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A B S T R A C T   

In cattle, facial temperatures captured by infrared thermography provide useful information from physiological 
aspects for researchers and local practitioners. Traditional temperature collection requires massive manual op-
erations on relevant software. Therefore, this paper aimed to propose a tool for automated temperature collection 
from cattle facial landmarks (i.e., eyes, muzzle, nostrils, ears, and horns). An improved UNet was designed by 
replacing the traditional convolutional layers in the decoder with Ghost modules and adding Efficient Channel 
Attention (ECA) modules. The improved model was trained on our open-source cattle infrared image dataset. The 
results show that Ghost modules reduced computational complexity and ECA modules further improved seg-
mentation performance. The improved UNet outperformed other comparable models on the testing set, with the 
highest mean Intersection of Union of 80.76% and a slightly slower but still good inference speed of 32.7 frames 
per second. Further agreement analysis reveals small to negligible differences between the temperatures obtained 
automatically in the areas of eyes and ears and the ground truth. Collectively, this study demonstrates the ca-
pacity of the proposed method for automated facial temperature collection in cattle infrared images. Further 
modelling and correction with data collected in more complex conditions are required before it can be integrated 
into on-farm monitoring of animal health and welfare.   

1. Introduction 

Infrared thermography (IRT) is the technique of detecting infrared 
radiation from an object, converting it to temperature, and visualizing 
the temperature distribution with an image (Tan et al., 2009). Due to its 
non-contact advantage, IRT has been widely used in human fever 
detection and health evaluation. In husbandry, IRT can contribute to 
precision livestock farming which aims to provide an automated pro-
tocol for monitoring animal health and welfare parameters (Halachmi 
and Guarino, 2016). 

In cattle, temperatures obtained from specific facial landmarks (e.g., 
eyes, forehead, nostril, ears, horns, cheek) have been widely used as 
indicators or predictors of health conditions such as physiological state 
(Ma et al., 2021), bovine respiratory disease (Schaefer et al., 2012), and 
foot-and-mouth disease (Gloster et al., 2011); animal welfare issues such 
as temperament (Chen et al., 2021), emotions (Uddin et al., 2021), and 
heat stress (Peng et al., 2019); and productivity issues such as feed 

efficiency (Montanholi et al., 2009) and meat quality (Cuthbertson et al., 
2020). 

In order to collect the temperature of the abovementioned facial 
landmarks, facial regions of interest (ROIs) must first be defined. In most 
literature, ROIs are defined manually in infrared images using relevant 
processing software due to the lack of reliable detection tools for cattle 
facial landmarks (Cuthbertson et al., 2019; Lowe et al., 2019). Thus, 
there has been a growing interest among researchers to develop such a 
tool to increase the efficiency of dealing with cattle infrared images. In 
previous studies, ROIs such as eyes, ear base, cheek, and nose have been 
localised in infrared images for specific purposes (Jorquera-Chavez 
et al., 2019; Kim and Hidaka, 2021; Lowe et al., 2020; Zhang et al., 
2020). However, very limited effort has been contributed yet to a 
comprehensive method for separating multi-class facial ROIs in cattle 
infrared images. This method should be robust against usual interfering 
factors such as camera angle and changing microenvironment. 

Of note, most of the previous works use traditional image processing 
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techniques for detecting facial landmarks in cattle infrared images, such 
as Haar cascade classifiers (Lowe et al., 2020) and thresholding (Jaddoa 
et al., 2021). The recent development of deep learning provides alter-
native solutions. For example, recent studies have achieved automatic 
ocular temperature collection using object detection methods based on 
improved YOLOv4 (Wang et al., 2022a) and YOLOv5 (Wang et al., 
2022b), and YOLOv7 (Chu et al., 2023). In addition, semantic segmen-
tation, as another central computer vision task that separates each pixel 
into pre-defined classes (LeCun et al., 2015). Its usefulness is particularly 
evident in the field of face parsing, which aims to create pixel-wise 
segmentation maps for facial parts in human RGB images (Lin et al., 
2019). It can be therefore imagined that this pixel-wise outlining can 
lead to more accurate and comprehensive temperature assessments from 
infrared images. However, no relevant work or attempts have been 
found yet. 

Semantic segmentation in infrared images has to deal with some 
challenges (Kütük and Algan, 2022). One of the main challenges is the 
lower resolution of infrared images compared with RGB images, which 
can result in less detailed information and difficulty in accurately 
delineating object boundaries. Another challenge is the phenomenon of 
thermal crossover, where objects at similar temperatures blend into the 
background, making it harder to distinguish them. Advancements of 
more sophisticated algorithms and deep learning models, such as con-
volutional neural networks (CNNs), Vision Transformer, and other 
attention mechanisms, have markedly improved accuracy in recognition 
across various data, such as speech (Khan et al., 2023a) and image (Khan 
et al., 2023b). Therefore, it is of great interest to explore to what extent 
these techniques can help in segmenting facial landmarks in cattle 
infrared images. 

