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Abstract
Satellite-based near-real-time forest disturbance alerting systems have been widely used to support
law enforcement actions against illegal and unsustainable human activities in tropical forests. The
availability of multiple optical and radar-based forest disturbance alerts, each with varying
detection capabilities depending mainly on the satellite sensor used, poses a challenge for users in
selecting the most suitable system for their monitoring needs and workflow. Integrating multiple
alerts holds the potential to address the limitations of individual systems. We integrated
radar-based RAdar for Detecting Deforestation (RADD) (Sentinel-1), and optical-based Global
Land Analysis and Discovery Sentinel-2 (GLAD-S2) and GLAD-Landsat alerts using two
confidence rulesets at ten 1◦ sites across the Amazon Basin. Alert integration resulted in faster
detection of new disturbances by days to months, and also shortened the delay to increased
confidence. An increased detection rate to an average of 97% when combining alerts highlights the
complementary capabilities of the optical and cloud-penetrating radar sensors in detecting largely
varying drivers and environmental conditions, such as fires, selective logging, and cloudy
circumstances. The most improvement was observed when integrating RADD and GLAD-S2,
capitalizing on the high temporal observation density and spatially detailed 10 m Sentinel-1 and 2
data. We introduced the highest confidence class as an addition to the low and high confidence
classes of the individual systems, and showed that this displayed no false detection. Considering
spatial neighborhood during alert integration enhanced the overall labeled alert confidence level,
as nearby alerts mutually reinforced their confidence, but it also led to an increased rate of false
detections. We discuss implications of this study for the integration of multiple alert systems. We
demonstrate that alert integration is an important data preparation step to make use of multiple
alerts more user-friendly, providing stakeholders with reliable and consistent information on new
forest disturbances in a timely manner. Google Earth Engine code to integrate various alert datesets
is made openly available.

1. Introduction

Averting tropical deforestation is key to mitigate
climate change (Busch et al 2019). The successful
implementation of local, national, and interna-
tional climate initiatives and laws targeting the
reduction of deforestation, such as the European

regulation on deforestation-free commodities, neces-
sitates consistent and timely deforestation informa-
tion across tropical regions (Nabuurs et al 2022a).

Over the past decade, satellite-based monitoring
and alerting systems (Diniz et al 2015, Hansen et al
2016, Watanabe et al 2018, Reiche et al 2021) have
emerged as primary tools to provide near-real-time
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information on new forest disturbances in a cost-
effective manner. The increasingly high spatial detail
and observation frequency of new optical and radar
satellites, combined with open data policies, have
enabled the tracking of forest disturbances with sub-
weekly updates and at a spatial detail of 10–50 m.

The value of satellite-based forest monitoring
and alerting systems in support of law enforce-
ment actions against illegal human activities, sus-
tainable land management, and zero-deforestation
pledges has been widely recognized by governments,
non-governmental organizations, the private sec-
tor, and communities (Lynch et al 2013, Pratihast
et al 2016, Finer et al 2018, Weisse et al 2019,
Tabor and Holland 2020, Coelho-Junior et al 2022,
Nabuurs et al 2022b). Several studies have shown
that the use of satellite-based forest disturbance
alerts and related law enforcement actions can
help to decrease deforestation and related carbon
emissions at both community and national levels
(Moffette et al 2021, Slough et al 2021, Nabuurs
et al 2022b). The open distribution of forest disturb-
ance alert products through nationally-hosted web
portals, as well as open platforms like the World
Resources Institute’s Global Forest Watch (https://
globalforestwatch.org), the Nustantara Atlas (https://
nusantara-atlas.org) and the Brazilian MapBiomas
platform (https://brasil.mapbiomas.org), has resul-
ted in improved transparency and data accessibility
globally. These improvements benefit less-technical
users, communities, and civil society, playing a crucial
role in raising public awareness regarding ongoing
forest changes (Finer et al 2018, Tabor and Holland
2020).

Operational forest disturbance alerting systems
primarily utilize freely distributed medium-scale res-
olution (10–50 m) imagery from sources such as
Landsat and Sentinel-1 and 2 sensors. The Global
Land Analysis and Discovery Landsat (GLAD-L)
alerts, first introduced in 2016, pioneered an openly
available system for detecting forest disturbances. The
GLAD-L alerts rely on 30 m Landsat data to provide
alerts across the pan-tropics (Hansen et al 2016,
https://glad-forest-alert.appspot.com). The GLAD-L
alerts employ a trainedmodel to classify each pixel for
presence or absence of tree cover loss, utilizing sub-
sequent observations to enhance confidence in iden-
tified changes. In 2021, 10 m GLAD Sentinel-2 alerts
(GLAD-S2) were introduced for the Amazon basin,
an extension of the methods of (Hansen et al 2016)
(https://glad-forest-alert.appspot.com). The higher
spatial detail and observations every 5 d allow for
improved mapping of fine-scale changes, including
selective logging. In regions with dense cloud cover,
typical of portions of the humid tropics such as
parts of the Congo Basin or the Guyana Shield, lim-
ited availability of cloud-free Landsat and Sentinel-2
observations reduce the ability to track change events

consistently in near real-time (Sannier et al 2014,
Moffette et al 2021, Flores-Anderson et al 2023).

Radar satellites signals can penetrate through
clouds and smoke while being sensitive to changes
in the physical structure of forests. This capabil-
ity provides an opportunity to complement optical-
based forest monitoring (Joshi et al 2016, Reiche
et al 2016). With Sentinel-1, global temporally dense
C-band radar data at a high resolution of 10 m
spatial scale are freely available, with observations
every 6–12 d in the tropics. The RAdar for Detecting
Deforestation (RADD) alerts, introduced in 2021
(Reiche et al 2021), harness Sentinel-1 data to
provide forest disturbance alerts for most of the pan-
tropics. The RADD alerts employ a simple prob-
abilistic change detection approach to calculate the
deforestation probability of each observation, util-
izing Bayesian updating (Reiche et al 2015) and
subsequent observations to detect new changes and
increase detection confidence. Another notable pan-
tropical system is the JJ-FAST (JICA–JAXA Forest
Early Warning System in the Tropics) alert, which
utilizes ALOS-2 PALSAR-2 ScanSAR L-band radar
data at a spatial scale of 50m (Watanabe et al 2021). It
offers event-based forest disturbance alerts, updated
every 1.5months. The system’s ability to detect small-
scale changes is constrained by aminimum event area
size of 1 ha (version 4.1, January 2024).

