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In 2013 I started a Bachelor’s degree in Biotechnology followed by a Master’s and, finally,
in 2020, I started this PhD. Over this period,my perspective on the role of biotechnology in
society evolved. As I learned, I recognized the immense potential of biotechnology but,
also, its inherent limitations. Like me, many people acknowledge the power of biotech-
nology to address global challenges, from pandemics to climate change. However,
others still associate biotechnology with fear of the unknown, scientists that play with na-
ture, and powerful corporations that benefit from it. Meeting biotechnology’s promises
while changing public perception is a difficult challenge to overcome. Yet, it serves as
a compelling motivation to contribute, even in the slightest form, to the technical ad-
vancement of this discipline and to foster a broader understanding of biotechnology
among the general public.
As implied by its title, this thesis delves into the use of mathematical models for the
design of microbial cell factories and bioprocesses. However, before diving into these
concepts, this introductory chapter provides a glimpse into the achievements, promises,
and challenges of biotechnology in a comprehensible manner. Subsequently, Design-
Build-Test-Learn cycles, one of the foundations of this thesis, are presented. This is followed
by an exploration of the models applicable to the Design and Learn phases of these
cycles. Finally, I outline the objectives and structure of the thesis.

Preface
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General Introduction

A brief history of (microbial) biotechnology

Accomplishments of Biotechnology

Biotechnology harnesses the power of biology to create new services and products that improve
the quality of our lives and the environment [1]. In essence, biotechnologists seek to understand
nature, specifically living organisms, to create solutions to prevalent challenges. These organisms
include microorganisms such as bacteria, yeast, or fungi, as well as algae, plants and animals.
My focus within biotechnology has centered on microbial biotechnology, with the objective of
understanding the functioning of microorganisms. These microorganisms can then be used and
modified to produce valuable and diverse products, ranging from food andmedicines to vitamins,
aromas, preservatives, or plastics. Biotechnology is not new and, within the broad spectrum of
biotechnological achievements, I have highlighted some accomplishments that I find particularly
noteworthy.

Since Neolithic times, humankind has been using biotechnology for food production and we
still use it to produce beer, wine, bread, cheese, or tempeh [2]. In all these processes microor-
ganisms ferment sugars into alcohol and CO2 or degrade complex molecules into simpler ones.
Although we had used fermentation technology for millennia, it was not until the XIX century that
the role of microorganisms in this process was understood [3]. Since then, we have developed
sophisticated techniques that endow us with a growing ability to use these microorganisms to
solve complex problems.

Some of the undisputed accomplishments of biotechnology lie in the medical area. What
started with the accidental discovery of penicillin, led to the efficient production of microbial-
based antibiotics, vaccines, and the production of recombinant proteins such as insulin or mon-
oclonal antibodies [3, 4]. Individualized therapies such as the use of CAR T cells, that specifically
target the immune response against cancer cells, continue to show the potential of biotechnology
in this area [5]. In 2020, with the COVID-19 pandemic, the power of biotechnology to solve a global
challenge by developing vaccines in record times became evident [6].

Biotechnology also contributes to the continuous increase in food production, necessary to
meet the needs of the growing world population [7]. Crop domestication, which started 13,000
years ago, transformed wild plants into variants with accessible fruits and grains. Since then, plant
biotechnology has achieved the development of pest-resistant crops or crop variants with better
nutritional traits [8]. Besides, as an alternative to fertilizers, beneficial microorganisms are now used
to enhance the quality of crops, their nutrient uptake, or their tolerance to stress [9].

Although less noticeable, biotechnology is present in many other aspects of our lives. At the
beginning of the XX century, Weizmann established a large-scale butanol fermentation process
by Clostridia that remained the main source of butanol until a more competitive petrochemical
production was established in 1960. Since 1955 microbially produced amino acids have been
available and biotechnological processes to produce bulk chemicals such as citric acid, an im-
portant food preservative, have been developed [3]. Flavors and fragrances such as nootkatone
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or vanillin made by fermentation are also commercialized [3]. In 1956 microbial enzymes reached
consumers when a detergent containing alcalase obtained from Bacillus licheniformis was com-
mercialized and, since then, recombinant proteins have been standard ingredients of household
detergents [3]. However, it was not until the first energy crisis in 1973, that biotechnology was ex-
plored as an alternative to a fossil fuel-based economy, and, at the beginning of the XXI century,
it became a potential asset in the fight against climate change [3].

Biotechnology promises

In 2015 the European Commission presented its first action plan for a circular economy [10]. They
defined circular economy as the minimization of waste generation and the maintenance of the
value of products, materials, and resources for as long as possible [10]. This concept combines
the requirement for sustainable development that ensures the care of the environment, with the
support of economic growth and the creation of jobs and business opportunities [11]. The bio-
economy, defined as the “production of renewable biological resources and the conversion of
these resources and waste streams into value-added products, such as food, feed, bio-based
products, and bioenergy”, was considered one of the priority areas to achieve a circular econ-
omy [12]. Besides the European Union and the United States, bioeconomy policy strategies have
expanded to highly industrialized countries, transition economies, and developing nations [1, 4,
13].

A successful circular economy is the biggest promise of biotechnology. Biorefineries have
been envisioned as alternatives to oil refineries, where waste (including side streams like glycerol,
lignocellulosic biomass, or CO2) is up-cycled into high-value products using biotechnology and
creating profit [11]. Biorefineries need to compete with traditional petrochemical processes that
have been optimized for decades, while being strict regarding environmental impact [14, 15].
However, there are trade-offs between sustainability and economic growth and,while the former is
assumed, the latter is prioritized [16]. Therefore, although using waste and producing bulk products
contributes to the fight against climate change, more opportunities are currently envisioned in
the generation of products with high economic value in sectors such as cosmetics, food additives,
or pharmaceuticals using simpler sugars as substrates [2, 14, 17]. These processes assume positive
effects on climate changeandenvironmental aspects andexploit the value creation trait included
in the circular and bio-economy definitions [16]. Yet, technological breakthroughs achieved in
these industries can drive the development of biotechnology as a whole and have the potential
to translate to more competitive and relevant sectors.

Moving towards a circular, bio-based economy is imperative, particularly in light of the recog-
nized need to transition away from all fossil fuels, acknowledged during the 28th Conference of
the Parties (COP28) [18]. However, achieving it requires both technological advances and policy
changes [19]. For instance, changes in regulation that facilitate the use of "waste" as starting
material for biotechnology are required to foster investments in biorefineries [19]. Similarly, the end
of fossil fuel subsidies or explicit taxes on CO2 emissions are a necessity to ensure the economic
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success of bioprocesses [19]. Besides, social acceptance of industrial biotechnology is a crucial
issue. Although the public is enthusiastic about the use of biotechnology for medical advances,
acceptance of biotechnological applications that help to reduce greenhouse gas emissions is
less common [20, 21]. Changing this perception requires improving societal trust in governments
and treating citizens as key players during legislation [21].

In addition to climate change, biotechnology also promises solutions that contribute to meet-
ing the sustainable development goals adopted by all United Nations Member States in 2015 [22].
For example, the development of alternative protein sources contributes to the end hunger goal,
new biopharmaceuticals contribute to ensuring healthy lives, the development of wastewater
treatments is required for water sanitation, the production of bio-based chemicals contributes to
sustainable consumption, and the development of efficient crops, resistant to plagues, is required
to preserve terrestrial ecosystems [23, 24].

Biotechnology challenges

So far, biotechnology has been defined in general terms. From now on, in this thesis, I will focus on
industrial microbial biotechnology, also known as biomanufacturing, which uses microorganisms,
usually referred to as cell factories, for the synthesis of chemical products [25] (Figure 1.1). Currently,
about 200 out of the 70,000 chemicals commercially available are estimated to be produced by
bioprocesses [14]. The tools employed to construct cell factories include synthetic biology and
metabolic engineering. These terms are often used interchangeably and, while synthetic biology
is the field of science that involves redesigning organisms for useful purposes by engineering them
to have new abilities, metabolic engineering is the targeted genetic modification of cell factories
to produce novel chemicals and/or improve product yield [15].

Figure 1.1: Microorganisms such as yeast can naturally convert sugars present in grapes or wheat to ethanol
and CO2 resulting in wine and beer production. This conversion is performed through a series of biochemical
reactions calledmetabolism. Using metabolic engineering and synthetic biology we can convert yeasts into cell
factories. These cell factories do not only uptake sugar but they could also use waste as substrate. By avoiding
some biochemical reactions (red cross), activating pathways, or including new reactions (green lines), the cell
factory can produce a variety of products such as bulk chemicals, food ingredients, or pharmaceuticals.
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Compared with other technologies, the main challenge of industrial biotechnology resides
in the lack of complete understanding of cell function [15]. When engineers build a machine,
the function of each of its components is known and only relevant parts are included in the
design. However, when biotechnologists design a cell factory, they generally have to adapt an
already existing system (the cell) that has not evolved to fulfill the designer’s purpose. This is done
without complete knowledge of the function of each element in the cell, or how these elements
interact with each other and with the desired new functionality. The performance of the cell
factory is measured in terms of titer, rate, and yield. While the titer is the final concentration of the
product, the yield refers to how efficiently the substrate is used, and the rate considers the time
required for production [14]. Many factors can affect the performance of a cell factory including
the selection of the host organism, the production pathway (length, burden, toxic intermediates,
level of expression of genes), and the production conditions [14, 25]. Moreover, scaling bio-based
processes is more challenging than scaling traditional chemical processes, as, when scaled, the
microorganism does not necessarily behave as the laboratory-scale results would predict [26].

The lack of complete knowledge of cell metabolism and physiology prevents predictions on
thebehavior of amicroorganismwhengenetic orenvironmental factors are perturbed [15]. Hence,
bioprocess engineers have to go through intensive experimentation to optimize production [26].

Design-Build-Test-Learn cycles

A better understanding of cell physiology and technical developments accelerate the design of
cell factories and bioprocesses. For instance, when penicillin production programs started in the
’60s, strain improvement was based on random mutagenesis followed by analysis and selection of
superior strains [27]. With the development of molecular biology, directed genetic modifications
became possible. At the same time, detailed information about the organization of the β-lactame
genes, responsible for penicillin synthesis, enabled the rational selection of engineering targets.
These advances resulted in a 176% increased productivity, corresponding to about five years of
strain improvement based on random mutagenesis [27]. However, rational solutions to improve
production pathways still require very long development times that limit their application [28]. For
instance, the economical production of artemisinin in yeast accounted for over 150 person-years
worth of work, and approximately 15 years and 575 person-years were needed to develop and
produce 1,3-propanediol by DuPont [28, 29]. Although these products have reached commer-
cialization, only one in 5,000 to 10,000 innovations in industrial biotechnology make the long route
from initial finding to market implementation, and efficient approaches for strain and bioprocess
development are needed [30].

Design-Build-Test-Learn (DBTL) cycles are a systematic approach to iteratively improve the
performance of a biological system (Figure 1.2) [31, 32]. In the design phase, researchers plan
the genetic modifications required to achieve a desired function, as well as the environmental
conditions to be used during testing. In the build phase, the designed genetic constructs are

8



1

General Introduction

implemented in the organism using synthetic biology tools to insert, delete, or modify genetic ma-
terial. The engineered strain is then tested to evaluate its performance. This could involve assessing
the strain’s ability to produce a desired product or tolerate specific environmental conditions. In
the learning phase, the results obtained during testing are analyzed to understand the impact
of the genetic modifications or environmental conditions on the performance of the cell factory.
The information gathered is then used to inform the next design phase.

In the last decades, technological advances have accelerated all the phases of the DBTL
cycle (Figure 1.2) [15]. To name a few, the combination of multi-part DNA assembly techniques
[33], the standardization of plasmid structures [34], and the development of genome engineering
technologies including CRISPR/Cas [35] have facilitated the strain construction process. In the
test phase, the general use of omic techniques has driven systems metabolic engineering, en-
abling quantitative and qualitative analysis of each regulation layer in a cell [36, 37, 38]. The use of
biosensors, able to translate metabolite concentrations to easily measurable signals, allows online
monitoring of cell performance [39, 40]. This can be combined with controlled mini-bioreactor
systems and high-throughput analytics [41, 42]. The design phase has benefited from the charac-
terization and standardization of genetic parts [43, 44, 45], as well as the creation of databases
such as KEGG [46], Brenda [47], or MetaCyc [48], especially for the first iterations of the DBTL cycle
[31]. When sufficient information is known about the systems, the use of computational tools such
as kinetic, constrained-based, or machine learning models, trained during the learning phase,
can guide sequential design phases, effectively linking subsequent cycles.

Figure 1.2: Example of technological advances that accelerate Design-Build-Test-Learn cycles.

Biofoundries are highly automated facilities that enable rapid and efficient DBTL cycles (or
parts thereof) so cell factories can be built and tested at increasing throughput [49]. However, the
acceleration of the design and build phases of the DBTL cycle will only lead to improvements in the
performance of cell factories when efficient, meaningful links between the design and learning
phases are established [50]. For this, the integration of computational methods, which can be
used to improve the understanding of the studied system and/or to guide its optimization, is crucial
[51]. The integration of all the phases of the DBTL cycle will ultimately lead to automated systems
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that drive experiments, optimize production processes, and facilitate technology transfer and tasks
ranging from data gathering to problem-solving [26]. This can lead to a disruptive change that
makes the production of new molecules a relatively easy task minimizing the required time for
successful strain and bioprocess design [52].

Model-guided Design and Learn

Mathematical models are simplified representations of reality. We model everything, from eco-
nomics to elections, climate change, or the coronavirus pandemic [53]. Although models are
not always right, they are used to model the stock market, the spread of a disease, or to predict
tomorrow’s weather [53].

Models are constructed based on available data and our understanding of the modeled
system. Even when we cannot completely comprehend reality, as is the case with microbial
cell factories, models help us learn, organizing our knowledge and unveiling knowledge gaps.
Although mathematical modeling is not completely integrated into most metabolic engineering
efforts, multiple modeling approaches can be applied to guide the design of cell factories and
bioprocesses and to perform data analysis during the learning phase of DBTL cycles [15]. Which
model to use (or build) depends on the problem to solve, the experimental factors that can be
changed, and the data that can be gathered [54]. In a broad sense, models can be used to
enhance the understanding of the studied system or to optimize it. For example, a model can be
used to obtain a detailed description of ametabolic pathway and its enzymes or to find conditions
that improve the production of a relevant metabolite [54]. However, both objectives are related:
a better understanding of a system facilitates its optimization, and the identification of factors with
a relevant impact on production can be used to prioritize the aspects of the system that should
be further studied.

Knowledge-based models: focus on understanding

Mechanistic models describe the behavior of a system in terms of its biological components and
their interactions, boosting interpretability, transparency, and explainability. They provide a rational
and systematic framework for integrating existing knowledge and experimental data that allows
the validation ofmodel assumptions or the identification of knowledgegaps [31, 54, 55]. In industrial
biotechnology, these models are often used to describe production pathways, the metabolism of
a cell factory, or its behavior in a reactor context. Depending on the modeling objective, different
levels of abstraction might be used. For example, the metabolism of a microorganism might be
explained in detail using mass-action kinetics describing the interaction between enzymes and
metabolites, it can be simplified using models only based on reaction stoichiometry or further
reduced to a single equation [56]. While kinetic models can be used to study pathway dynamics
in detail [55], stoichiometry-based models are useful to study cell metabolism [57] and Herbert-Pirt
equations are often used in the context of bioprocesses [58].
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Here we will focus on kinetic pathway models and genome-scale constraint-based models
(Figure 1.3). While both modeling approaches are described by a set of biochemical reactions,
kinetic models explicitly describe reaction fluxes as a function of metabolites and enzyme con-
centrations and enable dynamic simulations and the integration of regulatory information. In turn,
constraint-based models solely rely on reaction stoichiometries and assume steady-state condi-
tions. The reader is referred to Saa et al. [55] and Carter et al. [59] for a detailed explanation of
these modeling approaches.

Figure 1.3: Kinetic Modeling and Constraint-based Modeling. Both modeling approaches describe a biochemi-
cal reaction network based on the expression of genes, whose proteins perform reactions. The stoichiometric
information of the network is stored in the stoichiometry matrix (S-matrix), which can include information on a
specific pathway or the complete metabolism. In kinetic modeling, the changes in metabolite concentration
(x) over time depend on the S-matrix and the reaction fluxes (v). In turn, reaction fluxes are a function of enzyme
concentration (E), metabolite concentrations (x), and kinetic parameters (k) such as maximum fluxes (vmax) and
Michaelis-Menten constants (km). Constraint-based modeling assumes a lack of accumulation of metabolites
(steady state), which allows the calculation of reaction fluxes (v) using linear programming by establishing a
cellular objective and minimum and maximum flux bounds.
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Kinetic modeling

Kinetic models describe a metabolic system through reaction rates based on the integration of
stoichiometric, thermodynamic, kinetic, and regulatory information (Figure 1.3) [55]. These models
are especially relevant when studying dynamic systems where metabolic regulation, toxicity, or
non-linear kinetics play a significant role [54]. The dynamic behavior of a metabolic network is
represented by a system of Ordinary Differential Equations (ODEs) that describes the metabolite
mass balances:

dx

dt
= S · v(E, x, k), x(0) = x0 (1.1)

where S and v denote the stoichiometry matrix reconstructed from genomic information and
the vector of metabolic reaction fluxes, respectively. Reaction fluxes (v) are a function of enzyme
concentrations (E), metabolite concentrations (x), and kinetic parameters (k) (Figure 1.3) [55].

Kinetic models require the identification of appropriate reaction mechanisms which can be
explained using reaction rates such as Michaelis Menten kinetics [51, 60]. These rates do not only
need to explain the mechanism of the enzyme kinetics but should also be simplified based on the
availability of data for model parameterization [31, 60]. The parameterization process requires high
amounts of experimental data including enzyme kinetics, enzyme andmetabolite concentrations,
and thermodynamic information [31, 51]. Although in vitro parameter values can serve as an
approximation for in vivo values, discrepancies between these sources are common [60]. Since
the complexity of the parameterization process and the simulation time increases with model size,
kinetic reconstructions are often limited to specific pathways, and model reduction approaches
have been developed [31, 54].

Parameterized models can be used to simulate pathway dynamics [31]. The effect of tuning
enzyme levels or allosteric regulators can be assessed,and reactions operating close to equilibrium
can be identified [55]. Alternatively to the use of fully parameterizedmodels, ensemblemodels can
be employed. These models might include different biochemical models describing alternative
regulatory mechanisms or a single model structure parameterized by different parameter values
[55]. Ensemble models can then be used to study system properties, such as model sensitivity to
parameters, while reducing experimental data requirements [61].

Constraint-based modeling

Genome-scale metabolic models (GEMs) are mathematical representations of the complete
(known) cell metabolism [57]. Information about the biochemical network of an organism is ob-
tained from its genome following gene-protein-reaction (GPR) rules. Genes codify enzymes that
catalyze biochemical reactions with a known stoichiometry that can be retrieved from curated
databases such as KEGG [57]. Similarly to kinetic models, the stoichiometry information is stored in
the stoichiometry matrix (S) which must be mass and charge balanced [51, 57]. However, GEMs
assume a steady state metabolism, overcoming the challenges of scale and data availability
characteristics of kinetic models (Figure 1.3). This simplifies Equation 1.1 to:
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dx

dt
= 0 = S · v, (1.2)

where the reaction rate (v), usually referred to as flux, is no longer a function of enzyme or
metabolite concentrations, nor kinetic parameters, but is still subject to thermodynamic constraints
that determine reaction directionalities [51]. Moreover, the ODE problem characteristic of kinetic
models is substituted by a set of linear equations that can be solved using optimization techniques
such as linear programming (Figure 1.3) [31].

Constraint-based models predict phenotypes in terms of growth and production rates or dis-
tributions of metabolic fluxes, often calculated using Flux Balance Analysis (FBA). This technique
requires determining an objective function to solve the under-defined system of linear equations
given the steady-state assumption, and constraints regarding reaction reversibility and nutrient
availability [62]. A widely used objective function is the optimization of the growth rate, repre-
sented by the biomass reaction, composed of the essential metabolites needed for growth [62].
However, cellular objectives are found to be condition-dependent and the selection of growth is
not always realistic [63]. Additionally, due to the size of GEMs, flux solutions obtained from FBA are
often not unique, as multiple flux profiles can achieve the same optimal objective value [54]. As
an alternative to FBA, flux sampling aims to explore the entire feasible flux space without imposing
an objective, and provides uncertainty margins to the predicted flux distribution [64].

The scope of GEMs has been expanded to include additional thermodynamic constraints
[65] or resource allocation strategies such as limitations on membrane surface area or cell volume
[66], improving flux predictions. For instance, the GEMwith Enzymatic Constraints using Kinetic and
Omics (GECKO) framework generates enzyme-constrained models (ecGEM) adding additional
constraints linked to the limited enzyme production capacity of the cell and enzyme turnover
numbers [67]. Additional layers of cell physiology such as transcription and signal transduction are
further included in models such as metabolic and expression models (ME models) [68].

Given their broad scope, GEMs are commonly applied to suggest metabolic engineering
targets to enable the overproduction of a metabolite of interest, explore the potential of differ-
ent metabolic pathways, investigate the impact of integrating new pathways in metabolism, or
calculate maximum theoretical yields [54, 59, 69]. However, the steady-state assumption implies
that these models are only valid under exponential growth or in continuous cultures with fixed
growth rates [51]. Alternatively, dynamic FBA (dFBA) extends the FBA framework by introducing
kinetic equations for extracellular metabolites and biomass [70]. This method considers changes in
cell growth and metabolism as a response to changes in environmental conditions and assumes
steady state for intracellular metabolism, and dynamic changes for the extracellular environment
[70].
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Data-driven models: focus on optimizing

To build mechanistic models, a deep understanding of cellular processes is needed [50, 52]. Alter-
natively, data is the main driving force behind data-driven models, which can capture enough
of the relevant relationships of the system under study without requiring prior knowledge of its un-
derlying processes [54]. While mechanistic models require assumptions to simplify the relationships
between model inputs and outputs, data-driven models can capture the complexity of biological
data [52]. These models can be used to study multi-omic datasets, identify inputs with a relevant
impact on model output, or guide experimental design [31]. Although these models are often not
interpretable, they facilitate the extraction of information from big datasets and point at relevant
components or interactions, improving biological knowledge [31].

Considering the numerous factors that affect the performance of a cell factory, the number of
experiments required to identify the interplay between these factors is larger than the experimental
capabilities for engineering and screening typically found in biofoundries [51]. Therefore, we will
focus on the use of statistical design of experiments (DoE) and machine learning (ML) to guide
the adjustment of gene expression and/or operational conditions to optimize the production of a
target metabolite. These methods link the design and learning phases of the DBTL cycle but differ
in the requirements for data generation as well as in the information gained after experimentation
(Table 1.1).

For a detailed explanation of DoE and its application to synthetic biology, the reader is referred
to Kumar et al., Lawson et al., and Gilman et al. [71, 72, 73]. A general review of ML concepts,
algorithms, and their applications beyond bioprocess optimization is presented in Asnicar et al.,
Volk et al., and Lawson et al. [52, 74, 75].

Table 1.1: Designs of Experiments and Machine Learning.

Design of experiments Machine learning (ML)
Screening Optimization Exploration Exploitation

Library generation Designed Designed / Random

Type of factors Categorical / Numerical Numerical Categorical / Numerical

# Levels 2 >2 Any

# Experiments n
nlevels−k
factors >5% library

Information gain Main effects, interactions Direction of optimum Explainable ML

Statistical design of experiments

Design of Experiments (DoE) allows an efficient and structured exploration of a large design space
to evaluate the effect of a variety of factors which can take different values (levels) in the sys-
tem’s response [51, 73]. DoE involves the selection of experiments to perform, the use of these
experiments to train (linear) models, and the statistical evaluation of the model coefficients.

14



1

General Introduction

The simplest DoE design is the full factorial design, which requires performing experiments that
include all possible factor and level combinations. Given F factors and L levels, the number of
experiments can be calculated:

Experiments =

F∏
i=1

Li (1.3)

In this design, the effect of a factor, defined as its main effect, is calculated considering the
average of all the experiments where the level of the factor is constant, regardless of the other
factors. Similarly, interactions between factors are obtained considering experiments where the
levels of the studied factors change, regardless of the other factors. When performing a full factorial
design, all combinations of factors and levels are tested and the conditions that result in an optimal
response are found. Moreover, an analysis of variance (ANOVA) is employed to determine which
factors and interactions have a significant effect on the response variable. The degree to which
the factors and their interactions affect the response is stored in the model coefficients [71, 72].

The main drawback of full factorial designs is the exponential increase of experiments required
to test multiple levels and factors. Instead, fractional factorial designs reduce the number of ex-
periments to perform and allow screening multiple factors and identifying those with the highest
impact on the response [71, 72, 73]. Fractional factorial designs test two levels per factor and,
depending on their resolution, provide information on main effects and/or interactions. Since mul-
tiple experiments are employed to estimate main effects and interactions, these designs reduce
the number of experiments to perform maintaining the capacity to estimate some of the model
parameters by performing experiments that preserve orthogonality in the desired factors. This
ensures that the effect of a factor is not confounded by planned changes in other factors.

Alternatively, Optimal Experimental Designs (OED) are useful to select experiments tailored
to any potential experimental constraints, model structure, and estimated parameter values [73,
76]. For example, D-optimal designs allow the design of experiments that improve specific model
parameter estimates by minimizing the determinant of the parameter covariance matrix [51, 72].
Notably, these designs are not only applicable to regression models but can also be used for the
parameterization of mechanistic models [77, 78].

After screening designs, the obtained model can be used to find the best factor combina-
tions given the experimental space defined by the factor’s levels or to guide the expansion of
the design space using response surface methods. These methods use a quadratic model as an
approximation of the relationship between the factor’s levels and the response and require in-
creasing the number of tested levels per factor. Experiments are designed tominimize the variance
of the predicted values and can be constructed following, among others, central composite de-
signs, Box-Behnken designs, or I-optimal designs [71]. The generated model is then used to predict
optimal factor levels with the aid of contour plots, canonical or ridge analysis [72].

The design of an appropriate DoE strategy for pathway and bioprocess optimization depends
on the available knowledge about the system [51]. DoE has been advantageously implemented
in the manufacturing and chemical industry [49] and it is often used for bioprocess optimization
[79, 80, 81, 82, 83, 84, 85]. This method is increasingly employed during pathway design [32, 86, 87]
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and can be used to simultaneously optimize environmental and genetic factors [88, 89].

Machine learning

Machine learning (ML) includes a flexible set of tools for identifying (non-linear) relationships be-
tween factors and their effect on the response variable [74]. ML algorithms are classified into
supervised and unsupervised methods. In unsupervised learning, ML algorithms aim to find un-
known structures in the data without any previous knowledge of potential associations among
samples (e.g. clustering, dimensionality reduction) [52, 74]. During supervised learning, predicted
models are trained based on labeled data, i.e. data that contains the value of the response as
a function of the modeled features. The common workflow to train these models includes their
training with a fraction of the available data (train set) and the validation of their performance
based on unseen data (test set) [72, 74]. Validated models can then be used to predict the re-
sponse given new combinations of features. Depending on the nature of the response variable,
classification or regression algorithms are employed [75].

In the context of industrial biotechnology,ML has been used for gene annotation andpathway
design, pathway building, performance testing, and production scale-up [90, 91, 92, 93, 94]. Path-
way optimization usually involves tuning gene expression through the modification of promoters
and RBS sequences and can be aided by supervised ML methods [52]. Examples of the use of ML
for pathway optimization range from the use of simple linear regression [95] or random forest [96] to
artificial neural networks [97]. Besides, algorithms that autonomously suggest a recommended sub-
set of variables to test experimentally based on training data such as BioAutomata [98], ART [99],
or METIS [100] are available. These methods require a balance between exploration and exploita-
tion. Exploration is usually prioritized in initial DBTL cycles where experiments that include a diverse
range of conditions are suggested to gain a better understanding of the system. Subsequent cy-
cles focus on exploitation so the proposed experiments aim at finding the best-producing strains
[31]. While exploration is similar to screening fractional factorial designs, exploitation is equivalent
to response surface designs within the DoE methodology.

ML methods are agnostic to the nature of the factors and can easily accommodate factors
with different numbers and types of levels. However, they require large, high-quality datasets to
avoid bias in the predictions [96]. AlthoughML algorithms are often used to analyze data obtained
by randomly generated libraries, they can also be trained with data obtained using DoE designs,
which ensures unbiased sampling of the solution space [101]. Compared to simpler linear models,
the ability of ML to accommodate complex datasets results in less accessible information about
the studied system. Yet, explainablemachine learning techniques are available [102]. For instance,
opaque models can be locally approximated by simpler, explainable models or the relevance of
the model features can be estimated to identify factors with the biggest impact on the response
[102, 103].
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Aim and thesis outline

During this thesis I aimed to deploy different modeling strategies to guide and accelerate the de-
sign and learning phases of DBTL cycles for strain and bioprocesses development. These modeling
approaches were envisioned to facilitate the optimization of strains and bioprocesses, and differ
in their requirements regarding a priori knowledge about the system (design) and the new infor-
mation generated after experimentation (learning). Hence, in Chapters 2 to 5 I focus on the use
of knowledge-based models, Chapter 6 is based on the analysis of omics data, and in Chapters 7
to 9 I delve into the use of data-driven methods (Figure 1.4).

Figure 1.4: Thesis overview. The thesis is structured based on the applied methods and the relative weight given
to mechanistic understanding and optimization of the studied system.

During this work, in silico studies (Chapters 3, 7) were accompanied by experimental work
using Saccharomyces cerevisiae (Chapters 5, 8, 9) and Pseudomonas putida (Chapters 2, 4, 6).
While S. cerevisiae is a widely used eukaryotic model organism for the generation of bio-products
[104], P. putida is a Gram-negative bacteria gaining recognition as a versatile chassis for industrial
biotechnology [105]. The use of these hosts highlights the easy generalization of the methods used,
emphasizing the potential broad applicability of computational approaches for the acceleration
of DBTL cycles.
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In Chapters 2 to 4 I used mechanistic models for metabolic engineering. Chapter 2 delves
into the development of a kinetic model of the curcuminoid production pathway expressed in
P. putida. This pathway is characterized by the presence of promiscuous enzymes and requires
a balanced expression of its genes to improve production. Despite the complexity of the param-
eterization process, I explored the potential of ensemble model simulations to guide the design
of improved strains and identify knowledge gaps in the studied pathway. In Chapter 3 I present
the Comparative Flux Sampling Analysis (CFSA) tool for the identification of down-regulation and
over-expression targets for metabolic engineering. This tool is based on the use of GEMs to simu-
late growth and production scenarios and the identification of reactions with altered fluxes. The
use of flux sampling ensures a complete exploration of the solution space, increasing the robust-
ness of the predictions. This tool was applied to improve the production of lipids by Cutaneotri-
chosporon oleaginosus and naringenin production by S. cerevisiae. In both cases, experimentally
validated targets as well as new engineering strategies were identified. While CFSA is designed
to provide growth-uncoupled production strategies, Chapter 4 focuses on the development of
a new-to-nature shikimate-dependent catabolism in P. putida for growth-coupled production
of shikimate-derived products using a model-guided approach. I employed GEM simulations to
design a pyruvate auxotroph strain that relies on pyruvate produced in the shikimate pathway for
growth. This strain was constructed and subject to adaptive laboratory evolution coupled with
the use of a biosensor to identify evolved strains with high shikimate fluxes. The evolved strain was
further engineered for the production of 4-hydroxybenzoate following a model-driven approach
that resulted in 89% of the maximum theoretical yield in minimal media.

While in the previous chapters pathways andmetabolismwere considered in isolation, inChap-
ters 5 and 6 I acknowledge the interplay between bioprocesses and cell metabolism. In Chapter
5 I use dynamic FBA and an enzyme-constrained GEM to simulate S. cerevisiae metabolism in
different bioreactor contexts. The combination of these methods allowed the prediction of critical
dilution rates, ethanol production and consumption, the preferred consumption order of different
carbon sources, and the performance of a lactate-producing strain. Additionally, flux sampling
was used to study metabolic changes at different growth rates. Compared to the data availability
regarding S. cerevisiae growth, little was known about the response of P. putida to low oxygen
concentrations. Therefore, in Chapter 6 I performed chemostat cultivations of this bacteria at de-
creasing oxygen availability and analyzed its response at the physiological, transcriptomic, and
proteomic levels. We found that glucose-limited cells grown at low growth rates (0.1 h-1) produce
pyoverdine at the expense of lower biomass yields. Besides, P. putida cells can endure up to 8
days in oxygen-limited growth which results in the up-regulation of genes related to respiration
and minimal changes at the proteome level.

In Chapters 7 to 9 I move from the use of mechanistic models and omic data to data-driven
models that prioritize production optimization over mechanistic understanding. In Chapter 7 I used
the kinetic model developed in Chapter 2 to study the efficiency of different DoE models for path-
way optimization. The use of the kinetic model enabled the simulation of a full factorial library that
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was used to estimate the effect of factors as well as identify the enzyme concentrations resulting in
optimized production. Then, the information obtained by different DoE designs was compared to
the full factorial data. Designs providing the required minimum information for optimization while
reducing the experimental load were identified. The gained knowledge was applied in Chapter
8 where I performed a DoE-guided optimization of p-coumaric acid production in S. cerevisiae.
This chapter highlights the importance of simultaneous process, media, and genetic optimization
during the cell factory design process. We emphasized the role of DoE during sequential experi-
mentation and its ability to point at relevant factors for production while the experimental effort is
minimized. As an alternative to DoE, Chapter 9 also delves into p-coumaric acid production in S.
cerevisiae but focuses on the use of ML for pathway optimization. This approach allowed a flexi-
ble design including factors with different number of levels based on prior knowledge that went
beyond gene expression tuning to additionally testing the effect of different coding sequences.
A library of strains was obtained by one-pot transformation, and a random screening before se-
quencing approach enabled the generation of high-quality data for model training. I employed
ML models to predict the best strain in the original design space and the relevance of model
features to guide the expansion of this space resulting in a 68% increased production.

Finally, in Chapter 10, I reflect on the lessons learned during this journey. I delve into the suc-
cesses and limitations of the performed studies and provide a set of recommendations to benefit
from different modeling strategies at each step of bioprocess development. I wonder about the
complementary roles of understanding and optimization is biotechnology. In addition, I reflect on
the potential and challenges of biotechnology when automation and computational modeling
are combined into autonomous DBTL cycles. Finally, I leave the reader with some thoughts to
reflect on the ability of biotechnology to fulfill its promises in the context of the circular economy.
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Production of value-added, plant-derived compounds in microbes increasingly attracts
commercial interest in food and pharmaceutical industries. However, plant metabolic
pathways are complex, require a robust balance of enzymes, cofactors, ATP, and other
metabolites, and often result in low production when expressed in bacteria. This is ex-
emplified by the biosynthesis of curcuminoids from the Curcuma longa plant. Here, we
combine dynamic pathway modeling, systematic testing of isoenzymes, and the opti-
mization of gene expression levels and substrate concentrations for the biosynthesis of
curcuminoids in Pseudomonas putida, leading to unprecedented conversion rates of
caffeic acid and tyrosine to curcumin. The development of kinetic ensemble models
guided the design of production strains, emphasizing the necessity of high relative ex-
pression of c3h, curs2, and dcs and the low relative expression of tal, comt, ccoaomt,
and 4cl4. This optimization resulted in a strain that achieved 10.8± 1.8% of the maximum
theoretical yield of curcumin from tyrosine. This represents a 4.1-fold increase in produc-
tion efficiency and the highest yield reported to date, demonstrating the potential of P.
putida as a platform for curcuminoid production. Our findings highlight the effectiveness
of this strategy not only in the advances in the production of curcuminoids but also in
setting a framework for the biosynthesis of other complex compounds.

Abstract
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Introduction

Curcuminoids are polyphenolic compounds naturally found in the rhizome of the Curcuma longa
(turmeric) plant. They account for 1 to 6% (w/w) of the turmeric rhizome, with curcumin being
the most abundant of the total curcuminoids (60-10% w/w), followed by demethoxycurcumin
(20-27% w/w) and bisdemethoxycurcumin (10-15% w/w) [106]. Due to their characteristic strong
yellow color, curcuminoids are widely used as coloring agents in the food industry and have
been authorized as food additives by the European Union (code E100) and the FDA (label 73.615)
[107, 108]. Besides their use in the food industry, the pharmaceutical and cosmetic industries ac-
count for 50% of the curcuminoids globalmarket [109]. Multiple biological activities, predominantly
anti-carcinogenic, antioxidant, and anti-inflammatory, have been attributed to curcumin and its
derivatives but further research is still needed to ascertain their full therapeutic potential [106, 110].

The curcumin global market size was over USD 58 million in 2020, and it is predicted to grow at
a compound annual growth rate (CAGR) of 16.1 % by 2028 [109]. Meeting such global demands
with plant-based curcumin production is challenging due to the seasonal dependent growth of
the turmeric plant, hindered by the expected rise of temperatures [111]. Furthermore, traditional
methods for the extraction of curcuminoids from the rhizomeof theplant are lengthy, laborious,and
require the use of organic solvents, high pressure, and elevated temperatures. Although alternative
methods hold promise for green extractions, they are inefficient, only able to extract up to 6% of
the curcuminoids present in the rhizome [112]. Chemical synthesis of curcuminoids also has severe
downsides, including the reliance on fossil fuel-derived solvents, toxic reagents, and expensive
starting compounds [113]. Microbial production of curcuminoids provides a valuable alternative
to these processes, as it has the potential to provide a greater level of control, consistency, and
efficiency, whilst operating at milder conditions and relying on biomass-derived feedstocks such
as glucose, tyrosine, ferulic, p-coumaric and caffeic acids. This allows, in principle, for efficient,
biobased, and standardized large-scale production of curcuminoids with the potential to meet
the increasing global demands.

The curcuminoid pathway has been expressed in various microorganisms, with a strong focus
on Escherichia coli, where the maximum reported yields have been obtained (Sup. Table 2.1).
The conversion of ferulic acid to curcumin requires only three catalytic reactions, and 100% yields
have been achieved [114]. Although the same enzymatic steps are required for production from
p-coumaric acid, for this substrate, only 59% of the maximum theoretical yield has been reported
[115]. When caffeic acid or tyrosine are used as substrates, the highest curcumin yields decrease
to 2.12 and 1.27 % of the maximum theoretical yield, respectively [115, 116]. These lower yields can
be caused by the increased complexity of the pathway or the higher toxicity of these substrates
and results in not yet commercially viable bio-based production of curcuminoids.

The curcuminoid biosynthetic pathway has been reconstructed based on curcuminoid pro-
duction in C. longa andOryza sativa and expanded to include enzymatic reactions derived from
various yeast, bacterial, and plant species (Figure 2.1) [115, 117]. Curcuminoids can be formed
from two tyrosine molecules in several steps. First, tyrosine is deaminated to form p-coumaric
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acid by tyrosine ammonia lyase (TAL). Next, p-coumaric acid can be converted to caffeic acid
by coumarate-3-hydroxylase (C3H) or to coumaroyl-CoA by feruloyl/coumaroyl-CoA synthase
(FCS) or 4-coumarate-CoA ligase (4CL). Subsequently, caffeic acid can be directly converted
into ferulic acid by caffeic acid O-methyl transferase (COMT). Alternatively, it can be ligated
to coenzyme-A (CoA) by FCS or 4CL, creating caffeoyl-CoA, which later can be converted to
feruloyl-CoA by caffeoyl-CoA O-methyl transferase (CCOAOMT). When ferulic acid is formed, it
can also be bound to CoA by FCS or 4CL, creating feruloyl-CoA. Hence, the three hydroxycin-
namic acids (ferulic, p-coumaric and caffeic acids) can be ligated to CoA by the action of
either FCS or 4CL. Once the CoA-esters coumaroyl- and feruloyl-CoA are formed, malonyl-CoA
is added to these compounds in a condensation reaction catalyzed by diketide-CoA synthase
(DCS). Finally, the diketide-CoA esters react with a single molecule of a CoA ester, coumaroyl-CoA
or feruloyl-CoA, to form a curcuminoid. This last reaction step is catalyzed by curcumin synthase
(CURS). When feruloyl-diketide-CoA reacts with a molecule of feruloyl-CoA, curcumin is formed.
When coumaroyl-diketide-CoA reacts with coumaroyl-CoA, bisdemethoxycurcumin is formed,
and when either diketide-CoA reacts with one of the other CoA esters (i.e. feruloyl-diketide-CoA
with coumaroyl-CoA or vice versa), the asymmetric demethoxycurcumin is formed. There are three
subtypes of CURS with different substrate specificity. CURS1 and CURS2 prefer feruloyl-CoA as a
starting substrate, and CURS3 does not show any preference between these metabolites [117].
Furthermore, the last two reactions, catalyzed by DCS and CURS, can also be performed by a
single enzyme, curcuminoid synthase (CUS) that, although has a preference for coumaroyl-CoA
and the production of bisdemethoxycurcumin, is also able to produce curcumin in trace amounts
[115].

