 2022). The collaboration between UAVs and

ground vehicle can supply energy to UAVs which ensures long‐term

flight (Li, Cheng, et al., 2021; Papachristos & Tzes, 2014).

Regarding SLAM algorithms, on small mobile platforms like

UAVs, lightweight and real‐time algorithms need to be developed to

ensure a reasonable allocation of computational resources. Recent

advances in computer vision and deep learning have shown great

promise for improving the accuracy and efficiency of UAV‐based

SLAM. For example, semantic segmentation and object detection

algorithms such as swin transformer (Liu, Lin, et al., 2021), deeplab‐

V3 (Chen et al., 2017), and YOLO‐V7 (Wang et al., 2022) can address

the issues of identification and classification of objects in the

environment, enabling more effective localization and mapping (e.g.,

dynamic feature removal and object‐based feature) as well as fruitful

semantic information (Wu et al., 2022; Zhang et al., 2018). As

mentioned above the lack of absolute scale for monocular camera

SLAM can also be effectively addressed by the recent monocular

depth estimation algorithm (Cordts et al., 2016). Similarly, 3D

reconstruction methods can be used to generate more detailed and

accurate maps of the environment, for example, Nerf (Mildenhall

et al., 2021). By integrating the techniques such as computer vision,

deep learning, and reinforcement learning, UAV‐based SLAM can

achieve more advanced and complex tasks, such as autonomous

navigation, object manipulation, and so forth. Several studies

(Botteghi et al., 2020; Li et al., 2018; Wen, Zhao, et al., 2020) have

demonstrated the effectiveness of these techniques in improving the

performance of SLAM. Moreover, the current SLAM algorithm based

on UAV is applicable to fewer scenarios, and future research should

collect and establish relevant open‐source data sets for different

scenarios to prepare for SLAM algorithms and benchmark tests.

Finally, the current research area of UAV‐based SLAM is mainly

focused on urban and rural environments, while the proportion of

research in agriculture and industrial areas is low. The high mobility

and autonomy of UAVs combined with SLAM offer significant

potential for a wide range of applications, such as smart agriculture,

infrastructure, and natural hazard monitoring. For instance, UAVs can

collect high‐resolution imagery and generate comprehensive maps of

crop growth, health conditions, and yield estimation, enabling

precision agriculture practices and more effective resource utilization

with SLAM (Aslan et al., 2022; Cheein et al., 2011; Krul et al., 2021).

UAV with SLAM can also be used to inspect and monitor structures,

such as bridges, ships, pipelines, and buildings, to identify potential

hazards and carry out maintenance and repairs more effectively (Bian

et al., 2018; Sato & Anezaki, 2017). Similarly, UAV‐based SLAM can

also be applied in scenarios involving disaster management, allowing

rapid mapping and assessment of affected areas to direct response

activities (Lee et al., 2016). These are just a few examples of the many

potential applications of UAV‐based SLAM. As technology develops,

it is likely that many new opportunities will arise.

The autonomy of UAVs is dependent on its ability to perceive

and navigate their environment independently, and UAV‐based

SLAM is a key enabling technology to achieve this. Several recent

studies have highlighted the potential of UAV‐based SLAM for

improving autonomy and increasing the range of tasks that UAVs can

perform. For example, several studies (Naveed et al., 2022; Wang

et al., 2019) showed that by integrating visual SLAM with

reinforcement learning, robots could learn to navigate complex

indoor environments with high efficiency and autonomy. Another

study (Azpúrua et al., 2021) demonstrated the potential of UAV for

performing complex inspection tasks in hazardous environments.

In future, the development of UAV‐based SLAM can be

combined with deep learning, sensor, battery, and communication

technologies, leading to an unmanned, autonomous UAV system for

every scenario in city, agriculture, forest, industry, river, and ocean.

6 | CONCLUSION

This scoping review provides an overview of different tasks and

applications scenarios employing SLAM and UAVs with various

sensors. Currently, the navigation of UAVs relies on GPS/global

navigation satellite systems or expert operation within visible range.

However, when it comes to GPS‐denied outdoor environment, SLAM

could be an important technology for UAV navigation and generate

maps of surroundings.