In addition to these openly available systems
covering larger geographies, numerous regional and
national systems have been developed using vari-
ous optical and radar satellite data streams (Diniz
et al 2015, Vargas et al 2019, Ballère et al 2021,
Doblas et al 2022, Doblas Prieto et al 2023). These
include the Peruvian Landsat-based Geobosques sys-
tem (Vargas et al 2019), the Brazilian Real-Time
System for Detection of Deforestation (DETER),
which utilizes data from the Advanced Wide Field
Sensor onboard the Indian Remote Sensing satellites
to provide monthly forest disturbance information
at a 56 m spatial scale (Diniz et al 2015), and the
Sentinel-1-based Brazilian DETER-R system (Doblas
et al 2022).

While sourcing data from diverse satellite sensors
and covering various geographical areas, most of the
current operational alerting systems employ similar
forest definitions and detection methods to monitor
new forest disturbances in near-real-time. First, forest
disturbances are generally defined as either complete
or partial loss of tree cover, often mapped only within
the boundaries of a forest baseline map. This includes
both human-induced andnatural causes, without dif-
ferentiation. Secondly, comparable processing steps
are applied. These include generating historical satel-
lite imagemetrics to characterize previous forest con-
ditions, pre-processing each newly acquired image,
applying a forest disturbance algorithm, and build-
ing confidence with subsequent observations. Alerts
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are triggered based on a single observation from the
most recent image (low confidence alert). Subsequent
observations are then used to increase confidence and
transition to a high confidence alert or to dismiss a
change. The alert’s date is set to the image date that
initially triggered the alert. Thirdly, alert systems are
typically tuned to be conservative in detecting forest
disturbances to minimize false alarms. A trade-off
between alert confidence and detection timeliness is
an inherent aspect of near-real-time forest disturb-
ance monitoring. A detection based on a single image
is the most immediate but comes with a lower con-
fidence level. Conversely, considering multiple sub-
sequent observations heightens confidence but entails
a waiting period (Diniz et al 2015, Hansen et al 2016,
Reiche et al 2021, Watanabe et al 2021).

The variation in detection capability among the
different alerting systems considered here (GLAD-L,
GLAD-S2 andRADD) arises primarily from the phys-
ical attribution of the satellite sensor (e.g. measured
wavelength and spatial resolution) rather than the
employed methods (e.g. applied detection method
and minimum mapping unit), and may vary by geo-
graphy and season. The enhanced spatial detail of
10 m in Sentinel-1 and−2 data, for instance, enables
the tracking of subtle forest disturbances linked to
selective logging activities that are challenging to
detect using 30 m Landsat for example. Sentinel-2’s
5 d observation frequency enables highly timely track-
ing of changes during the cloud-free dry season. On
the other hand, in the rainy season or in cloudy trop-
ical forests with often month passing between cloud-
free observations, alert systems leveraging radar data
can offer more consistent monitoring without tem-
poral gaps.While optical satellite data-based alert sys-
tems excel in detecting large-scale clearings and fires
due to their ability to track defoliation, radar-based
systems face challenges in detecting such events when
structural elements or debris remains (Balling et al
2021, Doblas Prieto et al 2023). Additionally, local
inaccuracies in global forest baseline maps can result
in false detections in radar-based systems in wetlands
and agricultural areas (Verhelst et al 2021). Likewise,
residuals cloud and cloud shadow after imprecise
masking lead to an abrupt change in the signal and
can lead to false detections in optical-based alert
systems.

Studies that introduced alert systems (Hansen
et al 2016, Ballère et al 2021, Reiche et al 2021,
Watanabe et al 2021, Doblas et al 2022) typically
report a single accuracy metric summarizing the
detection accuracy and timeliness across the entire
study area, often at a country or continental scale.
This approach falls short in providing a nuanced
understanding of the distinct advantages and lim-
itations of the systems associated with different
change types (e.g. fine-scale detections or wildfires)
and regions characterized by persistent cloud cover,

among other factors, which can vary significantly at
the local level (as described above).

The availability of multiple forest disturbance
alerts, each with varying detection capabilities, poses
a challenge for users in selecting themost suitable sys-
tem for their monitoring needs and workflow (Berger
et al 2022). Integrating multiple forest disturbance
alert systems holds the potential to address the lim-
itations of individual systems and offer forest dis-
turbance alert information that is more timely, con-
fident and user-friendly. When a forest disturbance
is indicated at a specific location by multiple sys-
tems utilizing different sensors and algorithms, it
increases confidence in the disturbance being genuine
and can provide higher confidence at an early stage.
A simulated integration (Doblas Prieto et al 2023)
of various radar-based alert systems with GLAD-
S2 alerts demonstrated improved spatial and tem-
poral aspects, particularly when combiningGLAD-S2
and RADD.

A first operational integration of alert systemswas
implemented on Global Forest Watch in 2022 with
the introduction of the integrated deforestation alert
layer. This layer combined GLAD-L, GLAD-S2, and
RADD alerts onto a common grid and included a
highest confidence level for alerts indicated by mul-
tiple alert systems (Berger et al 2022). Another integ-
rated alert using RADD and GLAD-L was intro-
duced as part of the Nusantara Atlas, utilizing the
higher confidence level (low or high) of either of the
alerts (Gaveau 2023). The MapBiomas Alert integ-
rates GLAD-L alerts with a number of local and
national alert systems and refines them with high
resolution satellite data (MapBiomas Alerta n.d.).
Current integration efforts have been limited to pixel-
based integration andhave not considered other para-
meters or rulesets based on, for example, spatial
neighborhood and temporal alignment.