Figure 2.1: Overview of the curcuminoid production pathway showing the potential substrates and prod-
ucts. Metabolite abbreviations: TYR, tyrosine; CUA, p-coumaric acid; CAA, caffeic acid; FEA, ferulic acid; CU-
COA, coumaroyl-CoA; CACOA, caffeoyl-CoA; FECOA, feruloy-CoA; DCUCOA, diketide coumaroyl-CoA; DFE-
COA, diketide feruloyl-CoA; BDC, bisdemethoxycurcumin; DMC, demethoxycurcumin; CUR, curcumin; AMET,
S-adenosyl-l-methionine. Enzyme abbreviations: TAL, tyrosine ammonia lyase; C3H, coumarate-3-hydroxylase;
COMT, caffeic acid O-methyl transferase; FCS, feruloyl/ coumaroyl-CoA synthase; CCOAOMT, caffeoyl-CoA
O-methyl transferase; DCS, diketide-CoA synthase; CURS, curcumin synthase.
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The presence of promiscuous enzymes in the curcuminoid pathway complicates its optimiza-
tion, as alterations in gene expression can lead to unforeseen effects on reaction rates. To address
this challenge, dynamic pathway models, which are constructed using a system of ordinary differ-
ential equations (ODEs), can be employed. These models account for metabolite concentrations
and enzyme fluxes over time. They rely on mathematical representations of enzyme kinetics, such
as Michaelis-Menten equations, and necessitate the determination of kinetic parameters [118,
119]. They serve as a valuable tool for comprehending pathway fluxes, assessing (non-measurable)
intermediate concentrations, and pinpointing potential limiting steps. Furthermore, they can be
used to evaluate how alterations in enzyme concentrations impact production, thereby aiding in
the design of optimized pathways [118, 119].

To enhance curcuminoid production, the choice of a microorganism able to endure toxic
pathwaymetabolites is essential. Pseudomonas putida KT2440 has gained recognition as a promis-
ing platform for the production of various biological products. It offers a robust metabolism as well
as a high tolerance to a variety of substances, particularly aromatic compounds, making it a
suitable candidate for tolerating the toxicity of the various substrates and intermediates in the
curcuminoid pathway [105, 120, 121, 122]. Natively, P. putida is able to catalyze the conversion of
hydroxycinnamic acids into CoA ester molecules due to the presence of fcs (PP_3356). However,
it can degrade the phenylpropanoid-CoA metabolites using ECH (PP_3358), which interferes with
the production of curcuminoids. Although production of bisdemethoxycurcumin from p-coumaric
acid has been achieved in P. putidaΔech, only a 0.2% yield has been obtained, and the potential
of this host for curcuminoids production remains largely unexplored [123].

Here,we demonstrate the successful production of curcuminoids from ferulic acid, p-coumaric
acid, caffeic acid, and tyrosine facilitated by plasmid-based expression of heterologous genes in
P. putida Δech. A curcumin yield of 63.6 ± 3.0% of the maximum theoretical yield was reached
from ferulic acid, 24.0 ± 8.7% from p-coumaric acid, 48.5 ± 9.1% from caffeic acid, and 2.7 ±

0.2% from tyrosine. Experimental data were used to create ensemble dynamic models of the
curcuminoid pathway that connect enzyme concentrations, enzyme kinetics, thermodynamics,
and metabolite concentrations. These models served as a guide in designing new strains with
varying expression levels of thepathwaygenes, resulting in the optimization of curcumin production
from tyrosine up to a 10.8±1.8% of the maximum theoretical yield, representing a 4.1-fold increase
in production. This study highlights the potential of dynamic pathway models in comprehending
intricate production pathways, providing a foundation for generating hypotheses that guide the
optimization process. Moreover, the curcumin yields achieved from caffeic acid and tyrosine
stand as the highest reported to date. Additionally, curcumin was successfully produced from
glucose, showcasing the potential of P. putida as a promising cell factory for the production of
curcuminoids.
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Materials and methods

Media, Bacterial strains and chemicals

Lysogeny-Broth (LB) (10 g/l tryptone, 10 g/l NaCl and 5 g/l yeast extract) and M9 minimal me-
dia (1.63 g/l NaH2PO4, 3.88 g/l K2HPO4, 2 g/l (NH4)2SO4, 10 mg/l EDTA, 100 mg/l MgCl2·6H2O, 2
mg/l ZnSO4·7H2O, 1 mg/l CaCl2·2H2O, 5 mg/l FeSO4·7H2O, 0.2 mg/l Na2MoO4·2H2O, 0.2 mg/l
CuSO4·5H2O, 0.4 mg/l CoCl2·6H2O, and 1 mg/l MnCl2·2H2O) were used to grow the bacterial
strains. When necessary, antibiotics were added to the media: kanamycin (50 µg/ml), gentamycin
(15 µg/ml), streptomycin (100 µg/ml), or chloramphenicol (34 µg/ml). E. coli λpir competent cells
were prepared and used for plasmid propagation [124]. E. coli cells were grown in LB media at
37°C in a shaking incubator at 200 rpm. P. putida cells were grown in LB or M9 media at 30°C in
a shaking incubator at 200 rpm. The P. putida Δech strain was generated from P. putida KT2440
using the pGNW and pQURE plasmids [125]. P. putida Δech was made electrocompetent after
several washing steps with 300 mM sucrose. A single exponential decay pulse was applied using
the GenePulser XcellTM (Bio-Rad) set at 2500, 200, and 25 V.

A list of all strains, plasmids, and primers used in this study can be found in Sup. Data 1. Ana-
lytical standards of l-tyrosine, ferulic acid, p-coumaric acid, caffeic acid, curcumin, demethoxy-
curcumin, and bisdemethoxycurcumin, as well as ethyl acetate and DMSO were purchased from
Sigma-Aldrich. Acetonitrile and hydrochloric acid were purchased from Acros Organics.

Toxicity essays

Toxicity assays were performed with the four precursors (ferulic, p-coumaric, caffeic acids, and
tyrosine) on P. putidaΔech in a concentration range of 0-0.25-0.5-1-2-4-8 mM. P. putidaΔechwas
grown overnight at 30°C in a 50 ml falcon tube containing 10 ml of LB. The next day, the culture
was centrifuged for 10 min at 4700 g. The supernatant was discarded, and the cell pellet was
resuspended in 10 ml of M9 media containing 70 mM of glucose. The OD600 of the cultures was
measured in a spectrophotometer (IMPLEN Westburg). A 96-well plate was prepared by adding
200 µl of the sample per well with a starting OD600 of 0.2. The OD600 readings were monitored in
a microplate reader (BioTek Synergy/neo2 or BioTek SynergyMx) every 5 minutes for 48 hours at
30°C with a continuous shake.

Plasmid construction

Gene sequences of tal, c3h, ccoaomt, dcs, curs1, and comt were obtained from Rodrigues et al.
[116]. Gene sequences ofcurs2 andcurs3were obtained fromNCBI (accession numbers AB506762
and AB5067630). All the gene sequences were codon optimized for P. putida KT2440 using the
Jcat codon optimization tool (www.jcat.de), and genes were ordered from Twist Bioscience. The
genes for curs1 and dcs codon-optimized for C. glutamicum were kindly provided by Dr. Katarina
Cankar (Wageningen Plant Research). Gene sequences can be found in Sup. Data 1.
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The genes were first ligated into the pSB1C3 repository plasmid via Golden Gate cloning using
BsaI restriction enzyme. The BsaI overhangs were already present on the genes codon optimized
for P. putida. The curs and dcs genes codon-optimized for C. glutamicum were PCR amplified
with M526-M27 and M528-M529 pair of primers, respectively, using NEB Q5® High-Fidelity DNA
polymerase according to the manufacturer’s protocol. Next, PCR fragments were loaded onto 1%
agarose gel andpurified using the NucleospinTM Gel and PCRClean-up kit from Fischer ScientificTM.
Plasmids were built using the SevaBrick Assembly method [126] and transformed into E. coli λpir
competent cells by heat-shock. Colonies were screened for the correct assembly of the plasmid
by colony PCR using Phire Green Hot Start II polymerase. Colonies with the right size band were
grown overnight in 10 ml of LB supplemented with the appropriate antibiotic. Glycerol stocks were
prepared for long-term storage. Plasmids were purified from the overnight liquid cultures using
the GeneJET Plasmid Miniprep kit from Thermo ScientificTM. Plasmid sequences were confirmed by
Sanger sequencing fromMacrogen (MACROGEN Inc. DNA Sequencing Service, The Netherlands).

Plasmids carrying different combinations of the pathway genes were created ligating genes
into pSEVAb22, pSEVAb83, or pSEVAb25 plasmid backbones carrying a p100 promoter [126]. Com-
binations of genes and plasmid backbones are listed in Sup. Data 1.

Curcuminoids production experiments

Strains were grown in 10 ml LB medium containing the appropriate antibiotic, at 30°C and 200
rpm, overnight. The next day, the overnight liquid cultures were centrifuged for 10 min at 4700 g.
The supernatant was discarded and the cell pellet was washed in 1 ml of M9 media containing
70 mM glucose to eliminate LB traces. Cells were resuspended to a starting OD600 of 0.3 in a total
volume of 25 ml of fresh minimal M9 media supplemented with 70 mM of glucose, the appropriate
antibiotics, and the precursor (ferulic -, p-coumaric -, caffeic acid, or tyrosine) at indicated con-
centrations. The 250 ml-Erlenmeyer flasks, containing the cells were grown aerobically at 30°C and
200 rpm for 72 h. Samples were taken for each flask at indicated time points and phenylpropanoids
and cucuminoids were extracted. Biological triplicates were included.

Extraction of phenylpropanoids and curcuminoids

To measure curcuminoids and precursors, a sample of 500 µl or 1 ml was taken from each Er-
lenmeyer, and transferred to a clean 2 ml Eppendorf tube. Then, 1 µl of 6M HCl was added to
each tube, and the tubes were vortexed to break the cells. To extract the curcuminoids, an equal
amount of ethyl acetate was added to the Eppendorf. The tubes were then incubated at 55°C
for 10 min at 800 rpm. Then, the tubes were centrifuged in a microcentrifuge at 20238 g for 2
min. The top layer was transferred to a new tube, making sure none of the cell pellet was taken
in the process. This extraction method was repeated until there was no yellow color visible in the
cell pellet. The ethyl acetate was then evaporated in a rotary evaporator (Concentrator plus,
Eppendorf) at 60°C. Finally, the remaining dry sample was dissolved in 500 µl of DMSO.
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Quantification of phenylpropanoids and curcuminoids

High-performance liquid chromatography (HPLC) was used to quantify the substrates (ferulic,
p-coumaric, caffeic acid, and tyrosine) and curcuminoids (demethoxycurcumin, bisdemethoxy-
curcumin, and curcumin). HPLC was performed on a Shimadzu LC2030C machine equipped with
a Poroshell 120EC-C18 column (250 x 4.6 mm, Agilent) and a UV/vis detector. Mobile phase was
used at a rate of 1 ml/min and was composed of Milli-Q water (A), 100 mM formic acid (B), and
acetonitrile (C) at varying proportions: 77:10:13 (v/v/v) in the first 10 min, 23:10:67 (v/v/v) in the
next 9 min, and 77:10:13 (v/v/v) in the last six minutes. Curcuminoids and hydroxycinnamic acids
were detected at a wavelength of 420 nm and 280 nm, respectively.

Yields were calculated by dividing the maximum measured curcuminoid concentration by
the consumed substrate. Yields are expressed as a percentage of themaximum curcuminoid yield
calculated using the number of carbons in the substrates (tyrosine, p-coumaric, caffeic, and ferulic
acids) and products (bisdemethoxycrucmin, demethoxycurcumin, and curcumin). The maximum
curcuminoid yield is 0.5 mol curcuminoid/ mol substrate.

Construction of kinetic models of the curcuminoid pathway

Three models, mFeCua2, mCaa2, and mTyr2, corresponding to strains FeCua2, Caa2, and Tyr2,
were developed based on the genes expressed in each strain (Table 2.1). For all reactions but
C3H, the generalized reversible Michaelis-Menten kinetics expression rate law was applied. For
the C3H reaction, a mass-action rate law was used due to its high equilibrium constant [127]. The
rate laws were formulated using the Wegscheider-compliant parametrization, which models the
reaction equilibrium constant by considering the contributions of the concentration and chemi-
cal potential of each reactant. This approach helps to avoid hidden dependencies between the
equilibrium constants of multiple reactions, which could lead to thermodynamically infeasible pa-
rameterizations [127]. Enzymes catalyzing multiple reactions (FCS, DCS, and CURS) had additional
substrate competition terms incorporated into their rate laws [127]. To simplify the model, the con-
centrations of all co-factors were fixed, but their chemical potential contributions to relevant rate
laws were considered. Additionally, enzyme concentration and rate parameters were merged
when possible to mitigate issues related to identifiability. Growth was integrated into the model
through a logistic equation, which was used to scale enzyme and metabolite concentrations. The
most complex model (mTyr2) encompassed 14 reactions and 13 ODEs to represent the dynamic
concentrations of 12 metabolites and biomass. This model involved a total of 89 parameters, with
37 representing Michaelis-Menten constants (kM ), 16 representing enzyme concentrations, rates,
or a combination of both (u, kV , and uV , respectively), 23 representing standard thermodynamic
potentials (µ), 9 representing fixed concentrations of co-factors (c), 2 being part of the logistic
equation representing growth, and 2 fixed parameters (R and T ). The generated models and
detailed information regarding model construction are available in Gitlab and Sup. Methods,
respectively.

28



2

Kinetic modeling for curcumin production

Table 2.1: Summary of constructed models.

Model name Included enzymes
mFeCua2 FCS, DCS, CURS2

mCaa2 COMT, CCOAOMT, FCS, DCS, CURS2

mTyr2 TYR, C3H, COMT, CCOAOMT, FCS, DCS, CURS2

Parameterization of the kinetic models

To establish initial parameter value ranges, various literature sources were combined. When avail-
able, co-factor concentration data was sourced from studies on P. putida KT2440 [128]. Otherwise,
information was gathered from Pseuodomonas taiwanensis VLB120 [129] and E. coli K12 [130],
with preference given to the former. Estimates for chemical potentials were derived from changes
in the Gibbs free energy of the reactions, computed using the eQuilibrator API under standard
physiological conditions (pH = 7.5, ionic strength = 0.25 M, and pMg = 3) [131]. Enzyme kinetic
parameters for DCS and CURS were obtained from Katsuyama et al. [117, 132]. In instances of
missing data, broad estimates were used. All parameter data was integrated through parameter
balancing, resulting in a final multivariate normal distribution for the parameters [133]. The covari-
ance between the estimated chemical potentials from eQuilibrator was included in the parameter
balancing output, preserving the shared uncertainty in the estimates [134].

For parameter estimation of the mFeCua2, mCaa2, and mTyr2 models, experimental data
included measurements of OD600 and concentrations of substrates and curcuminoids from the
FeCua2 strain grown in 2 mM ferulic acid or 1 mM p-coumaric acid, the Caa2 strain grown in
1 mM caffeic acid, and the Tyr2 strain grown in 1 mM tyrosine. Parameters were simultaneously
estimated for all models using Python (v3.9.12) and the Python libraries PESTO (v0.2.12) [135] and
AMICI (v0.11.21) [136]. Initial parameter estimates were sampled from the balanced distribution
and log-transformedwhere appropriate (i.e. for parameters representing kinetic constants, enzyme
concentrations,or co-factor concentrations). Weemployedmulti-start local optimization (L-BFGS-B,
1000 starts, 100maximum iterations),with a least-squares objective function thatminimized the sum
of squares of the residuals between the experimental data and the model predictions. Ensemble
models were created for each strain (enFeCua2, enCaa2, and enTyr2), incorporating the top ten
parameterizedmodels. The goodness of fit for each observable (tyrosine, caffeic acid, p-coumaric
acid, ferulic acid, bisdemethoxycurcumin, demethoxycurcumin, curcumin concentrations, and
OD600) in all experiments was evaluated using the mean square error normalized by the mean
of the measurements. Simulations were performed using the AMICI library [136] and the CVODES
ODE solver [135]. Scripts used for parameterization and simulation are available in Gitlab.
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Model-based optimization of curcumin production from tyrosine

Limiting reactions were identified following two approaches. First, ensemble models were used
to simulate the conducted experiments and, for each reaction, the maximum predicted flux was
calculated. Reactions exhibiting lower flux values were flagged as potential bottlenecks, and
the corresponding enzymes were selected as targets for over-expression. Furthermore, the enTyr2
ensemble was used to evaluate the influence of varying enzyme concentrations on curcumin pro-
duction from tyrosine. The model was simulated under different enzyme concentration scenarios
(ranging from 0 to 10 times the predicted concentration, see Gitlab). Based on their impact on
curcumin production, enzymes were considered as candidates for either over-expression or down-
regulation. Expression of genes in plasmids with distinct copy numbers allowed the experimental
implementation of model suggestions. pSEVAb22, pSEVAb83 and pSEVAb25 plasmids were used
as low-copy-number, medium-copy-number and high-copy-number plasmids, respectively [126].

Results

Curcuminoid substrate toxicity in P. putida Δech

To establish P. putida KT2440 as an efficient platform to produce curcuminoids, degradation of
coumaroyl-CoA,caffeoyl-CoA,and feruloyl-CoAby ECH shouldbeavoided. Therefore,wedeleted
the ech gene and evaluated the toxicity of the four precursors (ferulic, p-coumaric, and caffeic
acids, as well as tyrosine) on P. putida Δech. In this way, the highest concentration of each
precursor that does not inhibit growth was identified. The growth of P. putida Δech was hindered
when ferulic and p-coumaric acids were present in the media at concentrations of 4 mM. Similarly,
tyrosine at 8 mM and caffeic acid at 0.25 mM completely inhibited growth (Sup. Figure 2.1).

Production of curcuminoids from ferulic and p-coumaric acid

Production of curcuminoids from ferulic and p-coumaric acids requires the expression of two het-
erologous genes,dcs andcurs, and the native expression of fcs (Figure 2.2). Therefore, curcuminoid
production from these substrates was considered as the first step towards the expression of the full
curcuminoid pathway in P. putida Δech.

Five strains expressing dcs and curs in a pSEVAb22 plasmidwere constructed: FeCua1, FeCua2,
FeCua3, FeCuaCg, and FeCuaCgCg (Table 2.2). These strains differed on the curs isoenzyme
used (curs1, curs2, or curs3) and the codon optimization of curs and dcs (either for P. putida or
C. glutamicum (Cg)). These strains were grown in M9 supplemented with 1 mM and 2 mM of
ferulic acid (Table 2.2). A starting 2 mM concentration of ferulic acid resulted in the highest titers
and curcumin production by FeCua2 (0.34 ± 0.05 mM), followed by FeCuaCg (0.18 ± 0.09 mM),
FeCua1 (0.17± 0.01 mM) and FeCua3 (0.06± 0.02 mM) (Figure 2.2D, Sup. Figure 2.2). FeCuaCgCg
grew slower and produced little amount of curcumin compared with the other strains (0.003±0.00
mM) (Sup. Figure 2.2). Although FeCua3 was the only strain that accumulated detectable levels
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of ferulic acid, the total conversion of ferulic acid to curcumin was always below 100%, lower
than previously reported yields in E. coli [114]. Moreover, increasing the initial OD600 significantly
influenced curcumin production. FeCua2 was inoculated at three different OD600, 0.3, 0.6, and 0.9
with 2mMof ferulic acid. The highest titer, 0.64± 0.03mM (63.6% of themaximum theoretical yield),
was achieved when ferulic acid was added at an OD600 0.9, representing a 1.8 fold-increase
compared to the yield obtained with an initial OD600 of 0.3 (Table 2.2, Sup. Figure 2.2C,D).

Figure 2.2: A. Curcumin (CUR) production from tyrosine (TYR), the performance of the three best strains is shown
(see Sup. Figure 2.5 for additional information). B. Bisdemethoxycurcumin (BDC) production from p-coumaric
acid (CUA), the performance of the three best strains is shown (see Sup. Figure 2.3 for additional information).
C. Curcumin production from caffeic acid (CAA), the performance of the three best strains is shown (see Sup.
Figure 2.4 for additional information). D. Curcumin production from ferulic acid (FEA), the performance of the
three best strains is shown (see Sup. Figure 2.2 for additional information). See Figure 2.1 for abbreviations.

FeCua1, FeCua2, and FeCuaCg were also grown in M9 media supplemented with 1 mM of
p-coumaric acid (Figure 2.2 B, Table 2.2, Sup. Figure 2.3). Similar to the experiments with ferulic acid,
FeCua2 produced the highest concentration of bisdemethoxycurcumin (0.12± 0.04 mM). Notably,
traces of ferulic acid were detected in the samples, as well as trace amounts of demethoxycur-
cumin. This suggests that P. putida might synthesize ferulic acid from coumaric acid, even without
expressing c3h and comt genes, which can lead to the production of demethoxycurcumin and
curcumin from this substrate. Furthermore, although FeCua1 expresses curs1 codon optimized for
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P. putida and FeCuaCg expresses curs1 codon-optimized for C. glutamicum, they differed on the
produced bisdemethoxycurcumin (0.01 ± 0.00 mM and 0.06 ± 0.01 mM, respectively), showcas-
ing the effect of codon optimization on production (Table 2.2). The highest yield of p-coumaric
acid was achieved by FeCua2 (24.0 ± 8.7%). Although this yield is below the reported 60% con-
versions by E. coli [115, 137], it represents a considerable improvement to previous attempts of
bisdemethoxycurcumin production by P. putida that showed conversions below 1% [123].

Table 2.2: Production of curcumin from ferulic acid (FEA) or bisdemethoxycurcumin from coumaric acid (CUA).
The mean and standard deviation of three replicates are shown. The yield is expressed as a percentage of the
maximum theoretical yield. Production experiments were performed with an initial OD600 = 0.3 unless indicated
by a (OD600 = 0.6) or b (OD600 = 0.9). p22 refers to the pSEVAb22 plasmid backbone.

Strain Name Plasmids Substrate (mM) Titer (mM) Yield (%)
FEA (1 mM) 0.05 ± 0.02 9.73 ± 3.01

FeCua1 p22-curs1-dcs FEA (2 mM) 0.17 ± 0.01 16.68 ± 0.98
CUA (1 mM) 0.01 ± 0.00 4.90 ± 3.28

FEA (1 mM) 0.16 ± 0.02 32.11 ± 3.34
FEA (2 mM) 0.34 ± 0.05 34.37 ± 5.20

FeCua2 p22-curs2-dcs FEA (2 mM)a 0.50 ± 0.02 50.00 ± 1.56
FEA (2 mM)b 0.64 ± 0.03 63.60 ± 2.97
CUA (1 mM) 0.12 ± 0.04 23.95 ± 8.73

FeCua3 p22-curs3-dcs FEA (2 mM) 0.06 ± 0.00 6.19 ± 0.30

FEA (1 mM) 0.07 ± 0.01 14.01 ± 2.64
FeCuaCg p22-cursCg-dcs FEA (2 mM) 0.18 ± 0.09 18.13 ± 8.89

CUA (1 mM) 0.06 ± 0.01 13.03 ± 2.88

FeCuaCgCg p22-cursCg-dcsCg FEA (2 mM) 0.00 ± 0.00 0.34 ± 0.01

Production of curcuminoids from caffeic acid

After the successful synthesis of curcuminoids from ferulic and p-coumaric acid, the biosynthetic
pathway for curcuminoid production was further expanded to produce curcumin from caffeic
acid. This involved the introduction of two additional genes into a pSEVAb83 plasmid: comt and
ccoaomt (Figure 2.2). Through the expression of both the pSEVAb22-curs-dcs and the pSEVAb83-
comt-ccoaomt plasmids, five P. putida Δech strains able to synthesized curcumin from caffeic
acid were constructed: Caa1, Caa2, Caa3, CaaCg, and CaaCgCg (Table 2.3).

Initially, the strains were tested with 2 mM caffeic acid. However, the curcumin levels were
low (Caa1, Caa2, CaaCg) or zero (Caa3), and the lag phase of the cultures increased (Table 2.3,
Sup. Figure 2.4), confirming the high toxicity of CAA found during the toxicity assay. Subsequently,
Caa1, Caa2, and CaaCg, the strains with the best performance, were tested with 1 mM caffeic
acid. The growth profile improved and the levels of curcumin significantly increased (Figure 2.2C,
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Table 2.3, Sup. Figure 2.4). Similar to the experiments with ferulic and p-coumaric acids, curcumin
degradation was observed after 70 h. Caa1 and CaaCg produced 0.17 ± 0.02 and 0.24 ± 0.05
mM of curcumin, respectively while Caa2 produced 0.10 ± 0.02 mM. Furthermore, ferulic acid
was accumulated in large amounts for Caa1 (0.19 ± 0.04 mM) and Caa2 (0.57 ± 0.02 mM). The
highest caffeic acid conversion, achieved by CaaCg (48.47 ± 9.06%), was 22.8 times higher than
that obtained using E. coli [116].

Table 2.3: Production of curcumin from caffeic acid (CAA). The mean and standard deviation of three replicates
are shown. The yield is expressed as a percentage of the maximum theoretical yield. p22 and p83 refer to the
pSEVAb22 and pSEVAb83 plasmid backbones, respectively.

Name Plasmids CAA (mM) Titer (mM) Yield (%)
1 0.17 ± 0.02 35.53 ±4.56

Caa1 p22-curs1-dcs + p83-comt-ccoaomt
2 0.00 ± 0.00 7.79 ± 0.45

1 0.10 ± 0.02 19.27 ± 3.38
Caa2 p22-curs2-dcs + p83-comt-ccoaomt

2 0.00 ± 0.00 0.13 ± 0.03

Caa3 p22-curs3-dcs + p83-comt-ccoaomt 2 0.00 ± 0.00 0.15 ± 0.04

1 0.24 ± 0.05 48.47 ± 9.06
CaaCg p22-cursCg-dcs + p83-comt-ccoaomt

2 0.14 ± 0.01 14.84 ± 1.33

CaaCgCg p22-cursCg-dcsCg + p83-comt-ccoaomt 2 0.00 ± 0.00 0.11 ± 0.19

Production of curcuminoids from tyrosine

After successfully producing curcumin from caffeic acid, the curcuminoids pathway was ex-
panded to include heterologous expression of tal and c3h (Figure 2.2). Four strains able to pro-
duce curcuminoids from tyrosine were built differing in the curs isoenzyme used and the codon
optimization: Tyr1, Tyr2, Tyr3, and TyrCg (Table 2.4). These strains carried pSEVAb22-curs-dcs and
pSEVAb83-comt-ccoaomt-tal-c3h plasmids.

Considering the low tyrosine toxicity and the expected lower curcuminoid production from
this substrate [114, 115, 116, 138], 3 mM tyrosine was used as the initial substrate concentration.
However, low curcuminoid concentrations were found for Tyr1, Tyr2, and TyrCg and no production
was observed for Tyr3 (Table 2.4, Sup. Figure 2.5). Therefore, a new experiment with 1 mMof tyrosine
was performed using the producing strains Tyr1, Tyr2, and TyrCg. Reducing the concentration of
tyrosine reduced the lag phase of the cultures and improved curcuminoid production (Figure
2.2A, Table 2.4, Sup. Figure 2.5). The highest production was achieved by Tyr2 (0.013 ± 0.001 mM)
followed by Tyr1 (0.010 ± 0.005 mM) and TyrCg (0.005 ± 0.001 mM). Notably, although production
of all curcuminoids was possible, curcumin was the only curcuminoid measured. The highest cur-
cumin yield achieved (2.7 ± 0.2% of the maximum theoretical yield) was higher than previously
reported conversions achieved with E. coli [114]. As observed with the other substrates, curcumin
concentration decreased after 70 h indicating the degradation of this compound (Sup. Figure
2.5).
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Additionally, Tyr1, Tyr2, Tyr3, and TyrCg were grown with glucose as only substrate to study
curcuminoid production from endogenous tyrosine levels. Although no curcuminoids were de-
tected in the Tyr3 strain, low curcumin concentrations were detected in cultures with Tyr1, Tyr2, and
TyrCg (Sup. Figure 2.5), demonstrating curcuminoid production from glucose by P. putida Δech
expressing the complete curcuminoid pathway.

Table 2.4: Production of curcumin from tyrosine (TYR). The mean and standard deviation of three replicates
are shown. The yield is expressed as a percentage of the maximum theoretical yield. p22 and p83 refer to the
pSEVAb22 and pSEVAb83 plasmid backbones, respectively.

Name Plasmids TYR (mM) Titer (mM) Yield (%)

Tyr1 p22-curs1-dcs + p83-comt-ccoaomt-tal-c3h
1 0.01 ± 0.00 1.30 ± 0.01
3 0.00 ± 0.00 0.31 ± 0.31

Tyr2 p22-curs2-dcs + p83-comt-ccoaomt-tal-c3h
1 0.01 ± 0.00 2.67 ± 0.21
3 0.01 ± 0.00 0.71 ± 0.21

Tyr3 p22-curs3-dcs + p83-comt-ccoaomt-tal-c3h 3 0.00 ± 0.00 0.00 ± 0.00

TyrCg p22-cursCg-dcs + p83-comt-ccoaomt-tal-c3h
1 0.01 ± 0.00 1.11 ± 0.16
3 0.00 ± 0.00 0.10 ± 0.17

Model-based optimization of curcumin production from tyrosine

Although production of curcuminoids from ferulic acid, p-coumaric acid, caffeic acid, and tyro-
sine was achieved, maximum theoretical yields were not obtained, indicating the possibility of
further pathway optimization. To facilitate this optimization, we developed kinetic models of the
curcuminoid pathway, allowing to monitor the concentrations of biomass, substrate, products,
and intermediates over time. These models enabled the calculation of reaction fluxes and the
impact of enzyme levels on production. Consequently, the insights gained through simulations
were leveraged to steer the pathway optimization process. Considering that the lowest measured
production was achieved with tyrosine as substrate and that curcumin was the main curcuminoid
found, the optimization strategy focused on improving curcumin production from tyrosine.

Construction of kinetic models of the curcuminoid pathway

Kinetic models of the curcuminoid pathways expressed in FeCua2, Caa2, and Tyr2 strains were
created. Considering that these models shared some reactions and their corresponding parame-
ters (Table 2.1, Figure 2.3A-C), experimental data obtained with all these strains was simultaneously
used for the parameterization of the models. Although this approach aimed to facilitate param-
eter estimation including experiments performed with different strains and substrates, it was not
sufficient to obtain accurate parameter estimates. Instead, ensemble models formed by the 10
estimated parameter sets with the best agreement to experimental data (lowest least squares)
were created and used for the simulations (enFeCua2, enCaa2, enTyr2).
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Figure 2.3D shows the fit of the ensemble models to the experiments used during parameter
estimation. All models accurately described precursor profiles except enFeCua2 which incorrectly
simulated ferulic acid accumulation with ferulic acid as substrate in order to correctly fit the cur-
cumin production curve. All models accurately simulated curcumin and bisdemethoxycurcumin
production with normalized mean square errors (nMSE) of 2.2% and 3.5%. Demethoxycurcumin
could only be produced by the Tyr2 strain, used in one of the four experiments for model training,
which resulted in a higher nMSE (23.2%) when simulating the production of this metabolite. Besides,
model simulations pointed at the accumulation of feruloyl-CoA, coumaroyl-CoA, and, to a lesser
extent, caffeoyl-CoA, and diketide forms as causes for curcuminoid yields below 100% (Sup. Figure
2.6).

Figure 2.3: Comparison of ensemble model simulations and experimental data. A-C. Plasmids carried by the
strains used for parameter estimation (FeCua2, Caa2, and Tyr2). D. Fit of ensemble models to the experimental
data used for parameter estimation, the strains and substrate used are indicated. E. Fit of ensemble models
to experimental data of validation experiment, the strain and substrates used are indicated. Points indicate
experimental data, continuous lines represent the mean of the ensemble model predictions and shaded areas
indicate 95-5% and 75-25% confidence intervals.
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The ensemble modeling approach was validated simulating the performance of the FeCua2
strain simultaneously using ferulic and p-coumaric acids as substrates. Model predictions of cur-
cuminoids showed good agreement with experimental data with a nMSE of 1.9%, 8.6%, and 1.2%
for CUR, BDCUR, and DCUR, respectively (Figure 2.3E). Even though the ensemble failed to predict
the complete depletion of ferulic acid, it predicted curcumin as the main curcuminoid, capturing
the reported preference of CURS2 towards feruloyl-CoA [117].

Alleviation of enzymatic bottlenecks

After validating the qualitative performance of the ensembles, the focus was set on optimizing
curcumin production from tyrosine. Therefore, the enTyr2 ensemble model was used to calculate
the maximum fluxes through each curcuminoid pathway reaction during production with tyrosine
as substrate (Figure 2.4I). Fluxes through the last two steps of the pathway (DCS and CURS) and the
FCS reaction consuming ferulic acid were lower than those from the upper reactions (TAL, C3H,
COMT, CCOAOMT), which explained the accumulation of pathway intermediates (Sup. Figure
2.6). In the Tyr2 strain, curs2 and dcs genes were expressed in a plasmid with a lower copy number
compared to the other genes in the pathway, and fcs expression was subject to native regulation
(Figure 2.4A). The expected lower concentration of CURS2 and DCS enzymes was consistent with
the lower fluxes calculated by the ensemble.

The flux imbalance among pathway reactions was addressed in the Tyr2_Opt1 and Tyr2_Opt2
strains by introducing curs2 and dcs in higher copy number plasmids. These strategies aimed to
increase gene expression of curs2 and dcs to obtain higher enzyme concentrations and possibly
improve the flux through the associated reactions. While Tyr2_Opt1 carried curs2 and dcs in the
high-copy number backbone pSEVAb25 and comt, ccoaomt, tal, and c3h in the medium-copy
number backbone pSEVAb83; Tyr2_Opt2 carried these genes in the medium-copy number plas-
mid pSEVAb83 and the low-copy number plasmid pSEVAb22 (Table 2.5, Figure 2.4B, C). Production
experiments were performed using 1 mM tyrosine as substrate and resulted in decreased produc-
tion of curcumin by Tyr2_Opt1 and increased production of Tyr2_Opt2 (Figure 2.4J). While Tyr2 only
produced curcumin at a final concentration of 0.013 ± 0.001 mM, Tyr2_Opt2 produced 0.021 ±

0.003mM curcumin and 0.031 mM of total curcuminoids (Figure 2.4J). This represented a 1.6-fold in-
crease in curcumin production, a 2.4-fold increase in curcuminoid production, and a curcuminoid
yield of 5.7 ± 0.3 % of the theoretical maximum. The effect of changing plasmid copy number
was also assessed in strains expressing curs1 codon-optimized for C. glutamicum instead of curs2,
and similar results were found (Sup. Data 2).

Enhanced curcuminoid production was achieved by increasing the copy number of dcs and
curs2. However, this improvement was only observed when coupled with a reduced expression of
the other pathways genes, underscoring that overall higher gene expression does not guarantee
a higher production. Rather, carefully selecting the genes to over-express was required. To facil-
itate this task, we employed the enTyr2 ensemble model to systematically evaluate the impact
of varying enzyme concentrations on curcumin production from tyrosine. For each enzyme in
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the pathway, the effect of reducing and increasing its concentration was assessed simulating
curcumin production with the enzyme concentration estimated for each model in the ensemble
as reference (Figure 2.4K, Sup. Figure 2.7).

Increasing the concentration of C3H and decreasing the concentration of COMT had the
biggest positive impact on curcumin concentration in silico (Figure 2.4K). Increasing the concentra-
tion of C3H facilitates the consumption of p-coumaric acid. In turn, decreasing the concentration
of COMT limits the production of ferulic acid which is predicted to accumulate due to the lower
consumption flux by FCS (Figure 2.4I). In order to test model predictions, strains Tyr2_Opt3, with
higher expression of C3H, and Tyr2_Opt4, not expressing COMT, were constructed and tested with
2 mM of tyrosine (Table 2.5, Figure 2.4L). Tyr2_Opt3 produced 0.07 ± 0.01 mM of curcumin, improv-
ing curcumin production 1.3-fold compared to Tyr2_Opt2. However, Tyr2_Opt4 produced 24.4% less
curcumin than Tyr2_Opt2. The decreased production observed in Tyr2_Opt4 was accompanied
by the accumulation of caffeic and ferulic acids, which suggested the conversion of feruloyl-CoA
to ferulic acid by FCS, a behavior only predicted by one of the ten models of the ensemble (Sup.
Figure 2.8).

Table 2.5: Production of curcumin from tyrosine (TYR) of optimized strains. The mean and standard deviation of
three replicates are shown. The yield is expressed as a percentage of the maximum theoretical yield. p22, p83,
and p25 refer to the pSEVAb22, pSEVAb83, and pSEVAb25 plasmid backbones, respectively.

Name Plasmids TYR (mM) Titer (mM) Yield (%)
Tyr2_Opt1 p25-curs2-dcs + p83-comt-ccoaomt-tal-c3h 1 0.01 ± 0.00 1.67 ± 0.13

Tyr2_Opt2 p83-curs2-dcs + p22-comt-ccoaomt-tal-c3h
1 0.02 ± 0.00 4.19 ± 0.58
2 0.06 ± 0.00 5.68 ± 0.33

Tyr2_Opt3 p83-curs2-dcs-c3h + p22-comt-ccoaomt-tal 2 0.07 ± 0.01 6.97 ± 0.46

Tyr2_Opt4 p83-curs2-dcs + p22-ccoaomt-tal-c3h 2 0.03 ± 0.01 3.13 ± 0.66

Tyr2_Opt5 p83-curs2-dcs + p22-comt-ccoaomt-tal-c3h-4cl4 2 0.08 ± 0.01 8.22 ± 0.57

Tyr2_Opt6 p83-curs2-dcs-4cl4 + p22-comt-ccoaomt-tal-c3h 2 0.03 ± 0.00 3.07 ± 0.30

Tyr2_Opt7 p83-curs2-dcs-c3h + p22-comt-ccoaomt-tal-4cl4 2 0.11 ± 0.02 10.82 ± 1.81
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Figure 2.4: Model-based optimization of curcumin production from tyrosine. A-H. Plasmids carried by the opti-
mized strains. I. enTyr2 ensemble predictions of maximum fluxes of each curcuminoid pathway reaction with
tyrosine as substrate. For promiscuous enzymes, the substrates of each reaction are indicated between brackets:
p-coumaric acid (CUA), caffeic acid (CAA), ferulic acid (FEA), coumaroyl-CoA (CUCOA), feruloyl-CoA (FECOA),
diketyde coumaroyl-CoA (DC), diketyde feruloyl-CoA (DF). J. Effect of changing relative expression of dcs and
curs2 in Tyr2_Opt strains. K. enTyr2 ensemble predictions of curcumin production from tyrosine as a function of
relative C3H and COMT enzyme concentrations. L. Effect of changing relative expression of c3h and 4cl4, and
omitting the expression of comt on curcumin production from tyrosine in Tyr2_Opt strains.
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Expression of 4CL4 improves curcumin production

FCS was the only endogenous enzyme used in the curcuminoid pathway. Although this enzyme
can convert p-coumaric, caffeic, and ferulic acid into their CoA-forms, kinetic information regard-
ing substrate preference was not available. Besides, endogenous regulation of fcs expression in
response tometabolites in the curcuminoid pathway is unknown. Although FCS relatedparameters
could not be estimated, model simulations and experimental data suggested a possible detoxify-
ing role of FCS that could result in the conversion of caffeic acid into ferulic acid which negatively
impacted curcuminoid production. To reduce the accumulation of ferulic acid, alternatives to
fcs were sought. C. longa and Arabidopsis thaliana express 4CL enzymes that perform functions
analogous to FCS. A. thaliana’s 4CL4 enzyme has a 7.6-fold lower Michaelis Menten constant for
ferulic acid compared to the enzyme from C. longa. Therefore, this enzyme has a higher affinity
to ferulic acid and was included in new versions of the pathway [139].

The role of 4CL4 to complement FCS in vivo was tested in three strains: Tyr2_Opt5, Tyr2_Opt6,
and Tyr2_Opt7 (Table 2.5, Figure 2.4F-H). Tyr2_Opt5 and Tyr2_Opt6 were based on Tyr2_Opt2 and
were used to test the effect of expressing 4cl4 in pSEVAb22 and pSEVAb83 respectively. While
expression of 4cl4 in the low-copy number plasmid improved curcumin production up to 0.08 ±

0.01 mM, expression in the medium-copy number plasmid reduced production to 0.03 ± 0.00 mM.
When the expression of 4cl4 in pSEVAb22 was combined with the expression of c3h in pSEVAb83
in the Tyr2_Opt7 strain, 0.11 ± 0.02 mM of curcumin was achieved, a 1.6-fold increase compared
to Tyr2_Opt3 and a 4-fold increase compared to Tyr2 (Figure 2.4L).

Discussion

In this study,we demonstrated the potential of using P. putidaΔech as a platform for the bio-based
production of curcuminoids, especially curcumin. We followed a systematic metabolic engineer-
ing framework, progressively expanding the substrate repertoire for curcuminoid production. Each
step introduced new genes, increasing the pathway’s complexity. Additionally, we evaluated,
for the first time, the impact of different curs isoenzymes on curcuminoid production, achieving
the highest reported conversion of caffeic acid and tyrosine to curcumin when utilizing cursCg
and curs2, respectively. The acquired data confirmed the importance of the pathway kinetics on
production and served as the foundation for training kinetic models of the curcuminoid pathway.
These models enhanced the interpretation of the conducted experiments, proposed the develop-
ment of new strains, and guided the hypothesis generation process during pathway optimization.
This methodology culminated in a 4-fold enhancement in tyrosine conversion to curcumin, increas-
ing the yield from 2.7 ± 0.2% to 10.8 ± 1.8% of the theoretical maximum, an 8.5-fold improvement
over previously reported conversions [114].