Thus, this study aimed to propose a semantic segmentation-based 
tool for automated facial temperature collection from cattle infrared 
images, so as to improve the efficiency of processing relevant research 
data. Specifically, a baseline semantic segmentation network, namely 
UNet, was modified, trained, and compared its performance with other 
state-of-the-art models in segmenting cattle facial landmarks. Then, the 
temperatures obtained from the predictions of the improved UNet were 
compared with those obtained from the ground-truth annotations. 

2. Materials and methods 

Since there is no public infrared image dataset appropriate for the 
semantic segmentation of cattle facial landmarks, a field experiment was 
conducted for data acquisition. The experimental protocol was approved 
by the Experimental Animal Care and Committee of Institute of Animal 
Sciences, Chinese Academy of Agricultural Sciences (approval number 
IAS2021-220). 

2.1. Data acquisition 

The experimental farm is located in Shandong, China (34◦50′37″N 
and 115◦26′11″E), and belongs to a temperate continental monsoon 
climate with hot and humid summers. It is worth noting that the tem-
perature difference between the background and animals would change 
dramatically from non-heat-stressed months to heat-stressed months. 
Ignoring this fact would definitely affect the robustness of the trained 
network in practice. Thus, the experiment was conducted from May to 
August 2021 to cover a wide range of thermal environments from warm 
to hot. The free-stall pen was covered by a double-pitched roof, and 
therefore, most of the solar radiation was prevented from reaching the 
cows inside the barn. Indoor microenvironmental parameters including 
ambient temperature (Ta) and relative humidity (RH) were measured by 
using six Kestrel 5000 and 5400 environment meters that were equally 
spaced in the barn (measurement interval: 10 min, accuracy: ± 0.4 ◦C Ta 
and ± 1 % RH; Nielsen-Kellerman, Boothwyn, PA, USA). The 
temperature-humidity index (THI) was calculated according to Eq. (1) 
(NRC, 1971). 

THI = (1.8 × Ta+ 32) − (0.55 − 0.005 × RH) × (1.8 × Ta − 26) (1) 

A total of 59 primiparous and multiparous Holstein dairy cows were 
selected for infrared thermal imaging. The infrared images were taken 
with a portable infrared camera (VarioCAM HR, InfraTec, Dresden, 
Germany) which has a spectral range from 7.5 to 14 μm, a temperature 
measuring range from − 40 ◦C to 2,000 ◦C, an accuracy of ±1.5 ◦C, and a 
resolution of 640 × 480 pixels. All images were taken at a distance of 
approximately 1 to 1.5 m from the cow. To increase the robustness of the 
proposed method in actual farms, cows were not restrained during 
photography and a wide range of situations including heterogeneous 
postures were covered. Thermal imaging was carried out between 08:00 
and 17:00 h. All cows were healthy during the entire experiment. 

2.2. Data pre-processing 

Infrared images were initiated with IRBIS 3 Standard software 
(YSHY, Beijing, China). Before formal processing, images with low 
quality and multiple faces were manually eliminated, contributing to a 
dataset with 1,000 images. All images were calibrated by setting the 
emissivity to 0.98 (Montanholi et al., 2015), and by inputting the 
averaged Ta record from the sensors corresponding to the time when 
they were taken. The images were outputted into grey-scale joint 
photographic experts group (JPEG) format (640 × 480 pixels) with the 
temperature scale set to 295 to 315 degrees Kelvin. The temperature 
matrices were also outputted into comma-separated values (CSV) format 
for further temperature collection from segmentations. 

For a given grey-scale image, facial landmarks that have been 

Fig. 1. Examples of cattle infrared images and their ground-truth annotations for facial landmarks.  
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frequently used in dairy research (i.e., eyes, muzzle, nostrils, ears, horns) 
were annotated with polygons using Labelme (https://github.com/w 
kentaro/labelme.git) (Fig. 1). The images were randomly allocated to 
training (46 cows, 782 images), validation (6 cows, 125 images), and 
testing (7 cows, 93 images) sets. The training set was used to train the 
networks, the validation set to tune the hyperparameters and obtain an 
initial assessment of accuracy, and the testing set to collect the final 
performance. Data augmentation methods, such as flipping, rotation, 
brightness changing, contrast changing, sharpening, Gaussian noise 
adding, and elastic deformation, were performed in the training set to 
improve the accuracy and generalisation capacity of the trained network 
(see Appendix A. Supplementary Material Fig. S1). Thus, the training set 
was seven-fold augmented. The images were resized to 512 × 512 pixels 
before they were fed to the networks. 