With the emergence of integrated alert products
and the release of additional operational alert systems
anticipated in the near future, it is important to assess
how the integration of multiple alert systems under
given rulesets affects detection capabilities for differ-
ent change types and environmental factors like cloud
cover.

In this study, we aim to evaluate how integ-
rating RADD, GLAD-S2, and GLAD-L forest dis-
turbance alerts enhances the timeliness and accuracy
of detecting forest disturbances across the Amazon
Biome. Specifically, we will assess (i) alert integ-
ration effects for key change types and environ-
mental conditions; (ii) the validity of the confid-
ence ruleset employed by the integrated deforesta-
tion alert layer on Global Forest Watch and com-
pare it against a more conservative ruleset, and (iii)
the potential performance enhancement by consid-
ering spatial neighborhoods beyond pixel-based alert
integration.
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Figure 1. (A) Site footprints within the Amazon Basin, and humid tropical forest mask. Total number of observations for 2021 for
(B) Sentinel-1 radar, (C) Sentinel-2, and (D) Landsat-7 & 8. Sentinel-2 and Landsat data were filtered to include only cloud-free
land observations, and Sentinel-1 data to remove the overlap in observations from different relative orbit paths at the scene edges
(separately for ascending and descending orbits). (E)–(I) Examples of typical forest disturbances across the Amazon Basin: (E)
selective logging at site 2, (F) mining at site 3, (G) forest fires (site 5), (H) large-scale clearings for agriculture at site 6, and (I)
small-scale clearings for agriculture at site 8.

2. Data and study area

2.1. Study area and forest baseline
We selected ten 1◦ sites across the Amazon Basin,
each spanning approximately 12 000 km2 (figure 1).
These sites were selected to include different change
types, cloud cover frequencies, and environmental
characteristics, including wetlands and mountainous
areas (table 1). The key change types (as observed
in high-resolution 3.7 m PlanetScope data) include
large-scale forest fires (sites 1 and 5), large-scale
(sites 4, 6 and 9), and small-scale clearings for
agriculture (sites 2, 3, 8, 9 and 10), selective log-
ging (sites 2 and 3), small-scale mining (sites 2,
3, and 10) and large blowdowns (site 10). Those
changes are considered the most frequent drivers
of tree cover loss in the tropics (Curtis et al 2018,
Tyukavina et al 2018). The sites located in the

Guyana Shield (sites 2 and 3) experience notably
high cloud cover persistent over most of the wet sea-
son. The southern Amazon Basin typically experi-
ences lower cloud cover, resulting in more frequent
cloud-free observations. Site 2 encompasses a signi-
ficant wetland area, and site 7 features mountainous
terrain.

We restricted all analysis to be within the bound-
aries of a humid tropical forest mask. We used a
primary humid tropical forest mask for 2001 from
(Turubanova et al 2018) and removed 2001–2020
forest loss (Hansen et al 2013) and mangrove forest
(Bunting et al 2018).

2.2. Satellite alert products
We processed RADD, GLAD-L, and GLAD-S2 alerts
for the ten sites throughout the year 2021. Each
update was recorded, allowing for the calculation
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Table 1. Study site information, including the site location (latitude/longitude coordinates of lower right corner), a short description of
key forest disturbance types and environmental conditions, and the average number of available observation for Sentinel-1, Sentinel-2
and Landsat-7 & 8, where Sentinel-2 and Landsat data were filtered to include only cloud-free land observations.

Site (lower right
corner coordinates) Country

Dominant forest
disturbance types

Average number of observations in 2021

Sentinel-1 Sentinel-2 Landsat-7 & 8

1 (53 W/12 S) Brazil Large-scale forest fires in
wetland environment

28 42 22

2 (55 W/4 N) Suriname Selective logging,
small-scale clearings for
agriculture, small-scale
mining (frequent cloud
cover)

60 33 12

3 (59 W/5 N) Guyana Selective logging,
small-scale clearings for
agriculture, small-scale
mining (frequent cloud
cover)

35 17 8

4 (60 W/1 N) Brazil Large-scale clearings for
agriculture

88 21 12

5 (61 W/14 S) Bolivia Large-scale forest fires 66 32 19
6 (65 W/9 S) Brazil Large-scale clearings for

agriculture
77 27 21

7 (71 W/12 S) Peru Small-scale clearings for
agricultural expansion
(frequent cloud cover;
mountainous terrain)

54 24 13

8 (73 W/12 S) Peru Small-scale clearings for
agriculture

56 27 12

9 (73 W/9 S) Peru Selective logging and
large-to-small scale
clearings for agriculture

77 34 16

10 (74 W/3 S) Peru Large blowdown,
Small-scale clearings for
agriculture, small-scale
mining (frequent cloud
cover)

54 17 7

of time differences between different confidence
levels. This level of detailed analysis is not pos-
sible using the operational products unless a
user downloaded the maps each day, as only as
only the date of the initial alert appearance is
provided.

All products utilized a consistent definition for
forest disturbance. Forest disturbance was defined as
the complete or partial removal of tree cover within
a 10 m pixel (Sentinel-1 for RADD, Sentinel-2 for
GLAD-S2) or a 30 m pixel (Landsat for GLAD-
L). Complete tree cover removal indicates a stand-
replacement disturbance at the pixel scale, while par-
tial removal typically represents disturbances related
to boundary pixels and smaller-scale events such as
selective logging (Hansen et al 2016, Pickens et al
2021, Reiche et al 2021).