Although CURS1, CURS2, and CURS3 have high amino acid identity, their kinetic parameters
are considerably different [117]. While CURS1 has the lowest affinity (kM) for ferulic and p-coumaric
acid-derived molecules, it has the highest turnover rate (kcat). In contrast, CURS3 shows the high-
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est affinity towards these substrates but the lowest turnover rate. Possibly, the combination of high
affinity of CURS2 and its turnover rate (twice higher than CURS3) is responsible for the better con-
versions shown in this study. Moreover, the preference of the FeCua2 strain for the ferulic acid over
p-coumaric acid conversion is also explained by the 20-fold lower kM constant of this enzyme to
feruloyl-CoA compared to coumaroyl-CoA [117]. Notably, despite the consistent accumulation
of ferulic acid when caffeic acid is used as a substrate, strains expressing curs1 codon-optimized
for P. putida or C. glutamicum achieved higher conversion rates compared to strains expressing
curs2. A higher toxicity of caffeic acid on the Caa2 strain was discarded as the cause of the lower
conversion since the growth of this strain was comparable to the Caa1 and CaaCg strains.

The effect of CURS isoenzymes on production emphasized the importance of kinetic parame-
ters for pathway optimization given the promiscuity of CURS, FCS, and DCS. To better understand
the pathway’s kinetics, we constructed kinetic models of the pathway. Although accurate pa-
rameter estimation was not achieved, we developed ensemble models for the FeCua2, Caa2,
and Tyr2 strains. Flux analyses using the enTyr2 model, combined with simulations assessing the
influence of enzyme concentration on production, guided the development of the Tyr2_Opt3
strain. Within this strain, the genes dcs, curs2, and c3h are expressed in the medium-copy number
plasmid (pSEVAb83) while comt, ccoaomt, and tal are expressed in a low-copy number plas-
mid (pSEVAb22). This strain achieved a 7.0 ± 0.5% conversion of tyrosine to curcumin, a 2.6-fold
improvement compared to Tyr2.

Despite the consistent accuracy of ensemble models in simulating curcuminoid production,
theywere unable to replicate the complete depletion of ferulic acid in the absence of caffeic acid
or tyrosine. This disagreement between experimental data and simulations was key to identifying
the need to complement the endogenous expression of fcswith the expression ofA. thaliana’s 4cl4.
Maximum reaction fluxes calculated by enTyr2 revealed a low flux of the FCS reaction consuming
ferulic acid compared to the FCS reactions consuming p-coumaric and caffeic acids (Figure
2.4I). Besides, model simulations suggested omitting the expression of comt to improve curcumin
production (Figure 2.4K). These observations led to the hypothesis that, in the absence of caffeic
acid, FCS can convert ferulic acid into its CoA form but, when caffeic acid is present, FCS saturates
with p-coumaric and caffeic acids resulting in the accumulation of ferulic acid. This accumulation
is accentuated by the direct conversion of caffeic acid into ferulic acid by COMT. Althoughmodel
simulations suggested reducing comt expression to improve curcumin production, excluding this
gene in the Tyr2_Opt4 strain decreased curcumin production and led to ferulic acid accumulation
(Figure 2.4L). In this strain, FCS catalyzes the reverse conversion from feruloyl-CoA to ferulic acid,
a mechanism only captured by one of the models in the ensemble (Sup. Figure 2.8). Therefore,
we addressed the possible limitation caused by FCS by expressing 4cl4 in the Tyr2_Opt7 strain. As
a result, we achieved a conversion efficiency of 10.8 ± 1.8% from tyrosine to curcumin, 1.6-fold
and 4-fold improvement compared to Tyr2_Opt3 and Tyr2, respectively. In addition, we showed
the ability of the ensemble modeling approach to study the curcuminoid pathway even when
accurate parameter values could not be estimated.
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Beyond gene expression, the observed degradation of curcumin, the substrate concentration,
and the initial OD600 of the culture influenced the curcumin yields. While photodegradation of
curcuminoids can be prevented by shielding the cultivation medium from light exposure [106], the
NADPH-dependent curcumin/dihydrocurcumin reductase (CurA) can catalyze the breakdown
of curcumin. The deletion of the curA gene improved curcumin yield in E. coli [140] and could
be implemented in P. putida Δech. Furthermore, the initial substrate concentration was a major
determinant in curcuminoid production outcomes. The optimum substrate concentration varied
depending on the strain, with strains exhibiting superior conversion capabilities tolerating higher
substrate concentrations. Including the effect of substrate and intermediate concentrations on
growth in the ensemble models could therefore be used to estimate optimum initial concentra-
tions and further enhance production. Alongside substrate concentration, other process-related
parameters can be tuned to improve production [141]. For example, we showed how increasing
the initial OD600 of the cultures resulted in a 1.8-fold increase in curcumin production from ferulic
acid (Table 2.2, Sup. Figure 2.2).

P. putida Δech showed lower conversion yields when using ferulic and p-coumaric acids as
substrates compared to E. coli [114, 115]. However, as the complexity of the pathway increased,
and caffeic acid and tyrosine were used as substrates, P. putida Δech strains out-competed
previously reported E. coli strains [114, 116]. The 10-fold increase in caffeic acid conversion by
CaaCg, Caa1, and Caa2 compared to E. coli could be attributed to the expression of comt or
the higher tolerance of P. putida to this substrate. Although conversions up to 11.5% have been
reported with tyrosine as substrate, they resulted in the production of bisdemethoxycurcumin [115,
138]. These strains were unable to produce caffeic and ferulic acids which reduced the number
of possible toxic pathway metabolites and likely favored production. When c3h and comt were
expressed in one of these strains, the production of curcumin was reduced to 0.1% of themaximum
theoretical yield [138]. This yield was improved by Rodrigues et al. to 1.3% expressing dcs and curs1
instead of cus [114], probably due to the higher affinity of curs1 to ferulic acid-derived molecules
compared to cus [142]. Higher yields of curcumin from tyrosine (2.9% of the theoretical maximum)
have only been achieved by the use of a co-culture with two E. coli strains, each expressing a
part of the pathway [114]. Notably, the Tyr2 strain alone matched the yield achieved with the
co-culture, and Tyr2_Opt7 showed an 8.5-fold improvement, which highlights the potential of P.
putida for curcumin production.

In summary, we established the production of curcuminoids in P. putida, optimized production
yields from ferulic acid, p-coumaric acid, caffeic acid, and tyrosine, and provided the basis to
produce curcuminoids from glucose. This was achieved by the creation of ensemble dynamic
models to understand pathway kinetics and identify bottlenecks, the testing of various isoenzymes
for their efficiency, and the fine-tuning gene expression levels and substrate concentrations for
optimal yields. This comprehensive approach led to significant improvements in curcuminoid pro-
duction, culminating in the highest yield (10.8 ± 1.8% of the theoretical maximum) of curcumin
production from tyrosine reported to date.
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Supplementary methods: curcuminoid pathway model

Three curcuminoid pathway models of different complexities were used to simulate the con-
structed strains. Summaries of the concentrations ofmetabolites tracked (states) and fluxes present
in each model are shown in Sup. Methods Tables 2.1 and 2.2.

Ordinary differential equations (ODE) were used to simulate the time evolution of the state
variables. Changes in growth were represented using a logistic equation:

dBiomass

dt
= vgrowth (2.1)

vgrowth = Biomass ∗ kgrowth ∗ (1−
Biomass

Bmax
), (2.2)

where kgrowth is the growth constant and Bmax the maximum biomass concentration supported
by the medium.

Changes in metabolite concentrations were determined using mass balances, summing reac-
tion rates of reactions producing the metabolites, and subtracting rates of reactions consuming
the metabolite. For instance, for caffeic acid (CAA) concentration, the following equation was
used:

dCAA

dt
= vC3H − vCOMT − vFCS_CAA, (2.3)

where vC3H represents the rates of the caffeic acid producing reaction C3H, and vCOMT and
cFCS_CAA are the rates of the COMT and FCS reactions consuming caffeic acid.

For all reactions but C3H, the generalized reversible Michaelis-Menten kinetics expression rate
law was used [127]. For a reaction R converting metabolite A into B using cofactor X that gets
converted into Y , this approach results in:

vR = Biomass · uv
R ·

A · cX · e
µA+µX−µB−µY

2RT −B · cY · e
−µA−µX+µB+µY

2RT√
kMA,R · kMX,R · kMB,R · kMY,R

[
A

kM
A,R

+1
X

kM
X,R

+1
+ B

kM
B,R

+1
Y

kM
Y,R

+1
− 1

] . (2.4)

Here uv
R represents the product of the enzyme concentration (uR) and the catalytic rate con-

stant (kvR) for reaction R; µi denotes the chemical potential of metabolite i, and kMi,R its Michaelis-
Menten constant. A and B represent the concentrations of the states (i.e. metabolites assumed
to vary in time), whereas cX and cY represent the concentration of the corresponding cofactors,
which are assumed to remain constant. The gas constant and temperature are denoted as R and
T , respectively. Rates and fluxes are scaled using the Biomass concentration. For enzymes cat-
alyzing multiple reactions (FCL, DCS, CURS), uR and kvR parameters are considered separately and
additional substrate competition terms including the Michaelis-Menten constant of all possible
products and substrates are added to the specific reaction rate laws as specified by Liebermeister
et al. [127].

43



Model-Guided Strain Engineering | Chapter 2

Flux through the C3H reaction was modeled using mass action kinetics and scaled with the
Biomass concentration:

vC3H = Biomass ∗ uv
C3H ∗ CUA,

where uv
C3H is the product of the enzyme concentration (uR) and the catalytic rate constant

(kvR) for the C3H reaction, and CUA is the concentration of p-coumaric acid, the only substrate
of this enzyme.

A detailed description of the genes, reactions andmetabolites included in the differentmodels
is available in Gitlab. Initial estimates used for metabolite and cofactor concentrations and kinetic
parameters with their sources, as well as initial estimates for chemical potentials obtained using
Equilibrator are provided. SBML versions of the three models are available in Gitlab.

Sup. Methods Table 2.1: Summary ofmetabolites consideredas states in thedifferentmodels. A state is considered
an observable when it is experimentally measured.

State Abreviation Observable? FeCua model Caa model Tyr model
Biomass Biomass Yes x x x

Ferulic acid FEA Yes x x x

Coumaric acid CUA Yes x x x

Caffeic acid CAA Yes x x x

Tyrosine TYR Yes x

Feruloyl-CoA FECOA No x x x

Coumaroyl-CoA CUCOA No x x x

Caffeoyl-CoA CACOA No x x x

Diketide feruloyl-CoA DFECOA No x x x

Diketide coumaroyl-CoA DCUCOA No x x x

Bis-demethoxycurcumin BDCUR Yes x x x

Demethoxycurcumin DCUR Yes x x x

Curcumin CUR Yes x x x
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Sup. Methods Table 2.2: Summary of reactions included in the different models. Equation abbreviations: LOG,
logistic equation; GMM, generalized Michaelis-Menten equation; MAK, mass action kinetics. Metabolite ab-
breviations: TYR, tyrosine; CUA, p-coumaric acid; CAA, caffeic acid; AMET, S-adenosyl methionine; CACOA,
caffeoyl-CoA; FEA, ferulic acid; CUCOA, coumaroyl-CoA; MACOA, malonyl-CoA; FECOA, feruloyl-CoA; DCU-
COA, diketide coumaroyl-CoA; DFECOA, diketide feruloyl-CoA; AHCYS, homocysteine; PPi, inorganic pirophos-
phate; BDCUR, bisdemethoxycurcumin; DCUR, demethoxycurcumin; CUR, curcumin.

Reaction Equation Substrates Products Models
Growth LOG - - FeCua, Caa, Tyr

TAL_TYR GMM TYR CUA, NH3 Tyr

C3H_CUA MAK CUA CAA Tyr

COMT GMM CAA, AMET FEA, AHCYS, H Caa, Tyr

CCOAOMT GMM CACOA, AMET FECOA, AHCYS, H Caa, Tyr

FCL_CUA GMM CUA, ATP, COA CUCOA, AMP, PPi, H FeCua, Caa, Tyr

FCL_CAA GMM CAA, ATP, COA CACOA, AMP, PPi, H FeCua, Caa, Tyr

FCL_FEA GMM FEA, ATP, COA FECOA, AMP, PPi, H FeCua, Caa, Tyr

DCS_CUCOA GMM CUCOA, MACOA, H2O DCUCOA, HCO3, COA, H FeCua, Caa, Tyr

DCS_FECOA GMM FECOA, MACOA, H2O DFECOA, HCO3, COA, H FeCua, Caa, Tyr

CURS_BDCUR GMM CUCOA, DCUCOA, H2O BDCUR, COA, HCO3, H FeCua, Caa, Tyr

CURS_DCUR1 GMM CUCOA, DFECOA, H2O DCUR, COA, HCO3, H FeCua, Caa, Tyr

CURS_DCUR2 GMM FECOA, DCUCOA, H2O DCUR, COA, HCO3, H FeCua, Caa, Tyr

CURS_CUR GMM FECOA, DFECOA, H2O CUR, COA, HCO3, H FeCua, Caa, Tyr
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Supplementary Tables and Figures

Sup. Table 2.1: Summary of microbial curcuminoids production from different substrates (Sub.). FEA, ferulic acid;
CUA; p-coumaric acid; CAA, caffeic acid; TYR, tyrosine; CUR, curcumin; BDC, bisdemethoxycurcumin. The yield
is expressed as a percentage of the maximum theoretical yield.

Sub. Organism Over-expressed Genes %-Yield Ref.

FEA

E. coli (1 mM) 4cl, accABCD, cus CUR (61%) [115]
E. coli (2 mM) 4cl, dcs, curs1 CUR (96%) [141]
E. coli (2 mM) dcs, curs1, tal, c3h, ccoaomt, 4cl CUR (19%) [116]
E. coli (2 mM) tal, c3h, 4cl1, dcs, curs1 CUR (91.7%) [143]
E. coli (3 mM) tal, c3h, 4cl, comt, dcs, curs1 CUR (100%) [114]
E. coli (2 mM) cus, 4cl CUR (1.5%) [144]

E. coli ΔcurA(4 mM) cus, 4cl, improve membrane & MalCoA CUR (73%) [144]
S. cerevisiae (0.08 mM) 4cl , ferA, cus, dcs, curs1 CUR (17.8%) [145]

CUA

E. coli (1 mM) 4cl, accABCD, cus BDC( 59%) [115]
E. coli (0.15 mM) cus, 4cl, accABCD, matBC, tal BDC (58.6%) [137]

P. putida Δech(5 mM) cus BDC (0.2%) [123]
E. coli (2 mM) dcs, curs1, tal, c3h, ccoaomt, 4cl BDC (0.08%) [116]

Y. lipolytica (2 mM) tal, cus, 4cl, g2ps1, pks1, sts, bas BDC (0.05%) [146]

CAA E. coli (1 mM) dcs, curs1, tal, c3h, ccoaomt, 4cl CUR (2.12%) [116]

TYR

E. coli (3 mM) pal, 4cl, accABCD, cus BCUR (11.5%) [115]
E. coli (3 mM) dcs, curs1, tal, c3h, ccoaomt, 4cl CUR (0.04%) [116]
E. coli (3 mM) tal, c3h, 4cl, comt, dcs, curs1 CUR (1.27%) [114]
E. coli (3 mM) tal, 4cl4, cus BCUR (6.2%) [138]
E. coli (3 mM) tal, 4cl4, cus, c3h, comt CUR (0.1%) [138]
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Sup. Figure 2.1: Evaluation of the toxicity of hydroxycinnamic acids and tyrosine on P. putida Δech. Growth
curves of P. putidaΔech in minimalM9medium supplementedwith 70mMglucose anddifferent concentrations
of ferulic acid (A), coumaric acid (B), caffeic acid (C) and tyrosine (D). The OD600 of the cultures was measured
over 24-40 hours at a wavelength of 600nm (OD600). Values represent the mean and the standard deviation of
five biological replicates.

Sup. Figure 2.2: Production of curcumin using ferulic acid as substrate. Growth (A) and production (B) curves
of different P. putida Δech strains in minimal M9 medium supplemented with 70 mM glucose and 2 mM ferulic
acid. C. Production of curcumin of FeCua2 in minimal M9 medium supplemented with 70 mM glucose and 2
mM of ferulic acid over 96 h. 2 mM of ferulic acid were added at different OD600; 0.3, 0.6, 0.9. D. Ferulic acid
and curcumin concentration of FeCua2 at 24 h when 2 mM of ferulic acid were added at different OD600;
0.3, 0.6, 0.9. Dotted purple lines indicate the achieved yields in the different conditions as a percentage of the
maximum theoretical yield. Values represent the mean and the standard deviation of five biological replicates.
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Sup. Figure 2.3: Production of bisdemethoxycurcumin over time by different P. putida Δech strains in minimal
M9 medium supplemented with 70 mM glucose and 1 mM p-coumaric acid. Values represent the mean and
the standard deviation of five biological replicates.

Sup. Figure 2.4: Production of curcumin using caffeic acid as substrate. Growth (A) and production (B) curves
of different P. putida Δech strains in minimal M9 medium supplemented with 70 mM glucose and 2 mM caffeic
acid. C. Growth curves of CaaCg and FeCuaCg strains measured as OD600 over time. D. Curcumin production
of Caa1, Caa2, and Caa3 grown in minimal M9medium supplemented with 70mM glucose and 1mM of caffeic
acid over 80 h. Values represent the mean and the standard deviation of five biological replicates.
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Sup. Figure 2.5: Production of curcumin using tyrosine as substrate. Growth (A) and production (B) curves of
different P. putidaΔech strains in minimal M9 medium supplemented with 70 mM glucose, 0 mM (empty circles),
or 3 mM tyrosine (crossed circles). Production of curcumin of different Tyr2 strains using 1 mM (C) and 2 mM (D)
of tyrosine. Values represent the mean and the standard deviation of five biological replicates.

Sup. Figure 2.6: Production of intermediates predicted by ensemble models using ferulic acid, coumaric acid,
caffeic acid, or tyrosine as substrates. Continuous lines represent the mean of the ensemble model predictions
and shaded areas indicate 95-5% and 75-25% confidence intervals. FECOA, feruloyl-CoA; CUCOA, coumaroyl-
CoA; CACOA, caffeoyl-CoA; DFECOA, diketide-feruloyl-CoA; DCUCOA, diketide-coumaroyl-CoA.
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Sup. Figure 2.7: enTyr2 ensemble predictions of curcumin production from tyrosine based on relative enzyme
concentrations.

Sup. Figure 2.8: Predicted fluxes through reactions performed by FCS with tyrosine as substrate. Fluxes for each
model in the ensemble carried by the FCS reactions consuming cafferic acid (CAA), coumaric acid (CUA), and
ferulic acid (FEA) are shown.
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Genome-scale metabolic models of microbial metabolism have extensively been used
to guide the design of microbial cell factories, still, many of the available strain design
algorithms often fail to produce a reduced list of targets for improved performance that
can be implemented and validated in a step-wise manner. We present Comparative
Flux Sampling Analysis (CFSA), a strain design method based on the extensive compari-
son of complete metabolic spaces corresponding to maximal or near-maximal growth
and production phenotypes. The comparison is complemented by statistical analysis to
identify reactions with altered flux that are suggested as targets for genetic interventions
including up-regulations, down-regulations, and gene deletions. We applied CFSA to
the production of lipids byCutaneotrichosporon oleaginosus and naringenin by Saccha-
romyces cerevisiae identifying engineering targets in agreement with previous studies as
well as new interventions. CFSA is an easy-to-use, robust method that suggests potential
metabolic engineering targets for growth-uncoupled production that can be applied
to the design of microbial cell factories.

Abstract
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Introduction

Microbial cell factories are microorganisms engineered for the production of bio-molecules that
thrive on renewable carbon sources. Using these microorganisms, a broad range of bio-molecules
can be produced from non-edible feedstocks such as recalcitrant biomass or industrial waste
streams thereby providing sustainable replacements for production systems based on fossil fuels
[147]. The design of microbial cell factories requires the choice of an appropriate host strain,
and the selection of a suitable available pathway, the discovery of new pathways, or the design
of synthetic pathways for new-to-nature compounds. Still, industrial feasibility requires extensive
engineering to improve the performance of the cell factory [148].

GEnome-scale Metabolic models (GEM) are comprehensive representations of the cell’s
metabolism that allow the simulation of metabolic fluxes and the prediction of cellular pheno-
types. They have largely been used to identify metabolic engineering targets to optimize pathway
performance [57]. Machado et al. classify strain design algorithms relying on GEMs into two main
groups: methods based on the analysis of elementary flux modes (EFM), and those based on the
optimization of an objective function [149].

EFMs are minimal sets of reactions that can jointly operate at steady-state such that all steady-
state solutions can be described as a combination of EFMs [150]. They provide an unbiased
framework to explore the metabolic space but have limited scaling potential and applicability
to larger models. Instead, related approaches, based on minimal cut sets (MCS) such as minimal
metabolic functionality (MMF) and FluxDesign, scale better to genome scale [149, 151].

Optimization-based approaches rely on the simulation of metabolic fluxes ofwild type and/or
mutant strains using an objective function. Many of these methods use Flux Balance Analysis (FBA)
to calculate fluxes and therefore only explore one of the multiple flux distributions that can lead to
the optimal objective ignoring the rest. In this way, OptKnock [152] and derived algorithms such
as RobustKnock [153], OptGene [154], and OptCouple [155], aim at identifying gene knock-outs
to couple the production of the compound of interest to the production of biomass using growth
as the objective function. Other methods such as OptForce [156] and OptDesign [157] are used
to predict modulation of gene expression, including up and down-regulations. They compare
simulated fluxes of growth and production phenotypes and minimize the number of interventions
required for the overproduction phenotype. Although flux variability analysis (FVA) might be used
to explore feasible flux ranges and constrain the solution space, comparisons among phenotypes
are based on non-unique FBA solutions. Alternatively, flux sampling allows the exploration of the
full space of feasible flux distribution of each reaction given a set of constraints on the metabolic
model [64]. Contrarily to FBA, flux sampling does not require the selection of an objective function,
which biases FBA predictions. The advantages of flux sampling have been exploited to evaluate
metabolic flux differences between different conditions [158], but have not yet been expanded
to strain design.
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The described strain design algorithms focus on the identification of growth-coupling strate-
gies, where production becomes a requirement for growth [152, 153, 154, 155]. This strategy is
suitable for experimental implementation and further optimization using adaptive laboratory evo-
lution but requires multiple simultaneous interventions. Alternatively, strains with growth-uncoupled
production can be used in two-stage fermentation processes where the growth and production
phases are sequential. This strategy can alleviate metabolic stress and improve productivity [159,
160].

We present Comparative Flux Sampling Analysis (CFSA), a model-guided strain design ap-
proachbasedon extensive sampling of the feasible solution space in alternative scenarios. Growth
and production phenotypes are simulated and compared, also with a growth-limited scenario,
which serves as a negative control for down-regulation targets. Flux distributions are statistically
compared resulting in the identification of potential over-expression, down-regulations, and knock-
out targets leading to growth-uncoupled increased production. As a proof of concept, we use
CFSA to identifymetabolic engineering targets for lipid production byCutaneotrichosporon oleagi-
nosus andnaringenin production by Saccharomyces cerevisiae andcompare themwith available
data.

Methods

Comparative Flux Sampling Analysis (CFSA)

Flux sampling

To implement CFSA a GEM of the desired organism including the production pathway of choice is
required. As the first step, media conditions such as substrate uptake rates, or aerobic/anaerobic
growth are specified. Model reactions are grouped into seven categories to facilitate later filtering:
required reactions including the growth and maintenance reactions; not biological reactions
including boundary, exchange, sink, and demand reactions; blocked reactions (unable to carry
flux); reactionswithout associatedgenes; essential reactions; reactions containing essential genes;
and transport reactions.

Reaction fluxes are sampled from the metabolic solution space in three scenarios: growth,
slow growth, and production. In the growth and production scenarios, the optimality parameter
ensures that sampled flux distributions result in at least a specified fraction of the optimal growth or
production predictedby FBA by constraining the lower boundof the biomass or product exchange
reactions. In the slow growth scenario, the maximum growth rate compatible with the specified
minimal production rate is calculated and used as an upper bound for the biomass synthesis
reaction. To limit the solution space a parsimonious FBA approach is implemented by introducing
an additional constraint to limit the total sum of fluxes to the minimum value compatible with
maximal growth given by the flux fraction parameter [161]. This extra constraint is applied in the
production and slow growth scenario simulations to limit unrealistic futile cycles.
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The Optimal Gaussian Process (OptGP) sampler implemented in cobrapy is used to model the
distribution of the target space and iteratively sample from this distribution [162, 163]. A thinning
parameter is used to reduce the correlation between samples. Invalid samples (i.e. those that do
notmeet constraints specific to each scenario) are discarded. Last, the Geweke diagnostic is used
to calculate the chain convergence for each process, and samples corresponding to reactions
whose distributions have not converged are discarded [164].

Filtering of metabolic targets

For each reaction, the two-sample Kolmogorov-Smirnov (KS) test is used to compare samples from
different scenarios and determine if they belong to the same continuous distribution. Potential
targets are selected if, for a specific reaction, distributions differ in the scenarios based on KS
statistics and p-values corrected for multiple testing using Bonferroni. The p-value and KS cut-
offs can be adjusted by the user. Besides, reactions whose fluxes correlate with fluxes through the
biomass synthesis reaction, or that do not have a gene-protein-reaction association are discarded
as potential targets. Only reactions whose absolute change in flux between the growth and
production scenario is bigger than a user-specified threshold are considered to be suitable targets.
Similarly, targets can be filtered based on the standard deviation of the samples taken in the
production scenario.

Potential targets are then divided into over-expression or down-regulation targets depending
on whether themean fold change comparing growth and production scenarios is above or below
one. Knock-down targets that correspond to non-essential genes are classified as possible knock-
out targets. Reactions are clustered based on the correlation of the absolute fluxes between
samples to identify redundant targets (i.e. belonging to the same metabolic pathway).

Selected applications

Production of lipids by C. oleaginosus

The iNP636_Coleaginosus_ATCC20509 genome-scale metabolic model was manually curated
to provide all fatty acid elongation reactions [165]. In total seven reactions were added, one of
them in the cytoplasm and six of them in the mitochondria, and all reactions were associated with
the corresponding genes. Details of the model curation can be found in GitLab. Glycerol and
urea were used as the carbon and nitrogen sources respectively and nitrogen-depleted biomass
composition was assumed. CFSA was used (optimality = 0.90, flux fraction = 1.25, KS1 = KS2 ≥ 0.75,
mean absolute change ≥ 0.01, standard deviation in production ≤ 50) using the lipid synthesis
reaction (lipid_synthesis) as a target for the production scenario. The feasibility of selected targets
was evaluated based on previous studies.
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Production of naringenin by S. cerevisiae

The Yeast8 genome-scale metabolic model of S. cerevisiae [166] was modified to include the
naringenin production pathway (Table 3.1) and glucose was the selected carbon source. CFSA
was used (optimality = 0.90, flux fraction = 1.25, KS1 = KS2 ≥ 0.75, mean absolute change ≥ 0.01,
standard deviation in production ≤ 50) with the naringenin exchange reaction (EX_NAR) as the
objective for the production scenario. Two proteomic datasets representative of S. cerevisiae aer-
obic growth on glucose during shake flask and chemostat fermentations were used as additional
filters to restrict down-regulation targets to detected proteins [167, 168].

Table 3.1: Naringenin pathway reactions added to Yeast8. Reaction names in the model, reaction equations,
andGene-Protein-Reaction (GPR) rules are included. PAL,phenylalanine ammonia-lyase; TAL, tyrosine ammonia-
lyase; C4H, cinnamate 4-hydroxylase; CL, 4-coumarate-CoA ligase; CHS, naringenin-chalcone synthase; CHI,
chalcone isomerase; NARt, naringenin transport; EX_NAR, naringenin exchange; L-Phe, L-phenylalanine; CIN,
cinnamate; L-Tyr, L-tyrosine; 4-CUA, 4-coumarate; CoA, Coenzyme-A; CUACoA, 4-coumaroyl-CoA; MaCoA,
malonyl-CoA; NAR-C, naringenin chalcone; NAR, naringenin. _c and _e designate metabolites in the cytoplasm
and the extracellular space respectively.

Reaction name Reaction equation GPR
PAL L-Phe_c → CIN_c + NH4_c pal

TAL L-Tyr_c → 4-CUA_c + NH4_c tal

C4H CIN_c + H+_c + NADPH_c + O2_c → 4-CUA_c + H2O_c + NADP_c c4h and YHR042W

CL 4-CUA_c + ATP_c + CoA_c + 4.0 H+_c → 4-CUACoA_c + AMP_c + PPi_c 4cl

CHS 4-CUACoA_c + 3.0 MaCoA_c → NAR-C_c + 3.0 CO2_c + 4.0 CoA_c + H+_c chs

CHI NAR-C_c → NAR_c chi

NARt NAR_c ↔ NAR_e -

EX_NAR NAR_e → -

Results

Comparative Flux Sampling Analysis (CFSA)

CFSA was implemented in Python 3.7 using the cobrapy toolbox (v. 0.26.2) and is available in
GitLab. Statistical analysis methods based on the Kolmogorov-Smirnov test were implemented
using the Scipy stats package. The CFSA output consists of a first Excel file with sampling results for
all model reactions that is used as input for filtering. After filtering based on user-defined param-
eters, a new Excel file containing the filtered results is generated. This file contains the suggested
reaction targets and their associated genes as well as possible off-targets caused by multifunc-
tional enzymes. It provides a summary of the sampling results including the mean fluxes in the
growth and production scenario as well as the absolute flux change and the reaction equation.
The complete files for both case studies are available in GitLab. Additionally, distribution graphs
for suggested targets are generated and can be checked before experimental implementation.
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Distribution graphs

A distribution graph can be generated for each reaction in the model. It shows the distribution
of sampled fluxes in each scenario: growth, production, and slow growth (i.e. in how many sam-
ples a reaction had a specific flux). Genes are classified as over-expression targets when the
absolute mean flux through the corresponding reaction is higher during production than during
growth and the flux distributions do not overlap (Figure 3.1 A, B). Similarly, a gene is classified as a
down-regulation target when the absolute flux through the corresponding reaction is lower in the
production scenario than in the growth scenario and distributions do not overlap (Figure 3.1C, D).
Themost extreme case of a down-regulation, a knock-out, is obtainedwhen, for a down-regulation
target, the flux during production is zero and the gene is not classified as essential (Figure 3.1E, F).

The slowgrowth scenario is used to reduce the numberof incorrectly predicteddown-regulation
targets (false positives). Growth and production are competing objectives and often low fluxes
obtained in the production scenario are not related to increased production but to a decreased
growth rate (e.g. fluxes through reactions for biomass components). To avoid the identification
of these genes as down-regulation targets, reactions for which the production and slow growth
distributions overlap are considered false positives (Fig 3.1G).

Figure 3.1: Example of distribution graphs illustrating behaviors of candidate targets for metabolic engineering.
In each panel, the x-axis represents possible flux values, and the y-axis represents the frequency of each flux
value obtained when sampling the solution space, normalized to an area of one. Note that over-expression
and down-regulation targets are obtained based on absolute flux values.

Distribution graphs also show the allowed variability of a reaction flux. Reactions with sharp
distributions require a specific flux to obtain high production. Conversely, reactions with broad
distributions are allowed to carry different fluxes without impacting production and are hence not
suitable metabolic engineering targets.

59



Model-Guided Strain Engineering | Chapter 3

Although targets are automatically filtered based on the overlap between flux distributions
in different scenarios, the mean flux, and the range of the distribution during production, visual
examination of distribution graphs is recommended as the final filter before experimental imple-
mentation.

Effect of sampling parameters on target identification

Samples are taken in three scenarios: growth, slow growth, and production. The user might choose
an optimality constraint that determines the minimum growth or production in the growth and
production scenarios respectively. The optimality parameter can take values from 0 to 1, where 0
indicates that flux distributions resulting in zero growth or production are allowed, and 1 indicates
that only flux distributions with maximum growth or production are allowed. Increasing the optimal-
ity parameter tightens the flux constraints, reducing the feasible solution space and decreasing
the number of over-expression targets (Figure 3.2). When the optimality parameter is increased, the
minimum allowed production increases which results in an increased number of down-regulation
targets (Figure 3.2). Reducing the solution space with the optimality parameter ensures that only
relevant phenotypes are captured and a value of 0.9 is recommended as default. This optimal-
ity value ensures high production while allowing the sampling of sub-optimal phenotypes which
increases the robustness of the predictions.

Similarly,a flux faction parameter is used to limit the total sumof fluxes in the production scenario
based on the total sum of fluxes in the growth scenario. This parameter can take values equal to
or bigger than 1, so higher flux fractions increase the available total flux and, therefore, enlarge
the solution space. Although the fraction of unused proteome available for the expression of
heterologous pathways is limited and influences production, estimating this fraction is difficult and
depends on the growth conditions [169, 170]. Reducing the solution space with the flux fraction
parameter as a proxy for proteome constraints reduces the risk of identifying unrealistic loops
or excessively long pathways as engineering targets. We show that increasing the flux fraction
parameter widens the solution space, increasing the number of down-regulation targets. At the
same time, increasing the solution space might result in broader distributions that reduce mean
flux differences between growth and production scenarios, reducing the number of possible over-
expressions (Figure 3.2). We tested flux fraction values in the 1 to 1.5 range and found 1.25 to be a
suitable value for the presented case studies that can be adapted for other applications.

Changing these parameters did not affect the sampling run time which is determined by the
model size (94 ± 1 min for the S. cerevisiae model and 46 ± 1 min for C. oleaginosus model on an
Intel(R) Xeon(R) CPU E5-2650 v4 @2.2GHz).
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Figure 3.2: Effect of sampling and filtering parameters on the number of reported targets. The effect of sampling
parameters was assessed using loose values for the filtering parameters (KS1 = KS2 ≤ 1, absolute flux change
≥ 0, std production ≤ 1000). The effect of the filtering parameters was assessed on samples taken using the
recommended sampling parameters (optimality = 90% and flux fraction = 1.25). Filtering parameters not under
study were set to KS1 = KS2 ≤ 1, absolute flux change ≥ 0, std production ≤ 1000.

Effect of filtering parameters on target identification

Samples can be evaluated based on the KS test, the mean flux in the different conditions, and
the variability of the mean flux in the production conditions (its standard deviation). Here, the
effect of these filtering parameters was evaluated using the recommended sampling parameters
(optimality = 90% and flux fraction = 1.25).

The KS test identifies whether samples belong to the same distributions (p-value) and the over-
lap between distributions (KS statistic). Due to the large number of samples, the test is overpowered
and p-values do not constitute a good filtering criteria even if corrections for multiple testing such
as Bonferroni are applied. The KS statistic determines the overlap between distributions, where a KS
value of zero indicates complete overlap. This parameter largely affects the number of selected
targets. KS1 indicates the overlap between the growth and production scenarios and ensures
significantly different flux distributions among these conditions. Therefore, increasing KS1 reduces
the number of over-expression and down-regulation targets (Figure 3.2). KS2 indicates the overlap
between the slow growth and production scenarios. This condition is used to distinguish reactions
in which flux decreases due to the decreased growth in the production scenario instead of the
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increased production. Therefore, increasing KS2 reduces the number of down-regulation targets.
As default, the use of 0.75 for KS1 and KS2 is recommended but this value can be tuned based
on the distribution of KS values obtained after sampling (see example in GitLab).

The absolute flux change between growth and production scenarios is used to rank the tar-
gets and can be used as an additional filter (Figure 3.2). Targeting reactions with considerable flux
changes when growth or production are maximized, increases the chance of significant pheno-
type changes in vivo. Contrarily, low flow changes are unlikely to be achieved by adjusting gene
expression. A value of 0.01 mmol/gDW/h is used as default. Although we recommend the use of
mean absolute change to favor reactions with larger fluxes, CFSA allows alternative filtering based
on mean fold changes and mean relative changes of reaction fluxes.

The standard deviation of the flux distributions in the production scenario is used as an ad-
ditional filter and reactions with broad distributions are not considered relevant targets. Higher
standard deviations indicate that production is not affected by the flux of the studied reaction.
Decreasing themaximum allowed standard deviation therefore reduces the number of suggested
targets for up and down-regulation. Considering that reactions with high mean fluxes also have a
higher standard deviation, the default value of this parameter is set to 50.

Case studies

The number of possible metabolic-engineering targets obtained using CFSA for lipid production in
C. oleaginosus and naringenin production in S. cerevisiae is presented in Table 3.2. These values
were obtained using optimality = 0.90, flux fraction = 1.25, KS1 = KS2≥ 0.75,mean absolute change
≥ 0.01, and standard deviation in production ≤ 50. The complete list of target reactions can be
found in GitLab (filtered_results.xlsx). The sections below elaborate on some of the targets found.

Table 3.2: Number of targets obtained in the C. oleaginosus and S. cerevisiae case studies.

C. oleaginosus S. cerevisiae
Number over-expressions 25 50

Number down-regulations 1 41

Production of lipids by C. oleaginosus

C. oleaginosus is an oleaginous yeast able to accumulate lipids above 40% (w/w) of its biomass
when growing under nitrogen limitation [81]. The composition of the produced fatty acids is com-
parable to commonly used plant-derived oils. Therefore it has been flagged as an auspicious
microbial cell factory for sustainable lipid production at an industrial scale [171, 172]. The lipid
accumulation initiates with the transport of citrate from the mitochondria to the cytosol where it
is cleaved into acetyl-CoA by ATP citrate lyase (ACL). Acetyl-CoA is converted into malonyl-CoA
by acetyl-CoA carboxylase (ACC) leading to the activation of the lipid synthesis and elongation
pathways (Fig 3.3 A) [173, 174].

62



3

Comparative flux sampling for strain design

CFSA was applied to investigate metabolic engineering strategies for enhanced lipid produc-
tion in C. oleaginosus. As a result, we obtained one candidate reaction for down-regulation and
25 candidate reactions (belonging to 11 groups) for over-expression. The complete list of reac-
tions is available in GitLab (filtered_results.xlsx). The only down-regulation target found corresponds
to ATP diphosphohydrolase which catalyzes the conversion of ATP to AMP and reflects the high
energy requirements of lipid production compared to growth.

Figure 3.3: Summary of selected metabolic engineering targets for lipid production in C. oleaginosus (A) and
naringenin (NAR) production in S. cerevisiae (B). Endogenous and heterologous metabolic pathways are simpli-
fied and presented in grey and blue respectively: TCA, tricarboxylic acid cycle; MVP, mevalonate pathway; FA,
fatty acids; PPP, pentose phosphate pathway; SHK, shikimate pathway; FER, fermentative pathway; AAA, aro-
matic amino acid pathway; EP, Ehrlich pathway. Metabolite abbreviations: Glc, glucose; Pyr, pyruvate; AcCoA,
acetyl-coenzymeA; Cit, Citrate; MaCoA,malonyl-coenzymeA. Reaction abbreviations: PDH, pyruvate dehydro-
genase; CS, citrate synthase; ASAD, aspartate-semialdehyde dehydrogenase; ASPK, aspartate kinase; TS, threo-
nine synthase; ACL,ATP citrate lyase; ACPS, fatty acyl-ACP synthase; HMGS,hydroxymethylglutaryl-CoA synthase;
HMGR, hydroxymethylglutaryl-CoA reductase; ACC, acetyl-CoA carboxylase; SCD, stearoyl-CoA desaturase;
PGI, glucose-6-phosphate isomerase; ENO, enolase; PYK, pyruvate kinase; TDH, glyceraldehyde-3-phosphate
dehydrogenase; TPI, triose phosphate isomerase; PGK,phosphoglycerate kinase; GPM,2,3-bisphosphoglycerate-
independent phosphoglycerate mutase; PDC, pyruvate decarboxylase; ALD, aldehyde dehydrogenase; ACS,
acetate-CoA ligase; CIT, citrate synthase; PFK, phosphofructokinase; FBA, fructose-6-phosphate aldolase; RKI,
ribose-5-phosphate isomerase; RPE, ribulose-phosphate 3-epimerase; TAL, transaldolase; TKL, transketolase.

As expected, reactions from the fatty acid synthesis pathway (fatty acyl-ACP synthase (ACPS)
and stearoyl-CoA desaturase (SCD)) were suggested as over-expression targets (Figure 3.3A). Be-
sides, key reactions ACL and ACC, which over-expression has improved lipid accumulation in
other oleaginous yeast, were also predicted as targets [175, 176]. Additionally, pyruvate dehydro-
genase (PDH), which connects the glycolytic pathway to the TCA cycle, and citrate synthase (CS),
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which synthesizes citrate from acetyl-CoA and oxaloacetate, were predicted as up-regulation
targets to improve cytoplasmic citrate supply for lipid synthesis. However, CFSA did not predict
down-regulation targets from the β-oxidation pathway that are commonly used to increase the
availability of acetyl-CoA for fatty acid synthesis [177, 178].

Along with these experimentally validated targets, unanticipated reactions from the meval-
onate pathway suchas hydroxymethylglutaryl-CoA synthase (HMGS)were suggestedas beneficial
up-regulations by CFSA. Although these reactions consume acetyl-CoA, simulations that reduce
HMGS flux result in diminished lipid production (Sup. Figure 3.1). The complex relationship between
the mevalonate pathway and lipid synthesis, intrinsic to the GEM used, is captured by CFSA as a
possible strategy to increase fatty acid production.

Finally, CFSA suggested over-expression targets from amino acid metabolism, including reac-
tions involved in threonine synthesis (aspartate-semialdehyde dehydrogenase (ASAD), aspartate
kinase (ASPK), threonine synthase (TS)), as well as glutamate and glutamine synthesis. Threonine
synthesis requires cytosolic oxaloacetate which is produced during citrate conversion to acetyl-
CoA by ACL. Therefore, the over-expression of the threonine synthesis pathway could improve lipid
production balancing the over-production of oxaloacetate. Furthermore, Kim et al. suggested
that upregulation of threonine synthesis could potentially increase the fluxes through the TCA cycle
which increases citrate supply for acetyl-CoA synthesis [179].