2.3. Segmentation network architectures 

2.3.1. UNet model 
UNet, as a popular semantic segmentation network, has a symmetric 

U-shaped architecture of a contracting path for capturing global context 
and an expansive path for precise localisation, and uses skip connections 
between two paths to transfer context information to higher resolution 
layers (Ronneberger et al., 2015). In this study, the UNet with a VGG16 
(Simonyan and Zisserman, 2014) encoder was used as the baseline 
(Fig. 2). The downsampling block is repeated by two or three 3 × 3 
convolutions (activated by ReLU functions) and one 2 × 2 max-pooling 
operation. Thus, the image is halved in size after each block, compen-
sated with a doubled number of feature map channels. In the decoder 
part, repeated blocks include an upsampling (bilinear method), a 
concatenation with the corresponding feature map from the encoder, 
and two repeated 3 × 3 convolutions (each followed by a ReLU function) 

to fuse and reconstruct feature maps from both local details and global 
context. Finally, a 1 × 1 convolution with the number of channels set to 
the number of classes is used to generate class-wise classification results 
for each pixel. 

2.3.2. Improved UNet model 
As shown in Fig. 2, the modification on the baseline UNet model 

happened to the decoder where two consecutive convolutional layers 
are replaced by a combination of a Ghost with Efficient Channel 
Attention (GhostECA) module and a Ghost module. The detailed struc-
ture of the improved UNet is shown in Table 1. 

The Ghost module is a plug-and-play component that can be used to 
replace common convolutional operations in any classical CNNs (Han 
et al., 2020). The idea of Ghost modules was from the observation of the 
intermediate feature maps calculated by mainstream CNNs. The authors 
found the redundancy in feature maps, in which some feature maps are 
very similar in pairs, as if one of the pair is a “ghost” of the other. This 
means that one feature map of the pair can be obtained by transforming 
the other feature map with cheap operations. Therefore, Ghost modules 
aim to generate more feature maps with fewer parameters and cheaper 
operations. 

The applied Ghost module, as shown in Fig. 2, consists of two 
consecutive convolutions. In the first convolution, the number of input 
channels is reduced to one-quarter, using a kernel size of 3 and a stride of 
1. This reduction in channel dimensions helps reduce model complexity 
and computational cost. The second convolution expands the reduced 
channels by three times, using a larger kernel size of 5 and a stride of 1. 
Finally, the output of the second convolutional operation is concate-
nated with that of the first convolution to assure that the number of 
output channels equals the number of original input channels. 

It is well known that adding attention mechanisms to CNNs can 

Fig. 2. Architecture of the baseline UNet model and the improved UNet model by replacing convolutions in the decoder with Ghost and GhostECA modules (shown 
in dashed boxes, where C and C’ represent the input and output channel numbers, respectively, and C_=C’/4). 
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improve their performance. The attention mechanism in deep learning 
works similarly to human selective visual attention in that both aim to 
identify and emphasise the most important information from large 
amounts of data. Efficient channel attention (ECA) is an extremely 
efficient and lightweight channel attention mechanism proposed by 
Wang et al. (2020). The applied ECA module consists of three main steps 
(Fig. 3). Firstly, a global average pooling operation is applied to the 
input feature maps, squeezing the spatial dimensions W × H to 1 × 1 
while retaining channel-wise information. Next, a one-dimensional 
convolution with a kernel size of 3 is performed to achieve local cross- 
channel interaction and capture channel-wise dependencies. A sig-
moid activation function is then used to compute channel-wise attention 

weights. Finally, the attention weights are multiplied element-wise with 
the input feature maps, allowing the network to selectively emphasise 
relevant information. 

In this study, an ECA module is integrated into the first Ghost module 
of each upsampling block in the decoder to enhance its performance 
(Fig. 2). The integrated GhostECA module has one more convolutional 
operation after concatenating the outputs of the first two convolutions 
and the ECA module in order to adjust the number of output channels. 

2.4. Segmentation network training 

The training was performed in Python 3.7 language with Pytorch 
1.13.0 on a 64-bit Windows 11 computer with NVIDIA GeForce RTX 
3090 GPU. Transfer learning can significantly reduce the number of 
required images and increase training efficiency compared with training 
from scratch with randomly initialised weights. In this study, the ini-
tialised weights of all encoders were transferred from the networks pre- 
trained on the ImageNet dataset (Deng et al., 2009). The epoch was set 
to 300, the batch size to 16, and the learning rate to 0.0001 with an 
Adam optimiser. A combination of cross-entropy and dice coefficient 
was used as the loss function (LCE + LDice), as defined in Eqs. (2) and (3). 
Dice loss was used because it can effectively handle the pixel imbalance 
between foreground and background. 