2.2.1. RADD alerts
RADD alerts map forest disturbances in near-real-
time across most of the tropics (50 countries, as
of January 2023), using Sentinel-1 Ground Range

Detected (GRD) data with a spatial resolution of
20× 22 m (10 m pixel spacing). Each new Sentinel-1
GRD image is pre-processed to improve image qual-
ity and remove artefacts (Mullissa et al 2021, Reiche
et al 2021). Using a probabilistic change detection
approach (Reiche et al 2018), conditional probabilit-
ies of forest disturbance are derived based onper-pixel
forest and non-forest probabilitymetrics. Subsequent
observations iteratively update the forest disturbance
probability, enhancing confidence and confirming or
rejecting the alert (false detection). Low confidence
alerts are provided for forest disturbance probabilities
above 85%, andhigh confidence alerts when the forest
disturbance probability surpasses 97.5%. Alerts that
remain unconfirmed (low confidence) after 90 d are
removed from the data set. The product (version 1)
maintains a minimum mapping unit of 0.1 ha (equi-
valent to 10 8-connected pixels). The data is accessed
and processed on Google Earth Engine (Gorelick
et al 2017) and results are updated weekly. For more
information on methodology, see Reiche et al 2021
and http://radd-alert.wur.nl.
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2.2.2. GLAD-L alerts
The GLAD-L alerts map tree cover loss in
near-real-time across the tropics (30◦N to
30◦S) using 30 m Landsat imagery, initially
Landsat 7 and 8 and now Landsat 8 and 9
(https://glad-forest-alert.appspot.com). Each new
image is assessed for cloud cover or poor data qual-
ity, radiometrically normalized, and compared to
Landsat-derived metrics of previous years (including
ranks, means, and regressions of red, near infrared,
and shortwave infrared bands, and ranks based on
Normalised Difference Vegetation Index, Normalised
Burned Ratio, and thermal). The metrics and the
latest Landsat image are run through a set of decision
trees to identify likely tree cover loss. Alerts remain
unconfirmed (low confidence) until a second obser-
vation is labeled loss within the next four cloud-free
observations and within 180 d. Alerts that remain
unconfirmed (low confidence) after subsequent
observations or 180 d are removed from the data
set. The data is accessed and processed on Google
Earth Engine (Gorelick et al 2017) and the results are
updated daily. For more information on methodo-
logy, see (Hansen et al 2016).

2.2.3. GLAD-S2 alerts
The GLAD-S2 alerts are an extension of the meth-
odology of (Hansen et al 2016) to 10 m Sentinel-2
data within the Amazon region of South America
(https://glad.earthengine.app/view/s2-forest-alerts).
It also evaluates each cloud-masked image for tree
cover loss with a set of decision trees employing 10
and 20 m reflectance data (bands 2, 3, 4, 8, 11, 12)
from the current image and from baseline Sentinel-2
metrics and updates the confidence based on sub-
sequent images. However, it reports tree cover loss
only within the boundary of the primary forest mask
of (Turubanova et al 2018) with 2001–2018 forest
loss from (Hansen et al 2013) removed. The confid-
ence is split into four levels: single detection, low,
medium, and high confidence based on the number
of loss detections within the next four observations.
If there is not a second detection of loss within a
maximum of 4 observations or 180 d the alert is
removed. Each day all new Sentinel-2 data is all down-
loaded and processed locally and the updated results
are uploaded to Earth Engine and made available
online.

3. Methods

3.1. Data preparation
We standardized the alert products by resampling the
RADD and GLAD-L alerts to match the 10 m GLAD-
S2 pixel grid (0.0001◦ × 0.0001◦), and aligning vari-
ous date formats to the day of the year format. We
reclassified the four GLAD-S2 alert confidence levels

into low confidence (=single detection) and high
confidence (=low, medium and high confidence) in
order to align them with the low and high confidence
levels of RADD and GLAD-L. Additionally, we com-
puted the high confidence alert (i.e. the date the alert
was marked as high confidence), in addition to the
low confidence date (i.e. the date the alert was first
detected) provided by the original alert products.

3.2. Alert integration
3.2.1. Pixel-based
We integrated alerts at the pixel level using two separ-
ate rulesets to attribute confidence. In addition to the
low and high confidence levels provided by the ori-
ginal alert products, we introduced the highest con-
fidence level for the integrated alerts. It is import-
ant to emphasize that the term ‘low confidence’ and
‘high confidence’ is more appropriate than the term
‘unconfirmed’ and ‘confirmed’ as used in previous
research (Hansen et al 2016, Hoekman et al 2020,
Ballère et al 2021, Reiche et al 2021,Doblas et al 2022).
Satellite-based alerts offer varying levels of confid-
ence regarding the accuracy of a detected disturbance
rather than confirming it. Confirmation implies an
independent assessment, such as ground truthing or
visual evaluation of very high-resolution data, to val-
idate that the change is indeed true.

Ruleset-1 assigns the highest confidence to disturb-
ances detected by at least two alert systems at the same
location, regardless of the original alert’s confidence
level. Even if two alert products exhibit low confid-
ence, the integrated alert is marked with the highest
confidence. Disturbances detected by a single alert
system retain their original confidence level (either
low or high). Ruleset-1 is applied to generate the
Global Forest Watch integrated alert (Berger et al
2022).

Ruleset-2 represents a more conservative approach to
reaching highest confidence. In this case, highest con-
fidence level is assigned for forest disturbances detec-
ted by three alert systems (with at least low confid-
ence) or by two alert systems with high confidence. In
situations of either two low confidence alerts or one
low and one high confidence alerts, this would only be
considered high confidence, rather than highest con-
fidence, as according to Ruleset-1.

There is no difference in the low and high confid-
ence level for Ruleset-1 and −2. Differences are only
evident in the highest confidence level.

3.2.2. Pixel-based with a spatial neighborhood rule
In addition to the pixel-based integration, we also
investigated the impact of considering spatial neigh-
borhood (figure 2). For alert pixels that do not over-
lap but are in close proximity (e.g. within 50 m),
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Figure 2. Example of pixel-based alert integration without (A) and with (B) considering the spatial neighborhood rule. Ruleset-1
is applied for the example to integrate two mock-up alert products.

we hypothesized that they are related to the same
event. This consideration of proximity allows adja-
cent alerts to reinforce and boost each other’s con-
fidence without directly overlapping. It was theor-
ized that this would lead to higher confidence levels,
possibly within a shorter time frame. We set a max-
imum limit of 180 d to allow for this neighbor-
hood influence, aiming to prevent alerts from dif-
ferent events, potentially years apart, from influen-
cing each other in a manner that lacks meaningful
correlation.