Production of naringenin by S. cerevisiae

S. cerevisiae is a model organism with in-depth genetic and physiological characterization, ample
application in industrial bioprocesses, and Generally Regarded as Safe (GRAS) status [180, 181].
Flavonoids such as naringenin are precursors of anthocyanins and have traditionally been used for
fragrance, flavor, andcolor in various food types [182, 183]. Naringenin is derived from the shikimate
pathway for aromatic amino acid biosynthesis, which starts with the condensation of erythrose-
4-phosphate (E4P) and phosphoenolpyruvate (PEP) (Figure 3.3 B). Production of this compound
requires the heterologous expression of 4CL, CHS, CHI, and either PAL, C4H, andCPR for production
from phenylalanine, or TAL for production from tyrosine (Table 3.1). Moreover, naringein production
requires an appropriate supply of malonyl-CoA [184].

We used CFSA to find metabolic engineering strategies that improve naringenin production.
We obtained 41 reaction candidates for down-regulation (belonging to 28 groups) and 50 targets
for up-regulation (belonging to 35 groups). The complete list of reactions is available in GitLab
(filtered_results.xlsx). Two proteomic datasets covering 48.4% of the genes and 23.6% of the reac-
tions in the model were used as an additional filtering step to prioritize the 34 detected proteins as
down-regulation targets. Out of the 50 up-regulation targets, 33 targets can be considered obvi-
ous as they are part of the production pathway for naringenin or its precursors and/or have been
experimentally tested. Two of the down-regulation targets, prioritized by the proteomic datasets,
have been tested in vivo.
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As expected, reactions from the shikimate and naringenin production pathways were pre-
dicted as over-expression targets, with a preference for the tyrosine branch. Reactions belonging
to glycolysis and non-oxidative pentose phosphate pathway were also predicted as suitable tar-
gets (Figure 3.3B). Notably, CFSA suggested a decreased flux through the phosphofructokinase
(PFK) and aldolase (FBA) reactions that result in the conversion of fructose-6-phosphate (F6P)
to fructose-1,6-biphosphate (F1,6bP) and, subsequently to dihydroxyacetone-phosphate (DAP)
and glyceraldehyde-3-phosphate (GAP). Instead, it proposed F6P conversion to E4P and DAP via
sedoheptulose-1,7-biphosphate (S1,7bP). In this way E4P and DAP, which can be later converted
to PEP, are simultaneously produced, feeding the shikimate pathway with its two precursors. In the
cells, PFK and FBA are responsible for both reactions and conversion of F6P to DAP, and GAP is
favored due to a higher affinity of FBA towards F1,6-bP. According to the simulations, expressing
pfk genes with higher affinity towards S7P such as ppi-pfk from Clostridium thermosuccionogenes
[185] is suggested as a novel strategy to improve naringenin production.

CFSA also suggested experimentally validated strategies to increase the production of acetyl-
CoA and malonyl-CoA syntheses such as the down-regulation of PDH and CIT2 and the up-
regulation of PDCS, ALD, ACS, and ACC (Fig 3.3B) [186]. However, it fails to predict the down-
regulation of fatty acid synthesis as a strategy to improve malonyl-CoA availability [181, 186, 187].
Similarly, CFSA does not suggest the deletion of Ehrlich pathway (EP) genes, involved in the degra-
dation of intermediates that have been shown to improve the production of other aromatic
compounds [183, 188, 189, 190].

The model suggests down-regulation of reactions involved in serine and branched-chain
amino acid synthesis, likely to decrease the conversion of pyruvate into biomass components.
Besides, the down-regulation of reactions involving tetrahydrofolic acid (THF) and glycine is also
suggested, probably to reduce chorismate consumption for THF formation (Fig 3.3B).

Last, CFSA suggested the over-expression of adenylate kinase (ADK) which has been reported
to increase the production of malonyl-CoA-derived products [191]. Similarly, although experimen-
tally unrealistic, CFSA suggested down-regulation of ATP synthase and reactions from the electron
transport chain, reflecting the lower energy requirements of production compared to growth.

Discussion

Inspired by other strain design algorithms that suggest metabolic engineering targets based on
the comparison of predicted fluxes between wild type and production phenotypes [152, 153,
154, 155], we present CFSA. This tool is based on flux sampling and, by analyzing the complete
GEM solution space, can guide the design of microbial cell factories. While current tools focus on
design approaches for growth-coupled production, we present a first tool that allows the design
of growth-uncoupled production strategies. Besides, as opposed to previous tools, CFSA designs
are based on the complete exploration of the solution space achieved using flux sampling instead
of non-unique FBA solutions, which ensures the full inspection of cell metabolism [64].
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We applied CFSA to improve the production of lipids by C. oleaginosus, an endogenous
product in an emerging cell factory, as well as the production of naringenin in S. cerevisiae, a
heterologous product in an established industrialmicroorganism. In both cases,CFSA suggestedex-
perimentally validated targets including evident up-regulations belonging to the product synthesis
pathway and distant targets that improve precursor availability. It also suggested new engineer-
ing strategies involving alternative pentose phosphate pathway reactions for naringenin synthesis
and the over-expression of genes from the threonine and mevalonate pathways for lipid produc-
tion. Although the lack of mechanistic understanding of some of the suggested targets could
question their implementation, it also highlights the potential of model-driven approaches to find
non-obvious engineering strategies.

Regarding down-regulations, CFSA failed to predict reported successful targets from pathways
involved in the degradation of production pathway intermediates (e.g. Ehrlich pathway genes
deletion for naringenin production [183, 188, 189, 190] or β-oxidation gene knock-outs for improved
lipid production [177, 178]). This pitfall is shared with other GEM-based strain design approaches
since, although active in vivo, these reactions remain inactive in GEM simulations.

In addition to the simulation of growth and production phenotypes, we include the simulation
of slow growth. This scenario is used to differentiate between fluxes that change due to the simu-
lated low growth in the production scenario, from fluxes that are potentially related to increased
production (Figure 3.1). The simulation of this phenotype is used as negative control reducing false
positive target predictions (Figure 3.2). Other tools use FBA to maximize growth or production and
use the obtained solution to compare reaction fluxes and identify engineering targets. Instead,
we include the optimality parameter to ensure that not only the optimal flux profile is sampled, but
less efficient behavior is also tolerated potentially leading to increased robustness.

CFSA is easy to implement and the filtering criteria used results in a reduced list of potential
targets for up-, down-regulation, and knock-outs for subsequent inspection. Default parameters
can easily be modified according to user needs and additional filtering criteria such as the use of
proteomic data can be integrated into the workflow. Other strain design methods provide minimal
intervention strategies that, although useful in theory, might not return the expected results in
practice. For example, when entire pathways are predicted as up-regulation targets, GEM cannot
identify limiting reactions as enzyme kinetics and regulation are not considered in constraint-based
models [149]. Instead, we provide a complete list of possible interventions and endow the user
with additional information to make a decision based on the most feasible suggestions.

Disadvantages of CFSA include the difficulty of estimating the quantitative effect of the sug-
gested manipulations, which are identified based on statistical testing. There is no guarantee that
the effect size in flux correlates to the strength of the knock-down or over-expression required.
Besides, targets are suggested as individual interventions and the effect of possible combinations
of targets is not provided. Still, after a first round of CFSA, the algorithm can be re-applied us-
ing GEMs with modified reaction bound that simulate the desired interventions to find potential
complementary targets.
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As with othermethods based onGEMs, errors in themodels can lead to unexpected outcomes.
For example, loops in the metabolic network can lead to artificially high fluxes and thus false
predictions. Often parsimonious flux balance analysis [161] or loop-less flux balance analysis [192,
193] are used to limit these errors, however, implementing these in flux sampling is non-trivial. We
mimicked the parsimonious approach by adding a flux fraction parameter that constrains the
total sum of fluxes in the production scenario based on the growing phenotype. However, this
approach, while biologically reasonable for the reference condition at a high growth rate, does
not necessarily apply to the production condition, as the assumption of minimal flux and thus
protein usage does not hold for this artificial scenario. Instead, loop-less flux sampling approaches
such as the loop-less Artificially Centered Hit-and-Run on a Box algorithm (ll-ACHRB) [194] or the
LooplessFluxSampler [195], currently implemented in Matlab, could be used as alternatives.

CFSA is the first strain design algorithm based on flux sampling that explores the whole solution
space of a GEM and suggests metabolic engineering targets for growth-uncoupled production.
Its robustness, simplicity, and flexibility make it ideal to complement and systematize the design of
microbial cell factories. CFSApredictions, including non-obvious targets,can be sequentially tested
using high-throughput approaches such as automated platforms and biosensor-aid screening
accelerating and broadening the strain design process.
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Supplementary Figures

Sup. Figure 3.1: Effect of HMGS flux on growth and production fluxes in simulations with the
iNP636_Coleaginosus_ATCC20509 GEM. Fluxes were obtained using flux balance analysis fixing the bounds
of the HMGS reaction (r_0599) and setting the growth (Biomass_nitrogen_depletion) or lipid production
(Ex_lipid_body_cytosol) reactions as objective to maximize.
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The biotechnological application of microorganisms to replace fossil-based processes
is a global necessity. To fully leverage their potential, high titers, rates, and yields are
required for commercial processes. This generally involves radical reprogramming of the
intrinsicmetabolism. In this study,we demonstrate a combination ofmetabolicmodeling,
rational engineering, and adaptive laboratory evolution to radically refactor bacterial
metabolism. We created a new-to-nature shikimate pathway-dependent catabolism
in Pseudomonas putida by reprogramming the shikimate pathway as the dominant
pathway for growth. This new strain diverts the vast majority of its carbon catabolism flux
through the shikimate pathway and produces 0.35 mol/mol 4-hydroxybenzoate in glyc-
erol minimal medium during growth, achieving 89.2% of the maximum predicted path-
way yield. We demonstrate that the shikimate pathway can act as the main catabolic
route and deliver a promising strain that can serve as a useful chassis to produce various
shikimate pathway-derived compounds.

Abstract
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Introduction

Metabolism defines the lifestyle of any organism [196]. Despite the considerable diversity among or-
ganisms, almost all of them share the primary central carbon metabolism. This primary metabolism,
often consisting of glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate path-
way is used to convert carbon sources to precursor molecules necessary to synthesize all cellular
constituents for growth andmaintenance [197]. As a result, the primarymetabolism is often viewed
as a rigid network, and any deviation from it can lead to reduced cell viability or even cell death
[198]. This is unfortunate as we can leverage this network to produce a plethora of fuels and chem-
icals, replacing petroleum-derived processes [199]. Therefore, for the sake of the bioeconomy, we
need to be able to efficiently manipulate these networks to produce chemicals with high titers,
rates, and productivities [200]. To achieve this goal, microorganisms need to be radically refac-
tored to ensure a high flux towards the product of interest. Yet, the introduction of a production
pathway often interferes directly with the main metabolism, and fluxes are not easily diverted [201].
Moreover, extra complexity is added as many inherent pathways are subjected to tight regulation
and therefore carry considerably low fluxes [200]. One example is the shikimate pathway, the
biochemical source of numerous aromatic molecules including aromatic amino acids. While a
myriad of valuable molecules can be derived from this pathway, its biotechnological exploitation
remains a mounting metabolic engineering challenge [202, 203, 204].

Standard metabolic engineering strategies rely on simple gene overexpressions and flux al-
terations in the central carbon metabolism. However, these modifications compete directly with
cellular fitness and often do not result in economically feasible yields [205]. Therefore, a paradigm
shift is essential to fully reshape the rigid carbonmetabolism andexert the potential of the shikimate
pathway. In recent years, growth-coupled selections have emerged as powerful tools to redesign
cell factories for the production or consumption of new substrates or to establish new metabolic
architectures [206, 207, 208, 209]. This approach combinedwith laboratory evolution has the power
to completely reprogram cellular metabolism, creating industrially relevant cell factories. One key
example is the establishment of a chemo-autotrophic Escherichia coli that can generate all its
biomass from CO2 [210]. By introducing essential deletions in xylose catabolism, bacterial growth
became dependent on the carboxylation reaction by Rubisco. Eventually, this dependency was
able to establish full autotrophic growth after several rounds of laboratory evolution. Using a similar
approach, a synthetic methylotrophic E. coli strain was engineered [211]. Here, methanol utiliza-
tion was coupled to xylose catabolism, which after evolution yielded a strain that could generate
all biomass and energy from this promising C1-feedstock. Apart from introducing foreign path-
ways in a microbial host, growth-coupled selection systems can be used to fully rearrange native
metabolic architectures. Iacometti et al. demonstrated the flexibility of bacterial metabolism by
establishing silent glycolytic routes in E. coli [212]. Using growth-coupled evolution they acquired a
strain in which the canonical Embden-Meyerhof-Parnas (EMP) pathway was replaced by a serine
shunt. Similarly, these growth-coupled scenarios can be deployed as a metabolic engineering
strategy for the shikimate pathway.
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Here, we describe how we rigorously rearranged the metabolic network of the industrially
relevant bacterium Pseudomonas putida, creating a shikimate pathway-dependent catabolism
(SDC) (Figure 4.1). We established a model-driven rearrangement of the main carbon metabolism
through pyruvate-driven laboratory evolution using innate pyruvate-releasing reactions from the
shikimate pathway with the aid of a selective biosensor. Whole genome sequencing and reverse
engineering revealed that a perturbation in the signaling network was key in realizing this drastic
metabolic shift. Further optimization of SDC was achieved using rational and model-driven ap-
proaches, resulting in the first strain ever constructed which uses the shikimate pathway as the
dominant catabolic pathway, serving as a useful chassis to produce various aromatic compounds.
Our findings highlight the tremendous plasticity of metabolic networks and how growth-coupled
strategies can be exploited to install new-to-nature metabolisms for industrial biotechnology.

Figure 4.1: Metabolic architecture of the shikimate pathway-dependent catabolism (SDC). Pathways and mu-
tations that were engineered pre- and post-evolution to establish the final SDC strain. Abbreviations: GLY3P,
glycerol-3-phosphate; GLYALD, glyceraldehyde; DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde-3-
phosphate; 2-PG, 2-phosphoglycerate; KDPG, 2-keto-3-deoxy-6-phosphogluconate; PEP, phosphoenolpyruvate;
FBP, fructose bisphosphate, F6P, fructose-6-phosphate; G6P, glucose-6-phosphate; 6PG, 6-phosphogluconate;
Ru5P, ribulose-5-phosphate; R5P, ribose-5-phosphate; X5P, xylose-5-phosphate; S7P, sedoheptulose-7-phosphate;
E4P, erythrose-4-phosphate; DAHP, 3-deoxy-d-arabinoheptulosonate-7-phosphate; 3HDS, 3-dehydroshikimate;
ANT, anthranilate; 4HB, 4-hydroxybenzoate; PCA, protocatechuate; SUC, succinate; OAA, oxaloacetate; glpR,
glycerol regulon repressor; edd, phosphogluconate dehydratase; pedE/H, PQQ - dependent alcohol dehydro-
genases; garK, glycerate kinase; pyk/A, pyruvate kinase; quiC, dehydroshikimate dehydratase; ubiC, chorismate
pyruvate lyase; ppc, phosphoenolpyruvate carboxylase; trpE, anthranilate synthase.
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Material and methods

Plasmids, primers, and strains

All strains and plasmids used in the present study are listed in Sup. Table 1. Primers used for plasmid
construction and gene deletions are listed in Sup. Table 2.

Culture conditions and medium

P. putida and E. coli cultures were incubated at 30°C and 37°C respectively. For cloning pur-
poses, both strains were propagated in Lysogeny Broth (LB) medium containing 10 g/l NaCl, 10
g/l tryptone, and 5 g/l yeast extract. For the preparation of solid media, 1.5% (w/v) agar was
added. Antibiotics, when required, were used at the following concentrations: kanamycin (Km)
50 µg/ml, gentamycin (Gm) 10 µg/ml, chloramphenicol (Cm) 50 µg/ml and apramycin (Apra) 50
µg/ml. All growth experiments were performed using M9 minimal medium (per liter; 3.88 g K2HPO4,
1.63 g NaH2PO4, 2.0 g (NH4)2SO4, pH 7.0). The M9 media was supplemented with a trace ele-
ments solution (per liter; 10 mg ethylenediaminetetraacetic acid (EDTA), 0.1 g MgCl2·6H2O, 2 mg
ZnSO4·7H2O, 1 mg CaCl2·2H2O, 5 mg FeSO4·7H2O, 0.2 mg Na2MoO4·2H2O, 0.2 mg CuSO4·5H2O,
0.4 mg CoCl2·6H2O, 1 mg MnCl2·2H2O). Strains were precultured in 10 ml LB with corresponding
antibiotics. Then, the cultures were washed twice in M9media without a carbon source. Finally, the
cultures were diluted to an OD600 of 0.1 to start the experiment. Flask experiments were performed
in 250 ml Erlenmeyer flasks filled with 25 ml of M9 minimal medium with 40 (SDC characterization)
or 200 (ALE experiment) mM glycerol and the cultures were incubated in a rotary shaker at 200
rpm at 30°C.

Cloning procedures

Plasmids were constructed using the standard protocols of the previously described SevaBrick as-
sembly [126]. All DNA fragments were amplified using Q5® Hot Start High-Fidelity DNA Polymerase
(New England Biolabs). To construct the plasmids pSensor and pSensorEvo, the 4-hydroxybenzoate
(4HB)-responsive regulator and promoter (PobR/PpobA) were synthesized by Integrated DNA Tech-
nologies (IDT), and the ubiCE31Q/M34 was amplified from the genome of E. coli with primers to
introduce the E31Q and M34V mutations. All parts were integrated into the pSB1C3 repository
and subsequently assembled into pSEVAb83 following the standard procedures of the SevaBrick
assembly. All plasmids were transformed via heat shock in chemically competent E. coli DH5α
λpir cells and via electroporation or conjugation in P. putida (Thermo Fisher Scientific). Transfor-
mants were selected on LB agar plates with corresponding antibiotics and colonies were tested
by colony PCR with Phire Hot Start II DNA polymerase (Thermo Fisher Scientific). After extraction,
all constructs were verified by Sanger DNA sequencing (MACROGEN Inc.).
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Genome modifications

Genomic modifications were performed as described by Wirth et al. [213]. Homology regions of
± 500 bp were amplified up and downstream of the target gene from the genome of P. putida
KT2440. Both regions were cloned into the non-replicative pGNW vector and propagated in E. coli
DH5α λpir. Correct plasmids were transformed into P. putida by electroporation and selected on
LB + Km plates. Successful co-integrations were verified by PCR. Hereafter, co-integrated strains
were transformed with the pQURE6-H, and transformants were plated on LB + Gm containing 2
mM 3-methylbenzoic acid (3-mBz). This compound induces the XylS–dependent Pm promoter,
regulating the I-SceI homing nuclease that cuts the integrated pGNW vector. Successful gene
deletions were verified by PCR and Sanger sequencing (MACROGEN inc). The P290S modification
in trpE was verified by MASC PCR as described by Wang & Church [214]. Hereafter, the pQURE6-H
was cured by removing the selective pressure and its loss was verified by sensitivity to gentamycin.

Analytical methods

Cell growth was determined by measuring the optical density at 600 nm (OD600) using an OD600
DiluPhotometer spectrophotometer (IMPLEN) or a Synergy plate reader (BioTek Instruments). Anal-
ysis of glycerol and pyruvate in supernatants was performed using high-performance liquid chro-
matography (HPLC) (Thermo Fisher Scientific) equipped with an Aminex HPX-87H column. The
mobile phase was 5 mM of H2SO44 at a flow rate of 0.6 ml/min, the column temperatures were
held at 60 °C and the compounds were detected using a Shodex RI-101 detector (Shodex). The
amount of produced 4HB was determined using HPLC (Shimadzu) with a C18 column (4.6 mm ×
250 mm) and a UV/vis detector set at 472 nm. The mobile phase consisted of Milli-Q water (A), 100
mM formic acid (B), and acetonitrile (C) with a flow rate of 1 ml/min at 30°C. Chromatographic
separation of analytes was attained using the following gradient program: t = 0 - 5min: A-55%,
B-10%, and C-35%; from t = 5 - 10min ramp to A-10%, B-10%, and C-80% and held until 15 min.
Then from t = 15 – 16 min, the gradient was returned to A-55%, B-10%, and C-35% and maintained
isocratic for a total run time of 18 min. For quantification, calibration curves were prepared using
pure standards (99% purity) purchased from Sigma-Aldrich.

Adaptive laboratory evolution

StrainΔpyr was inoculated in two 250ml shake flasks withM9minimalmediumwith 200mMglycerol
as the sole carbon source and incubated in a rotary shaker at 200 rpm at 30°C. The starting cell
density was set at OD600 = 0.1 and cells were diluted back to the same OD600 after they reached
an OD600 of >1.0. Evolved strains were selected on M9 agar plates with 40 mM glycerol and
characterized in 200 µl of M9 medium with 40 mM glycerol using a Synergy plate reader (BioTek
Instruments). Cell density (OD600) andGFP fluorescence (excitation 485 nm, emission 512 nm, gain
50) were measured over time using continuous linear shaking (567 cpm, 3mm). Growth rates were
calculated by taking the natural log of the OD600 values.
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Whole-genome sequencing

The genomic DNA of the evolved mutants was isolated from LB overnight cultures using the GenE-
lute™ Bacterial Genomic DNA Kit (Sigma-Aldrich St. Louis, MO). The extracted DNA was evalu-
ated by gel electrophoresis and quantified by a NanoDrop spectrophotometer (Thermo Fisher
Scientific). Samples were sent for Illumina sequencing to Novogene Co. Ltd. (Beijing, China). Raw
Illumina reads were trimmed for low quality and adapters with fastp (v0.20.0) [215]. Mutations
were identified by comparing the reads to the annotated reference genome of P. putida KT2440
(GCF_000007565.2) using breseq (v0.35.5) [216].

Genome-scale metabolic modeling

Computational analysis was performed using COBRApy (v0.18.1) and Python (v3.6). We used
iJN1462, the latest developed genome-scale model (GEM) of P. putida to rank pyruvate-releasing
reactions and to simulate native and SDC metabolism [217]. In all simulations, glycerol was used
as the sole carbon source with a maximum uptake rate of 3.95 mmol/gDW/h [218]. All metabolic
reactions able to produce pyruvate in the iJN1462 GEM were evaluated for their capacity to sup-
port growth as the sole pyruvate source. The upper and lower bounds of all pyruvate-releasing
reactions were constrained to zero except for two essential reactions: ANS2 (trpE,pabA) and ADCL
(pabC). Iteratively, the flux through each reaction was unconstrainedmaking it the main available
source of pyruvate in the model. The growth rate, represented by the BIOMASS_KT2440_WT3 reac-
tion, was maximized. Reactions were ranked according to the predicted maximum growth rates
relative to the wild-type growth rate (100%). iJN1462 was modified to correctly simulate SDC and
wild-type metabolism according to Batianis et al. [219]. Briefly, reactions AKGDb, THRA, LSERDHr,
ACACT1r,MACCOAT,MMSAD3,ACALD,ALDD2x, ALDD2y and KAT1 weremade irreversible, and the
stoichiometry of the GAPDi_nadp reaction was corrected (see Sup. Table 3 for details). When sim-
ulating SDC, a parsimonious FBA-like constraint was applied such that the sum of all the predicted
fluxes cannot exceed the sum of all predicted fluxes in native metabolism. Besides, as a base for
SDC simulation, we constrained to zero the flux through reactions EDD, PYK, AGPOP, ME2, OAAFC,
SERD_L, CYSTL, CYSDS, MCITL2, LDH_2, and LDH_D2 to reproduce the result of the biosensor-assisted
ALE that made CHRPL the main pyruvate source. Model modifications that allowed the simula-
tion of the different SDC strains are presented in Sup. Table 4. Maximum theoretical 4HB yields
were calculated maximizing the 4HB exchange reaction (EX_4hbz_e). The optimal metabolism of
the SDC strains and their maximum growth rates were simulated maximizing biomass production
(BIOMASS_KT2440_WT3).

Statistical analysis

All reported experiments are derived from independent biological replicates. Figures represent
the mean values of corresponding biological triplicates and the standard deviation. Significant
differences among results were evaluated by unpaired Student’s t-tests.
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Results

Metabolic design and in silico assessment of shikimate-dependent catabolism

Pyruvate is a key node in central metabolism predominantly produced in P. putida via the Entner-
Doudoroff (ED) and lower Embden–Meyerhof–Parnas (EMP) pathways. Yet apart from the main
carbon metabolism, pyruvate is produced by several other innate reactions, some derived from
the shikimate pathway. Therefore, to increase the flux through the shikimate pathway, we aimed
to establish it as the main source of cellular pyruvate creating a shikimate-dependent catabolism
(SDC). We used iJN1462, a genome-scale model (GEM) of P. putida, to find all the pyruvate-
releasing reactions present in its genome. We analyzed the ability of each of these reactions to
support in silico growth as the sole pyruvate source using glycerol as substrate (Figure 4.2A). The
model predicted the highest growth rate using a shikimate pathway reaction when chorismate
pyruvate lyase (CHRPL) was the sole pyruvate source. This reaction cleaves chorismate, the final
product of the shikimate pathway, to pyruvate and 4-hydroxybenzoate (4HB) (Figure 4.2B). When
CHRPL is the sole pyruvate source, the in silico growth rate is reduced by 17.8% compared to the
wild type (P. putida KT2440). Still, it allows 26.1% faster growth than the other pyruvate-releasing
shikimate reactions and was therefore chosen as the most efficient candidate to establish SDC.
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Figure 4.2: In silico assessment of SDC. A. Growth rate predictions using FBA with glycerol as carbon source
when each pyruvate-releasing reaction is set as the sole pyruvate source. Growth rates relative to the wild
type growth rate (100%, µmax= 0.235 h-1) are shown. B. Metabolic scheme of the pyruvate-releasing reactions
derived from the shikimate pathway. PYK, pyruvate kinase; AGPOP, DGTP:pyruvate 2-O-phosphotransferase;
CYSTL, cystathionine b-lyase; SERD_L, L-serine deaminase; ME2, malic enzyme (NADP); OAADC, oxaloacetate
decarboxylase; CYSDS, cysteine desulfhydrase; EDA, 2-dehydro-3-deoxy-phosphogluconate aldolase; MCITL2,
methylisocitrate lyase; LDH_D, D-lactate dehydrogenase; LDH_D2, D-lactate dehydrogenase (q8); CHRPL, choris-
mate pyruvate lyase; APATr, B-alanine pyruvate aminotransferase; ALATA_L, L-alanine transaminase; DLYSPYRAT,
D-lysinepyruvate aminotransferase; ARUH, L-arginine pyruvate transaminase; AEPTA, 2-aminoethylphosphonate
pyruvate transaminase; OCAALD, 4-oxalcitromalate aldolase; L_LACDS, L-lactate dehydrogenase (ubiquinone);
DAAD, D-amino acid dehydrogenase; ADCL, 4-aminobenzoate synthase; ANS2, anthranilate synthase 2; 3AIBT2,
L-3 aminoisobutyrate transaminase; ANS, anthranilate synthase.
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To further evaluate the feasibility of SDC, we calculated the overall chemical equations from
glycerol to pyruvate in terms of its ability to generate reduced cofactors and ATP compared to
the native metabolism (see Sup. Methods). For this purpose, native and SDC metabolism were
simulated with flux balance analysis (FBA) in which pyruvate production was set as the main
objective using glycerol as the carbon source. During native metabolism, glycerol is equimolarly
converted to pyruvate, generating reducing equivalents in the process. As P. putida is an aerobic
bacterium, a large surplus of ATP can be generated in the electron transport chain. In contrast,
the SDC metabolism is energetically poor compared to the native metabolism. The shikimate
pathway is an anabolic pathway and requires the incorporation of NADPH and ATP to reach the
end product chorismate. Moreover, there is a net production of CO2 reducing the pyruvate yield.
Nonetheless, with the production of reducing equivalents, a surplus of 0.23 ATP can be generated
for growth and maintenance.

Creating a growth-coupled scenario to establish SDC

Our in silico analysis demonstrates the feasibility of SDC. However, prediction relied solely on stoi-
chiometry. Microbial metabolism is tightly regulated, and ametabolic reconfiguration of this extent
is impossible to attain through rational engineering. Adaptive laboratory evolution (ALE) is a micro-
bial engineeringmethodcommonly used to achieve desiredphenotypes that cannot be obtained
using the rational approach [220]. Therefore, to install CHRPL as the major pyruvate source, we
established a pyruvate auxotrophic strain (Δpyr) to allow for growth-coupled evolution (Figure
4.3A).

At first, we deleted edd, encoding a 6-phosphogluconate dehydratase. This reaction is part
of the ED pathway together with the sequential pyruvate-releasing step, encoded by eda, so the
deletion of edd renders the whole pathway inactive. Next, we decoupled pyruvate from phospho-
enolpyruvate (PEP), by deleting the pyruvate kinases encoded by pyk and pykA. The last major
pyruvate node was removed by deleting phosphoenolpyruvate carboxylase, encoded by ppc.
This reaction converts PEP into oxaloacetate, which subsequently can be converted to pyruvate
by the oxaloacetate decarboxylase (PP_1389). It is important to note, that the deletion of pyk,
pykA, and ppc not only disrupts the flow to pyruvate but also increases the intracellular PEP pool
for the shikimate pathway. At last, we deleted glpR, which encodes the transcriptional repressor of
the glycerol catabolic operon. We termed this strainΔpyr and evaluatedwhether it exhibited pyru-
vate auxotrophy by growing it in glycerol minimal media supplemented with increasing pyruvate
concentrations.

As expected, Δpyr was not able to grow in glycerol minimal medium without the addition of
pyruvate, indicating that biomass formation is exclusively dependent on its external supplemen-
tation (Figure 4.3B). Albeit this strain can serve as a base strain for ALE, our in silico simulations
pointed to additional more favorable pyruvate-releasing reactions (AGPOP, CYSTL, SERD_L, ME2,
OAADC,CYSDS,MCITL2, LDH_D, LDH_D2) that would allow faster growth rates than those achieved
using CHRPL as pyruvate source (Figure 4.2A). Although the removal of these reactions would ben-
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efit evolution, it might negatively affect cellular fitness. Moreover, the other chorismate-derived
pyruvate-releasing reactions cannot be removed, as this would render the strain auxotrophic for
both tryptophan and folate (Figure 4.2B). Therefore, by only selecting on growth, there is an in-
creased possibility that undesired phenotypes develop.

To circumvent this problem, we implemented a second layer of screening by incorporating a
previously established 4HB-responsive sensor [221]. This sensor constitutes a double mutant pobR
enzyme from Acinetobacter baylyi ADP1, which binds to 4HB upon detection and expresses sfGFP.
We further adapted this biosensor by including an LAA degradation tag, to decrease leakiness
and increase tunability (Figure 4.3C). We cloned the sensor in a pSEVAb83 backbone and tested
its efficacy in P. putida KT2440 in glycerol minimal media supplemented with increasing concen-
trations of 4HB. As expected, the sensor displayed dose-dependent sfgfp expression to exogenous
4HB concentrations indicating a strong selection method for ALE (Figure 4.3D). Using this method,
superior strains exhibiting fast growth rates and a high flux towards 4HB formation can be isolated.
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Figure 4.3: Base strain and biosensor for adaptive laboratory evolution. A.Metabolic scheme of the genetic basis
ofΔpyr. All major pyruvate-releasing reactions that were deleted are denoted in red. B. Growth curve ofΔpyr
in glycerol minimal media supplemented with various pyruvate concentrations. C. Graphical representation
of the 4HB-responsive biosensor used in this study. The PobR enzyme from Acinetobacter baylyi ADP1 binds to
4HB upon its presence. This in turn activates PpobA expressing the sfgfp gene. The gene is equipped with an
LAA degradation tag, to reduce leakiness of the system. D. Relative fluorescence profiles of P. putida ΔglpR
equipped with the 4HB-sensor upon exposure to increasing 4HB levels in glycerol minimal medium. Abbrevi-
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4-hydroxybenzoate. Data points represent the mean value ± SD from three independent experiments.
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Establishing SDC through laboratory evolution

Establishing SDC requires a rigorous rearrangement of the complete metabolic network. We estab-
lished a pyruvate auxotrophic strain to make the shikimate pathway the major source for pyruvate
and a 4HB-responsive sensor to select superior isolates. To further drive evolution, we incorporated
a feedback-inhibition-resistant CHRPL [221]. To maintain high levels of CHRPL, we placed the corre-
sponding gene (ubiCE31Q/M34V) under the control of the constitutive J23100 promoter downstream
of the biosensor in the same transcriptional operon. Through this design, the 4HB produced by
CHRPL creates a positive feedback loop and increases its own transcription, aiding the evolution
of SDC. We equipped P. putida Δpyr with the modified biosensor and started evolution cultivating
the strain in glycerol minimal medium in two independent experiments. Growth in the population
emerged in the first phase after roughly 20-24 days in both experiments (Figure 4.4A). After this
initial passage, growth rates quickly increased with the next passage, indicating that crucial adap-
tations occurred in the initial phase. In total, the cultures in the two independent experiments were
serially diluted for ≈ 50 days in 13 to 18 passages and plated on minimal media with glycerol.
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Figure 4.4: Isolation of SDC.1 after adaptive laboratory evolution (ALE) in glycerol minimal medium. A. Growth
curves of ALE passages. B. Relative fluorescence profiles (RFU/OD600) plotted against the growth rate (h-1) of
the selected mutants after ALE. Every dot in the graph indicates a single isolated mutant.

Forty colonies were selected per ALE experiment for further characterization based on their flu-
orescence. The isolatedmutants showed a diverse range of growth rates and fluorescence profiles
(Sup. Figure 4.1A). Within the isolated population, we observed fast-growing mutants with low fluo-
rescent profiles. Most likely, these strains evolved through alternative salvage pathways to restore
growth. This finding highlights the importance of the implemented 4HB-responsive biosensor during
evolution to select superior strains. From the heterogeneous mixture of mutants, we isolated SDC.1
(Figure 4.4B). This strain demonstrated fast growth among the isolated mutants (0.099 h-1), albeit
significantly slower than the wild type (0.210 h-1) (Sup. Figure 4.1A). However, SDC.1 displayed high
levels of fluorescence among the isolated mutants and a 10-fold increase in relative fluorescence
compared to the wild type (Sup. Figure 4.1B). This indicates that the fast-growing mutant SDC.1
carries a high flux through the shikimate pathway towards 4HB biosynthesis.
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Genomic characterization of SDC

To elucidate the genetic basis of SDC, we sequenced the genomes and plasmids of the most
efficiently evolved strains. We focused solely on isolates that displayed high relative fluorescence.
This is because these strains should display a high carbon flux through the shikimate pathway
irrespective of the growth rate. From each evolution experiment, we chose ten mutants. At first, we
sequenced the biosensor plasmids to check for alterations. However, no mutations occurred in the
plasmids of all twenty isolates, indicating that growth occurred solely due to genomic alterations.
All isolates from the two individual evolution experiments contained mutations in the miaA and
mexT genes at various positions (Figure 4.5A).
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Figure 4.5: Exploring the genetic basis of SDC. A. Genomic alterations that were discovered in the five strains
with the highest relative fluorescence after laboratory evolution. B. Growth curves of the reverse-engineered
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S-adenosylmethionine:tRNA ribosyltransferase-isomerase; rpoC, DNA-directed RNA polymerase subunit beta;
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represent the mean value ± SD from three independent experiments.

MiaA is a tRNA dimethylallyl transferase and has been known to affect the expression of various
genes related to the central and secondarymetabolism [222]. In P. putida specifically, the removal
of miaA was reported to dramatically increased the expression of the trpE and trpGDC genes,
both involved in tryptophan biosynthesis [223]. MiaA has been further studied in Pseudomonas
chlororaphis, where its inactivation led to the up-regulation of the trp genes and aroF. The latter
encodes a 3-deoxy-7-phosphoheptulonate synthase, which catalyzes the first reaction of the
shikimate pathway [224]. The mexT gene encodes a transcriptional regulator that has mostly
been studied in Pseudomonas aeruginosa in which it represses the entire quinolone biosynthetic
pathway and the first reaction of tryptophan biosynthesis [225]. Another major mutation that
occurred in 12 out of the 20 isolates was a perturbation in garK, encoding a glycerate kinase.
However, as the garK perturbation did not occur in all isolates, we deemed this one as non-
universal and focused solely on miaA and mexT.
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To assess the importance of these mutations, we deleted themiaA andmexT genes fromΔpyr
and assessed their growth in glycerol minimal medium. Surprisingly, the removal of the miaA gene
allowed growth without the need for evolution (Figure 4.5B). The deletion of mexT did not result in
immediate growth. However, in combination with ΔmiaA, its deletion led to higher growth rates
and a shorter lag phase than the single ΔmiaA mutant. As the inactivation of only miaA allowed
growth in minimal medium with glycerol in Δpyr, we speculate that this gene is key in regulating
the shikimate pathway and could be a potential target for metabolic engineering strategies in
other organisms.

Evaluation of metabolic fluxes in SDC

Strain SDC.1 was selected from the heterogeneous mix based on its growth rate and fluorescence
profile. Next, we aimed to determine the flux increase through the shikimate pathway of this strain
compared to the wild type. Chorismate, the final product of the shikimate pathway, is equimo-
larly cleaved into 4HB and pyruvate by chorismate pyruvate lyase (CHRPL). Therefore, we set out
to quantify 4HB production to evaluate whether SDC.1 uses the shikimate pathway as its main
metabolic route for growth. In theory, the higher the yield of 4HB, the more flux is diverted into the
shikimate pathway. FBA analysis predicts amaximumpathway yield of 0.39mol/mol (4HB:glycerol).
In this scenario, there is no bacterial growth, and all carbon, including the released pyruvate by
CHRPL, is directed toward 4HB synthesis. Therefore, we set this as our attainablemaximum. To assess
4HB production, we deleted the pobA gene in both the wild type and SDC.1, creating SDC.2. This
gene encodes a p-hydroxybenzoate hydroxylase and is responsible for the degradation of 4HB
to protocatechuate (PCA), which can be further degraded to fuel the TCA cycle. The removal of
the pobA gene had a negligible effect on wild-type growth. However, the growth of SDC.2 was
severely stunted, requiring 14 days to reach the stationary phase compared to 4 days for SDC.1
(Figure 4.6A). Moreover, a lower final cell density was observed indicating that SDC.2 metabolism
is highly dependent on the activity of the shikimate pathway and that the produced 4HB can-
not be recycled back for cell proliferation. The obtained 4HB yield for SDC.2 was 0.06 mol/mol, a
13.8–fold increase compared to the wild typeΔpobA, confirming a significantly increased carbon
flux through the shikimate pathway (Figure 4.6B). However, this flux only comprises 15.4% of the
predictedmaximum theoretical yield, implying that other routes are still taking a significant portion
of the intracellular fluxes.

We focused particularly on the shikimate pathway to further optimize SDC.2. We hypothesized
that quiC, encoding 3-dehydroshikimate (3HDS) dehydratase, was siphoning off carbon from the
shikimate pathway towards the TCA cycle. When growth was simulated for SDC.2, the model
predicted 54% of the flux entering the shikimate pathway to be redirected through this reaction,
converting the shikimate pathway intermediate 3-dehydroshikimate to protocatechuate, and
efficiently circumventing the pobA deletion. As such, we created SDC.3 by deleting quiC from
SDC.2 and assessed its growth and 4HB production. It became apparent that this reaction indeed
was a major metabolic bypass. The SDC.3 strain displayed even further stunted growth compared
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to SDC.2, reaching the stationary phase after 10 days with a concomitant significantly lower
biomass formation (Figure 4.6A). The final 4HB yield increased 2.4–fold to 0.14 mol/mol (Figure
4.6D), indicating a further increase in the flux through the final reactions of the shikimate pathway.