LCE = −
∑C

i=1
tilogpi (2)  

LDice = 1 −
2TP

2TP + FP + FN
(3)  

where C takes 5, indicating five classes of interest (i.e., “eye”, “muzzle”, 
“nostril”, “ear”, “horn”), ti and pi are the ground truth and the Softmax 
probability of each pixel for each class i, respectively, TP denotes true 
positive (pixels correctly classified as a class of interest), FP denotes false 
positive (pixels incorrectly classified as a class of interest), TN denotes 
true negative (pixels correctly classified as the background), and FN 
denotes false negative (pixels incorrectly classified as the background or 
a wrong class). The model from the epoch with the lowest validation loss 
was used for testing. 

2.5. Ablation and comparison studies 

Ablation tests were conducted: (1) UNet with VGG16 as the back-
bone was used as the baseline model; (2) based on the baseline model, 
the convolutional layers in the decoder were replaced by Ghost modules. 
This model is referred to UNet + Ghost; and (3) based on UNet + Ghost, 
ECA was integrated into the first Ghost module of each decoder. This is 
the proposed model to be compared, which is referred to UNet +
GhostECA. 

To show the competitiveness of the improved UNet model, it was 
compared with other popular semantic segmentation models in the field, 
including FCN (Long et al., 2015) with VGG16 as the backbone (FCN- 
VGG16), PSPNet (Zhao et al., 2017) with MobileNetV2 (Sandler et al., 
2018) and ResNet50 (He et al., 2016) as the backbone, respectively 
(PSPNet-MobileNetV2 and PSPNet-ResNet50), DeepLabV3+ (Chen 
et al., 2018) with MobileNetV2 (Sandler et al., 2018) and Xception 
(Chollet, 2017) as the backbone, respectively (DeepLabV3 + -Mobile-
NetV2 and DeepLabV3 + -Xception), UNet with ResNet50 as the back-
bone (UNet-ResNet50), as well as SegFormer (Xie et al., 2021) with B5 
as the backbone (SegFormer-B5). 

2.6. Performance evaluation 

The per-class segmentation results were shown using the Intersection 
over Union (IoU), Recall, and Precision, as expressed in Eqs. (4–6). The 
IoU is the intersection of the prediction and ground truth divided by 

Table 1 
Structure of the improved UNet.  

Layer Kernel size & 
stride 

Output shape Connect to 

Input – 512 × 512 × 3 Convolution1 
Convolution1 3 × 3, 1 512 × 512 ×

64 
Convolution2 

Convolution2 3 × 3, 1 512 × 512 ×
64 

Max-pooling1 & 
Concatenate4 

Max-pooling1 2 × 2, 2 256 × 256 ×
64 

Convolution3 

Convolution3 3 × 3, 1 256 × 256 ×
128 

Convolution4 

Convolution4 3 × 3, 1 256 × 256 ×
128 

Max-pooling2 & 
Concatenate3 

Max-pooling2 2 × 2, 2 128 × 128 ×
128 

Convolution5 

Convolution5 3 × 3, 1 128 × 128 ×
256 

Convolution6 

Convolution6 3 × 3, 1 128 × 128 ×
256 

Convolution7 

Convolution7 3 × 3, 1 128 × 128 ×
256 

Max-pooling3 & 
Concatenate2 

Max-pooling3 2 × 2, 2 64 × 64 × 256 Convolution7 
Convolution8 3 × 3, 1 64 × 64 × 512 Convolution8 
Convolution9 3 × 3, 1 64 × 64 × 512 Convolution9 
Convolution10 3 × 3, 1 64 × 64 × 512 Max-pooling4 & 

Concatenate1 
Max-pooling4 2 × 2, 2 32 × 32 × 512 Convolution9 
Convolution11 3 × 3, 1 32 × 32 × 512 Convolution10 
Convolution12 3 × 3, 1 32 × 32 × 512 Convolution13 
Convolution13 2 × 2, 2 32 × 32 × 512 Upsampling1 
Upsampling1 – 64 × 64 × 512 Concatenate1 
Concatenate1 – 64 × 64 ×

1024 
GhostECA1 

GhostECA1 – 64 × 64 × 512 Ghost1 
Ghost1 – 64 × 64 × 512 Upsampling2 
Upsampling2 – 128 × 128 ×