We evaluated the impact of the spatial neighbor-
hood rule to enhance alert confidence for increasing
distances from20 to 100m. This assessmentwas com-
pared with the pixel-based approach that does not
consider spatial neighborhood (distance= 0 m).

3.3. Evaluation
We evaluated the timeliness and accuracy of detec-
tion for each of the individual alert systems and integ-
rated alerts separately at each of the 10 sites. Alert
integration was performed for all combinations of
alerts, including RADD+GLAD-L, RADD+GLAD-
S2, GLAD-L+ GLAD-S2, and all three alert systems.
These integrated alerts were then compared against
the individual alert systems. Ruleset-1 and −2 are
only compared for the highest confidence level as
there is no difference in the low and high confidence
level.

3.3.1. Detection timeliness
We identified the earliest per pixel low confidence
date among the three individual alert systems (RADD,
GLAD-S2, and GLAD-L) for each alert pixel, estab-
lishing it as the baseline date. For each site, we
computed the detection delay in relation to this

baseline date for the different alert confidence levels
(low, high, and highest) and their respective dates.
Additionally, we calculated the duration it took to
reach high or highest confidence after the initial
detection, represented by the low confidence date. To
mitigate early detection of potential false positives,
which is more probable in low confidence alerts solely
detected by a single system, we narrowed our analysis
of the detection timeliness to only alerts that reached
high confidence.

3.3.2. Detection accuracy
We calculated area-adjusted user’s and producer’s
accuracies of forest disturbance alerts for the last alert
update of 2021 for all the alert confidence levels: low
[and greater] (all alerts), high [and greater] (high and
highest confidence alerts), and highest. This was done
because, inmost cases, users of alert systems employ a
minimum confidence level (e.g. low or high) to select
alerts. Validating, for instance, the producer’s accur-
acy of only low confidence alerts without also consid-
ering higher confidence levels is not meaningful.

We used high-resolution 3.7 m PlanetScope data
(Planet 2017) to validate the forest disturbance alerts.
In some cases, persistent cloud coverage hindered
visual interpretation using PlanetScope data alone,
and additional reference data were consulted, includ-
ing Sentinel-1 and−2, and Landsat-7 and 8 imagery.

We used probability sampling (Stehman 2014)
with five strata with 50 samples each, comprising a
total of 250 sample points per site. These strata were:
‘forest disturbance (three alert products)’, ‘forest dis-
turbance (two alert products)’, ‘forest disturbance
(single alert product)’, ‘No disturbance within a
200 m buffer zone’, and ‘No disturbance outside the
buffer zone’. Specifically, the strata defined by only
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one or two alert products identifying a forest disturb-
ance helped evaluate commission errors. A precise
estimation of the false detection rate (commission
error) is crucial, especially when evaluating near-real-
time systems. The stratum ‘No disturbance within a
200 m buffer zone’ was implemented to account for
omission errors, which are more likely in proximity
to existing forest disturbances (Olofsson et al 2020).
The sampling unit corresponded to a single 10 m
Sentinel-2 pixel (0.0001◦, ∼0.01 ha). We accoun-
ted for unequal inclusion probabilities among strata
by calculating sample inclusion probabilities based
on strata areas and the number of sample points.
These inclusion probabilities were then used to cal-
culate area-adjusted user’s accuracy (Stehman et al
2003, Stehman 2014). To accommodate the difference
in acquisition geometry between Sentinel-1 (side-
looking) and Landsat and Sentinel-2 (nadir-looking)
as well as shifts due to the reprojection, we con-
sidered a 30 m tolerance buffer (∼1 Landsat pixel),
around sample points. This approach aligns with the
objective of alerting systems: timely detection of new
events rather than unbiased area estimation (Tang
et al 2019).

Our benchmark forest map relied on a Landsat-
based annual tree cover loss product (Hansen et al
2013) to exclude forest disturbance events that
occurred in 2020 and earlier. However, it is import-
ant to note that certain prior disturbance events went
undetected by the Landsat-based algorithm, often
due to a lack of cloud-free Landsat data towards the
end of 2020 (Verhelst et al 2021). We documented
detected disturbances originally predating 2021, as
observed in PlanetScope time series and other ref-
erence data, but these were excluded when calculat-
ing user’s and producer’s accuracy (Reiche et al 2021,
Balling et al 2023).

4. Results

4.1. Pixel-based integration
4.1.1. Detection timeliness
Comparing the mean detection delay of new dis-
turbances of individual alert systems, RADD exhib-
ited the earliest detection on average at three sites
(sites 2, 3, and 8), while GLAD-S2 showed the earli-
est detection at the remaining sites. GLAD-L dis-
played longer detection delays for new disturbances
across most sites (figure 3). While the mean detection
delay of RADD and GLAD-S2 were similar for cer-
tain sites (sites 2, 7, 8, and 9 within ± 5 d), substan-
tial site-specific differences were observed. The most
significant detection delays for RADD were noted at
sites dominated by large-scale clearings for agricul-
ture (sites 4 and 6), where disturbances were detec-
ted on average 23 and 49 d later compared to GLAD-
S2. This delay can be attributed to the presence of

remaining debris in these large-scale clearings, caus-
ing the Sentinel-1 C-band radar backscatter to appear
similar to stable forest backscatter levels, often res-
ulting in omissions and delayed detections (Balling
et al 2021, 2023, Doblas Prieto et al 2023). In contrast,
GLAD-S2 showed an average 27 d delay in detection
compared to RADDat site 3. This site is dominated by
small-scale clearings for agriculture andmining activ-
ities, and has frequent cloud cover.

While average detection delays are reported, sub-
stantial variability at the pixel level was observed, as
evidenced by a high standard deviation at the site
level. For example, although RADDdetected new dis-
turbances on average 4 d earlier than GLAD-S2 at site
2, individual events exhibited variations of over two
months (both earlier and later detections) between
the two systems, emphasizing the complementary
potential of the two alert systems.

Achieving high confidence after the initial detec-
tion took a similar amount of time for all three alert
systems. On average (mean of site means), RADD
took 34 d,GLAD-S2 took 26 d, andGLAD-L took 29 d
to attain high confidence (calculated as the difference
between the high confidence date and low confidence
date) (figure 4).