The UAV‐based SLAM is still in its infancy compared with other

robotic platforms, such as autonomous cars, warehouse robots, and

industrial robots. UAV applications with conventional geometric

feature‐based SLAM algorithms (e.g., ORB‐SLAM, LSD‐SLAM, and
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VINS‐Mono) are relatively mature and have some practical applica-

tions, such as fire detection, forest growth assessment, and

infrastructure inspection. However, there are still relatively few

other applications for UAV‐based SLAM in other fields, and

compared with SLAM for other robotic platforms, the technology

of SLAM is still not widely combined with current technologies, such

as deep learning. Lack of related data sets, real‐time processing

performance, and robustness for long‐term autonomy are still

challenges. As a next step, UAV‐based SLAM will be developed in

specific application scenarios and related data sets will be built.

At the moment, the monocular camera is the most widely used

sensor in UAV‐based SLAM due to its small size, lightweight, easy‐to‐

use, and robust performance. Different types of sensors have their pros

and cons in different tasks and application scenarios. Therefore, some

studies have focused on multisensor fusion to compensate for the

deficiencies of different sensors that can improve the accuracy of

SLAM. However, except for IMU and GPS sensor data, there were none

or few studies adopting sensor fusion for more than three different

types of sensors. This may be due to the limitations of the UAV's

payload, so it is equally important to balance the weight of the battery,

computing platform, and sensors within the limited UAV payload.

Due to the current limitations of UAVs, sensors, and computa-

tional power, UAV‐based SLAM experiments should be carefully

considered. And some challenging influences should be considered in

different experimental scenarios. Thus, we provide three factors from

hardware, software, and external level in UAV‐based SLAM experi-

ment setup. Researchers can design their UAV‐based SLAM experi-

ments referring to our experimental factors that may influence the

SLAM results (Harmat et al., 2015).
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APPENDIX A

Search formula

Web of Science:

(((TS = (SLAM) OR TS= (simultaneous localization and mapping)) AND

(TS= (UAV) OR TS= (UAS) OR TS= (MAV) OR TS= (unmanned aerial

vehicle) OR TS= (unmanned aerial system) OR TS= (microaerial vehicle)

OR TS= (drone)) AND (TS= (outdoor) OR TS= (field) OR TS= (orchard) OR

TS= (forest) OR TS= (vineyard) OR TS= (park) OR TS= (mountain) OR

TS= (grassland) OR (TS = (GPS‐denied) NOT TS= (indoor))))

Scopus:

(((TITLE‐ABS‐KEY(SLAM) OR TITLE‐ABS‐KEY(simultaneous localiza-

tion and mapping)) AND (TITLE‐ABS‐KEY(UAV) OR TITLE‐ABS‐KEY(UAS)

OR TITLE‐ABS‐KEY(MAV) OR TITLE‐ABS‐KEY(unmanned aerial vehicle)

OR TITLE‐ABS‐KEY(unmanned aerial system) OR TITLE‐ABS‐KEY

(microaerial vehicle) OR TITLE‐ABS‐KEY(drone)) AND (TITLE‐ABS‐KEY

(outdoor) OR TITLE‐ABS‐KEY(field) OR TITLE‐ABS‐KEY(orchard) OR

TITLE‐ABS‐KEY(forest) OR TITLE‐ABS‐KEY(vineyard) OR TITLE‐ABS‐

KEY(park) OR TITLE‐ABS‐KEY(mountain) OR TITLE‐ABS‐KEY(grassland)

OR (TITLE‐ABS‐KEY(GPS‐denied) AND NOT TITLE‐ABS‐KEY(indoor))))

IEEE database:

((((“All Metadata”: SLAM) OR (“All Metadata”: simultaneous localiza-

tion and mapping)) AND ((“All Metadata”: UAV) OR (“All Metadata”: UAS)

OR (“All Metadata”: MAV) OR (“All Metadata”: unmanned aerial vehicle)

OR (“All Metadata”: unmanned aerial system) OR (“All Metadata”:

microaerial vehicle) OR (“All Metadata”: drone)) AND ((“All Metadata”:

outdoor) OR (“All Metadata”: field) OR (“All Metadata”: orchard) OR (“All

Metadata”: forest) OR (“All Metadata”: vineyard) OR (“All Metadata”: park)

OR (“All Metadata”: mountain) OR (“All Metadata”: grassland) OR ((“All

Metadata”: GPS‐denied) NOT (“All Metadata”: indoor))))

See Figure A1.

F IGURE A1 General Information on the included studies illustrating the distribution of the journals and conferences.
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