512 
Concatenate2 

Concatenate2 – 128 × 128 ×
768 

GhostECA2 

GhostECA2 – 128 × 128 ×
256 

Ghost2 

Ghost2 – 128 × 128 ×
256 

Upsampling3 

Upsampling3 – 256 × 256 ×
256 

Concatenate3 

Concatenate3 – 256 × 256 ×
384 

GhostECA3 

GhostECA3 – 256 × 256 ×
128 

Ghost3 

Ghost3 – 256 × 256 ×
128 

Upsampling4 

Upsampling4 – 512 × 512 ×
128 

Concatenate4 

Concatenate4 – 512 × 512 ×
192 

GhostECA4 

GhostECA4 – 512 × 512 ×
64 

Ghost4 

Ghost4 – 512 × 512 ×
64 

Convolution14 

Convolution14 1 × 1, 1 512 × 512 × 6 –  
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their union. The Recall indicates the proportion of all positive labels that 
are classified correctly. The Precision indicates the proportion of all 
positive predictions that are classified correctly. 

IoU =
TP

TP + FP + FN
× 100% (4)  

Recall =
TP

TP + FN
× 100% (5)  

Precision =
TP

TP + FP
× 100% (6) 

The overall segmentation performance was evaluated using the mean 
Intersection over Union (mIoU) and mean pixel accuracy (mPA). The 
mIoU is the mean IoU of the background and five classes of interest, 
whereas the mPA is the average of the pixel accuracy of the background 
and five classes, as expressed in Eqs. (7) and (8), respectively: 

mIoU =
1

C + 1
∑C

i=0
IoU × 100% (7)  

mPA =
1

C + 1
∑C

i=0

pii
∑C

j=0pij
× 100% (8)  

where C + 1 equals 6 indicating the background and five classes of in-
terest. Pii and Pij are the total numbers of pixels belonging to class i that 
are predicted to belong to i and j, respectively. 

In addition, number of parameters, model size, and floating-point 
operations (FLOPs) were calculated to show model complexity and 
computational requirements, and frames per second (FPS) was calcu-
lated to indicate the inference speed, as expressed in Eq. (9): 

FPS =
N
tN

(9)  

where tN is the total inference time (s) on N images. 

2.7. Data analysis 

Further data analysis was done using the images from the testing set. 
The predicted segmentations by the improved UNet as well as the 
ground-truth annotations were used for generating temperature pa-
rameters (i.e., mean and maximum) of the ROIs. This was done by using 
a self-written program in Python that maps the coordinate matrices of 

the segmentations and annotations with the original temperature 
matrices. The results of the ground-truth annotations were regarded as 
ground truth. Moreover, the temperature parameters were also gener-
ated by the traditional method with ROIs manually defined on the 
software using appropriate shapes such as ellipses and rectangles (see 
Fig. S2). This was to represent the common practice in relevant studies. 
Finally, the results obtained by the two methods, namely the proposed 
method based on automated segmentations and the traditional method 
based on manual collection, were examined for their agreement with the 
ground truth using Bland-Altman plots (Altman and Bland, 1983). 

3. Results and discussion 

3.1. Overview of the dataset 

During the experimental period, Ta averaged 30.1 ◦C (range from 
22.4 to 37.6 ◦C), RH averaged 61.1 % (range from 19.5 to 94 %), and 
THI averaged 79.8 (range from 70.3 to 85.9). The standard deviation of 
daily mean Ta, RH, and THI were 2.7 ◦C, 16.3 %, and 3.2, respectively. 
The THI distribution shown in Fig. 4 indicates a good consistency be-
tween training and testing sets as well as wide coverage of thermal en-
vironments. According to the THI threshold customised for high- 
producing dairy cows, heat stress occurs at a THI of 68, mild- 
moderate at 72, moderate-severe at 80, and severe at 90 (Collier et al., 

Fig. 3. Architecture of the efficient channel attention (ECA) module.  

Fig. 4. Distribution of temperature-humidity index (THI) during photography 
summarised by training (including validation and before augmentation, n =
907) and testing (n = 93) sets, respectively. 
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2012). Thus, our test cows experienced no to moderate-severe heat 
stress during observations. 

3.2. Results of training and ablation study 

To the best of our knowledge, this is the first attempt at pixel-level 
facial landmark segmentation in cattle infrared images. As shown in 
Fig. 5, there was a rapid increase in validation mIoU as loss decreased at 
the early stage of training, and the model converged at the middle stage. 
The lowest loss (0.137123) on the validation set was obtained at epoch 
153. 