Although the optimized strain SDC.3 demonstrated increased fluxes through the shikimate
pathway, it only reached 36.7% of the attainable predicted maximum yield. Therefore, we further
simulated the SDC metabolism to identify bottlenecks. Our simulations predicted that 19.7% of the
total consumed glycerol was excreted as glycerate (Sup. Figure 4.2). As mentioned earlier, 12 out
of 20 isolates contained mutations in the garK gene. The isolated SDC.1 and its derivatives contain
a 16 bp deletion within the gene resulting in a frameshift. The garK gene encodes a glycerate
kinase, which is responsible for the phosphorylation of glycerate to glycerate-2-phosphate, which
can then enter the main metabolism. We hypothesized that the frameshift renders the enzyme
inactive and allows glycerate to accumulate. We quantified glycerate production in SDC.3 and
confirmed our hypothesis as 18.3% of the total amount of glycerol was excreted as glycerate,
decreasing the total carbon flux towards the shikimate pathway (Figure 4.6C).
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Figure 4.6: Characterization of SDC strains. A.Growth curves of the wild-type strain andWTΔpobA compared to
the SDC strains. B. Quantification of 4HB yields in the WTΔpobA vs. SDC.2. strain. C. Quantification of glycerate
yields in SDC.3 vs SDC.4. strains. D. Quantification of 4HB yields in SDC.3, SDC.4, and SDC.5 strains. Data points
and bar graphs represent the mean value ± SD from three independent experiments. *, p <0.1; **, p <0.01; ***,
p <0.001; ****, p <0.0001 determined by an unpaired Student’s t-test. Note that all the strains (including WT)
contain the pSensorEvo plasmid)
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According to themodel, pyruvate production from glycerol using SDC yields 6.1% of the ATP ob-
tained in the ED pathway (Sup. Methods). Aerobic bacteria like P. putida generate most electron
carriers in the TCA cycle, which then feed the electron transport chain and produce ATP through
oxidative phosphorylation. However, in SDC, the connection between glycolysis and TCA is dis-
rupted and the TCA cycle can only be reached through the ATP-consuming shikimate pathway.
Model predictions show that in native metabolism, glycerol is catabolized to the glycolytic interme-
diate dihydroxyacetone-phosphate (DHAP) (Figure 4.1). This process costs 1 ATP per glycerol and
yields 1 reduced quinone. However, in SDC, the model predicts NAD-dependent oxidation of glyc-
erol to glycerate by AldB-1, PP_2694, or FrmA (Sup. Figure 4.2). Thus, the activation of the alternative
glycerol utilization pathway likely serves as an additional source of reducing equivalents which can
be oxidized in the electron transport chain to generate a proton motive force for additional ATP.
In addition, the GarK enzyme also requires the utilization of ATP suggesting a relationship between
garK mutation and energy conservation. Although the model predicts NAD-dependent oxidation
of glycerol to glycerate, the first step in glycerate production from glycerol in P. putida is initiated
by the PQQ-dependent alcohol dehydrogenases encoded by pedE and pedH [226]. Like NADH,
PQQH2 gets oxidized in the electron transport chain, generating ATP. The ability to generate ATP by
converting glycerol into glycerate, therefore, reduces the required SDC-dependent flux towards
the TCA cycle. To abolish glycerate production, we deleted pedH and pedE from SDC.3, creating
SDC.4. This deletion extended the lag phase slightly but did not have a significant impact on the
growth rate (Figure 4.6A). Glycerate production was completely abolished and revealed to be
a major metabolic bottleneck as its removal increased the 4HB yield from 0.14 to 0.28 mol/mol
(Figure 4.6D). This accounts for 71.0% of the maximum predicted pathway yield and indicates that
a significant flux in SDC.4 is diverted through the shikimate pathway.

For further optimization, we focused on branching pathways from the shikimate pathway.
Within the isolated mutants, we discovered mutations in the genes miaA and mexT and showed
their impact on establishing SDC. Both their encoded proteins have been reported to directly
influence tryptophan biosynthesis by regulating anthranilate synthase (ANS), encoded by trpE in
P. putida. We hypothesized that the SDC.1 strain and its further derivatives may display increased
ANS activity due to the mutations in miaA and mexT. Like CHRPL, the TrpE enzyme cleaves choris-
mate releasing pyruvate in the process. However, this reaction requires additional L-glutamine or
ammonia as an amine donor, which according to our in silico assessment results in lower growth
rates (Figure 4.2A). Yet, the removal of this reaction is unwanted as it would render the strain aux-
otrophic for tryptophan. Therefore, we aimed to reduce its activity by introducing a P290S point
mutation in the trpE gene of SDC.4. This specific mutation has been reported to lower the activity
of the TrpE enzyme [227]. This new strain, termed SDC.5, has a slower growth rate (0.008 ± 0.000
h-1) compared to SDC.4 (0.011 ± 0.000 h-1) yet reached similar final cell densities (Figure 4.6A). In
this strain the 4HB yield on glycerol increased from 0.28 to 0.35 mol/mol (Figure 4.6D). This accounts
for 89.2% of the maximum predicted pathway yield and indicates that SDC.5 diverts most of its
glycerol metabolism through the shikimate pathway.

85



Model-Guided Strain Engineering | Chapter 4

Genomic integration and characterization of a stable SDC strain

So far, we quantified the flux through the shikimate pathway using 4HB as output. By reaching
the predicted maximum, we can conclude that all major bottlenecks are removed and that we
successfully established SDC. Therefore, we aimed to produce a stable strain that could serve as
a chassis for shikimate pathway-derived products. For this purpose, we integrated the feedback-
resistant ubiCE31Q/M34V gene in SDC.5 under the control of a bicistronic design at the innocuous
PP_5322 site [228]. Furthermore, we restored the pobA gene to create the final SDC.6 strain in
which 4HB can once more fuel biomass production (Figure 4.7A). We determined the growth char-
acteristics of SDC.6 and compared them to the wild type as both strains have different pathways
to convert glycerol to pyruvate. Moreover, we used SDC.1 as a second control to examine the
impact of all further modifications on growth. As expected, the wild type using the canonical
glycerol metabolism grew fast and reached the stationary phase within 24 hours. Our genomically
stable SDC.6 strain had a lower specific growth rate than SDC.1, 0.038 ± 0.001 h-1 vs 0.052 ± 0.007
h-1, respectively (Figure 4.7B). We hypothesize that the lower growth rate of SDC.6 is the result of i)
the absence of QuiC, which allowed a quick bypass in SDC.1 from the shikimate pathway toward
the TCA cycle, ii) the removal of glycerate production, which allowed higher ATP generation, and
iii) fewer pyruvate production due to decreased TrpE activity (Figure 4.7A).
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Although slower, SDC.6 reached a final OD600 of 3.17, which is 14.5% higher than SDC.1. This
can be attributed to the removal of glycerate formation in SDC.6 which can now be funneled
towards biomass production (Figure 4.7A). However, this removal likely increased the lag phase in
SDC.6. The PedE and PedH enzymes are part of the alternative glycerol metabolism in P. putida
and their removal has been demonstrated to strongly prolong the lag phase [226]. Yet, SDC.6 is
still superior to SDC.1 as it is devoid of all the bottlenecks described above and can therefore lead
to higher yields for shikimate pathway-derived products.

Next, we used the model to calculate the maximum specific growth rate in SDC.6. For this
analysis, we set the maximum glycerol uptake rate at 3.95 mmol/gDW/h, the same as in KT2440.
However, the model predicts a lower glycerol uptake rate for this strain, with a maximum of 3.36
mmol/gDW/h, probably indicating a limitation in cofactor regeneration. Moreover, the model
predicts a maximum specific growth rate of 0.16 h-1, which is 4.2–fold higher than the actual
growth rate we observed. Therefore, there is still room for improvement to establish SDC.6 as a true
chassis for shikimate pathway-derived products.

Discussion

In this study, we created a new-to-nature shikimate pathway-dependent catabolism in P. putida.
Based onmodel simulations and rational engineering, we constructed a growth-coupled scenario.
Next, through pyruvate-driven evolution coupled with a biosensor-assisted selection strategy, the
superior mutant SDC.1 was isolated. This strain showed a fast growth rate and a high relative flu-
orescence profile among all isolates. We discovered that SDC.1 displayed a 13.8-fold higher flux
through the shikimate pathway than the wild type, reaching a 4HB yield of 15.2% of the maximum
predicted pathway yield. Through further model-driven and rational engineering, we removed
all potential bottlenecks and created SDC.5 which reached 89.2% of the maximum predicted
pathway yield, demonstrating a massive catabolic and anabolic flux through the shikimate path-
way. By reintroducing 4HB degradation, we established SDC.6, the first strain ever constructed
that uses the shikimate pathway as the dominant pathway for glycerol catabolism during growth.
Moreover, the SDC.5 strain presented in this study can be equipped with other pyruvate-releasing
steps to achieve high yields for valuable molecules such as maleate [229], 3-hydroxybenzoate
[230], p-aminobenzoate [231], and salicylate [232].

Growth-coupled bioproduction of shikimate-derived products using pyruvate-releasing reac-
tions has been theorized before [202] and has recently also been proven [232, 233]. However,
although both strategies were effective, they still relied on the external supplementation of aro-
matic amino acids and yeast extract, which would substantially increase operating costs. The fact
that the carbon flux in these designs could not support growth could potentially be attributed to
the complex regulatory network of the shikimate pathway. This pathway is regulated on different
levels e.g., transcriptional repression, attenuation, and feedback inhibition [234], which has made
traditional metabolic engineering strategies rather challenging. In this study, we showcase that
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indeed regulation is the biggest bottleneck. The SDC was established due to a small number
of mutations that most likely broke the regulatory network of the shikimate pathway. Various ge-
nomic alterations were discovered in all sequenced isolates in the genes miaA and mexT. Both
encoded enzymes appear to have a regulatory function regarding the shikimate pathway, yet
their exact regulatory mechanism remains elusive. Deletion of miaA was able to restore growth
without the need for evolution and the subsequent deletion ofmexT further improved growth rates
and reduced lag phases. Therefore, we believe that it is noteworthy to examine these genes as
metabolic engineering targets for the shikimate pathway in other industrial organisms.

In this work, FBA analysis was frequently used to guide and support the generation of hy-
potheses. One noticeable example was the prediction of glycerate as a by-product. In SDC.1 this
phenotype was attributed to a 16 bp deletion in the garK gene, encoding a glycerate kinase.
This enzyme is responsible for the phosphorylation of glycerate to glycerate-2-phosphate, which
can then enter the main metabolism. The production of glycerate from glycerol produces two
molecules of PQQH2 [226], which yields two molecules of ATP in the electron transport chain. How-
ever, the GarK enzyme requires the usage of onemolecule of ATP. As SDC is energetically poor, this
deletion likely inactivated the enzyme to conserve ATP, which allowed glycerate to accumulate.
Moreover, glycerate production results in the generation of reduced cofactors which can be used
for respiration, decreasing the required catabolic flux over the SDC and supporting the hypothesis
of ATP generation as the main limiting factor in SDC. Although the pyruvate released by CHRPL
can be oxidized in the TCA cycle to generate reducing equivalents for respiration, the high yields
observed in the SDC.5 strain suggest the recycling of pyruvate to PEP to further fuel 4HB production.
When using SDC, this behavior would promote product formation but results in low growth rates
that could limit productivity.

To promotegrowth in SDC,external electron donors couldbeapplied to generateNADH,which
then can be oxidized in the electron transport chain to provide ATP without carbon loss. Formate
is a formidable candidate as P. putida already encodes a kinetically fast formate dehydrogenase
[235]. Another potential electron donor is phosphite, whose potential has recently been explored
in P. putida [236]. Although the phosphite dehydrogenase is kinetically slower than its formate
counterpart [237], it was able to increase the NADH pool in P. putida. Moreover, compared to
formate, phosphite metabolism gives a competitive advantage, allowing non-sterile fermentation
conditions, and lowering overall production costs [238]. Therefore, both electron donors are worthy
of investigation to further improve the SDC.

In our current design, the shikimate pathway carries the whole metabolic regime with a sin-
gle overexpression. Thus, further optimization of this pathway is a necessity to increase the fluxes.
This could either be achieved through genomic overexpression or a second round of laboratory
evolution. In our first evolution experiment, we identified miaA and mexT as key players involved
in the shikimate pathway. However, the strain still had many bottlenecks that, although facilitated
growth, decreased the shikimate pathway flux. The streamlined SDC.5 strain has a maximized flux
through the shikimate pathway where the released pyruvate is the only junction between glycerol
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catabolism and the TCA cycle. This strain would be an excellent candidate for another round
of evolution. Not only would this stringent selection system lead to increased fluxes through the
shikimate pathway, but it could also lead to the identification of other unknown bottlenecks.

Additionally, fluxes in SDC could be optimized through rational,model-guided engineering. We
demonstrated the power of in silico simulations to aid the experimental design, identify metabolic
bottlenecks, and guide optimization based on maximum yields and optimal growth rates. Com-
pared to the wild type, SDC strains have a complicated glycerol-to-pyruvate node with more
enzymatic steps that make rational engineering nontrivial. The integration of metabolic model-
ing and metabolomic analysis could facilitate the evaluation of new model-guided optimization
approaches [239]. This optimization could focus on the balance between the shikimate pathway
precursors, erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP). Besides low energy pro-
duction, we hypothesize the availability of E4P as an additional limitation of SDC, as the PEP pool
is already significantly increased through the blockage of its degradation nodes in the initialΔpyr
strain. Like the shikimate pathway, the pentose phosphate pathway is predominantly used for an-
abolic reactions in P. putida, likely displaying low native fluxes [240]. A model-driven strategy could
be applied to improve growth of SDC.6, selecting overexpression targets that, while maximizing
growth, minimize resource allocation towards the expression of unnecessary enzymes [241].

This work highlights the plasticity of bacterial metabolism and how a combination of model-
driven design, rational engineering, and laboratory evolution can create novel metabolisms. We
repurposed the shikimate route as the major catabolic route and demonstrated that it can carry
the whole cellular flux for growth. Moreover, we believe that the SDC strain presented in this study
will open many potential practical applications for the high-yield synthesis of industrial valuable
aromatic compounds.
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Supplementary Methods

Energy generation by SDC

We calculated overall equations from glycerol to pyruvate to study the feasibility of SDC in terms
of its ability to generate reduced cofactors and ATP compared to native metabolism. Native
and SDC metabolism were simulated with flux balance analysis (FBA) with pyruvate production
(EX_pyr_e) as maximization objective. Then, reduced models were generated containing only
predicted active reactions of central carbon metabolism (Sup. Table 5), as well as exchange
reactions for NADH (nadh_c), NADPH (nadph_c), ATP (atp_c), NAD (nad_c), NADP (nadp_c),
pyruvate (pyr_c), H+ (h_c), H2O (h2o_c), ubiquinone-8 (q8_c), ubiquinol (q8h2_c), oxygen (o2_c),
coenzyme A (coa_c), CO2 (co2_c) and inorganic phosphate (pi_c) in the cytoplasm. To find
the most efficient overall reaction in terms of ATP generation, pyruvate exchange was set as the
objective to maximize, and the bounds of its exchange reaction were constrained to the optimal
value. Then, the ATP exchange reaction was set as a new objective to maximize. A glycerol
uptake of 1 mmol/gDW/h was used and the fluxes through the different exchange reactions are
defined as coefficients in the overall equations. According to iJN1462 oxidation of NADH via
NADH dehydrogenase (reaction NADH16pp) allows the export of 3 H+ to the periplasm and the
generation of ubiquinol (q8h2). The reduction of ubiquinone-8 (q8) to q8h2, and oxidation of q8h2
by cytochrome oxidase (CYTBo3_4pp) allows the export of 4 H+ to the periplasm. Generation of
ATP by the ATP synthase (ATPS4rpp) requires the import of 4 H+ from the cytoplasm resulting in a
yield of 1 ATP per oxidation of 1 q8h2 and 1.75 ATP per oxidation of NADH.
Overall equation native metabolism (KT2440):
1Glycerol + 1Q8 + 1NAD+ + 1ATP + Pi → 1PY R+ 1Q8H2 + 1NADH +H+ + 2ATP

Simplified equation (conversion of reduced cofactors to ATP in the respiratory chain):
1Glycerol → 1PY R+ 3.75ATP

Overall equation SDC:
1Glycerol+1.8Q8+1.4NAD++1.1NADPH+1.1O2+2.1ATP +1.3H2O → 0.55PY R+1.8Q8H2+

1.4NADH + 1.4CO2 + 2.1ADP + 2.1Pi + 2.9H+

Simplified equation (assuming conversion of NADH to NADPH and generation of ATP by oxidation
of reduced cofactors in the respiratory chain):
1Glycerol + 1.1O2 → 0.55PY R+ 1.4CO2 + 0.23ATP

Note: the O2 in this equation is not used in the respiratory chain but in the first two reactions
converting 4HB into TCA intermediates.
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Supplementary Figures
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Sup. Figure 4.1: Characterization of isolated mutants after adaptive laboratory evolution. A. Growth curves of
selected mutants after ALE in glycerol minimal medium. B. Relative fluorescence profiles of the selected mutants
after ALE in glycerol minimal medium. All strains in the depicted graphs are equipped with the 4HB responsive
biosensor, and the evolved mutants were compared to the wild type (red) and the parentalΔpyr strain (blue).
Every line indicates a single strain.

Sup. Figure 4.2: Model predictions ofwild type and SDM.1 strain fluxes (%) in the conversion of glycerol to glycerate.
Abbreviations: GLY, glycerol; GLYALD, glyceraldehyde; GLYC, glycerate; AldB-1, aldehyde dehydrogenase; FrmA,
glutathione-dependent formaldehyde dehydrogenase; PedE/H, PQQ - dependent alcohol dehydrogenases;
GarK, glycerate kinase.
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Genome-scale, constraint-based models (GEM) and their derivatives are commonly
used to model and gain insights into microbial metabolism. Often, however, their accu-
racy and predictive power are limited and enable only approximate designs. To improve
their usefulness for strain and bio-process design, we studied their capacity to accurately
predict metabolic changes in response to operational conditions in a bioreactor, as well
as intracellular, active reactions. We used flux balance analysis (FBA) and dynamic FBA
(dFBA) to predict the growth dynamics of the model organism Saccharomyces cere-
visiae under different industrially relevant conditions. We compared simulations with the
latest developed GEM for this organism (Yeast8) and its enzyme-constrained version
(ecYeast8) herein described with experimental data and found that ecYeast8 outper-
forms Yeast8 in all the simulations. EcYeast8 was able to predict well-known traits of yeast
metabolism including the onset of the Crabtree effect, the order of substrate consump-
tion during mixed carbon cultivation, and the production of a target metabolite. We
showed how the combination of ecGEM and dFBA links reactor operation and genetic
modifications to flux predictions, enabling the prediction of yields and productivities of
different strains and (dynamic) production processes. Additionally, we present flux sam-
pling as a tool to analyze flux predictions of ecGEM, ofmajor importance for strain design
applications. We showed that constraining protein availability substantially improves the
accuracy of the description of the metabolic state of the cell under dynamic conditions.
This therefore enables more realistic and faithful designs of industrially relevant cell-based
processes and, thus, the usefulness of such models.

Abstract

96



5

Modeling microbial growth in bioreactors

Introduction

One of the goals of biotechnology is the design of cell factories to producemetabolites of industrial
interest. Metabolic engineering introduces heterologous pathways and rewires cell metabolism to
increase product yield, titer, and productivity [242]. However, although the production capacity
of microorganisms is affected by many external factors such as oxygen and carbon availability,
these interactions are often underestimated during the strain design process. The lack of a strong
link between initial strain design and industrial deployment causes the so-called ”Valley of Death”,
where only one in 5,000 to 10,000 innovations make the long route from initial finding to market
implementation [88, 243, 244]. Models of microbial metabolism are increasingly used to aid the
design and steering of bio-processes in an attempt to navigate the ”Valley of Death”. We studied
the capacity of these models to provide accurate predictions of intracellular active fluxes, key
to guiding metabolic engineering strategies. Besides, we tested their ability to link strain and bio-
process design (i.e. how modifications in the reactor environment impact predictions on cell
metabolism).

Genome-scalemetabolicmodels (GEM) aremathematical representations of cell metabolism
able to establish genotype-phenotype relationships linking genes and enzymes with metabolic
reactions. These models are based on annotated genomes and can be expanded to include
resource allocation constraints such as maximum membrane surface area or cell volume [66].
Sánchez et al. introduced the GEM with Enzymatic Constraints using Kinetic and Omics (GECKO)
framework to generate enzyme-constrained models (ecGEM) by adding additional constraints
linked to the limited enzyme production capacity of the cell [67]. In these models, protein abun-
dance and enzyme turnover values (kcat) limit the flux of the corresponding reactions. The ecGEM
of Saccharomyces cerevisiae enables a more extensive and accurate simulation of microbial
physiology including overflow metabolism, stress responses, and consumption rates of different
carbon sources.

Flux balanceanalysis (FBA) is themost commonmethod to simulate genome-scalemetabolism.
It uses linear programming to optimize an objective function and has extensively been used to
predict cellular growth, and product secretion patterns and to develop overproduction strains
[245, 246, 247, 248]. FBA assumes time-invariant extracellular conditions consistent with chemostat
operation. Still, industrial-scale production is often achieved with batch and/or fed-batch cultures
where extracellular conditions vary in time. Therefore, dynamic FBA (dFBA) extends FBA by introduc-
ing kinetic equations for extracellular metabolites and biomass. dFBA has been applied to simulate
Escherichia coli industrial fermentations, compare ethanol production of different Saccharomyces
cerevisiae strains during fed-batch growth, and identify industrially relevant bottlenecks for ethanol
production from xylose [249, 250, 251]. Whereas FBA only captures one of the multiple solutions
that leads to the optimization of the desired objective, sampling algorithms provide distributions
of feasible flux solutions that represent the whole feasible flux space. Besides, the establishment
of an objective function, which may introduce bias in the predictions, is not required [64].
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We used FBA and dFBA to predict the growth dynamics of S. cerevisiae under industrially
relevant conditions and compared simulations using Yeast8 (GEM) and ecYeast8 (ecGEM) with
experimental data. We challenged the models to predict changes in cell metabolism (substrate
uptake, growth, and product secretions) in response to the operation of the reactor, constituting
one of the few examples of the combination of ecGEM and dFBA. For the first time, we used
flux sampling of ecYeast8 to evaluate central carbon metabolic fluxes at a range of growth rates
representative of chemostat, fed-batch, and batch growth of S. cerevisiae. We tested how flux
sampling can be used to study central metabolic fluxes, of major importance for strain design
applications. We provide a set of scripts to easily implement dFBA on traditional and ecGEM as
well as a validation dataset containing fermentation-related data of S. cerevisiae cells growing
in chemostat, batch, and fed-batch reactors. We show how the combination of ecGEM, dFBA,
and flux sampling enables more realistic and faithful designs of industrially relevant cell-based
processes and, thus, increases the usefulness of such models.

Materials and methods

Yeast8 and ecYeast8 models were obtained from Lu et al. [166] and, unless stated differently,
default values for upper and lower bounds of reactions were used during the simulations. Kcat

values in ecYeast8 were rescaled and additional constraints were imposed (see Sup. Methods).
Model simulations were performed using Python 3.6, COBRApy (v0.18.1), and glpk as solver [163].
For details on experimental data used in this study see Sup. Methods and Sup. Table 5.1. Functions
developed for chemostat, batch, and fed-batch simulations as well as an example of their use
are available at Gitlab.

Glucose-limited chemostat simulations

During chemostat simulations, metabolic fluxes were calculated setting the bounds of the biomass
reaction (r_2111) equal to the dilution rate (D, h-1) and minimizing glucose consumption as objec-
tive for FBA optimization (maximizing r_1714 for Yeast8 and minimizing r_1714_REV for ecYeast8)
[63]. The dilution rate was varied from 0.05 h-1 to 0.42 h-1 in intervals of 0.02 h-1 and feeds with
glucose concentrations of 5 g/l, 7.5 g/l, 10 g/l, 15 g/l, and 30 g/l were simulated. In all cases the
simulated cultures were glucose-limited, there was negligible glucose accumulation in the media,
and the glucose mass balance was used to calculate the cell concentration in the reactor. If
by-product secretion was predicted during simulations, their concentration was calculated using
mass balances. A detailed explanation of the equations used is shown in the Sup. Methods.
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Batch and fed-batch simulations

In batch and fed-batch simulations the growth reaction (r_2111) was set as the objective to maxi-
mize [63]. Following Sánchez et al., the upper bound of the protein pool reaction was increased
by 25% [67]. When ethanol was present in the reactor, its uptake was allowed removing constraints
on reactions r_1761 (Yeast8) or r_1761_REV (ecYeast8).

During the simulation of batch and the batch phase of fed-batch reactors, the glucose ex-
change reaction (r_1714 or r_1714_REV) was constrained based on the glucose concentration in
the reactor using a Michaelis-Menten kinetic equation (qglc, max = 10 mmol/gDW /h, km,glc = 0.28
mM [252]). The glucose mass balance was used to calculate the remaining glucose in the reactor.
During the feeding phase of fed-batch reactors, the glucose mass balance was used to calculate
the glucose uptake rate and constrain the glucose exchange reaction. During this phase glucose
is the limiting factor and its concentration in the reactor is negligible. After FBA optimization, the
predicted metabolic fluxes were used to calculate new cell and by-product concentrations in the
reactor using integrated mass balances. See the Sup. Methods for a detailed explanation of the
equations used.

In simulations of batch growth on combinations of sucrose and glucose, sucrose and fructose,
and sucrose and mannose, the uptake of glucose, fructose, mannose and sucrose was allowed
if these metabolites were present in the reactor by setting a negative lower bound (Yeast8) or a
positive upper bound (ecYeast8) to their exchange reactions (r_1714 and r_1714_REV, r_1709 and
r_1709_REV, r_1715 and r_1715REV, r_2058 and r_2058_REV, respectively). This upper bound was
calculated using a Michaelis-Menten equation for glucose. For the rest of the substrates a lower
bound of -10 mmol/gDW/h was used in simulations with Yeast8 and the upper bound of these
reactions was unconstrained in ecYeast8. Additional simulations with ecYeast8 were performed
including specific constraints based on inhibition of substrate uptake by some of the carbon
sources (see Sup.Methods).

Simulation of a ∆pdc lactate producing S. cerevisiae strain

Yeast8 and ecYeast8 were modified to simulate a strain without a pyruvate decarboxylase (PCD)
activity and expressing the lactate dehydrogenase gene from Lactobacillus plantarum [253]. In
both models the growth reaction (r_2111) upper bound was constrained to 0.13 h-1 to simulate the
maximum growth rate observed experimentally [253]. dFBA was used to simulate cells growing in
a 1 l reactor operated as a batch with 100 g/l of initial glucose and a 100 g glucose pulse 75 hours
after inoculation. Oxygen limitation was experimentally observed from 24 h after inoculation until
the end of the process and was simulated constraining the oxygen exchange reaction (r_1992 in
Yeast8 and r_1992_REV in ecYeast8) assuming no oxygen accumulation [253]. During simulations
with ecYeast8, the export of products different than biomass, lactate, succinate, and glycerol was
avoided constraining their secretion reactions [253]. The export of metabolites was unconstrained
in simulations with Yeast8 to avoid infeasible solutions. See the Sup. Methods for details on the
simulations.
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Sampling of intracellular fluxes

The Artificial Centering Hit-and-Run (ACHR) Sampler from cobrapy was used to sample the solution
space. Before sampling, the bounds of the biomass reaction were constrained to the desired
growth rate, glucose uptake was set as an objective to minimize and the flux through this reaction
was constrained to the minimal flux ± 10%. In all cases, the modified model was used and 10,000
samples were taken (see Sup. Methods). Samples that contained fluxes that violated lower and/or
upper bounds or the steady state assumption were discarded using achr.validate [163]. Samples
were taken at a range of growth rates (0.01, 0.05, 0.1, 0.15, 0.20, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29
and 0.3 h-1). To analyze intracellular fluxes the median ± the median absolute deviation (MAD) of
the valid samples was considered as the predicted flux through a given reaction. Sampling data
is available in Gitlab.

Results

Chemostat simulations

S. cerevisiae cells grown in continuous cultures change their metabolism depending on the dilu-
tion rate. At low growth rates, they present a completely aerobic metabolism whereas ethanol
production is observed at growth rates higher than the critical dilution rate (Dcrit), a process known
as the Crabtree effect. Data from chemostat growth of S. cerevisiae strains CBS8066, DS28911,
and H1022 was obtained from literature [254, 255, 256]. In these experiments, S. cerevisiae was
grown at different dilution rates (D) with different glucose concentrations in the feed. For each
dilution rate, we constrained the growth rate of Yeast8 and ecYeast8 and used mass balances to
calculate the cell, glucose, and by-product concentrations in the reactors at steady state.

Figure 5.1A shows predictions of biomass concentrations by Yeast8 and ecYeast8. Whereas
Yeast8 predicts constant biomass concentration, ecYeast8 simulates a decrease in biomass con-
centration after a specific dilution rate, the critical dilution rate. The decrease in biomass con-
centration is also observed in the experimental data, which shows different critical dilution rates
for different strains [257]. The model predicts a critical dilution rate of 0.27 h-1, in agreement with
that reported for strains DS28911 and H1022 (0.28 h-1 and 0.21 h-1) [255, 256]. Strain CBS8066 has
a higher protein content than H1022 and shows a higher critical dilution rate (0.38 h-1) [254, 258].
This higher growth rate was simulated increasing protein availability in the model (26.8% increase
of the upper bound of the protein pool reaction) showing that tuning protein availability results in
different Dcrit, suitable to predict chemostat growth of different S. cerevisiae strains.

Figure 5.1 also shows themaximum growth rate predicted by themodel with the default bound
for the protein pool reaction is 0.30 h-1 (0.38 h-1 when this bound is increased) while all strains can
grow at dilution rates as high as 0.4 h-1. However, when cells are grown experimentally at dilution
rates higher than 0.3 h-1, the dilution rate has to increase in small steps to avoid washout, indicating
cells need time to adapt to high growth rates [256]. This adaptation is related to an increase in
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protein content and therefore, chemostat predictions at high growth rates would improve with
a growth rate-dependent protein availability constraint. Interestingly, decreasing maintenance
requirements in the model did not affect maximum growth rate predictions, suggesting that the
protein availability constraint implicitly accounts for protein synthesis costs and reduces the impact
of the maintenance reaction in the simulations.

According to simulations with Yeast8, specific glucose uptake is proportional to the dilution
rate. However, experimental data and simulations with ecYeast8 show a sharp increase in glucose
uptake afterDcrit (Figure 5.1B). Higherglucose uptake rates and lowerbiomass concentrations result
in a decrease in the biomass yield on glucose afterDcrit,which is only predictedby simulations using
ecYeast8 (Figure 5.1C). Similar to the glucose uptake rate predictions by Yeast8, oxygen uptake
rates, andCO2 production rates are predicted to be proportional to the growth rate (Figures 5.1D,E).
However, after Dcrit cells show a partially fermentative metabolism that results in a decrease in
the oxygen uptake rate and an increase in the CO2 production rate. Besides, ecYeast8 predicts
by-product formation at growth rates higher than the critical dilution rate. It predicts the secretion
of acetaldehyde and acetate and accurately predicts ethanol flux at different glucose uptake
rates (Figure 5.1F). None of these changes are predicted by Yeast8.

Figure 5.1: Chemostat simulations with Yeast8 (- -) and ecYeast8 (-) compared with experimental data (symbols)
at different dilution rates (D) (A-E) or different specific glucose uptake rates (qs) (F). A. Biomass concentration (cx).
B. Specific glucose uptake rate (qs). C. Yield of biomass on glucose (Yxs). D. Specific oxygen uptake rate (OUR).
E. Specific CO2 production rate (CPR). F. Specific ethanol production rate (qe). Experimental data of strains
CBS8066, DS28911, H1022, and CEN.PK 113.7D where obtained from [254, 255, 256, 259] respectively. Note that
in figures B-F all dashed lines overlap and continuous orange, green, and red lines overlap with the continuous
purple line.
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Batch and fed-batch simulations

During batch fermentations glucose is present in excess and cells grow at their maximum growth
rate. Yeast8 and ecYeast8 were used to simulate batch growth of S. cerevisiae and the results were
compared to experimental data [260]. The glucose uptake rate was constrained in both models
as a function of the glucose concentration in the reactor according to Michaelis-Menten kinetics.
Whilst glucose uptake was the only constraint imposed on Yeast8, ecYeast8 was also limited by
the availability of proteins.

Simulations using Yeast8 predict no ethanol production, faster glucose consumption, and
higher cell concentrations than the experimental measurements (Figure 5.2). In these simulations,
glucose uptake kinetics determines how fast glucose is consumed and all fluxes are distributed to
optimize biomass production which results in exponential growth, no by-product formation as well
as glucose depletion and growth arrest after 5h. Contrarily, simulations using ecYeast8 accurately
predict glucose and biomass concentrations until glucose is depleted 7 h after inoculation. This
model also predicts the production of ethanol and its consumption after glucose depletion. During
these simulations, the growth rate is limited by protein availability, and only at glucose concentra-
tions approaching km (0.28 mmol/l), the Michaelis-Menten equation for glucose uptake becomes
the limiting factor. The protein availability constraint results in ethanol production by ecYeast8 and
a realistic yield of biomass on glucose, overestimated by Yeast8. Although ethanol consumption
was allowed during the entire simulation, it was only predicted after glucose depletion (in agree-
ment with experimental data). However, during this phase, ecYeast8 simulates higher biomass
concentration than the experimental measurements.

,

Figure 5.2: Batch simulation of S. cerevisiae H1022 with Yeast8 (- -) and ecYeast8 (-) compared with experimental
data (symbols) [260].

In fed-batch reactors, batch growth is followed by a feeding phase in which media with
substrate enters the reactor. During this phase, cellular growth is determined by the available
glucose. We performed fed-batch cultivation of S. cerevisiae CEN PK-113-7D and used oxygen
uptake and CO2 production rates (OUR, CPR) as an indication of cell metabolism. This process
was simulated using dFBA and model predictions were compared to experimental data. Yeast8
showed higher OUR and CPR as a result of a higher growth rate during the batch phase which
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resulted in infeasible solutions before the start of the feeding phase. Simulations with ecYeast8
resulted in accurate prediction of OUR,CPR, and biomass concentration in the reactor (Sup. Figure
5.1).

Batch growth on multiple carbon sources

Yeast8 and ecYeast8 were used to simulate batch growth of S. cerevisiae in a mixture of carbon
sources using dFBA. Dynesen et al. combined sucrose, a disaccharide of glucose and fructose,
with glucose, fructose, or mannose to study growth and catabolite repression of S. cerevisiae
DGI342 [261]. Simulations using Yeast8 and ecYeast8 were compared with this experimental data.

Yeast8 predicts simultaneous consumption of all carbon sources andunrealistically high uptake
rates resulting in substrate depletion after 6 hours (Figure 5.3 A-C). In order to obtain better predic-
tions, uptake reactions should be constrained using specificMichaelis-Menten kinetic equations for
each carbon source. Contrarily, ecYeast8 simulations show a good agreement with experimental
data as the order of substrate consumption in this model is determined by the relative protein cost
for substrate consumption as well as the biomass yield on the different carbon sources (Table 5.1,
Figure 5.3D-F).

Table 5.1: Relative protein cost for consumption of different substrates and biomass yield per C-mol. The relative
protein cost is calculated as the flux through the protein pool reaction required to consume 1 mmol of substrate
divided by the same flux required for the consumption of 1 mmol of glucose.

Substrate Relative protein cost Biomass yield (gDW/C-mol)
Glucose 1.00 0.43
Fructose 1.25 0.30
Mannose 1.27 0.30
Sucrose 2.18 0.20

When sucrose and glucose are the substrates, the model predicts three phases characterized
by the use of different carbon sources. First, all the available free glucose is consumed, as it is
the substrate with the lowest protein cost (Table 5.1). In the second phase, sucrose is hydrolyzed,
sucrose-derived glucose is consumed and fructose accumulates. The highest protein cost of su-
crose is caused by the simultaneous consumption of glucose and fructose. However, during dFBA
simulation the accumulation of glucose and fructose in the reactor is allowed and the only ad-
ditional cost of sucrose consumption is caused by the need to hydrolyze the disaccharide by
the invertase enzyme. After hydrolysis, ecYeast8 predicts glucose consumption and fructose ac-
cumulation due to the lower protein cost of glucose degradation (Table 5.1). The third phase
is characterized by fructose consumption, with a higher protein cost compared to glucose use
causedby a higher flux through the glucose-6-phosphate (G6P) isomerase. According to ecYeast8,
this enzyme converts G6P to fructose-6-phosphate (F6P) during growth on glucose and catalyzes
the reversible reaction during fructose growth with a higher flux. The fact that these three phases
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are also observed experimentally suggests that carbon catabolite repression (CCR) of sucrose,
fructose and ethanol exerted by glucose is essential to achieve maximum growth rate when
considering the limitation of protein content in the cells (Figure 5.3D).

Figure 5.3: Batch simulations of S. cerevisiae DGI342 with two carbon sources using Yeast 8 (A-C) and ecYeast8
(D-F) compared to experimental data (symbols) [261]. Colored areas represent different substrate consumption
phases predicted by the model: glucose consumption (orange), sucrose hydrolysis and glucose consumption
(green), fructose consumption (red), and mannose consumption (purple).

When the carbon sources are sucrose and fructose, the model repeats phases two and three.
First, sucrose is hydrolyzed, the sucrose-derived glucose is consumed and fructose accumulates.
Then, only after glucose depletion, the model consumes the available fructose (Figure 5.3E).

Simulations with sucrose and mannose show similar results. First, the model predicts the con-
sumption of sucrose-derived glucose and fructose accumulation. Fructose consumption only starts
after glucose depletion. Mannose consumption starts at a low rate at the end of the fructose con-
sumption phase and continues then at a higher rate due to the higher protein cost required for its
degradation. This cost is caused by the need to convert mannose to F6P, reactions catalyzed by
mannokinase and mannose-6-phosphate isomerase (Figure 5.3F).

Although the model does not predict the initial consumption of fructose in simulations with
fructose and sucrose, or initial glucose accumulation and simultaneous consumption of glucose,
fructose, and mannose in sucrose and mannose simulations, the protein availability constraint is
enough to accurately predict sucrose hydrolysis as well as fructose and mannose consumption
rates. Besides, the combination of ecYeast8 and dFBA improved predictions by explicitly modeling
the inhibitory effect of glucose, fructose, sucrose, and mannose on the uptake rates of the other
carbon sources (Sup. Figure 5.2).
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Simulation of a ∆pdc lactate producing S. cerevisiae strain

Yeast8 and ecYeast8 were modified to simulate a S. cerevisiae strain without pyruvate decar-
boxylase activity, laboratory evolved to tolerate high glucose concentrations and engineered to
produce lactate [253]. dFBA simulations with Yeast8 and ecYeast8 were in agreement with exper-
imental data (Figure 5.4A). According to Van Maris et al., during the first 24 h of the fermentation
oxygen was supplied in excess to the reactor and cells were only limited by glucose availability.
After 24 h cells suffered oxygen limitation, which was simulated constraining the oxygen uptake
reaction. The oxygen limitation continued after 75 h when an additional 100 g pulse of glucose
was added to the reactor [253].

During laboratory evolution fastest growers were selected, obtaining a final strain with a maxi-
mum growth rate of 0.13 h-1 [253]. Although the concept of laboratory evolution is in agreement
with the use of biomass growth as an objective function during FBA, Yeast8, and ecYeast8 pre-
dicted higher maximum growth rates. Therefore, the upper bound of the biomass reactions had
to be constrained to match the experimental value.

During the glucose limitation phase bothmodels, Yeast8 andecYeast8,were limitedbyglucose
availability determined by a Michaelis-Menten equation. Besides ecYeast8 was limited by the
protein pool constraint which resulted in the prediction of a lower glucose uptake rate by this
model (Figure 5.4B). In this period oxygen uptake rates predicted by Yeast8 were unreasonably
high and lactate production was not predicted (Figure 5.4B,C). Contrarily, the limitation in protein
availability of ecYeast8 resulted in realistic predictions of oxygen uptake and lactate production
rates. After 24 h the limitation in oxygen uptake resulted in a 99.88% decrease in oxygen uptake
by Yeast8 (from 34 mmol/gDW/h to 0.04 mmol/gDW/h) and 93% decrease in ecYeast8 (from 0.58
to 0.04 mmol/gDW/h) (Figure 5.4). After the introduction of this limitation, there were no significant
differences in flux predictions by both models.

Besides lactate production, simulations by ecYeast8 resulted in succinate and glycerol produc-
tion at concentrations similar to experimental measurements [253]. Simulations with Yeast8 only
resulted in glycerol and succinate production once oxygen uptake was limited and additional
by-products such as citrate or arginine were exported by the model.

Figure 5.4: Batch growth simulation of a ∆pdc, lactate producing S. cerevisiae strain using EcYeast8 (-) and
Yeast8 (- -) compared to experimental data ( □).
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Although both models performed well when additional constraints were applied, the protein
availability constraint was enough to predict lactate production in oxygen excess conditions
suggesting the potential of combining enzyme-constrained models and dFBA for cell factory
simulations (Figure 5.4). The disagreement between model predictions and experimental data
observed during the second half of the simulations is probably caused by growth inhibition due
to product toxicity. The dFBA framework would allow to include this inhibition linking the upper
bound of the biomass reaction to the reactor concentration of the toxic compound.

Flux sampling as a tool to explore metabolism at different growth rates

When modeling cell metabolism, FBA only provides one of the multiple flux distributions that result
in the optimization of the chosen objective function. Flux sampling algorithms solve this problem by
providing possible flux distributions ofmetabolic reactions that satisfymass balance constraints [64].
Due to the better performance of ecYeast8 when simulating the consumption and production
of metabolites in different reactor settings, we tested how flux sampling can be applied to study
intracellular fluxes.

During simulations with ecYeast8, all the glyceraldehyde-3-phosphate was produced through
the pentose phosphate pathway. To ensure experimentally observed flux through phospho-fructo
kinase and fructose bisphosphate aldolase, the reversible transaldolase reaction was blocked
before sampling [262]. Also, the reduction of the tricarboxylic acid cycle (TCA) intermediates in
the cytoplasm was avoided to favor the production of NADH in the cytoplasm [263]. Last, the
model was re-scaled to avoid stoichiometric coefficients below solver tolerance that caused
numerical instability. For each simulation, the obtained flux distributions represent the metabolism
of S. cerevisiae cells growing in a chemostat with a specific dilution rate at steady state. The
simulation at maximum growth rate represents the metabolism of cells growing exponentially in a
batch reactor. Sampling results can be found at Gitlab.