Alert integration demonstrated major improve-
ments in detection timing (figure 4). The detection
delay of individual systems reveals improvements in
detection timing achieved through the integration of
all three alert systems.When integrating all three alert
systems, the detection of new disturbances improved
by on average (mean of sitemeans) 16 d (compared to
RADD), 9 d (compared toGLAD-S2), and 38 d (com-
pared to GLAD-L). At the site level, average improve-
ments reached up to 53 d (compared to RADD at site
6), 33 d (compared to GLAD-2 at site 3), and 70 d
(compared to GLAD-L at site 2).

Improvements were less when integrating two
alert systems. Compared to using all three systems,
the integration of only RADD and GLAD-L was on
average 12 d slower in initial detection, compared to
GLAD-S2 and GLAD-L was 6 d slower. RADD and
GLAD-S2 was only 1 d slower.

For integrated alerts, the additional days required
to attain high confidence (calculated as the difference
between the high confidence date and low confidence
date) was either equal to (for GLAD-S2) or slightly
shorter compared to individual alerts (for RADD and
GLAD-L). On average (mean of site means), it took
26 d to reach high confidence when integrating all
three alert systems. Furthermore, it took on average
45 d to achieve the highest confidence using ruleset-1
and 73 d using ruleset-2 (calculated as the difference
between the highest confidence date and low confid-
ence date). Similar durations to reach highest confid-
ence after initial detection were observed for combin-
ing two alert systems.
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Figure 3.Mean detection delay± standard deviation (in days) of the low confidence date (initial detection date) of RADD,
GLAD-S2, and GLAD-L relative to the earliest per pixel detection date among the three systems (baseline date), displayed for each
of the 10 sites. The system with the lowest mean detection delay is the one that, on average, detects new forest disturbances earliest
at the respective site. Refer to Table 1 for a detailed site description and appendix 1 for the complete dataset.

4.1.2. Detection accuracy
The producer’s accuracy (detection rate; 100%—
omission error) for individual alert systems exhibit
large site-specific differences (figure 5). Among the
individual alert systems and considering all alerts
(class low and greater), GLAD-S2 had the highest
average (mean across sites) producer’s accuracy of
85.7% (53.3%–100%). The lowest producer’s accur-
acy for GLAD-S2 was found at site 5 (large-scale
fires) and site 10 (blowdown, small scale clearings and
mining, and frequent cloud cover). RADD followed
with the second-highest producer’s accuracy aver-
aging 60.2% (10.8%–84.6%). The lowest producer’s
accuracy for RADD was observed at sites dominated
by large-scale fires (sites 1 and 5). Remaining debris
and forest structures at fire sites, caused relatively little
change in the Sentinel-1 C-band backscatter signal
and omission errors in RADD (Balling et al 2021,
2023, Doblas Prieto et al 2023) (figure 6). GLAD-L
consistently displayed the lowest producer’s accuracy
across all sites averaging 38.3% (14.2%–91.2%). For
GLAD-L, the lowest producer’s accuracy was mainly
at sites with frequent cloud cover and dominated by
small-scale changes, such as selective logging (sites 2,

3, 7 and 10) where the coarser 30 m spatial resolution
of Landsat limited the detection ability.

Combining the three alert systems increased the
producer’s accuracy compared to any single detec-
tion systems. Considering all alerts (class low [and
greater]) revealed an average producer’s accuracy of
97% of detected disturbances, with a reduced spread
across sites of 70.3%–100% when compared to the
individual systems. When only considering high and
highest confidence alerts (class high [and greater]),
the producer’s accuracy is marginally lower with
an average of 92.2% (65%–100%). Highest confid-
ence alerts had an average producer’s accuracy of
57,1% (18.6%–94.6%) for ruleset-1, while the more
conservative ruleset-2 showed a lower average pro-
ducer’s accuracy of 50.3% (12.8%–100%). Lower
producer’s accuracies were observed when combin-
ing two systems, with RADD and GLAD-S2 show-
ing the highest producer’s accuracy when integrat-
ing two system. Some omission errors were due to
undetected events that occurred near the end of
2021, which would likely be detected in early 2022
but were not included in the 2021 alerts assessed
here.
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Figure 4.Mean (solid point) and range (dashed line) of the 10 site-specific mean detection delay [days] of low, high and highest
alert confidence dates relative to earliest per pixel detection date among the three systems (baseline date), separately for individual
and integrated alerts. The site-specific mean detection delay of the 10 sites is provided in addition (open points). For the is
provided as Refer to Table 1 for a detailed site description and appendix 1 for the complete dataset.

Figure 5.Mean and range (dashed line) of the 10 site-specific producer’s accuracy (detection rate; 100%—omission error) (A)
and user’s accuracy (100%—commission error) (B) of low [and greater] (all alerts), high [and greater] (high and highest
confidence alerts) and highest confidence level, separately for individual and integrated alert systems. The site-specific mean
detection delay of the 10 sites is provided in addition (open points). Refer to Table 1 for a detailed site description and appendix 2
for the complete dataset.
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Figure 6. Disturbance alerts at two sample locations for each of the individual alert systems and for the integrated alert based on
all 3 systems for ruleset-1 and−2. The sample location in the left panel shows selective logging (within site 2), and the yellow box
highlights forest disturbances detected by RADD and not by GLAD-S2. The sample location on the right panel shows large-scale
clearing for agriculture (within site 6), and the yellow box highlights alerts detected by GLAD-S2 but omitted by RADD. The
underlying base map is a post-monitoring Planet monthly image composite.

11



Environ. Res. Lett. 19 (2024) 054011 J Reiche et al

Figure 7. Disturbance alerts at two sample locations based on all 3 systems (ruleset-1) without (distance= 0 m) and with
considering the spatial neighborhood rule (distance= 40 and 100 m). The sample location in the left panel shows selective
logging (within site 2), the sample location on the right panel shows large-scale clearing for agriculture (within site 6). The
underlying base map is a post-monitoring Planet monthly image composite.