The ablation study showed a performance gain by introducing Ghost 
and GhostECA modules (Table 2). By replacing convolutions in the 
decoder with Ghost modules, the UNet + Ghost model had an increased 
mIoU and mPA by 0.91 % and 0.46 %, respectively, compared with the 
baseline UNet model. This can be explained by the enlarged receptive 
field as a result of the addition of larger convolutional kernels in the 
decoder. Plus, its number of parameters, model size, and FLOPs 
decreased by 30.49 %, 31.25 %, and 47.49 %, respectively, resulting in a 
slight increase in FPS by 3.89 %. These results are consistent with pre-
vious reports that Ghost modules can reduce computational complexity 
by exploiting redundancy in intermediate feature maps calculated by 
mainstream CNNs (Wang et al., 2022a; Zheng et al., 2023). 

By further integrating the ECA module into Ghost modules, the UNet 
+ GhostECA model further increased mIoU by 0.68 % at the basis of the 
UNet + Ghost model, compensated by an increased number of param-
eters, model size, and FLOPs by 6.53 %, 6.52 %, and 13.65 %, respec-
tively. Still, the proposed UNet + GhostECA model outperformed the 
baseline model in all metrics except for FPS, which decreased by 9.17 %. 
These results are as expected, as the integration of attention mechanisms 
increases performance by suppressing the gradient transmission of 
irrelevant information, but often requires more computational resources 
due to the more complex structure. Collectively, the UNet + GhostECA 
model should be considered a successful improvement due to its leading 
mIoU, smaller computational requirements, and good inference speed. 

3.3. Segmentation results of the improved UNet 

The detailed performance of the improved UNet model illustrated in 
Fig. 6 shows robust segmentations against usual interfering factors 
including camera angle and extreme ambient environment. More 
importantly, all ROIs yielded an IoU higher than 50 % which is a 
commonly used threshold above which a result is considered to be ac-
curate. The IoU, Recall, and Precision shared a similar trend, with the 
best performance obtained by “ear” and “eye”, while the worst by 
“muzzle”, “horn”, and “nostril”. The relatively poor segmentation in the 
nose areas was most likely due to the misclassification of pixels between 
nostrils and muzzles. Since the nose area of cattle is often covered by 
foreign matter such as mud, water, and saliva, especially during hot 
seasons (Burhans et al., 2022), the detection of nostrils and muzzle is 
more difficult than other ROIs. However, a better segmentation can be 
speculated by combining “muzzle” and “nostril” as one unified label 
class of nose areas. 

The misclassification of eyes was primarily due to partially open or 
closed eyes. Unfortunately, this is hard to solve due to relatively limited 
negative samples in the current datasets. The worse results of horns can 
be explained by relatively fewer training instances since not all cows had 
horns. Also, their misclassification is partially due to incomplete horn 
removal. Calves were disbud using hot iron on the experimental dairy 
farm at around 40 days of age. If the horn bud remained subdermal, such 
skin surface would show a blur region on the infrared image and could 
be misclassified as a horn, especially from certain side views. This 
finding suggests a novel method for veterinarians to confirm the effec-
tiveness of horn removal and determine whether a second operation is 
required. 

3.4. Comparison with other semantic segmentation models 

The result of the comparison study shown in Table 3 demonstrates 
the highest mIoU (80.76 %) by the proposed UNet + GhostECA model. 
The trade-off between segmentation performance and inference speed is 
obvious. Overall, more complex and deep networks (such as UNet and 
DeepLabV3 + ) and backbones (such as Xception and ResNet50) had 
better performance metrics but lower inference speed compared with 
lightweight networks (such as PSPNet) and backbones (such as Mobi-
leNetV2). The only exception was SegFormer-B5 which had the largest 
model size and complexity but performed almost the worst results. It 
should be noted that SegFormer, as a transformer-based framework, was 
pre-trained on a dataset with cityscapes as classes of interest. On the 
contrary, UNet was primarily designed for segmenting medical images 
which are similar to our grey-scale images. This may explain why Seg-
Former performed worse than UNet on our infrared dataset. Moreover, 
DeeplabV3+, as a recent network, typically has better segmentation 
results when dealing with challenging tasks but performed poorly than 
UNet on our dataset. The poor performance of more recent and complex 
models (such as DeeplabV3 + and SegFormer) could be attributed to our 
relatively few and simple images. Indeed, UNet architecture has been 
reported to be more appropriate for training with limited training im-
ages and fewer deep-level features (Zou et al., 2021). 

The segmentation examples shown in Fig. 7 confirm the better per-
formance of the proposed UNet + GhostECA model. It can be seen that 
all models have good segmentation ability when the Ta was much lower 
than cattle body surface temperatures and the contour of the ROIs was 
obvious. However, when the Ta increased closely to cattle body surface 

Fig. 5. Loss and mean Intersection over Union (mIoU) curve of the proposed 
model. The dashed line shows the epoch ( 153) with the lowest validation 
loss (0.137123). 