In general, we observed good agreement between predicted fluxes and experimental mea-
surements. For example, the flux through TCA reactions decreases with growth rate and, at the
maximum growth rate, sampling results show the operation of the TCA cycle as two different
branches (zero flux through α-ketoglutarate dehydrogenase (KGD), succinyl-CoA synthetase (SCL)
and fumarase (FUM)) [262, 264, 265]. At these high growth rates, relative flux to the pentose phos-
phate pathway (PPP) decreases and is directed towards glycolysis and ethanol formation (Figure
5.5A). As expected, the variability of the fluxes decreases at increasing growth rates as a result
of a more limited solution space. At higher growth rates protein availability becomes limiting and
alternative pathways are no longer feasible.
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Figure 5.5: Comparison of flux sampling results with ecYeast8 (median ± MAD) and 13C flux analysis data (sym-
bols) [262]. A. Fluxes relative to the glucose uptake at different growth rates of the glycolytic enzyme fructose
bis-phosphate aldolase (FBA), the PPP enzyme glucose-6-phosphate dehydrogenase (ZWF), the tricarboxilic
acid cycle enzymes citrate synthase (CS) and α-ketoglutarate dehydrogenase (α-KGD). B. Fluxes relative to the
glucose uptake of enzymes involved in the pyruvate node (pyruvate kinase, PK; pyruvate decarboxylse, PDC;
pyruvate carboxylase, PC) and relative transport flux of pyruvate to mitochondria (mito). C. Schematic represen-
tation of the pyruvate node (GLC, glucose; PEP, phosphoenol pyruvate; PYR, pyruvate; OAA, oxaloacetate; ACTL,
acetaldehyde; ETH, ethanol; ACT, acetate; ACoA, acetyl coenzyme A; ALD, acetaldehyde dehydrogenase;
ACS, acetyl CoA synthase; ME, malic enzyme). In A and B lines represent the median flux value obtained from
10,000 samples and shaded areas represent the median absolute deviation.

As a test case on the use of flux sampling to study metabolism, we focused on the predicted
flux distributions in the pyruvate node and compared them to experimental data (Figure 5.5B, C)
[262]. Pyruvate kinase (PK) is the main source of cytoplasmic pyruvate and, in agreement with
literature, the model predicts constant relative flux at growth rates below the critical dilution rate
and increasing relative flux at higher growth rates. Whilst flux predictions of PK and pyruvate decar-
boxylase (PDC) follow the same trend as experimental data, pyruvate carboxylase (PC) shows the
opposite behavior (Figure 5.5B). Frick and Wittmann propose that at high growth rates, pyruvate
conversion to acetyl-CoA (by PDC, ALD, and ACS) and subsequent transport to mitochondria
saturates. The extra pyruvate is then converted to oxaloacetate by PC, which is transported to
the mitochondria and converted back to pyruvate by the malic enzyme (ME). In this way, the
mitochondrial pyruvate pool, required for acetyl-CoA andamino acid synthesis, is replenished [262,
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266]. However, the model predicts a relative flux increase through PDC, no saturation in the cyto-
plasmic conversion of pyruvate to acetyl-CoA, and, as a result, fails to predict the experimentally
observed flux increase through PC (Figure 5.5C). Although model predictions show a decrease in
relative pyruvate transport to the mitochondria, transport is enough to cover mitochondrial pyru-
vate requirements and the experimentally observed flux increase through ME is not predicted by
the model (Figure 5.5C). In fact, free movement of metabolites across compartments is allowed
in ecYeast8 as transporters are not part of the protein pool. Therefore, inaccurate flux predictions
are expected when the transport of metabolites across compartments is the limiting factor.

Discussion

EcModels add an additional layer of information to traditional GEMs based on the limited capac-
ity of the cells to synthesize proteins, which results in more accurate predictions of extracellular
fluxes during chemostat, batch, and fed-batch growth of different S. cerevisiae strains. In chemo-
stat simulations, ecYeast8 corrects the inability of Yeast8 to predict the critical dilution rate and
subsequent decrease in biomass concentration and ethanol production. Similarly, during batch
simulations, ecYeast8 corrects the inability of Yeast8 to predict the Crabtree effect as well as the
order and rate of consumption of several carbon sources.

De Groot et al. show that GEMs predict overflow metabolism when two growth-limiting con-
straints are hit regardless of their biological interpretation [267]. Therefore, Yeast8 can be modified
to predict overflowmetabolism by adding a second constraint such as amaximum oxygen uptake
rate [268]. However, ecYeast8 not only predicts respiro-fermentative metabolism at growth rates
higher than the critical dilution rate but, when combined with dFBA, it also accurately describes
ethanol production andconsumption during exponential growth, the preferred consumption order
of different carbon sources as well as product production rates (Figures 5.2, 5.3, 5.4). In traditional
GEMs, the flux through reactions required for growth is not constrained, so the model adjusts these
fluxes to obtain the desired growth rate, which results in an inaccurate description of metabolism.
EcYeast8 breaks the linear dependency between fluxes and growth rate and shows accurate
intracellular flux predictions (Figure 5.5). Simulating this behavior with Yeast8 is only possible upon
an iterative, case-dependent design of condition-specific constraints [269].

The parameter with the largest influence on the simulations is the upper bound of the protein
exchange reaction,which represents enzymeavailability. This parameter determines themaximum
growth rate in batch reactors, the critical dilution rate in continuous cultures,and the uptake rates of
substrates. In the absence of proteomic data Sánchez et al. assume constant protein availability
for a given strain and process and provide two different values depending on the simulation
of chemostat or batch growth [67]. We showed that increasing this parameter was required to
simulate batch growth on different carbon sources and that it should be adjusted to accurately
simulate chemostat growth of strains with different protein content [258]. Interestingly, the effect
of the protein availability constraint implicitly accounts for protein synthesis costs reducing the
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impact of themaintenance requirements during the simulations. Therefore, the constraint in protein
availability can be understood in terms of the limited space in the cell, but also in terms of limited
energy available for protein synthesis. Besides, simulations with different carbon sources suggested
that the order of substrate use can be partially explained by the associated protein cost required
for its consumption. When considering the limitation of protein content in the cells, CCR is essential
to achieve the maximum growth rate.

dFBA is a valuable tool to predict the dynamic behavior of engineered strains in a bioreactor
[249, 250, 251]. Whilst FBA allows the comparison of yields between engineered strains, dFBA simu-
lates dynamic processes allowing the comparison of final titters and productivities which depend
on the strain and the bio-process. We showed here how the combination of ecYeast8 with dFBA
improved predicted metabolic changes in response to the operation of a reactor without addi-
tional constraints. We used simulations on amixture of carbon sources to show howpredictions can
be further improved by incorporating regulation-related constraints to the dFBA framework (Sup.
Figure 5.2). We showed the potential of this method to aid the design of bio-processes including
the prediction of the metabolism of engineered cells in a reactor and changes in cell metabolism
due to changes in operational conditions such as co-feeds. This framework can be extended to
include other important process parameters such as temperature [187].

The accurate prediction of intracellular metabolic fluxes is a desired feature for models aiming
to find and compare metabolic engineering strategies to improve the production of a target
metabolite. To the best of our knowledge, this study is the first report on how to combine flux
sampling and ecModels to study intracellular flux predictions, avoiding the necessity to fix an
objective function and allowing the coverage of the whole solution space [64]. While previous
studies focused on the prediction of intracellular fluxes at the maximum growth rate, we have
compared flux predictions covering S. cerevisiae full range of growth rates [263]. Despite the
substantially improved predictive power of the model, the protein availability constraint was not
enough to yield accurate predictions of all intracellular fluxes due to the highly dimensional solution
space and the absence of regulatory information in themodel (Figure 5.5B). Using proteomic data
instead of a single constraint on the protein content of the cells, considering space limitation in cell
membranes or the creation of ensemble models is expected to further improve flux predictions
when these models are applied to strain design, reducing the prediction of incorrect knock-out
and overexpression targets [67, 270, 271].

In conclusion, we introduced flux sampling as a tool to analyze intracellular flux predictions of
ecModels, of major importance for model-guided strain design. As parameters in the reactor, as
well as genetic modifications, affect flux predictions, the successful combination of ecModels and
dFBA allows the comparison of yields and productivities among different strains and (dynamic)
production processes. This model and simulation framework therefore provides themeans formore
accurate and realistic designs of cell-based processes increasing their usefulness for industrial
applications.
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Supplementary methods

EcYeast8 model modifications

Model re-scaling

In ecModels enzymes are treated as metabolites which stoichiometric coefficient is 1/kcat. In
ecYeast8 kcat values expand 10 orders of magnitude (1 to 1010 h-1) resulting in stoichiometric co-
efficients below solver tolerance (10-6) and numerical instability of the model during flux sampling.
To minimize the problem the range of kcat values was reduced so the maximum allowed kcat
value was 106. Besides, all 1/kcat coefficients and the protein pool exchange upper bound were
scaled by 103 to reduce the impact of rounding errors on flux predictions through enzyme usage
reactions. These modifications did not change flux predictions as the contribution of extremely
efficient enzymes (i.e. kcat > 106) to the protein pool is negligible.

Model constraints

For all the simulations the upper bounds of exchange reactions to produce acetaldehyde, 2,3-
butanediol, glycine, acetate, and pyruvate were constrained to match experimental measure-
ments [67]. Also, the transport of serine from the mitochondria to the cytoplasm (r_2045_REV)
and the cytoplasmic NADP+ dependent conversion of isocitrate to 2-oxoglutarate (r_0659No1)
were blocked as described in Sánchez et al. [67]. Besides, the reversible transaldolase reaction
(r_1048_REVNo1), the reversible cytoplamic reaction of malate dehydrogenase (r_0713_REVNo1),
the fumarate reductase reaction in the cytoplasm (r_1000No1), the reversible isocitrate dehydro-
genase reaction in the cytoplasm (r_0659_REVNo1) and the glutamate decarboxylase reaction
(r_0469No1) were blocked by constraining to zero their upper and lower bounds.

Experimental data

Experimental data of S. cerevisiae growth in chemostat and batch reactors was obtained from
literature (Sup. Table 5.1). Fed-batch cultures of S. cerevisiae CEN.PK-113-7D were performed in a 1
l working volume of a stirred fermenter (DASGIP parallel bioreactor system, Eppendorf). Throughout
the fermentations the pHwas kept at 5.1 and the temperaturewas kept at 30°C. The batchmedium
(400 g) contained: 2.5 g/kg glucose, 1g/kg (NH)4SO4, 10 g/kg KH2PO4, 4 g/kg MgSO4·7H2O, 0.3
g/kg CaCl2·2H2Oand vitamins and trace elements according to Verduyn et al. [272]. After 4 hours
of growth on the batch medium, the aerobic fed-batch phase was started with an exponential
feed profile supporting a growth rate of 0.05 h-1. The composition of the feed medium was 209
g/kg glucose, 7.67 g/kg ethanol, 2g/kg (NH)4SO4, 20 g/kg KH2PO4, 8g/kg MgSO4·7H2O, 0.6 g/kg
CaCl2·2H2O and vitamins and trace elements according to Verduyn et al. [272]. Samples for
biomass concentration determination were obtained every 24 hours and actual oxygen uptake
rate and CO2 production rate were determined using off-gas analysis.
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Sup. Table 5.1: Summary of experimental data used in this study. *CEN.PK 113.7D pdc1(-6.-2)::loxP pdc5(-6.-
2)::loxP pdc6(-6.-2)::lox P ura3-52 YEpLpILDH

Reactor operation Carbon source Strain Reference
Chemostat Glucose CBS8066 [254]
Chemostat Glucose DS28911 [255]
Chemostat Glucose H1022 [256]
Chemostat Glucose CEN.PK 113.7D [259]

Batch Glucose H1022 [260]
Fed-batch Glucose CEN.PK 113.7D This study

Batch Sucrose + Glucose DGI342 [261]
Batch Sucrose + Fructose DGI342 [261]
Batch Sucrose + Mannose DGI342 [261]
Batch Glucose GCSI-L* [253]

Chemostat, batch, and fed-batch simulations

Chemostat reactors are in steady state and have a constant inflow and outflow of media at a rate
F (l/h). Note that, the dilution rate, D, (h-1) is defined as F /V where V represents the reactor volume
(l). The biomass balance shows that D equals the cell growth rate (µ, h-1). Given D and the glucose
concentration in the feed (cs,in , mmol/l), FBA is used to calculate the glucose consumption rate
(qs, mmol/gDW/h), and the glucose mass balance is used to calculate the cell concentration (cx,
gDW/l). Similarly, the concentration of product i (ci , mmol/l) is calculated with the product mass
balance using its production rate (qi, mmol/gDW/h) obtained by FBA (Sup. Table 5.2).

In batch reactors and during the batch phase of fed-batch reactors biomass and products
accumulate, substrates are depletedat a rate determinedby theMichaelis-Menten equation,and
the glucose mass balance is used to calculate the remaining glucose in the reactor (Ms, mmol).
During the feeding phase of fed-batch reactors, the reactors are fed with media containing
substrates at a rate F (l/h), there is no accumulation of glucose (i.e. dMs/dt = 0) and the glucose
mass balance is used to constrain the glucose uptake rate (qs, mmol/gDW/h). FBA with qs as
constraint is used to calculate the growth rate (µ, h-1) and the production rate of other metabolites
(qi, mmol/gDW/h). Mass balances are used to calculate the biomass mass in the reactor (Mx, gDW)
as well as the product mass (Mi, mmol). Note that mass is used instead of concentrations as
the volume in the reactor changes during the feeding phase, concentrations are calculated as
M/V (t), where V(t) is the liquid volume in the reactor at time (t) (Sup. Table 5.2).
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Sup. Table 5.2: Glucose, biomass and product mass balances in chemostat, batch and fed-batch reactors.
Chemostat reactors are in steady state and have a constant inflow and outflow of media. In batch reactors
biomass andproducts accumulate and substrates are depleted. During the feeding phase of fed-batch reactors,
the reactors are fed with media containing substrates. D, dilution rate (h-1); Ms,in, glucose mass in the feed
(mmol); qs, glucose uptake rate (mmol/gDW/h); Mx, biomass mass in the reactor (gDW); Ms, glucose mass in
the reactor (mmol); µ, growth rate (h-1); qi, production rate of product i (mmol/gDW/h); Mi, mass of product i
in the reactor (mmol), t time (h); F, feed rate (l/h); cs,in, glucose concentration in the feed (mmol/l).

Chemostat
Glucose 0 = D ∗Ms,in − qs ∗Mx −D ∗Ms

Biomass 0 = µ ∗Mx −D ∗Mx

Product i 0 = qi ∗Mx −D ∗Mi

Batch and fed-batch

Glucose
Batch: dMs

dt
= F ∗ cs,in − qs ∗Mx(t)

Feed: 0 = F ∗ cs,in − qs ∗Mx

Biomass dMx
dt

= µ ∗Mx(t)

Product i dMi
dt

= qi(t) ∗Mx(t)

Simulation of mixed carbon fermentations including additional regulation with
ecYeast8

Consumption of combinations of sucrose with glucose, fructose, and mannose was simulated
using ecYeast8 and including additional regulatory constraints in the dFBA framework.

First, repression of fructose consumption by glucose was simulated by constraining the upper
bound of the fructose uptake reaction (r_1709_REV) to zero when glucose concentration in the
media was higher than 1 mmol/l. Similarly, repression of glucose consumption by fructose was
simulated constraining the glucose uptake and transport reactions (r_1714 REV and r_1166) to
zero when fructose concentration in the media was above 1 mmol/l. When sucrose andmannose
were the initial carbon sources, the experimentally observed delay between sucrose hydrolysis and
glucose and fructose consumption was simulated constraining their transport reactions (r_1166
and r_1134) to zero when sucrose was present in the media.

Second, sucrose hydrolysis was forcedwhen glucose and fructose concentrations in themedia
were below 15 g/l by setting a lower bound to reaction r_2058_REV. If glucose and fructose were
initially present in the media the bound was 3.5 mmol/gDW/h and 20 mmol/gDW/h otherwise.

In all cases, lower and upper bounds of glucose, fructose, and mannose uptake as well as
sucrose hydrolysis were set to zero when the carbon sources were not present in the media.

Last, during simulations with fructose and mannose as initial carbon sources, the protein ex-
change upper bound was increased by 75% compared to batch simulations with glucose and
the secretion reactions for ethanol, acetate, pyruvate, acetaldehyde, and 2,3-butanediol were
unconstrained.
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Simulation of a ∆pdc lactate producing S. cerevisiae strain

Yeast8 and ecYeast8 were modified to simulate a strain without a pyruvate decarboxylase (PDC)
activity and expressing the lactate dehydrogenase gene from Lactobacillus plantarum [253].
To simulate the knockout, bounds of reactions r_0959 and r_0960 (Yeast8) and arm r_0959 and
arm_r_0960 (ecYeast8) were set to zero. The lactate dehydrogenase reaction was added to Yeast8
(Equation 5.1). Three reactions were added to ecYeast8: the forward and reverse reactions of the
lactate dehydrogenase (Equations 5.2, 5.3) and a draw reaction for the LDH protein (Equation
5.4). Values of kcat (40 s-1) and molecular weight (39 kDa) were obtained from BRENDA [47].

Lactate+NAD+ ↔ Pyruvate+NADH +H+ (5.1)

Lactate+NAD+ +
1

kcat
· LDH → Pyruvate+NADH +H+ (5.2)

Pyruvate+NADH +H+ +
1

kcat
· LDH → Lactate+NAD+ (5.3)

MW · protpool → LDH (5.4)

Batch growth of both models was simulated using dFBA. The growth reaction (r_2111) upper
bound was constrained to 0.13 h-1 to simulate the maximum growth rate observed experimentally
[253]. Cells were simulated in a 1 l reactor operated as a batch with 100 g/l of initial glucose.
Eighty hours after inoculation 100 g of glucose were added to the reactor and this pulse was
included in the simulations. According to Van Maris et al., cells experienced oxygen limitation
from 24 h after inoculation until the end of the process [253]. Oxygen limitation was simulated
constraining the oxygen uptake reaction (r_1992 in Yeast8 and r_1992_REV in ecYeast8) to qo

assuming pseudo-steady state for oxygen:

0 = max_O2_transfer − qo · cx (5.5)

where the maximum O2 transfer to the reactor (max_O2_transfer) was calculated based on ex-
perimental data and cx is the predicted biomass concentration in the previous time step [253].

In agreement with experimental data, during ecYeas8 simulations export of products different
than biomass, lactate, succinate,andglycerolwas avoidedconstraining their production reactions
[253]. The same approach resulted in infeasible solutions with Yeast8 and therefore production of
alternative products was allowed.
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Supplementary Figures

Sup. Figure 5.1: Simulations of OUR (A), CPR (B), and biomass concentration (C) of S. cerevisiae CEN.PK 113.7D
grown with an exponential glucose feed. Peaks in experimental OUR and CPR data were caused by sampling
of the reactor.
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Sup. Figure 5.2: Batch simulations of S. cerevisiae DGI342 with two carbon sources using Yeast8 (A-C), ecYeast8
(D-F) and ecYeast8 with additional regulation (G-H) compared to experimental data (symbols) [261]. Colored
areas represent different phases in the process: glucose consumption (orange), sucrose hydrolysis and glucose
consumption (green), fructose consumption (red), and mannose consumption (purple).
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Understanding cell physiology during oxygen-limited growth is essential, as reducing the
oxygen demand of microbial bio-conversions can facilitate their implementation. Simi-
larly, glucose limitation is often employed in industrial bioprocesses. Therefore, we inves-
tigated the adaptive responses of the obligate aerobic bacteria Pseudomonas putida
KT2440 to varying oxygen levels in chemostat bioreactors, and compared glucose-
limited and oxygen-limited cultures. Under oxygen-limited growth, P. putida exhibited
a decrease in cell concentration, coupled with an up to 59% increase in biomass yield
and a reduced glucose uptake. Notably, the increased yield was caused by the lack
of pyoverdine production in this condition, compared to the observed production dur-
ing slow, glucose-limited growth. Transcriptomic and proteomic samples were analyzed
considering the aging of the culture to identify changes specifically related to varying
nutrient limitations. While 923 differentially expressed genes, specific to oxygen-limited
growth were identified, only seven differentially abundant proteins were found. Genes
up-regulated during oxygen limitation were associated with respiratory chain functions,
while down-regulated genes were related to a few catabolic processes including β-
oxidation and protein maturation. After eight days of oxygen-limited growth, excess
oxygen was reintroduced, and the cells exhibited substantial recovery, reaching cell
concentrations and glucose uptake levels comparable to those observed during the
initial glucose-limited growth. Overall, our findings suggest P. putida’s resilience to long-
term oxygen-limited growth, which can be applied to reduce energy requirements in
industrial-scale bioprocesses and benefit the production of reduced products. Moreover,
we unveil the carbon loss of slow-growing, glucose-limited cells caused by pyoverdine
production.

Abstract
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Introduction

Pseudomonas putida KT2440 has gained recognition as a versatile chassis for various metabolic
engineering applications. Its unique attributes, including the ability to adapt to highorganic solvent
concentrations and oxidative stress, coupled with its straightforward nutritional requirements, rapid
growth, and versatilemetabolism,position it as an ideal candidate for industrial bio-transformations
[105, 121, 122, 273, 274]. However, its obligate aerobic nature hinders production in large-scale
bioreactors where oxygen-limited zones are inevitable [275]. While oxygen limitation could affect
the organism’s growth and performance, maintaining high oxygen tensions increases the energy
and cooling requirements of the bioprocess [275, 276]. Agitation alone is estimated to require
approximately 1 kW of power for every cubic meter of bioreactor volume and the sum of agitation
and aeration is estimated to require around 3 kW/m3 [277]. Although anoxic regimes are not
always necessary, the development of low-oxygen production processes would have a profound
impact on lowering costs during scale-up and, consequently, on the adoption of microbial bio-
conversions [277].

The physiology of P. putida has been studied in the presence of different carbon sources [278],
toxic compounds [279, 280], and limited nutrients such as nitrogen, phosphorus or iron [274, 281,
282]. The ability of P. putida to endure temporal glucose limitation and starvation through internal 3-
hydroxy alkanoates (3-HA) utilization, a precursor to polyhydroxyalkanoates (PHA), and amino acid
catabolism is well-documented [283]. Similarly, the physiology of P. putida grown in glucose-limited
chemostat reactors has been studied at different growth rates [284]. However, its physiological
and genetic responses to oxygen limitation remain insufficiently explored. This knowledge gap is
significant, as understanding these responses is essential for effectively operating and optimizing
this bacteria in large-scale industrial environments.

Several studies have attempted to engineer anaerobic P. putida cells by modifying ATP gen-
eration pathways, employing redox mediators in bioelectrochemical systems, or altering essential
oxygen-dependent reactions [285, 286, 287, 288, 289, 290]. Despite these efforts, successful growth
under anoxic conditions has not been achieved, with only Kampers et al. reporting improved
growth under microoxic conditions, highlighting the complexity of P. putida’s metabolic needs
[289]. To our knowledge, the only study that investigated the response of P. putida to oxygen
limitation using omics technologies is the work of Demling et al. [291]. They explored its adapt-
ability to oxygen gradients mimicking industrial reactors, providing insights into its physiological
and proteomic adjustments under these changing conditions. They revealed that, while fluctuat-
ing oxygen levels led to a deceleration in growth, the final biomass and product concentrations
remained unaffected. Moreover, the minimal proteomic changes observed in cells exposed to
oscillating oxygen availability underscored P. putida’s capacity to cope with such environmental
variations [291].

While Demling et al. showed the ability of P. putida to rapidly recover from oxygen starvation
when resupplied with oxygen [291], Ankenbauer et al., and Mutyala et al. proposed microaerobic
growth of this microorganism to increase production of isobutanol and succinate, respectively [292,
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293]. In this way, the growth of P. putida under microoxic conditions is not only important to endure
gradients in industrial fermentors, but can also be used as a strategy to improve production.

Here, we study the physiological, transcriptomic, and proteomic responses of P. putida KT2440
cells grown in glucose- and oxygen-limited chemostats. This setup allowed us to study the cellular
adaptations to long-term oxygen limitation, a scenario scarcely explored, yet crucial for under-
standing P. putida’s performance in industrial settings. Although the intracellular mechanisms that
cope with this prolonged limitation remain ambiguous, we show the resilience of P. putida to
oxygen-limited conditions. Notably, the use of glucose-limited cells as a reference condition re-
vealed a significant reduction of biomass yield during this limitation caused by the production of
pyoverdine despite the use of iron-rich media. This decreased yield is corrected upon the enforce-
ment of oxygen-limited growth. This study, therefore, provides a comprehensive view of P. putida’s
adaptive capabilities, laying a foundation for its efficient utilization in industrial bioprocesses.

Materials and methods

Strains and media

P. putida KT2440 was used in all the experiments. Luria-Bertani (LB) medium containing 5 g/l yeast
extract, 10 g/l tryptone and 10 g/l NaCl was used for overnight pre-culture cultivations. M9minimal
medium (6 g/l Na2HPO4, 3 g/l KH2PO4, 1.4 g/l (NH4)2SO4, 0.5 g/l NaCl, 0.2 g/l MgSO4·7H2O and
2.5 ml/l trace elements) was used for bioreactor cultivations [294]. Media was supplemented with
80 mM of glucose and 0.6 ml/l of antifoam 204 (Sigma-Aldrich).

Bioreactor cultivation

Cells from the pre-cultures were washed with minimal media and bioreactors were inoculated
with an initial OD600 of 0.3. The cultivation was performed in 1 l bioreactors connected to a
Biostat Q plus tower and controlled through a Biopat DCU tower via MFCS win 3.0 (Sartorius-Stedim,
Gottingen, Germany). Bioreactors containing 500 ml of media were maintained at 30°C and pH
was controlled at 7 using 15% w/v NH4OH. During batch fermentations, the dissolved oxygen (DO)
was maintained above 30% by increasing the stirrer speed from 400 rpm up to 1200 rpm with an
airflow rate of 0.6 l/min. Exhaust gas composition was monitored online by BlueSense CO2 and
O2 infrared gas analyzers (Herten, Germany). The batch phase was continued by a chemostat
phase upon glucose depletion. A dilution rate of 0.1 h-1 was controlled by peristaltic pumps that
fed media at a rate of 0.83 ml/min. The exhaust media was controlled by a sensor that ensured
constant volume in the fermentors. After five volume changes of the reactor media, steady state
was determined when, during three consecutive samples, taken 24 h apart, values for OD600 in
the effluent and/or the reactor, metabolite concentrations, oxygen, andCO2 concentration in the
exhaust gas, and DO varied less than 10%. Liquid and gas flow rates were monitored and adjusted
when required.
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During the chemostat cultivation, four sequential steady states were achieved (Figure 6.1A).
The first steady state was characterized by glucose limitation and the DO was maintained above
30% adjusting the stirrer speed and using an air flow rate of 0.6 l/min. After the steady state was
reached, the stirrer speedwasmaintainedconstant at 750 rpmand the gas phasewas changed to
a mixture of 95% N2 and 5% O2. After a new steady state, the concentration of O2 was decreased
to 2% of the gas. Finally, the gas inflowwas switchedback to air and the DOwasmaintained above
30%. Samples for RNA-seq analysis, proteomics, HPLC, and cell dry weight (CDW) determination
were collected at every steady state.

Analytical methods

Cell density was determined either at 600 nm (OD600) using Diluphotometer IMPLEN or measuring
cell dry weight (CDW) (in gDW/l) at a given time point. CDW was determined by filtering 5 ml
fermentation broth using pre-weighted dry microfilters (0.4 µm pore size). After drying for 24 h at
105°C, the filters were cooled down and weighed to calculate the cell dry mass.

Concentrations of glucose, gluconic acid, α-keto gluconic acid, and other organic acids in
the culture supernatant were determined using high-performance liquid chromatography (HPLC)
(Thermo Fisher Scientific) equipped with an Aminex HPX-87H column. The mobile phase was 5 mM
of H2SO4 at a flow rate of 0.5 ml/min. Column temperature was held at 40°C and samples were
run for 50 min. Compounds were quantified using Shodex RI-101 and UV/vis (210 nm) detectors.
Calibration curves were prepared using standards purchased from Sigma-Aldirch. The concentra-
tion of pyoverdine was determined by HPLC (Shimadzu) with a C18 column (4.6 mm × 250 mm)
and a UV/vis detector set at 403 nm. The mobile phase contained water, 100 mM formic acid, and
acetonitrile (10:10:80 v/v/v) with a flow rate of 1 ml/min at 30 °C. The concentration of pyoverdine
was estimated using a standard curve prepared with pyoverdines from Pseudomonas fluorescens
(>90%) (Sigma-Aldrich). Pyoverdine was additionally detected by fluorescence measured using a
Synergy MX reader with excitation and emission wavelengths of 405 nm and 460 nm [295].

Rate calculations

Consumption and production rates at steady state were calculated using differences in concen-
trations in the liquid and the reactor at steady state:

qs = D ·
cs,in − cs,out

CDW
, (6.1)

where qs is the glucose uptake rate in mmol/gDW/h, cs,in is glucose concentration in the media
entering the reactor (mmol/l), cs,out is glucose concentration in the media leaving the reactor at
steady state (mmol/l), CDW is cell concentration in the reactor (gDW/l) and D is the dilution rate
(h-1).
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Consumption and production of O2 and CO2 respectively, were calculated using:

qi =
1

CDW ∗ VL

Fg,out ∗%ci,out − Fg,in ∗%ci,in

100
(6.2)

where ci,in, and ci,out are the O2 or CO2 concentrations in the gas (%), Fg,out, and Fg,in are the
gas flow rates (mmol/h), and VL is the liquid volume.

C-recoveries were calculated by dividing the carbon entering the reactor as glucose in the
media by the carbon leaving the reactor as CO2 or other products and assimilated by the cells.
A percentage of 47.35% of carbon in biomass was used [296].

RNA isolation and sequencing

For every steady state, samples for RNA isolation were harvested. The sampled volume was calcu-
lated to obtain a total cell concentration equivalent to an OD600 of 15 and transferred to 15 ml
Falcon tubes containing 1/5 volume of stop solution (5% phenol in 95% ethanol, 4°C). Samples were
vortexed for 15 seconds, incubated for 5 min at 4 °C, and centrifuged (3500 g, 10 min, 4°C). Super-
natants were discarded and pellets were frozen in liquid N2 and stored at -80°C until further analysis
[297]. RNA isolation was performed according to the manufacturer’s instruction of Maxwell® 16
LEV simplyRNA cells kit (Promega). The purified RNA was measured in a NanoDrop spectropho-
tometer and stored at -80°C. Samples were sequenced by NovoGEne using Total RNA. RNA-seq
results are available at the European Nucleotide Archive (ENA) with study accession number PR-
JEB72150. Sample accession numbers for reactor 1: air, ERR12535875; 5% oxygen, ERR12535874; 2%
oxygen, ERR12535876; air after limitation, ERR12535881. Sample accession numbers for reactor 2: air,
ERR12535871; 5% oxygen, ERR12535868; 2% oxygen, ERR12535869; air after limitation, ERR12535870.

Differential expression analysis

RNA-seq reads were pre-processed and cleaned using fastp v0.23.1 with default settings [215]. Ri-
bosomal RNA removal was performed using bbduk from the BBMAp suite v38.79 using ribokmers.fa
as reference and k=31 [298].

Read counts were obtained with Kallisto v0.46.0 quant with a bootstrap value of 100 [299]
using the publicly available coding sequences of P. putida retrieved from NCBI with accession
number GCA_000007565.2_ASM756v2 [300]. DESeq2 was used to normalize the read counts and
to compute differential expression analysis [301]. Statistical significance of gene expression differ-
ences was evaluated using a False Discovery Rate (FDR) < 0.05 and |log2(foldchange)| ≥ 0.58
(corresponding to log2(1.5)) as thresholds. Variance stabilizing transformation was performed to
obtain a matrix of expression data based on the normalized count data. The matrix of expression
data was used for hierarchical clustering and principal component analysis (PCA). Additionally,
maSigPro was used (using counts=True) to identify genes with significant expression changes along
the considered time series [302]. Genes were clustered using hierarchical clusteringwith correlation
as distance metric using the Scipy Python library (v1.6.2).

124



6

P. putida response to glucose and oxygen limitations

Preparation of proteomics samples and mass spectrometry analysis

At every steady state, the sample volume for proteomic analysis was calculated to obtain a cell
concentration equivalent to anOD600 of 20, transferred to a 15ml Falcon tube,andcentrifuged for
5min at 4500 g. Pellets were washedwith 1ml PBS at 4°Candcentrifuged for 5min at 4500 g. Pellets
were frozen in liquid N2 and stored at -80°C. Protein extraction was performed via MPLEx [303] as
described in Gao et al. [304]. The concentration of extractedproteins wasmeasuredbymicroplate
BCAassay (ThermoFisher Scientific 23225). 100 µgproteins per conditionwere transferred into a new
tube andbrought to a final volume of 100 µl with 100mMammonium carbonate. 200mM TCEPwas
added to a final concentration of 10 mM and samples were incubated for 1 h (37°C, 850 rpm). 550
mM iodoacetamide stock solution was added to the sample to reach a final concentration of 50-
55 mMand incubated for 30 minutes protected from light at room temperature. The concentration
of urea was reduced to less than 2Mwith 100mMammonium carbonate by 10-fold dilution before
trypsin digestion.

1 µg/µl solution trypsin (Pierce 90057) in 0.1% formic acid was added in a ratio of 1:50 w/w
(trypsin: protein) and samples were incubated overnight at room temperature. Peptide desalting
and cleaning were performed via StageTips ®C18 (EMPORE™ - 3M, 66883-U) as described by
Rappsilber et al. [305], and peptides were eluted from the column in 20 µl. TMT labeling was
performed based on Zecha et al. [306]. A 1:1 ratio (TMT: peptides) using a concentration of 11.8
mM TMT reagent and 4 g/l peptides was employed. The labeling reaction was incubated for
1 h (25°C, 400 rpm). The reaction was quenched with 1M Tris pH 8 to a final concentration of
50 mM for 15 min (25°C, 400 rpm). Equal amounts (20 µl) of each sample were combined in
a new microcentrifuge tube and speedvac to dry the labeled peptide sample. Peptides were
resuspended in 0.1% formic acid and cleaned up using StageTips [305]. Labeled peptides were
stored on a C18 membrane at -80°C until further analysis.

Chromatography separations and mass spectrometry (MS) analyses were performed on an
Easy-nLC™ 1000 coupled to an Orbitrap Exploris™ 480 (Thermo Fisher Scientific). Chromatogra-
phy separation was performed as described in Feng et al. [307]. Mass spectrometry data were
acquired in data-dependent (Cycle Time) mode excluding +1 and peptides with unassigned
charges, and including charges up to 5+. Peptide full spectra were recorded from 380 to 1400 m/z
on the Orbitrap mass analyzer set at 60 k resolution in profile mode, using an AGC target of 5E4,
with Custommaximum injection time, and an exclusion time of 15 s. MS/MS spectra were obtained
using HCD fragmentation with a fixed normalized collision energy at 36% and an m/z isolation
window of 0.7, resolution was set to 45 k, AGC target was set to Custom and 100% normalized. Data
searches were run against the P. putida KT2440 UniProt database [308] (comprising both reviewed
and unreviewed entries downloaded in November 2022) using standard settings on MaxQuant
software (v2.0.3.0) [309]. Raw data is available in Zenodo. Data were filtered in R to remove search
results of contaminants, reverse, and only identified by site protein groups. Only protein groups
with more than 2 peptides and more than 1 unique peptide per protein group were considered.

125



Model-Guided Strain Engineering | Chapter 6

Differential abundance analysis

Data were normalized for different sample loading in R. The Perseus software (v2.0.11) [310] was
used to perform differential abundance analysis using a permutation-based FDR corrected t-test
(500 permutations, FDR=0.05). Analysis of variance (ANOVA) was used to identify significantly
abundant proteins in all conditions. Bioconductor package maSigPro (counts=False) was used
to identify proteins with significant time profiles [302]. Clustering analysis and heatmaps were
performed in Python 3.8.8 using Scipy (v1.6.2) and Seaborn (v0.11.1) libraries.

GO-term enrichment analysis

Coding sequences were functionally annotated with GO terms using eggNOGmapper v2.1.6 (set-
tings: -m diamond –evalue 0.001 –score 60 –pident 40 –query_cover 20 –subject_cover 20 –itype
CDS –translate –tax_scope auto –target_orthologs all –go_evidence non-electronic –pfam_realign
none –report_orthologs) [311]. GO terms were used to generate annotation files for BinGO. The
BinGO Cytoscape app (v3.9.1) was used for GO enrichment analysis using the complete func-
tionally annotated genome of P. putida KT2440 or the subset of detected proteins as reference
for RNA-seq and proteomics data, respectively [312]. The Benjamini–Hochberg FDR multiple test
correction and a significant level of 0.05 were applied.

Results

Physiological response of P. putida to oxygen and glucose limitations

The adaptive response of P. putida to varying oxygen and glucose levels was studied using dupli-
cate chemostat bioreactors (Figure 6.1). After a batch growth phase, reactors were operated as
chemostats with a constant dilution rate, and consequently a growth rate, of 0.1 h-1. During the
first stage of the chemostat cultivation, cells were glucose-limited as the dissolved oxygen (DO)
was maintained above 30%, and no glucose was detected in the effluent. Subsequently, in the
next two phases of the cultivation different degrees of oxygen limitation were implemented (DO
= 0%) by reducing the oxygen levels in the gas phase of the reactor to 5% and 2%. During these
phases, glucose remained in excess and was not completely depleted. In the final stage of the
cultivation, air was reintroduced as the gas phase, reinstating glucose limitation.
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Figure 6.1: Bioreactor setup and measured parameters. A. Schematic representation of the experimental setup
used for batch and chemostat cultivation. Steady-state samples for physiological characterization, RNA-seq,
andproteomic analysis were taken on days 5, 9, 13, and 18 (red arrows). B.Onlinemeasurements of the duplicate
reactors R1 and R2 including oxygen concentration in the in-gas and off-gas, CO2 concentration in the off-gas,
and dissolved oxygen (DO). Duplicate OD600 measurements of the reactor effluent were performed two days
before the steady state sampling (standard deviation bars are plotted but are not visible).
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During oxygen-limited conditions, cell concentration at steady state decreasedwhile the yield
of biomass on glucose increased by 22% and 59% for 5% and 2% oxygen levels, respectively (Figure
6.2, Table 6.1). In the initial glucose-limited phase, no by-products, such as α-ketogluconate, that
could explain the reduced biomass yields were identified by HPLC. However, a noticeable yellow
color in the supernatant prompted speculation of an overproduction of pyoverdine. This hypothesis
was supported by fluorescence measurements (Sup. Figure 6.1) [295]. Despite the absence of a
specific P. putida pyoverdine standard, the production of this metabolite was further confirmed by
HPLC using pyoverdines from P. fluorescens as a comparative standard (Figure 6.2, Sup. Figure 6.2).
This analysis yielded quantitative estimates that, while approximate, were crucial in closing the
carbon mass balances during glucose-limited growth and suggested pyoverdine production as
responsible for the observeddecrease in biomass yield (Table 6.1). Pyoverdine plays a pivotal role in
iron scavenging forP. putida, facilitating iron uptake bybinding to iron ions with highaffinity,andhas
not been previously reported to accumulate under glucose-limited conditions [313]. According to
carbon mass balances, pyoverdine production was not substituted by other by-products during
oxygen-limited growth, and all the glucose was directed to biomass synthesis (Table 6.1).

Figure 6.2: Physiological response of P. putida under varying oxygen and glucose limiting conditions in a con-
tinuous culture. Different letters indicate significant differences between conditions according to two-tailed
homoscedastic t-tests.
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The calculated glucose uptake obtained during glucose-limited growth (Table 6.1) is in agree-
ment with previous measurements [284]. Upon oxygen limitation, the specific glucose uptake rate
was reduced by 21% and 36% when 5% or 2% of oxygen was used. The CO2 production rate was
similarly reduced by 21% and 38%, suggesting that active pathways for glucose metabolism re-
duced their fluxes but no new pathways were activated in response to oxygen limitation, even
when specific oxygen uptake rates decreased by 63% and 60%, respectively (Figure 6.2). When air
was reintroduced following the oxygen-limited phase, cells exhibited a significant increase in both
glucose uptake and CO2 production, exceeding the levels observed during the initial glucose-
limited phase. Despite this metabolic reactivation, the cell concentration only partially recovered,
reaching 83% of its original level. Similarly, the biomass yield did not fully return to its initial efficiency,
restoring to only 81% of the yield observed in the initial phase (Figure 6.2).

These results indicated the ability of P. putida to endure long-term (up to 8 days) oxygen-limited
growth. Upon excess oxygen supply, the cells’ physiology exhibited substantial recovery, reaching
levels comparable to those observed during the initial glucose-limited phase.

Table 6.1: Physiological parameters of P. putida under varying oxygen and glucose limiting conditions in a
continuous culture. qs, specificglucose uptake rate; qo, specific oxygen uptake rate; qc, specificCO2 production
rate; Yxs, yield of biomass on glucose. See Sup. Table 1 for additional information.

Air 5% O2 2% O2 Air
qs (mmol/gDW/h) 1.4 ± 0.1 1.1 ± 0.0 0.9 ± 0.0 1.9 ± 0.2

qo (mmol/gDW/h) 6.3 ± 1.1 2.3 ± 0.6 2.5 ± 0.1 7.0 ± 1.8

qc (mmol/DW/h) 4.7 ± 0.1 3.7 ± 0.1 2.9 ± 0.2 6.0 ± 0.2

Cells (gDW/l) 4.7 ± 0.0 3.4 ± 0.0 2.0 ± 0.2 3.9 ± 0.1

Yxs (g/g) 0.32 ± 0.00 0.39 ± 0.03 0.51 ± 0.04 0.26 ± 0.00

Pyoverdine (g/l) 3.7 ± 1.9 nd nd 2.9 ± 0.3

% Crecovery 121 ± 21 100 ± 4 103 ± 1 100 ± 6

Transcriptional response of P. putida to oxygen and glucose limitations

After examining the physiological adaptations of P. putida to varying oxygen and glucose levels,
we next investigated the transcriptional changes under these conditions to further understand
the underlying molecular mechanisms. Samples for RNA-seq were taken at steady states corre-
sponding to cells grown under initial glucose limitation, varying degrees of oxygen limitation (5%
or 2% oxygen in the gas phase), and the subsequent restoration of glucose limitation (Figure 6.1A).
A total of 4600 transcripts were detected with more than 100 counts in at least one condition,
corresponding to 82.7% of P. putida’s genes [300].