The user’s accuracy (100%—commission error)
was found to be high for all individual alert systems
(i.e. low false detection rate). When considering all
alerts (class low [and greater]), the user’s accuracy was
on average 98.8% for RADD, 96.6% for GLAD-L, and
89.9% for GLAD-S2. For high confidence alerts (class
high [and greater]), the user’s accuracy increased to on
average 98.9% for RADD (92.3%–100%), 100% for
GLAD-L, and 96.9% for GLAD-S2 (91.4%–100%).

The user’s accuracy decreased when combining
alert systems due to aggregating the false detections
of the individual systems. The average user’s accuracy
for combining three alerts was 89.5% (70.6%–99.2%)
when considering all alerts (class low [and greater])
and 96.6% (93.8%–100%) for considering high and
highest confidence alerts (class high [and greater]).
Combining only two alert systems resulted in fewer
false detections, i.e. a smaller decrease in user’s accur-
acy. For combining two or three alert systems, the
highest confidence class achieved a user’s accuracy of
100% for both ruleset-1 and −2, effectively elimin-
ating the false detections. This implies that ruleset-1
does not lead to less reliable highest confidence alerts
thane the more more conservative ruleset-2.

4.2. Pixel-based integration with spatial
neighborhood rule
To assess the effect of applying the spatial neighbor-
hood rule when integrating all three alert systems,
we employed only ruleset-1 as it was found to reach
highest confidence more quickly than ruleset-2 with
equal reductions in false detections. The effect of spa-
tial neighborhood of alerts fromother systems is evid-
ent only in the highest confidence class since a neigh-
boring alert when treated as the same as overlap-
pingwould cause the alert to reach highest confidence
immediately.

Applying the spatial neighborhood rule (figure
7) led to an increased producer’s accuracy (detec-
tion rate) and slightly reduced delay in reaching
higher confidence after first detection, while the users
accuracy decreased (i.e. increased false detections)
(table 2).

With increasing spatial neighborhood distance
more alerts are included in the highest confidence
class as reflected by an increasing producer’s accur-
acy. The producer’s accuracy increased from an aver-
age (mean across sites) of 57.1% for pixel-based integ-
ration without considering spatial neighborhood

12



Environ. Res. Lett. 19 (2024) 054011 J Reiche et al

Table 2.Mean of site-specific (minimum—maximum of site means) producer’s accuracy, user’s accuracy, and decrease in delay [days] to
reach highest confidence after initial detection, given for increasing spatial neighborhood distance.

Detection accuracy [%] Decrease in time to reach
highest confidence after initial
detection [days]Distance (m) Producer’s accuracy User’s accuracy

0 57.1 (16.8–94.6) 100 (100) —
20 61 (20.6–95.3) 99.6 (97.7–100) 3 (1–5)
40 64.3 (22.6–95.3) 99.1 (97.1–100) 4 (1–7)
60 65.9 (22.6–97.4) 99.1 (97.3–100) 5 (1–10)
80 67.5 (26.6–97.4) 98.9 (95.8–100) 5 (1–11)
100 67.9 (28.6–97.7) 98.4 (93.8–100) 5 (2–11)

(distance= 0 m) to 68.9% for considering a 100 m
spatial neighborhood distance. At the same time
false detections increased for increasing neighbor-
hood distance. The user’s accuracy decreased, which
was found to be 100% (no false detections) at all sites
when using pixel-based integrationwithout consider-
ing spatial neighborhood (distance= 0m), decreased
to 98.4% for 100 m spatial neighborhood distance,
and ranges between 93.8% and 100% at the site level.

Increasing spatial neighborhood distance slightly
decreased the time to reach highest confidence after
initial detection by on average (mean of site means)
up to 5 d (distance = 100 m), relative to an average
of 45 d it takes without considering spatial neighbor-
hood (distance= 0 m).

5. Discussion and conclusions

Here we demonstrated that integration of opera-
tional satellite-based forest disturbance alerts results
in faster and more comprehensive detection of new
disturbances. We integrated radar-based RADD, and
optical-based GLAD-S2 and GLAD-L alerts in dif-
ferent combinations of two and all three alerts sys-
tems using two confidence rulesets. We assessed their
synergies in the timely detection of a wide range of
change types and diverse environmental conditions at
ten 1◦ sites across the Amazon Basin.

5.1. Alert integration improves detection
timeliness and confidence
Alert integration improved the detection speed of
new disturbances by days to months when com-
pared to the earliest detection of any of the three sys-
tems (figure 3), and effectively shortens the delay to
increase confidence, a process that otherwise requires
additional satellite passes from the same sensor for
individual alerts. This can take additional weeks or
months (figure 4).

The increased detection rate to an average of 97%
when combining alerts highlights the complement-
ary capabilities of the optical and cloud-penetrating
radar sensors in detecting various disturbance types
and environmental conditions found across the ten
sites, such as fires, selective logging, and cloudy cir-
cumstances. The most improvement was observed
when integrating RADD and GLAD-S2, capitalizing

on the high temporal observation density and spa-
tially detailed 10 m Sentinel-1 and 2 data. This high-
lights the necessity to extend the use of high resolu-
tion optical and radar alerts to other tropical regions
and areas outside of the humid tropics.

The highest confidence class was introduced for
the integrated alert as an addition to the low and
high confidence classes of the individual systems.
Highest confidence was applied to forest disturbances
detected in multiple alert systems (ruleset-1) and is
employed in Global Forest Watch’s integrated defor-
estation alert layer (Berger et al 2022). Importantly,
this highest confidence class displayed no false detec-
tion, and had a higher level of confidence in com-
parison to the original high confidence class of the
individual alert systems.While, achieving 100%user’s
accuracy may not be realistic in all places or times,
this indicates that the likelihood of false detections
is low. Alert pixels triggered by data artifacts, such
as residual cloud and cloud shadows after imprecise
masking in optical images, or rapid changes in wet-
lands in radar images, are unlikely to simultaneous
occur in different systems, both spatially and tem-
porally. This implies that combining low confidence
alerts from two different systems can in most cases
be assumed to result in highest confidence already
(as applied in ruleset-1). Our results suggest that a
more conservative ruleset might not yield a more
reliable highest confidence class. However, requir-
ing at least three low confidence alerts or one high
and one low confidence alert to reach highest con-
fidence (ruleset-2) would address occasional situ-
ations involving two overlapping false low confidence
alerts.