Table 2 
Performance of ablation study on the testing set (n = 93).  

Model Backbone mIoU (%) mPA (%) Number of parameters (M) Model size (MB) FLOPs (G) FPS 

UNet VGG16  79.17  87.82  24.89 96  451.81  36 
UNet + Ghost VGG16  80.08  88.28  17.3 66  237.24  37.4 
UNet + GhostECA (proposed) VGG16  80.76  88.92  18.43 70.3  269.63  32.7  
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Fig. 6. Detailed segmentation results on the testing set (n = 93). (a) Predictions on some example images against varying thermal conditions classified by 
temperature-humidity index (THI), shown at camera angles ranging from − 90◦ to 90◦. (b) Per-class Intersection over Union (IoU), Recall, and Precision. 

Table 3 
Performance of different semantic segmentation models on the testing set (n = 93).  

Model Backbone mIoU (%) mPA (%) Number of parameters (M) Model size (MB) FLOPs (G) FPS 

FCN VGG16  76.64  84.38  19.17 73.1  204.34  45.2 
PSPNet MobileNetV2  73.73  83.38  2.38 9.3  6.03  141.4 
PSPNet ResNet50  78.82  87.4  46.71 178  118.43  85.1 
DeepLabV3+ MobileNetV2  77.84  88.76  5.82 22.4  52.9  88.1 
DeepLabV3+ Xception  79.14  90.33  54.71 209  166.88  28.8 
UNet VGG16  79.17  87.82  24.89 96  451.81  36 
UNet ResNet50  78.85  90.94  43.93 167  184.23  46.8 
SegFormer B5  70.93  81.49  84.6 969  986.48  21.8 
Proposed VGG16  80.76  88.92  18.43 70.3  269.63  32.7  

H. Shu et al.                                                                                                                                                                                                                                     



Computers and Electronics in Agriculture 220 (2024) 108614

8

Fig. 7. Segmentation results of different semantic segmentation models on the testing set (n = 93). (a) FCN-VGG16; (b) PSPNet-MobileNetV2; (c) PSPNet-ResNet50; 
(d) DeepLabV3 + -MobileNetV2; (e) DeepLabV3 + -Xception; (f) UNet-VGG16; (g) UNet-ResNet50; (h) SegFormer-B5; (i) Proposed. 
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temperatures and the boundary between cattle and their environments 
became blurry, some comparable models became less effective in seg-
menting the pixels at the edge while the UNet + GhostECA model still 
had smooth and precise segmentation. For example, the UNet + Ghos-
tECA model was the only model to precisely segment ears from ear tags 
in all cases, even during high Ta conditions. 

3.5. Agreement of automated and manual methods with ground truth 

The UNet + GhostECA model was used for further automated tem-
perature collection due to its outperforming segmentation performance. 
The temperature results of the proposed automated method and tradi-
tional manual method both shared similar distributions with the ground 
truth, where eye temperature always had the highest values (Fig. 8). 
This is consistent with previous knowledge that eye temperature is the 

closest proxy of core body temperature among other candidate body 
surface temperatures (Gloster et al., 2011; Hoffmann et al., 2013). 

As shown in Fig. 9, the mean differences between the temperatures 
obtained automatically and the ground truth are small, particularly in 
eyes and ears. More importantly, the differences between the tempera-
tures obtained automatically and the ground truth (Fig. 9) had narrower 
limits of agreement in most cases compared with those between the 
temperatures obtained manually and the ground truth (Fig. 10), indi-
cating a generally better agreement. This is reasonable since manual 
collection using professional software can only achieve rough coverage 
of the ROIs rather than pixel-wise segmentation. This common practice 
of collecting temperatures manually may work for maximum tempera-
tures due to being less impacted by the overall pixels, as well as for 
landmarks with fewer obstacles and typical outlines (e.g., eyes). How-
ever, it can suffer when collecting mean temperatures at other 

Fig. 8. Overview of the (a) maximum and (b) mean temperature of ground-truth annotation, predicted segmentation, and manual collection on the testing set (n 
= 93). 

Fig. 9. Bland-Altman plots showing the agreement between predicted segmentation and ground-truth annotation on the testing set (n = 93) in terms of the maximum 
and mean temperatures (Tmax and Tmean) of five facial landmarks. The solid and dashed lines represent mean difference and 95 % limits of agreement, respectively. 
Datapoints are coloured by temperature-humidity index (THI). 
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irregularly shaped landmarks (e.g., ears being seriously influenced by 
ear tags). Thus, the common practice of using manual collection in 
relevant studies may obtain under- or over-estimated temperatures. 