Principal Component Analysis (PCA) with all the detected counts confirmed the separation
of samples based on the degree of oxygen limitation, indicating a transcriptional response to
these growth conditions (Sup. Figure 6.3). Differentially expressed (DE) genes were found using
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glucose-limited cells at day 5 as reference condition (Sup. Table 2). Themost DE genes were found
in the comparison with the 2% oxygen condition (896 up-regulations and 877 down-regulations),
followed by the second glucose-limited condition (756 up-regulations and 877 down-regulations)
and the 5% oxygen condition (611 up-regulations and 376 down-regulations) (Figure 6.3). The
unexpectedly high number of DE genes between the two glucose-limited samples (that were
taken 13 days apart), as well as the overlap between up- and down-regulated genes between
the second glucose-limited samples and cells grown with 2% oxygen, suggested the aging of the
culture as possible confounding effect on the pair-wise identification of DE genes.

Figure 6.3: Differential expression analysis (see Sup. Table 2 for details). A. Euler diagram showing up-regulated
genes comparing the indicated conditions to glucose-limited cells at day 5. B. Euler diagram showing down-
regulated genes comparing the indicated conditions to glucose-limited cells at day 5.

To avoid confounding the effect of oxygen limitation and time on the identification of DE
genes, the maSigPro workflow, designed for the analysis of time-course RNA-seq data was applied
[302]. This package performs single-time course analysis based on a two-step regression strategy
to find genes with significant temporal expression changes [302, 314]. This workflow identified 1806
genes with significant changes in expression over time. Using these genes for clustering led to a
clear separation of samples based on the imposed limitation (Sup. Figure 6.4A). While pair-wise
DE analysis is unable to distinguish changes in RNA levels caused by the aging of the culture or
oxygen limitation, the two-step regression strategy followed by clustering allows the distinction
between genes up- or down-regulated due to oxygen-limited growth or to the culture’s age (Sup.
Figure 6.4B). This refined analysis identified 321 genes up-regulated and 602 genes down-regulated
specifically during oxygen-limited growth (Figure 6.4A, C, Sup. Table 3).

Gene ontology (GO) analysis of genes up-regulated during oxygen limitation showed enrich-
ment of functions related to the respiratory chain, specifically iron-sulfur cluster binding, complex I
(NADHdehydrogenase),andcytochromecomplexassembly (Figure 6.4B). Genes down-regulated
during oxygen limitation were enriched on catabolic processes including fatty acid β-oxidation
and protein maturation (Figure 6.4D). This suggests that, at the transcriptional level, cells respond to
oxygen limitation by over-expressing genes related to respiration while only halting a few catabolic
processes.
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Figure 6.4: Two-step regression analysis of RNA-seq data. A. Heat-map of z-scores of 321 genes up-regulated
during oxygen-limited compared to glucose-limited growth. B. Frequency of selected GO-terms enriched in
genes up-regulated during oxygen limitation. C. Heat-map of z-scores of 602 genes down-regulated during
oxygen-limited compared to glucose-limited growth. D. Frequency of selected GO-terms enriched in genes
down-regulated during oxygen limitation.

Proteomic-level response of P. putida to oxygen and glucose limitations

The extent to which the observed transcriptional changes affected P. putida’s physiology was
evaluated using proteomics. Samples for proteomic analysis corresponding to the steady state
conditions of glucose-limited cells, cells treated with 5% oxygen, 2% oxygen, and glucose-limited
cells after oxygen limitation were analyzed. A total of 1036 proteins were quantified via MS-based
proteomics analysis in all conditions, representing 22.5% of the detected transcripts. A comparison
between changes in protein abundance and their transcripts is shown in Sup. Figure 6.5.

First, detected proteins were compared pairwise among all tested conditions to identify dif-
ferential abundant (DA) proteins. This is equivalent to the initial DE analysis of the RNA-seq data.
DA analysis only found significant differences when comparing initial glucose-limited cells or cells
treated with 5% or 2% oxygen with samples from the second glucose-limited period (Sup. Figure
6.6, Sup. Table 4). Although 43 DA proteins were found comparing the initial and final glucose-
limited conditions, these proteins were not enriched in any specific GO term. When comparing
cells grown in oxygen limitation with the final glucose limitation, an enrichment of GO terms re-
lated to aerobic respiration was found, in agreement with the RNA-seq results. GO terms enriched
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among the down-regulated genes during oxygen-limited growth were related to gene expression,
ribosome assembly, and peptide synthesis.

Considering that no different protein abundances were foundwhen comparing initial glucose-
limited cells and oxygen-limited cells, ANOVA was used to find DA proteins among all conditions
simultaneously. This resulted in the identification of 9 proteins. When these proteins were used
for clustering, samples from the first and second glucose limitation were separated and samples
from oxygen-limited growth were clustered together (Sup. Figure 6.7A). Heatmaps were used to
distinguish proteins with different abundance due to oxygen limitation or time (Sup. Figure 6.7B).
Two of the DA proteins (PP_0842 and PP_4220) showed decreased abundance during oxygen
limitation (Table 6.2, Sup. Figure 6.7B). PP_0842 (IscS-I) is a cysteine desulfurase involved in iron-
sulfur cluster synthesis, characteristic of ferredoxins involved in the electron transport chain [315].
PP_4220 (PvdJ) is a non-ribosomal peptide synthase involved in pyoverdine synthesis, only observed
during glucose-limited growth [316]. The only protein more abundant during oxygen limitation was
PP_3839 (CalA), an alcohol dehydrogenase previously known as AdhP (Table 6.2, Sup. Figure 6.7B)
[317].

Table 6.2: Proteins with increased or decreased abundance during oxygen-limited growth found using ANOVA
and two-step regression analysis.

Gene Gene name Oxygen limitation Function
PP_0842 iscS-I Down Fe-S cluster synthesis

PP_4220 pvdJ Down Pyoverdine synthesis

PP_3839 calA Up Alochol dehydrogenase

PP_0625 clpB Up Chapeorne

PP_5392 - Up β-propeller fold lactonase

PP_0481 katA Up Catalase

PP_1084 tsaA Up Peroxidase

In order to identify proteins with significant time-dependent changes in abundance, the two-
step regression analysis applied to the RNA-seq datawas also applied to the normalizedproteomic
data using maSigPro [314]. This strategy resulted in the identification of 18 proteins. When these
proteins were used for clustering, they were able to separate samples based on their nutrient limita-
tion, with one cluster containing samples from glucose-limited cells and another cluster containing
samples corresponding to oxygen-limitation (Sup. Figure 6.7C). Heatmaps were used to distinguish
proteins with abundant changes caused by oxygen limitation or time (Sup. Figure 6.7D). Four pro-
teins were more abundant during oxygen-limited growth: PP_0625 (ClpB), PP_5392, PP_0481 (KatA),
and PP_1084 (TsaA) (Table 6.2, Sup. Figure 6.7D). These proteins have chaperone, β-propeller fold
lactonase, catalase, and thioredoxin peroxidase functions [279, 318, 319]. None of the proteins
found using this approach showed a decreased abundance specific to oxygen-limited conditions
(Sup. Figure 6.7D).
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Discussion

The study of bacterial physiology and metabolism traditionally focuses on conditions of exponen-
tial growth, characterized by the abundance of nutrients. However, this ideal scenario often di-
verges significantly from the heterogeneous environments encountered in industrial bioprocesses,
especially in large-scale bioreactors. In these practical settings, microorganisms like P. putida
are subjected to a dynamic landscape of nutrient availability, often resulting in gradients and
limitations that markedly influence their physiological state [283, 291]. Furthermore, in fed-batch-
operated reactors, cells exhibit controlled growth, often below the maximum growth rate. These
sub-optimal conditions, particularly concerning key nutrients like glucose and oxygen, necessitate
a deeper exploration into how microbial cells adapt and respond. Such understanding is crucial
not only for optimizing growth and production but also for ensuring stability and consistency in
bioprocesses. Our research, therefore, delves into the physiological adaptations of P. putida to
varying degrees of oxygen limitation, using glucose limitation as a reference. This approach sheds
light on the cellular response mechanisms to nutrient stresses and also provides valuable insights
for enhancing the efficiency and robustness of microbial processes in industrial applications.

In this study, P. putida displayed a maximum biomass yield on glucose (0.40 g/g) under 5%
oxygen, similar to yields in rapid growth scenarios [284]. Although the yield of biomass decreases
at low growth rates, this decrease was previously attributed to changes in cell size [284]. However,
utilizing glucose-limited cells as a reference to investigate P. putida’s response to oxygen limitation
uncovered pyoverdine production as a factor influencing low yields under slow, glucose-limited
growth. Pyoverdine, a siderophore used for iron capture, is known to be secreted in iron-limited
media [282, 313, 320]. Additionally, the regulation of pyoverdine synthesis has been linked to glu-
cose metabolism, with gluconate accumulation stimulating pyoverdine synthesis [321]. However,
pyoverdine production by P. putida under iron-replete conditions has not been previously reported
[282, 283, 284]. In contrast to studies comparing exponentially growing cells in media with and
without iron excess or repeated glucose shortage, we studied the physiology of P. putida under
prolonged, glucose-limited slow growth (0.1 h-1). We show how these conditions, equivalent to
glucose-limited fed-batch fermentations, can lead to up to a 59% decrease in biomass yield due to
pyoverdine production. Upon oxygen limitation, an increase in biomass yield was observed along-
side with the elimination of pyoverdine production and a decline in PvdJ protein abundance,
which together with PvdD and PvdI function as non-ribosomal peptide synthases of the pyover-
dine peptide side chain [316]. The absence of pyoverdine production under oxygen limitation, as
reported by Lenhoff, can be attributed to the oxygen requirements for siderophore production
[320]. Moreover, low oxygen tensions increase iron bioavailability and the Enterobacteriaceae
family regulates iron transport genes using oxygen-sensing regulators [322]. While the mechanisms
leading to pyoverdine production under glucose-limited growth remain unclear, pyoverdines pro-
duced by fluorescent pseudomonads facilitate their colonization of different hosts [313, 323] and
could play a similar role in the colonization of environments where carbon is scarce.
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We used transcriptomics and proteomics to further understand the responses of P. putida to
oxygen and glucose limitation. Although, as commonly observed, a clear correlation between
changes in protein abundance and changes in RNA counts was not found for most of the de-
tected proteins [324], the same expression and abundance patterns were present for proteins with
significant changes (Sup. Figure 6.5). Besides, in agreement with Demling et. al. who studied the
response of P. putida to oscillations in oxygen tension [291], we only found a few proteins related
to adaptations to oxygen-limited growth (Table 6.2). This contrasts with the adaptation of P. putida
to other stressors and nutrient limitations, where greater changes at the proteome level have been
observed [280, 281, 325], indicating that P. putida is able to endure long-term oxygen limitation
with minor changes in its proteome.

The approach followed in this study, where chemostat reactors were maintained for various
steady states under different conditions, aimed to reduce biological variability when comparing
conditions with different limitations. However, this setup introduced time as a confounded factor
during analysis, and changes related to the aging of the culture or the change in conditions had to
be discerned. This was possible by identifying genes with significant temporal expression changes
using a single time course analysis based on a two-step regression strategy [302, 314]. Applying
this approach to RNA-seq data allowed the simultaneous comparison of all the conditions and
reduced the number of significant genes compared to DE analysis using glucose limitation as
reference. While DE genes unique to the comparison between glucose limitation and growth with
2% oxygen were not enriched in any GO term, genes found using maSigPro were enriched in GO
terms related to respiration. Although this approach reduced the number of significant genes, it
increased the number of significant proteins compared to the two-way comparison, probably
due to the removal of confounding effects.

At the transcriptome level, P. putida responds to oxygen limitation by over-expressing genes
related to respiration. A similar response has been observed in Saccharomyces cerevisiae cells
in the transition from aerobiosis to anaerobiosis and suggests that cells respond to low oxygen
tensions aiming to capture the available oxygen and to maintain respiration [326] . Although an
increased abundance of respiration-related proteins was not detected, this could be attributed
to the difficulty in detecting and quantifying membrane proteins in proteomic studies [327, 328].
Instead,a significantly increasedabundance ofCalA,ClpB, PP_5392, KatA,and TsaAwas observed.
While over-expression of clpB and tsaA has been reported as a response to formaldehyde [317]
and poor carbon sources like phenol or pyruvate [319], calA, previously known as adhP, was over-
expressed when P. putida cells were exposed to temporary oxygen limitation [291]. Although the
increased abundance of KatA during oxygen limitation is counterintuitive as it is used to detoxify
oxygen reactive molecules [329], it has been described to prepare Staphylococcus aureus for
future oxidative stress under microoxic conditions [318]. However, the over-production of these
proteins does not suggest a specific P. putida response to low oxygen tensions.

Contrarily to facultative anaerobic microorganisms, the onset of oxygen limitation does not
result in the production of fermentative products by P. putida, preventing the loss of energy and
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carbon towards unwanted metabolites. Although P. putida possesses genes associated with low-
oxygen metabolism, including a lactate dehydrogenase (PP_1649), formaldehyde dehydroge-
nases (PP_4960, PP_0328, PP_3970), and an acetoin gene cluster (PP_0550-0556), none of these
genes are up-regulated during oxygen-limited growth, and their associated proteins are not de-
tected. This finding aligns with the observation from Ankenbauer et al. that excess electrons in such
conditions can be redirected towards the production of reduced products [292]. Moreover, no
major changes in metabolic genes were observed during oxygen-limited growth, and only genes
related to β-oxidation showed a decreased expression that was not observed at the protein level.
The only detected proteins with a decreased abundance during oxygen limitation were PvdJ and
IscS-I. While the decreased abundance of PvdJ agrees with the lack of pyoverdine production in
this condition, IscS-I is involved in the reparation of FeS clusters, which are sensitive to oxygen, and
less prone to damage during oxygen limitation [315, 330]. Therefore, if P. putida is grown under
microoxic conditions, major metabolic changes are not expected and a decreased availability
of precursors for product synthesis is unlikely.

Our research demonstrates the resilience of P. putida to long-term oxygen limitation, revealing
a notable increase in biomass yield without significant metabolic reconfigurations. This adapta-
tion, beneficial for bioprocess efficiency, comes with a trade-off: reduced glucose uptake rates
under oxygen limitation. This reduction in glucose uptake implies a lower metabolic rate, which
could affect the synthesis of desired products, particularly in processes where high productivity
metrics are crucial [160]. Despite this, growing P. putida in microoxic conditions reduces energy de-
mands for aeration and cooling in industrial bioreactors and enhances the production of reduced
compounds. The discovery of pyoverdine production in glucose-limited, slow-growing cultures
further underscores the complexity of microbial metabolism and the importance of thorough
mass balance analyses for bioprocess optimization. This finding suggests an adaptive response to
nutrient availability and highlights the need to evaluate biotechnological organisms like P. putida
under diverse conditions for industrial applicability. In summary, our study contributes to a better
understanding of P. putida’s physiological responses, offering insights for future research aimed
at balancing yield and productivity in biotechnological applications, ultimately leading to more
efficient and sustainable industrial processes.
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Supplementary Figures

Sup. Figure 6.1: Fluorescence of samples normalizedby dryweight. Different letters indicate significant differences
between conditions according to two-tailed homoscedastic t-tests.

Sup. Figure 6.2: Chromatograms used for pyoverdine identification.
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Sup. Figure 6.3: PCA analysis with RNA-seq data. PC1, explaining 51% of the variance, separates samples based
on the degree of oxygen limitation, indicating a transcriptomic response to this growth conditions. PC2, which
explains 25% of the variance, separated samples from glucose-limited cells before and after oxygen limitation,
suggesting a possible transcriptomic-level effect caused by long-term oxygen limitation or the aging of the
culture. R1 and R2 refer to reactors 1 and 2.

Sup. Figure 6.4: Two-step regression analysis of RNA-seq data. A. Dendogram showing the clustering of samples
according to the nutrient limitation applied based on the 1806 significant genes found with maSigPro. B. Heat-
maps of the z-scores of the 1806 significant genes that were divided into 4 clusters according to the changes
in expression. Cluster 1 contains genes that were up-regulated during oxygen-limited growth, cluster 2 contains
genes up-regulated with time, cluster 3 contains genes down-regulated with time, and cluster 4 contains genes
down-regulated during oxygen-limited growth. Genes belonging to each cluster are available in Sup. Table 3.
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Sup. Figure 6.5:A.Comparison of the abundanceofdetectedproteinswith their respecitive transcripts. Heatmaps
are clustered based on RNA-seq data. B. Zoom in only including differentially abundant proteins.
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Sup. Figure 6.6: Differentially abundant proteins based on pair-wise comparison using the second glucose-
limited sample (day 18) as reference (See Sup. Table 4 for details). A. Proteins more abundant compared to the
reference condition. B. Proteins less abundant compared to the reference condition.

Sup. Figure 6.7: Significant proteins found using ANOVA and two-step regression. A. Dendogram of samples
based on significant proteins found using ANOVA. B. Heat-maps of the z-score of the 9 significant proteins found
using ANOVA. C. Dendogram of samples based on significant proteins found using two-step regression analysis.
D. Heat-map of the z-score of the 18 significant proteins found using two-step regression analysis.
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Finding the optimal expression of production pathway genes is crucial for the develop-
ment of efficient production strains. Unlike sequential experimentation, combinatorial
optimization captures the relationships between pathway genes and production, albeit
at the cost of conducting multiple experiments. Fractional factorial designs followed by
linear modeling and statistical analysis reduce the experimental workload while maxi-
mizing the information gained during experimentation. However, guidelines for selecting
appropriate factorial designs for pathway optimization are missing. In this study, we lever-
age a kinetic model of a seven-genes pathway to simulate the performance of a full
factorial strain library. We compare this approach to resolution V, IV, III, and Plackett Bur-
man (PB) designs. Additionally,we evaluate the performance of these designs as training
sets for a random forest algorithm aimed at identifying best-producing strains. Evaluating
the robustness of these designs to noise and missing data, traits inherent to biological
datasets, we find that while resolution V designs capture most information present in full
factorial data, they necessitate the construction of a large number of strains. On the
other hand, resolution III and PB designs fall short in identifying optimal strains and miss
relevant information. Besides, given the small number of experiments required for the
optimization of a pathway with seven genes, linear models outperform random forest.
Consequently, we propose the use of resolution IV designs followed by linear modeling
in Design-Build-Test-Learn (DBTL) cycles targeting the screening of multiple factors. These
designs enable the identification of optimal strains and provide valuable guidance for
subsequent optimization cycles.

Abstract
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Introduction

A common challenge when introducing a heterologous pathway in a microorganism is to find the
optimal expression level of each of the introduced genes [32, 87, 331]. This question can be an-
swered using sequential or combinatorial experimentation, depending on whether the expression
of the genes is optimized individually (one factor at a time) or simultaneously. When combinatorial
optimization is used, the likelihood of finding the optimal expression levels increases [73, 332]. For
example, if the abundance of protein A is limiting the pathway, the expression of other pathway
genes will not affect production as long as the expression of A is low. However, when the expression
of geneA increases, changes in the expression of other pathways geneswill likely affect production.
Combinatorial pathway optimization captures these interactions between the pathway genes
and can better guide the pathway optimization process.

Combinatorial optimization requires the construction of numerous strains. When optimizing
a pathway with three genes and two expression levels, constructing eight (23) strains is needed
to test all the combinations of genes and levels (full factorial design). The number of strains to
construct increases exponentially with the number of genes to optimize: if the number of genes
increases to seven, the number of strains increases to 128 (27). Moreover, the number of strains to
build increases even faster when more than two expression levels are tested (e.g. 27 (33) strains for
three genes with three expression levels and 2187 (37) for seven genes with three expression levels).
Evenwith efficient andautomated strain construction andcharacterization pipelines, reducing the
number of strains to build and test while maintaining the ability to discern the relative importance
of the pathway genes and the presence of interactions is desired [73, 332].

Statistical design of experiments (DoE) is a technique to minimize the experimental effort while
the information gained over the studied system is maximized [72]. This method can be easily incor-
porated in the Design-Build-Test-Learn (DBTL) cycles commonly used in industrial biotechnology
[32, 87]. In the first round, factors (e.g. genes whose expression will be optimized) and levels (e.g.
the expression levels that will be tested) are defined. Considering that the number of experiments
to perform (i.e. strains to build and test) increases faster with the number of levels than the num-
ber of factors, DoE often starts studying two levels per factor. In this way, more factors can be
screened, important factors are identified, and the fine-tuning of factor levels is targeted only to
the relevant factors in subsequent DBTL cycles. The information gained during experimentation is
stored in a polynomial model. The model coefficients are fit such as the response (e.g. production
of the target molecule) is a function of each of the factors and their interactions. In this model,
the main effects are the coefficients that explain how the response is affected by changing each
individual factor (gene). Similarly, two-factor interactions are coefficients that explain how the re-
sponse changes simultaneously considering the levels of two factors (genes). Then, an analysis of
variance (ANOVA) is used to quantify whether each model parameter significantly influences the
response [72, 73]. The extent to which a significant factor influences the response is determined by
the absolute value of its main effect, and the sign of the coefficient indicates whether the factor
has a positive or negative impact on the response. When two or multiple factor interactions are
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significant, the effect of a factor is also influenced by the interaction coefficients.
Factorial designs are used to efficiently sample the design space determined by the factors

and their levels and are useful for screening in initial DBTL cycles. Different factorial designs exist
depending on the number of experiments to perform and the aliasing structure (i.e. which model
coefficients are indistinguishable from each other). A design with a higher resolution requires the
execution of more experiments and results in the confounding of only high-order interactions
[72]. For instance, resolution V designs allow the clear identification of main effects and two-
factor interactions while confounding three-order interactions among each other. This means that,
although some three-factor interaction coefficients can be estimated, they cannot be assigned to
a specific combination of factors. Similarly, resolution IV designs confound two-factor interactions
among each other. Therefore, they can be used to assess whether these interactions are important
but they cannot identify the specific interactions that influence the response. Resolution III designs
confound main effects with two-factor interactions so, although models including main effects
can be created, the estimated coefficients represent the mixed effect of the single factor and the
confounded interactions. If interactions are not significant, low-resolution designs efficiently reduce
the number of experiments, but they may result in incorrect determination of main effects when
interactions affect the response. Plackett Buramn (PB) designs are a special type of resolution III
designs in which two-factor interactions are partially confounded with main effects allowing the
estimation of some interactions. A summary of DoE designs is presented in Figure 7.1 [72]. Although
factorial designs have been used for the optimization of expression of pathways genes [86, 87],
clear recommendations of the type of designs to use for this application are missing [51].

In silico studies represent biological systems using mathematical models which allows the simu-
lation ofmultiple constructs and the evaluation of computational design tools [333, 334, 335]. These
studies enable the characterization of the robustness of different design approaches to realistic
biological scenarios where noise is present and problems during strain construction can lead to
the inability to build some of the desired strains. The best strategies found by an in silico evaluation
can then be applied in in vivo studies, in which the experimental throughput is considerably lower.

Here, we use a mathematical kinetic model of the curcumin pathway (Figure 7.2A) to simu-
late in silico a full factorial library consisting of all the combinations of seven enzymes (factors)
at two different concentrations (levels) [336]. This pathway is characterized by the presence of
promiscuous enzymes that catalyze multiple reactions and the possibility to produce three differ-
ent metabolites. Therefore the effect of modifying the abundance of an enzyme on production is
highly dependent on metabolite concentrations affected, in turn, by the concentration of other
pathway enzymes. The use of a kinetic pathway model enabled the identification of the best
concentration levels of each enzyme, as well as the estimation of the real coefficients of the poly-
nomial model. Considering this information, we tested the capacity of different factorial designs
to find the best strains in the library space, as well as to determine the coefficients of the model
which could later be used to guide the expansion of the design space. We also provide some
recommendations on how to approach the subsequent DBTL cycles.
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Figure 7.1: Ability of different fractional factorial designs to estimatemain effects (ME), two-factor interactions (2FI),
and higher-order interactions (3FI). A green tick indicates the estimation of a coefficient clear of confounding,
an orange tick indicates a confounded estimation and a red cross indicates the inability to estimate this type of
coefficient. In Plackett Burman designs confounded coefficients are partially correlated with each other, which
allows the estimation of some of the interactions.

Material and Methods

Pathway simulation and noise

A kinetic model of the curcuminoid pathway was obtained from Martín-Pascual et al. [336]. This
model uses Michaelis-Menten kinetic expression rate laws for all reactions except C3H, for which a
mass-action rate law is used. Enzymes catalyzing multiple reactions (FCS, DCS, and CURS) contain
additional substrate competition terms in their rate laws to account for their promiscuity (Figure
7.2A). The model was simulated using the AMICI library [136] and the CVODES ODE solver [135].
Each of the seven enzymes in the pathway was considered a factor with the default enzyme
concentration as low level and five times the default concentration as high level. The parameter
corresponding to enzyme concentration for each reaction in the pathway was altered to simulate
the 128 (27) strains constituting the full factorial library. In silico triplicates for each strain were
obtained adding 5% or 20% of Gaussian noise. The simulated full factorial data is available in
Gitlab.

Simulation of DoE designs

Resolution V, IV, and III designs were generated using the FrF2 function from the FrF2 R package
given the number of factors and the desired resolution [337]. Placket-Burman (PB) designs were
generated with the pb function from the same package indicating the desired number of factors
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and experiments. For each design, columns were permuted to account for the effect of randomly
assigning factors (enzymes) to the design columns. From the full factorial design data, experiments
were selected according to the design and used to train a linear model by ordinary least squares
regression using the R lm function. The linear model had the form:

y = β0 +

i=n∑
i=1

MEi · Fi +

i=n∑
i=1

j=n∑
j=1

2FIi:j · Fi · Fj , (7.1)

where y represents the curcumin concentration obtained by the kinetic pathway model; β0 repre-
sents the y-intercept,MEi refers to themain effect of factor i (Fi) and 2FIi:j refers to the two-factor
interaction between factor i and j. The total number of factors is indicated by n.

For resolution V and IV designs, additional linear models were trained assuming the inability
to construct some of the proposed strains by randomly removing rows of the design matrix. The
effect of excluding 1, 2, 5, and 10 rows or 1, 2, 3, and 5 rows for the resolution V and IV designs
respectively was evaluated in 100 random permutations of the design columns.

To compare DoE designs with random sampling strategies, experiments from the full factorial
design were randomly sampled using the sample function in R. The number of samples was equal
to the number of strains selected by each of the designs and the sampling process was repeated
as many times as the performed permutations.

For each permutation of the design or random sample, the R summary function was used
to obtain the ANOVA table which provides the estimated coefficients of the linear model (MEs
and 2FIs) and their associated p-values. These p-values and coefficients were compared to those
obtained by training the linear model with the full factorial design ("ground truth").

Prediction of optimal strains within the design space

Linearmodels trainedwith data derived fromexperiments selectedby permutations of DoE designs
or random samplingwere used to predict strains with the highest curcumin production. Strains were
predicted as optimal producers according to the linear models when the levels of the enzymes
with a significant main effect agreed with the sign of the estimated coefficients in the linear model.
For enzymes with insignificant main effects, strains containing any of the concentration levels were
considered as optimal candidates. The frequency in which each strain was selected as optimal
in each permutation of the design or set of random samples was computed and compared to
the actual production according to the kinetic pathway model.

DoE and machine learning

The suitability of experiments designed using DoE to train machine learning (ML) models was as-
sessed with random forest as an example using the scikit-learn Python library. Models were trained
using 10-fold cross-validation and model performance was assessed based on the coefficient of
determination (R2). Trained models were used to predict the production of the full factorial design
space and the frequency of each strain as part of the two best predicted strains was computed.
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Results

Simulation of the full factorial library and factorial designs

The curcumin pathway contains seven enzymes from which FCS, DCS, and CURS are promiscuous
and able to catalyze multiple reactions (Figure 7.2A). Moreover, in this pathway demethoxycur-
cumin, bisdemethoxycurcumin, and curcumin can be produced. Therefore, optimizing curcumin
production requires fine-tuning the concentration of the pathway enzymes. A full factorial library
for this pathway considering two concentration levels per enzyme requires the simulation of 128
strains. This library contains all possible combinations between factor levels, resulting in curcumin
production ranging from 10-4 to 0.2 mM, and represents the "ground truth" for the system (Figure
7.2B). In factorial designs, the effect of a factor is not only estimated considering replicate exper-
iments but also all the experiments where the given factor is constant regardless of other factor
levels. For each enzyme, Figure 7.2A shows the distribution of curcumin production by strains con-
taining low (-1) or high (1) enzyme concentrations. Changing the concentration of C3H, COMT,
and FCS has the highest impact on curcumin production, followed by changes in CCOAOMT and
CURS concentrations. Notably, as expected for biological systems, high expression of all pathways
genes does not necessarily result in optimal production.

The benefit of combinatorial experimentation compared to sequential experimentation is
exemplified in Figure 7.2C. When the concentration of the COMT enzyme changes given a low
concentration of C3H, changing COMT expression has a limited impact on production. However,
this impact increases when the concentration of C3H is high. The relationship between COMT and
C3H, also true for other enzymes (Sup. Figure 7.1), can only be captured through combinatorial
optimization and is missed when factors are optimized sequentially.

After the simulation of the full factorial library, DoE fractional factorial designs were simulated
selecting experiments according to four different designs: resolution V, resolution IV, resolution III,
and PB, or random sampling. These designs differ in the number of strains to build and test (as indi-
cated in Figure 7.1 for experiments with 7 factors). The resolution V design requires the construction
of 64 strains and ensures that main effects and two-factor interactions are free of confounding.
The resolution IV design requires the construction of 16 strains but two-factor interactions are con-
founded among each other. Finally, PB and resolution III designs require the construction of 12
and 8 strains respectively but confound main effects with two-factor interactions. In resolution III
designs main effects and two-factor interactions are completely confounded and, in PB designs,
the correlation between these coefficients is partial. While in random designs any of the strains
can be constructed, only a fraction of the strains are selected in DoE fractional designs to ensure
orthogonality in the desired columns that allows a clear estimation of the linear model coefficients
(Sup. Figure 7.2).
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Figure 7.2: A. Curcuminoid pathway. Boxplots show the curcumin (Cur) production data distribution of strains
containing low (-1) or high (1) enzyme concentration obtained with the kinetic model [336]. B. Kinetic model
simulations of curcumin production of the 128 strains forming the full factorial design space. C. Production data
distribution of strains containing low (-1) or high (1) concentration of COMT given low (-1) or high (1) concen-
tration of C3H. Metabolite abbreviations: TYR, tyrosine; CUA, p-coumaric acid; CAA, caffeic acid; FEA, ferulic
acid; CUCOA, coumaroyl-CoA; CACOA, caffeoyl-CoA; FECOA, feruloyl-CoA; DCUCOA, diketide coumaroyl-
CoA; DFECOA, diketide feruloyl-CoA; BDC, bisdemethoxycurcumin; DMC, demethoxycurcumin; CUR, curcumin.
Enzyme abbreviations: TAL, tyrosine ammonia lyase; C3H, coumarate-3-hydroxylase; COMT, caffeic acid O-
methyl transferase; FCS, feruloyl/coumaroyl-CoA synthase; CCOAOMT, caffeoyl-CoA O-methyl transferase; DCS,
diketide-CoA synthase; CURS, curcumin synthase.
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Pathway optimization: predictions of optimal strains

Given a set of enzymes (factors) and enzyme concentrations (levels), we analyzed the capacity of
different DoE fractional factorial designs and random sampling to find the enzyme concentration
levels that optimize curcumin production. Each selected set of experiments was used to train
a linear model containing main effects and two-factor interactions, and significant coefficients
were determined by ANOVA. Enzymes with significant main effects are important for production,
so, in the optimal strains, their expression levels should agree with the sign of their coefficients
(high concentration for positive coefficients and low concentration for negative coefficients). For
enzymes with insignificant main effects, production should not change regardless of the chosen
concentration. Considering these criteria, we computed the frequency at which each strain is
predicted as optimal by each design permutation or random sampling assuming 5% or 20% noise
in the data. These predictions were compared to the "ground truth", defined by the curcumin
production of the full factorial library obtained with the kinetic pathway model. We show here the
results assuming 20% noise in the production data.

The full factorial data shows the presence of two strains with equal performance,characterized
by high expression of C3H, CURS, and DCS, low expression of FCS, COMT, and CCOAOMT, and
unaffected by the expression level of TAL (Figure 7.3A). Only resolution V and IV designs guarantee
the identification of both or one of these two optimal strains (Figure 7.3A). However, while the
resolution V design only suggests two strains as top producers, and the random selection of 64
strains results in the suggestion of four strains, the resolution IV designmight suggest the construction
of up to 16 new strains. Still, the targeted construction of the 16 strains required by the resolution
IV design is more efficient than the random construction of 32 strains, as it always suggests one of
the optimal strains, and the total number of strains to build and test is lower. When designs with
lower resolution are chosen, the probability of finding the best strains from the full factorial library
markedly decreases and, only in the case of the resolution III design, the number of suggested
strains to construct is lower than in the random control (Figure 7.3A).

For the resolution IV design, we further studied whether including the best two producer strains
in the design influenced the prediction of the top strains. In 60% of all the permuted resolution IV
designs, the optimal strains were not included, which did not affect the predictions (Sup. Figure
7.3).

Considering that during in vivo studies experimental limitations might hinder the construction
of some of the required strains for a design, we studied the robustness of resolution V and IV designs
to missing strains. The performance of the resolution V design was minimally affected when up to
10 strains (16%) were excluded from the design. While the number of strains to construct in order
to find the optimal production increased from 2 to 4, at least one of the two best producers was
always suggested (Figure 7.3B). When the resolution IV design was used, excluding one strain from
the design (6% of the library) had a minor impact on predictions. However, when 2 (13% of the
library) or more strains were omitted, the probability of finding the best strain decreased, and the
number of wrongly suggested optimal strains increased (Figure 7.3B).
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Figure 7.3: A. Prediction of optimal strains based on linear models trained with data from factorial designs and
random sampling assuming 20% noise. B. Prediction of optimal strains by linear models trained with resolution V
and IV factorial designs simulating the inability to construct some of the required strains assuming 20% noise.
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Pathway insights: identification of significant factors and interactions

Besides the prediction of optimal strains, the analysis of the coefficients of the linear models aids
the understanding of the studied pathway, unveiling the effect of each enzyme on curcumin
production. These insights can then be used to guide following DBTL cycles focusing on the factors
with the strongest influence on the response. Moreover, they can point to relevant interactions
between factors that enhance the knowledge of the pathway. Here we assess the capacity of
each of the DoE fractional factorial designs or random samples to identify significant main effects
and interactions. The correct identification of these coefficients explains, in turn, the capacity of
each design to find the optimal production strains.

The concentration of C3H is the factor with the strongest influence on production and, regard-
less of the level of noise, all the DoE designs identify C3H as a significant main effect with a positive
influence on production (Figure 7.4A, B). The importance of this factor is also captured when 64
or 32 strains are randomly sampled. However, when 16, 12, or 8 strains are randomly selected, this
effect is missed in 1%, 2%, and 7% of the experiments, respectively (Table 7.1).

While resolution V, IV, and III designs are always able to identify the negative effect of FCS and
COMT, 6% to 20% of the PB designs, depending on the level of noise, are unable to capture this
behavior (Figure 7.4A, B, Table 7.1). Similarly, the ability to identify the importance of these factors is
lost when less than 64 strains are randomly sampled, especially when the level of noise increases.

Table 7.1: Frequency (expressed as a percentage) of main effects identified as significant by ANOVA using data
from different fractional factorial designs or random strain sampling.

C3H FCS COMT CURS CCOAOMT DCS TAL
5% noise 100 100 100 100 100 100 0

Resolution V
20% noise 100 100 100 100 100 100 0

5% noise 100 100 100 100 100 90.4 22.6
Random 64

20% noise 100 100 100 100 100 90.4 22.6

5% noise 100 99.8 99.4 89.2 79.7 56.8 45.2
Random 32

20% noise 99.8 92.3 89.3 41.1 33.6 15.9 12.4

5% noise 100 100 100 100 100 63.3 63.3
Resolution IV

20% noise 100 100 100 88.7 63.3 26.7 3.3

5% noise 99.9 95.6 93.5 73.2 79.1 69.4 76.8
Random 16

20% noise 98.9 73.4 67.2 36 33.9 26.5 33.8

5% noise 100 95.7 93.6 93.6 89.8 90.1 87.9
Plackett-Buramn

20% noise 100 79.2 77.6 70.1 65.8 69.4 59.4

5% noise 99.7 94 90.2 72.8 77.6 68.9 82.9
Random 12

20% noise 97.7 69.1 65.6 40.1 38.6 33.7 46.8

5% noise 100 100 100 93.3 90 86.7 96.7
Resolution III

20% noise 100 100 100 60 63.3 60 66.7

5% noise 98 88.5 83.2 61.2 72.9 65.4 73.7
Random 8

20% noise 93 59.7 57.7 35.7 40.4 35.9 41.6
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Given 5% noise, resolution V and IV designs, as well as the random selection of 64 strains, allow
the identification of the positive and negative effects of CURS and COMT, respectively (Figure
7.4A, B, Table 7.1). However, when the level of noise increases, the chances of identifying these
effects with resolution IV designs decrease to 89% and 63%, respectively. Yet, the likelihood of
finding these effects is doubled with this design compared to the random selection of 32 strains.
PB and resolution III designs show similar performance in identifying the importance of these genes,
however, they are unable to correctly estimate their effect on the response as indicated by the
high standard deviations of the coefficient values (Figure 7.4B). Notably, these designs show better
performance than their random counterparts.

Figure 7.4: Estimation of linear model coefficients using data from fractional designs and random samples given
20% noise in the responseA. Frequencyof the identification ofmain effects as significant. B. Estimatedcoefficients
for each main effect. Mean coefficients and standard deviations of all possible permutations of the design or
random samples are shown. C. Frequency of the identification of 2-factor interactions as significant using data
from full factorial, resolution V, random 64, and random 32 designs.
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DCS and TAL are the factors with the smallest coefficients and, therefore, the smallest impact
on production. However, while the expression level of DCS significantly affects production, modi-
fying the expression of TAL does not change curcumin titers. The only design able to capture this
behavior is the resolution V design, which outperforms the random selection of 64 strains. Other
designs, based on DoE or a random selection of strains, are unable to distinguish the effect of
these two genes (Figure 7.4, Sup. Table 7.1).

The inability to correctly identify significantmain effects is the reason for the incorrect prediction
of optimal strains by the designs (Figure 7.3A). For instance,models trainedwith resolution V designs
only predict optimal strains with high concentrations of CURS and DCS, and low concentration of
CCOAOMT. However, some of the linear models trained with other designs miss the relevance of
these enzymes and incorrectly suggest strains with low CURS and DCS concentration and/or high
CCOAOMT concentration as optimal.

In addition to the determination of main effects, resolution V designs or the random selection
of 64 or 32 strains allow the estimation of all the coefficients corresponding to two-factor interac-
tions (Figure 7.3C). These interactions point to factors whose effect on the response is affected by
the level of another factor. When the full factorial data is used to train a linear model, thirteen
significant two-factor interactions are found: all the enzymes but TAL have a significant interaction
with C3H and FCS; CURS additionally interacts with COMT, DCS, and CCOAOMT; and COMT and
CCOAOMT also show a significant interaction. The presence of a high number of significant in-
teractions highlights the synergistic effect obtained when combining the optimal concentrations
of various enzymes and underscores the relevance of combinatorial pathway optimization. How-
ever, not all the significant two-factor interactions have the same effect on the response and their
absolute coefficients vary from 1.2 · 10-2 to 6.2 · 10-4 (Sup. Figure 7.4).

Assuming 5% noise in the response, linear models trained with resolution V designs correctly
identify the eleven most important interactions, including interactions with absolute coefficients
of 10-3. When the level of noise increases to 20% this design still allows the identification of the
six most important two-factor interactions, with absolute coefficients above 2.8 · 10-2. Regardless
of the level of noise, models trained with resolution V designs prevent the incorrect identification
of insignificant interactions (false positives), frequently found when randomly selected strains are
used for model training (Figure 7.3C).

When resolution IV designs are used to train linear models, specific two-factor interactions
cannot be determined. However, the estimated coefficients of the confounded interactions give
information on their relative importance compared to the main effects. Figure 7.5 shows how
two-factor interactions 1 and 2 have an effect on the response similar to the main effect of COMT.
Likewise, the effect of two-factor interaction 3 is similar to the main effect of CURS. Therefore, these
designs are able to clearly identify that the effect of interactions in the studied systemmatters and
should not be ignored. Notably, resolution IV designs with up to three missing strains are also able
to correctly estimate the relevance of the two-factor interactions (Sup. Figure 7.5). Considering this,
the best strains in the design space could be found using a sequential experimentation approach.
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For instance, a resolution IV design could be first used to identify C3H, FCS, and COMT as the most
important main effects, relative to the importance of two-factor interactions. In a second round,
the expression level of these genes could be fixed according to the sign of their coefficients and
a resolution V design with the remaining 4 factors could be performed. In this case, the resolution
V design involves the construction of 16 strains and is equivalent to a full factorial design, which
ensures the identification of the optimal strains with a total of 32 experiments.

Figure 7.5: Absolute values of model coefficients trained with data from permutations of a resolution IV design.
The mean coefficient and standard deviation of main effects and confounded two-factor interactions (2FI) are
shown.