Considering spatial neighborhood during alert
integration enhanced the overall labeled alert con-
fidence level of alerts, as nearby alerts mutually rein-
forced their confidence. However, this approach has
two main drawbacks. Applying the spatial neighbor-
hood rule leads to an increased rate of false detec-
tions in the high and highest confidence classes.
This trade-off challenges the usefulness of consid-
ering spatial neighborhood, particularly as it coun-
teracts the idea of enhancing confidence in the highest
confidence class. Additionally, applying spatial
neighborhood strongly increases the computational
complexity.
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Our results emphasize large site-specific differ-
ences in the detection capabilities of individual alert
systems. Observed producer’s and user’s accuracies,
when compared at siteswith similar disturbance types
and environmental conditions, were comparable to
those found in previous studies when considering
equivalent assessment criteria (e.g. sampling unit)
(Hansen et al 2016, Reiche et al 2021). For instance,
results for RADD in the Congo Basin (83% detec-
tion rate and 2% false detection rate for high con-
fidence alerts, Reiche et al 2021) are similar to those
obtained from sites in Suriname (site 2) and Guyana
(site 3), which are also characterized by small-scale
changes such as selective logging, mining and small-
holder agriculture.

Due to the choice of narrowing the assessment of
spatial accuracy to the last alert update for 2021, we
did not investigate the case of overlapping low confid-
ence alerts that became highest confidence for a time
but then dropped off (disappeared from the data-
base). This dynamic has been observed for optical-
based alerting systems in selective logging areas where
the forest change signal does not endure long enough
for additional cloud free observations (rapid canopy
closure). Conversely, false low confidence alert can
temporally trigger highest confidence but are even-
tually removed. Those represent unmeasured benefits
and drawbacks of integrating when alerts are used in
a near-real-time context, as intended.

5.2. Alert integration improves user experience
Alert integration effectively reduces the trade-off
between timely detection and confident identification
in forest disturbance monitoring. This is particularly
beneficial for forest monitors relying on the highest
possible confidence to promptly address deforesta-
tion, especially those with constrained resources for
on-the-ground law enforcement activities (Cappello
et al 2022). Having three distinct confidence classes
(low, high, highest) available provides users with the
flexibility to tailor their selection based on specific
user needs, particularly considering their tolerance
for false detections (Reiche et al 2021). Users can
make informed decisions about which alert confid-
ence classes align with their specific objectives and
acceptable levels of false positives, enhancing the util-
ity and applicability of the alerting system to diverse
monitoring and law enforcement requirements.

In addition to enhancing detection speed and
confidence, alert integration improves user access-
ibility and reliability of forest disturbance inform-
ation. Combining multiple individual alert sources
into a single stream simplifies alert use. Integrating
alerts from various sensors also helps mitigate inter-
ruptions due to sensor failures (e.g. Sentinel-1B in
2021, (ESA 2022)) or processing pipeline issues (e.g.
Landsat’s switch to Collection 2 in 2022), ensuring a

more consistent stream of alerts. Moreover, integrat-
ing alerts can help to expand overall coverage com-
pared to individual alerts that often focus on specific
regions.

5.3. Implications for operational alert integration
Our integration involved conservative alert systems,
minimizing false detections (user accuracy of high
confidence alerts is 96.6%, and when considering low
confidence alerts, it is 89.5%). It is crucial to avoid
integrating alert systems with high false detection
rates. The efficacy of different alert systems integrated
here primarily relies on the physical detection cap-
abilities of the sensor used rather than the method.
Therefore, integrating multiple alert systems based
on the same satellite sensors may not yield substan-
tial benefits and could even be counterproductive.
The results emphasise the importance of having a
good understanding of the uncertainty levels of alert
systems to be integrated, especially considering the
potential aggregation of false detections from indi-
vidual alerts during integration. An improved under-
standing is particularly important as many coun-
tries are in the process of implementing their own
national-based alert systems. As methods for forest
disturbance alerting continually advance (Balling et al
2023,Mullissa et al 2023, Slagter et al 2023, Zhang et al
2023) and with the forthcoming availability of new
satellite datasets, such as temporally dense L-band
radar data from NISAR (Rosen et al 2016), it is likely
that additional alerting systems will be developed.

Alert integration, performed at the product level,
offers major advantages by leveraging the strengths
of various optical and radar sensors without introdu-
cing new artifacts. In contrast to data-level integra-
tion, as proposed in prior studies (Reiche et al 2018,
Tang et al 2023), where optical and radar observations
instead of reinforcing each othermight conflict due to
differences in what they detect within forest disturb-
ances (e.g. defoliation vs structural damage), using
product-level integration of alert systems described
avoids such issues (Balling et al 2021).

The integrated alerts show a large increase in
detected disturbances with only a low rate of addi-
tional false detection when compared to the indi-
vidual alerts, and high confidence alert level is
reached more timely. While forest disturbance alerts
are primarily a law enforcement tool and reporting
of changes should follow a sample-based approach,
the more balanced user’s and producer’s accur-
acy increases opportunities for more frequent (sub-
annual) reporting of forest disturbance trends and
associated carbon emissions (Csillik et al 2022).

The impact of forest disturbance alerts depends
on their institutional use to support forest manage-
ment and law enforcement actions against illegal and
unsustainable activities (Tabor and Holland 2020,
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Coelho-Junior et al 2022). Reducing institutional bar-
riers to use the alerts, whether they are structural, cul-
tural or political, is crucial (Tabor andHolland 2020).
Establishing comprehensive guidelines on leveraging
forest disturbance alerts, and encouraging knowledge
exchange can further accelerate their use. Alert integ-
ration is an important data preparation step to make
use of multiple alerts more simply, providing reliable
and consistent information on new forest disturb-
ances in a timely manner to stakeholders.
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