Other studies compared automated measured and manually 
collected temperatures. For example, Lowe et al. (2020) reported an 
average difference between automated measured and manually 
collected maximum eye temperature of 0 ± 0.001 ◦C. Wang et al., 
(2022a) obtained an average difference of 0.051 ◦C and 0.042 ◦C be-
tween the automated measured and manually collected temperatures of 
the left and right maximum eye temperatures, respectively. We did not 
compare automated measurements with manual collections, and thus 
cannot compare our results with theirs. As discussed before, manually 
collected maximum eye temperature can be a good proxy of ground 
truth. Therefore, it is sensible to admit that the present study, as well as 
the abovementioned studies, all work for automated maximum eye 
temperature collection. However, our proposed semantic segmentation 
model can provide more valuable information about mean temperatures 
which have been determined to more appropriately reflect core body 
temperatures (Yan et al., 2021). 

Besides, the differences between the proposed method and the 
ground truth (Fig. 9) as well as between the traditional method and the 
ground truth (Fig. 10) show a homogeneous distribution around their 
mean differences in most cases, indicating no visible proportional error 
of one method versus the other. A THI-related colour code was added to 
confirm whether ambient environments had affected the agreement 
between the results and their ground truth. It is obvious that the tem-
perature difference stayed homogeneous over the THI range we 
observed, demonstrating the good robustness of the proposed method 
against extreme thermal conditions. 

3.6. Limitations and future work 

Infrared images taken under a thermoneutral environment were 
limited since the data was originally collected for a heat stress study. 
Thus, our method should be prioritised for studies in heat stress 

evaluation. For example, automated heat stress recognition can be 
achieved by inputting our segmentation results into a deep learning- 
based thermal level classification (Pacheco et al., 2022). For applica-
tions under a thermally comfortable situation, we speculate that our 
model would remain robust since the larger temperature difference 
between the animals and their environments in such a situation should 
increase the separability of ROIs in the infrared images. However, 
further studies should be conducted in which more data from thermo-
neutral environments are collected to validate and improve the gen-
eralisability of the proposed network. 

It should also be noted that the images used for modelling were taken 
at a fixed distance (i.e., 1 to 1.5 m) from the cows to produce a consistent 
size of cattle faces. This distance is aligned with most previous studies 
using IRT to measure bovine body surface temperatures (Montanholi 
et al., 2015; Peng et al., 2019). However, it may be difficult to reach such 
a close distance to the cows in practice, except for specific locations like 
feeding stations (Lowe et al., 2020) and the entry to the milking parlour 
(Zhang et al., 2020). Direct application of the proposed network to a 
real-world situation with a greater distance between the cows and the 
camera should result in a lower segmentation accuracy since facial 
landmarks in the image taken from a greater distance will be repre-
sented by a lower number of pixels. 

Plus, the angle of view between the camera and the object is known 
to influence the infrared emissivity and thus affect the IRT temperature 
(Muniz et al., 2015). Although we have successfully segmented specific 
facial landmarks in infrared images taken from different camera angles 
to the cows, the variation in the angle of view would definitely affect the 
imaging temperature. Temperature correction is not the focus of this 
study but should be investigated in future studies in order to obtain 
reliable temperature readings in more challenging practical cases. A 
recent study is a promising step forward, in which a response surface 
method was developed for correcting the effect of distance and the angle 
of view on the IRT temperature of pigs (Wang et al., 2023). 

In addition, many other parameters would have an impact on the 
results of IRT, such as coat colour, sunlight exposure, emissivity, and the 

Fig. 10. Bland-Altman plots showing the agreement between manual collection and ground-truth annotation on the testing set (n = 93) in terms of the maximum and 
mean temperatures (Tmax and Tmean) of five facial landmarks. The solid and dashed lines represent mean difference and 95 % limits of agreement, respectively. 
Datapoints are coloured by temperature-humidity index (THI). 
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resolution and accuracy of the camera. Thus, the proposed tool may not 
be directly applied to infrared images acquired in different settings of 
these parameters. These gaps highlight the need for additional data 
collection targeted for more complex and practical conditions. 

4. Conclusions 

Collectively, our work provides relevant studies with an automated 
tool for collecting facial temperature from cattle infrared images. This 
method is robust against usual interfering factors including camera 
angle and extreme ambient environment. However, additional training 
with data supplemented on a variety of influencing factors (e.g., the 
distance between the camera and the cows, coat colour) and tempera-
ture correction against these factors are required before it can be inte-
grated into on-farm automated monitoring of animal health and welfare. 
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