Finally, the partial correlation between main effects and interactions in PB designs should
allow the identification of some interactions via subset regression to identify which factors and
interactions result in models with better fit. However, subset models only consistently predicted the
importance of C3H and failed to find significant interactions, showcasing the inappropriateness
of this design for pathway understanding.

Factorial designs and machine learning

Machine learning (ML) algorithms can be used as an alternative to linear models to gather the
information obtained during experimentation based on DoE designs [101]. Although recovering
information from these models is harder than from linear models, ML algorithms can recognize
more complex patterns within the data. As an example of a ML algorithm, we tested the ability of
random forestmodels trained using 10-fold cross-validation or the complete datasets to predict the
best-performing strains given data from random samples or DoE designs. However, training these
models with 32 or fewer experiments often resulted in negative R2 values for some of the iterations.
Even when only models with R2 coefficients above 0.6 were used, randomly selecting experiments
or using DoE factorial designs resulted in equally bad predictions of best strains (Sup. Figure 7.6).
Therefore, given the small number of experiments required when considering the optimization of
seven factors, linearmodels outperform random forest. However, the ability ofMLmodels to benefit
from training data based on DoE designs if the number of factors and, therefore, experiments
increases, remains unexplored.
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Discussion

DoE involves the design of experiments using fractional factorial designs and their analysis using
linear models and ANOVA. Here we showed how it can be used to find the optimal concentration
of a pathway’s enzymes and understand the impact of factors on production. In both cases,
the resolution V design excels, providing the same information as the full factorial design and
finding the strains with the best curcumin titers while requiring half of the experiments. When
this design is used, all main effects are correctly identified as well as the most important two-
factor interactions (Figure 7.4). We highlight the relevance of these interactions to understand and
improve production, as designs where main effects and interactions are confounded struggle to
find the optimal strains (Figure 7.3A). However, the identification of a significant interaction does
not necessarily reflect a biological mechanism. For instance, factors representing all enzymes but
TAL are included in significant interactions with C3H because only when C3H concentration is
high, high levels of curcumin are obtained. This does not mean that all these enzymes physically
interact with C3H but could lead to hypotheses aiming to explain the importance of this enzyme
for the pathway functioning.

We propose resolution IV designs as the best trade-off between information gain and experi-
mental effort, and the best option to initially screen the effect of factors in the response. The key
strength of this design is the lack of confounding among main effects and interactions, which
allows the confident identification of main effects. Besides, although two-factor interactions are
confounded, these designs allow weighting their importance compared to the individual effects.
Moreover, these designs provide a solid knowledge basis of the system under study that can be
expanded in different directions depending on the experimental goal. Here, we show how, when
the aim is to find the best possible production given the initial factors and levels, themost important
main effects (compared to two-factor interactions) can be fixed and a resolution V design can
be performed on the remaining factors. In this case, two-factor interaction coefficients involving
the most important (fixed) factors will not be estimated, but the optimal strain will be found. As
alternatives to the presented approach, different strategies can be pursued depending on the
experimental goal. If the goal is to find coefficients for themost important factors, original resolution
IV designs can be augmented using D-optimal designs. These designs select experiments from
the full factorial that allow the clarification of the desired interactions by minimizing the variance
of the model coefficients [72, 76]. Finally, when the researcher aims at expanding the original de-
sign space, the number of levels of the most relevant factors can increase following the direction
indicated by the linear model coefficients. Alternative designs such as Box-Behnken designs that
include three levels per factor can be used to train response surface models [72, 86], in this case,
testing higher concentrations of C3H and lower concentrations of FCS and COMT.

In this study, the use of a kinetic model allowed the simulation of a full factorial design and
the comparison of fractional designs without a limitation on throughput (i.e. number of strains to
test and build). This comparison was performed considering realistic scenarios including noise and
datasets withmissing information due to, for instance,problems during strain construction. However,
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during the in vivo optimization of pathways, the achievable throughput is a critical parameter
that should determine how the optimization process is performed. Given the throughput, we
recommend fixing the number of factors to screen to be able to obtain resolution IV designs. The
advent of biofoundries that automate the strain construction process is continuously increasing the
capacity to build strains [96, 338, 339]. This increase should be accompanied by high-throughput,
automated cultivation and screening protocols as well as automated data collection [49]. Scaling
these processes will allow the assessment of numerous factors in screening studies that should go
beyond pathway engineering to include optimization at the metabolic and bio-process levels.
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Supplementary Figures

Sup. Figure 7.1: Sequential vs. combinatorial experimentation. Example of how the concentration of the C3H
enzyme affects the impact of changing other enzyme concentrations on curcumin (Cur) production. -1, low
enzyme concentration; 1, high enzyme concentration.

Sup. Figure 7.2: Frequency of strain selection by the different design approaches including factorial designs and
random sampling.

159



Model-Guided Strain Engineering | Chapter 7

Sup. Figure 7.3: Prediction of best strains by linearmodels trainedwith all resolution IV designs, resolution IV designs
that exclude the two best strains in the design (60% of the designs) or that include them (40% of the designs).

Sup. Figure 7.4: Estimated coefficients for each two-factor interaction using data from resolution V, random 64
and random 32 designs. 20% noise in the response is used. The mean coefficient and standard deviation of the
coefficients considering all possible permutations of the design or random samples are shown.
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Sup. Figure 7.5: Absolute coefficients of the main effects and the 11 confounded two-factor interactions (2FI)
estimated using data from resolution IV designs withmissing strains. Themean coefficient and standard deviation
of the coefficients considering all possible permutations of the design are shown.
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Sup. Figure 7.6: Prediction of best strains by random forest models trained with data from different factorial
designs or random selection of strains assuming 20% noise in the response.
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Microbial cell factories are instrumental in transitioning towards a sustainable bio-based
economy, offering alternatives to conventional chemical processes. However, fulfilling
their potential requires simultaneous screening for optimal media composition, process,
and genetic factors, acknowledging the complex interplay between the organism’s
genotype and its environment. This study employs statistical Design of Experiments (DoE)
to systematically explore these relationships and optimize the production of p-coumaric
acid (pCA) in Saccharomyces cerevisiae. Two rounds of fractional factorial designs were
used to identify factors with a significant effect on pCA production, which resulted in
a 168-fold variation in pCA titer. Moreover, a significant interaction between the cul-
ture temperature and expression of ARO4 highlighted the importance of simultaneous
process and strain optimization. The presented approach leverages the strengths of ex-
perimental design and statistical analysis and could be systematically applied during
strain and bio-process design efforts to unlock the full potential of microbial cell factories.

Abstract
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Introduction

Microbial cell factories play a pivotal role in driving the transition towards a bio-based economy,
being a sustainable alternative to traditional chemical processes [24]. Microorganisms can effi-
ciently transform raw materials into valuable products such as bulk chemicals or pharmaceuticals.
However, to unlock their potential for biotransformation in an economically feasible manner, it is
essential to optimize production pathways and bio-processes [243].

Pathways can be optimized sequentially by tuning individual genetic factors in isolation. How-
ever, this does not capture the complex interplay between different genetic elements and the
products they code for. It is hence desirable to perform combinatorial pathway optimization,
which is based on the simultaneous optimization of multiple genetic factors and facilitates the
identification of complex interactions [73, 332]. Moreover, the overall performance of themicrobial
cell factory is not only determined by its genotype but is also influenced by the production condi-
tions, as factors such as media nutrients, pH, cultivation temperature, and aeration influence cell
physiology and metabolism. Strains are usually optimized holding the environmental conditions
constant and only the most promising strain advances to the bio-process optimization stage [32,
85]. However, this approach might ignore genetic designs that, although inferior in standard labo-
ratory conditions, have bigger potential when the media and bio-process are optimized [88]. Only
by simultaneously screening for optimal media composition and genetic factors, the dynamic
interplay between the organism’s genotype and the environment in which it operates can be
considered [88, 89].

Combinatorial optimization of strains, media, and process parameters, however, requires ex-
ponentially increasing resources. Statistical design of experiments (DoE) allows a structured explo-
ration of the relationships between experimental variables (factors) and the measured response.
Full factorial designs are a type of DoE design that tests all possible combinations of factor levels,
characterizing factor effects and allowing the estimation of interactions. The number of exper-
iments to be performed depends on the number of genetic and environmental factors to be
tested (e.g. expression of a gene, temperature) and the number of levels per factor (e.g. low,
medium and strong gene expression, 20°C, 25°C, 20°C, and 35°C) according to

∏F
i=1 Li, where F

is the number of factors and Li is the number of levels of factor i. In these designs, the effect of a
factor is not only estimated considering replicate experiments but also all the experiments where
the given factor is constant regardless of other factor levels. This property can be leveraged in
fractional factorial designs that reduce the number of experiments to perform while maximizing
the information gain. This is achieved by performing experiments that preserve orthogonality in
the desired factors, i.e. ensuring that the effect of a factor is not confounded by planned changes
in other factors. The generated data is fitted to a linear model so main effects (MEs), representing
the impact of not-confounded factors on the response, are identified. Similarly, the so-called two
Factor Interactions (2FI) that occur when the effect of a factor on the response changes based
on the level of another factor, can also be estimated [72].
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Although decreasing the number of experiments ensures the identification of not-confounded
effects, information regarding confounded factors or interactions is lost [72]. For example, resolution
IV designs, a type of fractional design, allows the identification of main effects but confound 2-
factor interactions among each other. Therefore, these designs can be used to report if 2-factor
interactions are important but cannot clarify which 2-factor interactions have a significant effect
on the response. Fractional designs with lower resolution, such as resolution III designs, require fewer
experiments but confound main effects with 2-factor interactions. These designs should therefore
only be used when interactions among factors are not expected, rarely true for biological systems.
Alternatively, designs with higher resolution ensure the identification of interactions at the expense
of a higher experimental workload.

We used production of p-coumaric acid (pCA) by Saccharomyces cerevisiae as an example
of DoE-aided combinatorial pathway, media, and process optimization. pCA can be produced
from phenylalanine (Phe), an aromatic amino acid produced within the shikimate pathway. It is
a precursor for a wide array of biologically relevant molecules such as pharmaceuticals, flavors,
fragrances, and cosmetics [340]. Although pCA production has been independently optimized
at the strain and bio-process levels [340, 341, 342, 343, 344], we show the interplay between ge-
netic and environmental factors highlighting the importance of simultaneous process and strain
optimization.

Material and methods

Strain construction

Promoter, terminator, and ORFs sequences from aro4, aroL, aro7, pal1, c4h, and cpr codon opti-
mized for S. cerevisiaewere obtained fromMoreno-Paz et al. [345] (Sup. Table 1). Cassettes formed
by combinations of promoter,ORF, and terminator (Sup. Table 1) were assembled viaGoldenGate
into a backbone plasmid containing a 50 bp homologous connector sequence to facilitate in vivo
recombination of the gene cluster [346]. Golden Gate products were transformed into competent
Escherichia coli DH10B cells, plasmids were isolated, and cassettes were confirmed by PCR.

Strains were constructed as described in Moreno-Paz et al. [345]. In short, a host strain with
Cas9 integrated in the non-coding region between YOR071c and YOR070c in chromosome 15
was transformed with a linear guide RNA targeting the AEHG01000256.1 locus (210ng/kb) [347],
equimolar cassettes for the required designs (Table 8.1, Sup. Table 2) (100-300ng/kb) and linear
backbone fragments (35ng/kb) following the LiAc/ssDNA/PEG method [348]. The connector se-
quences on the cassettes facilitate in vivo recombination of a cluster of genes in the genome
[346]. Transformants were plated on Qtray (NUNC) with 48-divider (Genetix) containing YEPhD
agar medium and selection agent. Colonies appeared on the plate after 3 days of incubation
at 30°C. Single colonies were picked with Qpix 420 (Molecular Devices) into 96 well plates con-
taining YEPhD agar medium and selection agent and regrown for 3 days at 30°C. Colonies were
confirmed using whole genome sequencing and correct strains were stored at -80°C.
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Table 8.1: Structure of the gene clusters. Cell values indicate the promoter used for each gene. Promoters were
selected from Moreno-Paz et al. [345].

Gene cluster ARO4 AROL ARO7 PAL1 C4H CPR1
1 TDH3 TEF1 ACT1 RPS9A CHO1 CCW12

2 TDH3 TEF1 ACT1 VMA6 PXR1 CCW12

3 TDH3 TEF1 PFY1 RPS9A CHO1 CCW12

4 TDH3 TEF1 PFY1 VMA6 PXR1 CCW12

5 TDH3 RPL28 ACT1 RPS9A CHO1 CCW12

6 TDH3 RPL28 ACT1 VMA6 PXR1 CCW12

7 TDH3 RPL28 PFY1 RPS9A CHO1 CCW12

8 TDH3 RPL28 PFY1 VMA6 PXR1 CCW12

9 MYO4 TEF1 ACT1 RPS9A CHO1 CCW12

10 MYO4 TEF1 ACT1 VMA6 PXR1 CCW12

11 MYO4 TEF1 PFY1 RPS9A CHO1 CCW12

12 MYO4 TEF1 PFY1 VMA6 PXR1 CCW12

13 MYO4 RPL28 ACT1 RPS9A CHO1 CCW12

14 MYO4 RPL28 ACT1 VMA6 PXR1 CCW12

15 MYO4 RPL28 PFY1 RPS9A CHO1 CCW12

16 MYO4 RPL28 PFY1 VMA6 PXR1 CCW12

pCA production experiments

Single colonies were grown in 10 ml YPDA media (Takara) in 50 ml tubes for 24h. Cultures were
washed and inoculated in minimal media at starting OD of 0.3 or 0.6 according to the experimen-
tal design. Minimal media contained 20 g/l glucose (Acros Organics), and 1.7 g/l yeast nitrogen
base without amino acids or ammonium sulfate (BD Difco). A 60.5 mM nitrogen concentration
in the media was obtained with 4 g/l ammonium sulfate (Acros Organics) or 1.82 g/l urea (Acros
Organics). When required, media was buffered at a pH of 7 using 126 mM Na2HPO4 (Acros Organ-
ics) and 18 mM citric acid (Sigma-Aldrich) [349] and/or supplemented with 5 mM phenylalanine
(Sigma-Aldrich) and/or 5 mM glutamic acid (Sigma-Aldrich). Cells were grown for 48 h at the re-
quired temperature and agitation speed in 50 ml mini-bioreactor tubes (Corning) in an Innova 44
incubator (New Brunswick Scientific). At the end of the cultivation samples for OD measurements
and pCA quantification were taken.

pCA quantification

For pCA quantification, 400 µl of culture were mixed with 800 µl of acetonitrile (Thermo Scientific)
and centrifuged for 10 min at 4000 g. The acetonitrile phase was used for analysis using high
performance liquid chromatography (HPLC) on a Shimadzu LC2030C Plus 2 machine equipped
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with a Poroshell 120EC-C18 column (250 x 4.6 mm, Agilent) and a UV/vis detector. Mobile phase
was used at a rate of 1 ml/min and was composed of Milli-Q water (A), 100 mM formic acid (B),
and acetonitrile (C) at varying proportions: 77:10:13 (v/v/v) in the first 10 min, 23:10:67 (v/v/v) in
the next 9 min, and 77:10:13 (v/v/v) in the last six minutes. pCA was detected at a wavelength of
280 nm. Standards were prepared using pCA purchased from Sigma-Aldrich.

Experimental design and statistical analysis

The FrF2 function from the FrF2 R package was used for the generation of the designs given the
number of factors and the desired resolution [337].

Experimental data was used to train a linear model:

y = β0 +
i=n∑
i=1

MEi · Fi +
i=n∑
i=1

j=n∑
j=1

2FIi:j · Fi · Fj , (8.1)

where y represents the pCA concentration; β0 refers to the y-intercept, MEi represents the main
effect of factor i (Fi) and 2FIi:j refers to the two-factor interaction between factor i and j. The
total number of factors is indicated by n.

Ordinary least squares regression minimizing the sum of squared differences between the
observed and predicted values was used to estimate the coefficients for each term in the model
(MEi, 2FIi:j) using the R lm function. Then the summary function was used to obtain the ANOVA
table which provides the estimated coefficients and their associated p-values. p-Values were
corrected using Bonferroni. The adjusted coefficient of determination (Adj R2) and the mean
absolute error (MAE) were used to assess the model fit to experimental data.

Results

Selection of genetic and environmental factors and levels

The shikimate pathway is tightly regulated and aromatic amino acids exert feedback inhibition on
some of its enzymes (Figure 8.1) [350]. Expression of feedback-resistant variants of ARO4 (ARO4K229L)
and ARO7 (ARO7G141S) are common strategies to increase pCA production [340, 342]. Besides,
the phosphorylation of shikimate performed by ARO1 has been hypothesized as rate-limiting step
in the pathway. Rodriguez et al. reported a beneficial effect of expressing E. coli AROL to increase
the flux through this reaction [342]. Therefore, we selected the expression of ARO4K229L, ARO7G141S,
and AROL as genetic factors with the potential to affect pCA production. Each of these factors
was evaluated at two levels based on the strength of the promoter-terminator pair assigned to
each gene (Table 8.2) [345].

To produce pCA from Phe, the expression of two heterologous genes is required: phenylala-
nine ammonia lyase (PAL) and cinnamate 4-hydroxylase (C4H). Although S. cerevisiae contains
endogenous cytochrome P450 reductases (CPR), expression of a C4H-associated CPR is recom-
mended [340, 341, 342, 343]. We expressedArabidopsis thalianaCPR under a constitutive promoter
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and considered the expression of PAL and C4H as an additional genetic factor for the design. The
expression levels of PAL and C4H were evaluated using two promoter-terminator pairs (Table 8.2).

Figure 8.1: p-Coumaric acid (pCA) production pathway. Genes whose expression is considered as factor for
the design are shown. The origin of the gene is indicated as a subscript: ec, E. coli; at, A. thaliana. Glutamic
acid (Glu) and phenylalanine (Phe) are highlighted as they are selected as factors for media optimization.
PEP, phosphoenolpyruvate; E4P, erithrose-4-phosphate; DAHP, 3-deoxy-7-phosphoheptulonate; SHK, shikimate;
S3P, shikimate-3-phosphate; CHO, chorismate; PRP, phrephenate; PHE, phenylalanine, CIN, cinnamate; GLU,
glutamate; αKG, α-ketoglutarate.

Temperature (T), agitation (rpm), and initial cell density (OD) are usual variables tuned during
bio-process optimization and were selected as factors to improve pCA titers [80, 81, 82, 141, 351,
352]. Temperature was varied between 30°C, the optimal growth temperature of S. cerevisiae,
and 20°C, as lower temperatures might improve heterologous pathway expression [351]. Agitation
and initial OD were varied between 180-250 rpm and 0.3-0.6, respectively (Table 8.2).

Table 8.2: Factors and levels used for pCA optimization.

Factor Low-level (-1) High-level (1)
Temperature 20 °C 30 °C

Agitation 180 rpm 250 rpm

Initial cell desnity 0.3 0.6

N-source Urea Ammonium sulfate

pH Unbuffered Buffered

Phe 0 5 mM

Glu 0 5 mM

PAL-C4H promoters VMA6 - PXR1 RPS9A - CHO1

ARO7 promoter PFY1 ACT1

AROL promoter RPL28 TEF1

ARO4 promoter MYO4 TDH3

Combes et al. showed that the pH of the media affects pCA production [353]. Acidic pH,
below the pKA of pCA (4.65), favors the undissociated form of pCA (pHCA) in the media that
diffuses into the cell where it dissociates (pCA-), acidifying the cytoplasm and requiring active
export at the cost of ATP. Considering this, two factors that influence the pH of the media were
selected: the addition of a buffer and the use of different nitrogen sources (Table 8.2). When
ammonium sulfate or urea are used as nitrogen source, pH below and above the pKA of pCA are
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expected respectively [349]. Independently of the N-source used, the citrate phosphate buffer
can control the pH of the culture but can negatively impact cell growth [349].

Media supplementation is an additional common strategy to increase production [79, 83, 85,
141]. Phenylalanine is the substrate of PAL, the first enzyme required for the production of pCA and
glutamate is the nitrogen donor used during Phe production (Figure 8.1). Therefore, the additions
of these amino acids were considered as additional factors (Table 8.2).

Resolution IV design: impact of individual factors on pCA production

The effect of changing process conditions and media-related factors on pCA production was
evaluated using a resolution IV fractional factorial design. This design allows the estimation of
main effects of all the factors while confounding 2-factor interactions. They can be used during
screening to identify factors with a significant impact on production that can be the focus of later
optimization.

In order to obtain a resolution IV design with 11 factors (Table 8.2), 32 experiments are required
(Sup. Table 3). Although traditional applications of DoE use single-replicate screening, replicates
are a necessity to assess biological variation and, for each experiment, pCA production was mea-
sured in three independent cultures [73]. These experiments involved the construction of 16 strains
including all possible combinations of the four selected genetic factors. Each strain is then tested
in two different conditions determined by the design. However, strains containing gene clusters
2 and 6 (Table 8.1) could not be constructed and the effect of not performing four out of the 32
experiments was evaluated. Reducing the number of experiments to 28 did not affect the esti-
mation of main effects but increased the complexity of the confounding patterns for the 2-factor
interactions. Considering the goal of the experiment was to determine the main effects, construc-
tion of the two additional strains was not required, which accelerated the implementation of the
design round. In the 28 experiments performed, pCA production varied two orders of magnitude,
from 1.3 mg/l to 158.2 mg/l, confirming the impact of the selected factors on production (Figure
8.2A).

Linear models containing only main effects or main effects and confounded 2-factor interac-
tions were trained. Including 2-factor interactions increased the coefficient of determination from
0.66 to 0.94 (Figure 8.2C). Figure 8.2B shows the estimated coefficients of the model including main
effects and confounded 2-factor interactions. An ANOVA was used to determine the significance
of each main effect and 2-factor interaction on pCA production and p-values were corrected
using Bonferroni. All factors but T, OD, Glu, and ARO7 had a significant effect on pCA production.
Although, seven of the estimated 2-factor interactions were also significant, identifying the specific
significant 2-factor interactions was not possible due to their confounding.
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Figure 8.2: Resolution IV Design A. Measured pCA production at different combinations of factors and levels.
Light colors indicate low level (-1) and dark blue indicates high level (1). The shaded gray area indicates the four
experiments that could not be performed. B. Coefficients of the model including main effects and confounded
2-factor interactions (2FI). ** indicates corrected p-value≤ 0.001, **≤ 0.01 and *≤0.05. C. Fit of models including
main effects (ME) or main effects and two-factor interactions (2FI model) to experimental data. ME model: Adj
R2=0.66, MAE = 129; 2FI model: Adj R2=0.94, MAE = 33. D. pCA production in validation experiment.
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The main effect with the highest impact on performance was the expression strength of PAL
and C4H, with a positive regression coefficient. This indicates that a high expression of the heterolo-
gous genes for pCA production is essential to obtain high titers. The effect of PAL-C4H was followed
by the negative impact of buffering of the media represented by a negative regression coeffi-
cient. Although the addition of a buffer could control the dissociation of pCA [353], it negatively
affected cell growth and resulted in overall low pCA titers. The third most relevant main effect was
the addition of Phe, with a positive coefficient that shows the benefit of Phe supplementation on
pCA production [354].

Notably, estimated coefficients for 2FI-6, 12, and 14 had a similar impact on pCA titer than
PAL-C4H, pH, and Phe, and the coefficient of determination was significantly improved when 2-
factor interactions were considered for pCA production (Figure 8.2B, C), indicating that a design
with a higher resolution that allows the estimation of 2-factor interactions is required to optimize
pCA production. The importance of 2-factor interactions was further confirmed in an independent
experiment where the best experiment from the resolution IV design was compared to the best
predicted experiment according to the model’s main effects. The predicted best experiment
showed a small (5.6%) but significant reduction in pCA production, confirming the importance of
2-factor interactions (Figure 8.2D, Sup. Table 4).

Resolution V design: identification of relevant 2-factor interactions

Fractional factorial resolution V designs are required to identify main effects and 2-factor interac-
tions. When 11 factors are considered this design includes 128 experiments. In order to decrease
the number of experiments, factors with the highest impact on pCA production were fixed: only
strains with high expression of PAL-C4H were considered and unbuffered media supplemented
with Phe was used. This reduced the number of factors to eight and the number of required exper-
iments to 64 (Sup. Table 5). Considering the small variation of the resolution IV dataset, duplicates
instead of triplicates were used during this round. The top producing conditions from the resolution
IV experiments was included as control.

In the resolution V experiments, pCA production varied from 79.8 mg/l to 218.7 mg/l, improving
the maximum production found in the first round by 38% (Figure 8.3A, Sup. Table 5). The use of
strains with high expression of PAL-C4H in unbuffered media supplemented with Phe, increased
the minimum production of pCA in this round by 62%, supporting the information provided by the
resolution IV model.

Experimental data was used to train new linear models based on main effects or main effects
and 2-factor interactions. The model trained with main effects showed a coefficient of determi-
nation of 0.55 that increased to 0.74 when 2-factor interactions were considered, highlighting the
relevance of 2-factor interactions to explain pCA production (Figure 8.3C).
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Figure 8.3: Resolution V Design A. Measured pCA production at different combinations of factors and levels.
Light blue indicates low level (-1) and dark blue indicates high level (1). The red bar is the best performing
experiment from the resolution IV round. Factors in grey were fixed based on inforation from the resolution IV
design. B. Coefficients of the model including main effects and 2-factor interactions. *** indicates corrected
p-value ≤ 0.001, ** ≤ 0.01 and * ≤ 0.05. C. Fit of models including main effects (ME) or main effects and two-
factor interactions (2FI model) to experimental data. ME model: Adj R2=0.55, MAE = 82; 2FI model: Adj R2=0.74,
MAE = 51. D. pCA production in validation experiment.
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Temperature and agitation were identified as significant process-related factors, so low T and
high agitation (rpm) improve pCA production (Figure 8.3B). ARO4 was the only significant genetic
factor, and, in contrast to other reports, low expression of this gene positively affected pCA titers
(Figure 8.3B) [340, 342]. Moreover, three significant positive 2-factor interactions were found: T:ARO4,
rpm:OD, and AROL:ARO4 (Figure 8.3B).

In order to find the optimal strain and conditions for pCA production, the model including
main effects and 2-factor interactions was used to predict pCA titers for all strains in all possible
media conditions. The use of a strain with high expression of PAL-C4H, ARO7, and AROL and lower
expression of ARO4 in a media supplemented with urea, Phe, and Glu incubated at 20°C and 250
rpmwith an initial OD of 0.3 was predicted to optimize pCA production. These conditions weremet
by the top producing experiment measured in the resolution V round. To avoid the bias toward
performed experiments during the estimation of model parameters, a new model was trained
excluding data from the top producing experiment. When pCA production was predicted, the
excluded top producer experiment was still suggested as optimal. Moreover, we evaluated the
effect of individually changing each factor to its sub-optimal level. As expected, these modifica-
tions decreased or did not affect pCA production (Figure 8.3D, Sup. Table 6). Changing the initial
OD, the nitrogen source, or the expression of AROL - all factors with no significant main effects -
did not significantly change the pCA produced. In contrast, modifying the expression of ARO4,
T, and rpm, factors with significant main effects, negatively impacted pCA production. Although
main effects related to ARO7 and Glu were insignificant, reducing the expression of ARO7 and
omitting Glu supplementation, negatively impacted pCA production, which could be explained
by higher-order factor interactions not included in the model.

Interaction graphs were used to understand the relationship between factors involved in sig-
nificant 2-factor interactions and pCA production. Figure 8.4A shows the interaction between a
genetic factor, ARO4, and a process-related factor, temperature. While at 30°Cexpression of ARO4
does not affect production, a lower expression results in a higher titer at 20°C. Genetic factors also
interact with each other, as an imbalanced expression of low AROL and high ARO4 results in the
lowest pCA titer (Figure 8.4B). Last, a significant interaction between rpm and OD was found since,
although fast agitation is always preferred, it has a higher impact in cultures with high initial cell
density (Figure 8.4C).

Figure 8.4: Interaction plots of significant 2-factor interactions. See Table 8.2 to identify levels corresponding to -1
and 1. T, temperature; rpm, agitation speed; ODt0, initial cell density.
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Discussion

DoE has been commonly applied to process optimization [79, 80, 81, 82, 83, 84, 85] and strain
design [32, 86, 87]. However, only a few studies consider the simultaneous optimization of genetic
and environmental factors [88, 89]. Importantly, these studies showed that the interplay between
both types of factors must be taken into account simultaneously for the optimization of microbial
conversion processes. Our work underscores and strengthens these findings, using pCA production
in S. cerevisiae as an example. The importance of simultaneous process and strain optimization
is highlighted by the T:ARO4 interaction (Figure 8.4A). If strain selection had been performed at S.
cerevisiae’s standard growth temperature (30°C), tuning the expression of ARO4 would have been
considered irrelevant. However, given that the expression of ARO4 becomes important at lower
temperatures, a sub-optimal strain could have been selected for subsequent process optimization.

The interplay between the strain performance and the bio-process design is especially im-
portant when moving from laboratory-scale to large-scale processes. This step-wise endeavor is
time-consuming, labor-intensive and expensive. It thus benefits from scale-down experimentation
[355]. The central paradigm of scaling-down states that scale-up will succeed when changes in
the cellular environment caused by changes in scale do not influence cell behavior [356]. Here
we show how DoE can identify genetic and process parameters with significant influence on
production that should be the focus of the down/up-scaling plan.

We used DoE to understand the effect of seven process-related factors (T, rpm, OD, N, pH,
Phe, and Glu), four genetic factors (PAL-C4H, ARO7, AROL, and ARO4), and their interactions on
pCA production. Considering two levels per factor, 2048 experiments would be required to find
all possible interactions between factors and ensure the identification of the best production
conditions. Instead, we performed 92 experiments (4.5% of the total) divided into two consecutive
rounds. The first round identified the expression of PAL-C4H, the addition of Phe, and the use
of unbuffered media as key variables to ensure high pCA titers. These findings were taken up
in a second experimental round for which the optimal pCA production conditions were found:
incubation at low temperature and high agitation of a strain with low expression of ARO4. A
38% increased pCA production was obtained in the resolution V round compared to the best
experiment in the resolution IV design. Moreover, a 168-fold variation was measured between the
worst and best performed experiments.

As indicated, only fourteen of the sixteen strains required for the resolution IV experiments
were constructed, so only 28 out of the 32 designed experiments could be performed. Although
resolution IV designswith 32 experiments allow the estimation ofmain effects for up to 16 factors,we
considered the impact of 11 factors on production. This granted some redundancy in the design
andallowed the estimation of all main effects with 28 out of the 32 designedexperiments. However,
if more factors had been considered, the construction of all the required strains would have been
necessary for the estimation ofmain effects. This limitation can be solvedwith themachine learning
(ML) analysis of strain libraries generated using one-pot random transformation [345, 357]. Still,
although ML can identify significant factors with an impact on production, quantifying the impact
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of interactions between factors, critical for bio-process optimization, is not trivial [345]. Moreover,
the randomization of strains and process conditions, even when mini-bioreactor systems are used
[41, 42], increases the complexity of creating suitable datasets for ML.

Here we focused on the use of fractional factorial designs to find the optimal production
conditions given a design space defined by the selected factors and their levels. To achieve
this, a resolution IV design to identify factors with the strongest impact on production and the
importance of interactions was employed. These factors were subsequently fixed, and a resolution
V design was used to identify the significant interactions. Alternatively, the factors with the most
important main effects could have been optimized beyond the original design space. While the
pH variable was binary and the use of unbuffered media was recommended, response surface
methods couldhavebeen employed to optimize the expression of PAL-C4Hand the supplemented
Phe concentration [79, 86]. In this case higher expression levels and Phe concentrations should
have been tested to evaluate the existence of an optimum.

Summarizing, through a systematic evaluation of 11 factors, including genetic modifications
and process parameters, we uncovered some of the interplay between genetic and environmen-
tal factors in pCA production. Moreover, we demonstrate the power of DoE to provide insights
into factor effects and interactions for process optimization. By leveraging the strengths of exper-
imental design and statistical analysis, we provide a framework to find key factors that impact
bio-process performance that could be systematically applied to guide strain design as well as
scale-up/down efforts.
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Industrial biotechnology uses Design-Build-Test-Learn (DBTL) cycles to accelerate the de-
velopment of microbial cell factories, required for the transition to a bio-based economy.
To use them effectively, appropriate connections between each phase of the cycle
are crucial. Using p-coumaric acid production in Saccharomyces cerevisiae as case
study, we propose the use of one-pot library generation, random screening, targeted
sequencing, and machine learning (ML) as links during DBTL cycles. We showed that
the robustness and flexibility of ML models strongly enable pathway optimization, and
propose feature importance and SHAP values as a guide to expand the design space
of the original strain libraries. This approach allowed a 68% increased production of p-
coumaric acid within two DBT(L) cycles leading to a 0.52 g/l titer and a 0.03 g/g yield
on glucose.

Abstract
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Introduction

Climate change calls for an imminent transition to a bio-based economy less reliant on the petro-
chemical industry. Biotechnology contributes to solving this issue as metabolic engineering allows
microbial production of a wide variety of compounds such as biofuels or bulk chemicals [24]. Yet,
these solutions often require very long development times that limit their applications [28].

Design-Build-Test-Learn (DBTL) cycles offer a framework for systematic metabolic engineering.
Pathways are designed during the Design phase, strains are constructed in the Build phase, and
screened for production during the Test phase. In the Learning phase, a relationship between
pathway design and production is established and used to inform new DBTL cycles [32]. Advances
in synthetic biology and automation facilitate the engineering of microorganisms and increase
the throughput of the Build and Test phases. However, predicting the effect of modifications in
the Design phase that may lead to improvements is non-trivial [52, 98]. In fact, the acceleration
of the Build and Test phases of the DBTL cycle might lead to a paradox where more data leads
to more complexity but not necessarily better strain performance [50]. To avoid this, an efficient,
meaningful link between the Design and Learn phases of the cycle is crucial.

Machine learning (ML) can identify patterns in the system of interest without the need for a de-
tailedmechanistic understanding of the problem [358]. It has been used to aid strain development
with applications ranging from gene annotation and pathway design to process scale-up [52].
When used for pathway optimization, common approaches start by creating libraries of strains with
varying regulatory elements such as promoters or ribosome binding sites. These libraries include a
defined solution space that can be explored by random or rational sampling [357, 359]. A subset
of the library is then screened, and genotype and production data are used to train ML algorithms.
The algorithms then suggest a new round of (improved) strains for construction, effectively linking
the Learn and Design phases of sequential DBTL cycles [96, 97, 98, 357, 360]. Besides, ML algorithms
are robust to missing data caused by unsuccessful construction of specific strains which facilitates
effective and efficient implementation of DBTL cycles [96, 99].

p-Coumaric acid (pCA) is an aromatic amino acid-derived molecule produced from pheny-
lalanine (Phe) or tyrosine (Tyr). It is naturally found in plants and serves as a startingmaterial for com-
mercially valuable products such as pharmaceuticals, flavors, fragrances, and cosmetics [340]. In
Saccharomyces cerevisiae Phe and Tyr are synthetized via the prephenate pathway (Figure 9.1A)
[46, 350]. This pathway starts with the condensation of erythrose-4-phosphate (E4P) and phospho-
enolpyruvate (PEP) by 3-deoxy-7-phosphoheptulonate synthase (ARO3/4). Then, the pentafun-
tional protein ARO1 converts 3-deoxy-7-phosphoheptulonate (DAHP) to 5-enolpyruvylshikimate-3-
phosphate (EPS3P), which is converted to chorismate (CHO) by ARO2, and to prephenate (PRP) by
ARO7. Prephenate can then be converted to phenylalanine by prephenate dehydratase (PHEA)
and ARO8/9, or to tyrosine by prephenate dehydrogenase (TYR) and ARO8/9. To continue the
synthesis of pCA, expression of heterologous genes is needed: tyrosine ammonia lyase (TAL) for
synthesis from Tyr; or phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H) and its
associated cytochrome P450 reductase (CPR) for synthesis from Phe [340, 341, 342, 343].
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Figure 9.1: A. p-Coumaric acid (pCA) production pathway. Heterologous genes are preceded by a two-letter
code indicating the organism of origin: ec, Escherichia coli; at, Arabidopsis thaliana; fj, Flavobacterium johnso-
niae, see legend for color codes. B. Library structure. The library consists of gene clusters formed by a selection
marker (Marker) and six factors with levels including different open reading frames and promoters. Lighter colors
indicate factor levels included in the design but not obtained experimentally. GLC, glucose; PEP, phospho-
enolpyruvate; E4P, erithrose-4-phosphate; DAHP, 3-deoxy-7-phosphoheptulonate; DHQ, 3-dehydroquinate; DHS,
3-dehydroshikimate; SHK, shikimate; S3P, shikimate-3-phosphate; EPS3P, 5-enolpyruvylshikimate-3-phosphate;
CHO, chorismate; PRP, prephenate; PPYR, phenylpyruvate; PHE, phenylalanine, CIN, cinnamate; pCA, p-
coumaric acid; HPPYR, 4-Hydroxyphenylpyruvate; TYR, tyrosine.

The prephenate pathway is highly regulated, Tyr exerts feedback inhibition on ARO3 andARO7
and Phe on ARO4 [350]. This regulation together with the availability of precursors and appropriate
expression of heterologous genes have been demonstrated to influence pCA production [340,
341, 342]. However, testing the effect of these factors individually might result in the exclusion of
possible synergistic effects. Alternatively, combinatorial optimization of metabolic pathways can
facilitate the search for optimal production albeit involving the construction and testing of an
exponentially growing number of strains [357].

We used ML-guided DBT(L) cycles to improve pCA production in S. cerevisiae. We created
combinatorial libraries based on the Tyr or Phe-derived pathways, that simultaneously altered ex-
pressed coding sequences and regulatory elements (promoters) (Figure 9.1B). We showed a better
performance of the Phe-derived pathway, which was further optimized based on ML predictions.
Following this strategy, we achieved a 68% improvement in production within two DBT(L) cycles
and a final pCA titer of 0.52 g/l resulting in a 0.03 g/g yield of pCA on glucose. Although higher
pCA yields up to 0.15 g/g have been previously obtained [340], this study is an example of the use
of ML-guided DBTL cycles to systematize the generation of efficient strains.
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Materials and methods

Organisms and media

S. cerevisiae strains were derived from CEN.PK113-7D and grown at 30°C in Yeast Extract Phytone
Dextrosemediawith 2%D-glucose for transformations andpre-cultures (YEPhD, 2%Difco™phytone
peptone (Becton-Dickinson (BD), 1% Bacto™ Yeast extract (BD)). Verduyn Luttikminimalmediawith
2% glucose was used for production experiments [361]. When required, antibiotics were added to
the media at appropriate concentrations: 200 µg/ml of nourseothricin (Jena Bioscience) and 200
µg/ml of geneticin (G418, Sigma-Aldrich). Escherichia coli DH10B (New England BioLabs) was used
as cloning strain andgrownat 37°C in 2XPeptone Yeast Extractmedia (2XPY,1.6% tryptonepeptone
(BD), 1% Bacto yeast extract (BD) and 0.5% NaCl (Sigma Aldrich)). When required, antibiotics were
added to the media at appropriate concentrations: 100 µg/ml of ampicillin (Sigma-Aldrich), and
50 µg/ml of neomycin (Sigma-Aldrich). Solid medium was prepared by the addition of Difco™
granulated agar (BD) to the medium to a final concentration of 2% (w/v).

Cassette construction

DNA templates for promoters and terminators [362] as well as open reading frames (ORF) were
codon optimized according to Roubos et al. [363] and can be found in Sup. Table 1. Bricks were
assembled into cassettes (promoter + ORF + terminator) via Golden Gate (using BsaI-HF v2.0
(NEB) and T4 DNA Ligase (Invitrogen)) into a backbone plasmid containing a 50 bp homologous
connector sequence to facilitate in vivo recombination of the gene cluster as described in Verwaal
et al. [346] (Sup. Figure 9.1). Golden Gate products were transformed into chemically competent
E. coli DH10B. The Wizard® SV 96 Plasmid DNA purification system (Promega, Madison, WI, USA)
was used for plasmid isolation. Cassettes were confirmed by PCR using Q5® High-Fidelity DNA
polymerase (NEB) with primers from IDT and analyzed on a LabChip® GX Touch Nucleic Acid
Analyzer (Perkin Elmer). Plasmids with correct fragment size were amplified by PCR using Q5®
High-Fidelity DNA polymerase (NEB) and integration site flanks (50 bp homologous region) were
attached to the first and the last cassette of the gene cluster (Sup. Figure 9.1). PCR products were
purified using Promega Wizard® SV PCR Clean-Up kit and quantified using DropSense 96 (Trinean).

Strain construction

Strains were constructed as described in Verwaal et al. and Ciurkot et al. [346, 364]. In short,
host strain SHK001 pre-expressing Cas9 (Sup. Table 3) was used to enable a targeted genomic
integration of gene clusters Sup. Table 2. A linear guide RNA targeting a single locus (Sup. Table 6)
was amplified from a gBlock (IDT) with 50 bp homology regions to the pRN1120 plasmid. PCRs were
performedwith Q5 ® High-Fidelity DNA polymerase (NEB). PCR products were confirmed on a 0.8%
agarose gel and purified using Wizard® SV Gel and PCR Clean-Up kit (Promega). DNA fragments
were quantified using Nanodrop. Plasmids and primers used are provided in Sup. Table 4 and 5.
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Equimolar amounts (100-300 ng/kb) of the cassettes, linear gRNA (210 ng/kb), and linear back-
bone fragments (35 ng/kb) were transformed to the cells following the LiAc/ssDNA/PEG method
[348]. Reagents for yeast transformation were obtained from Sigma-Aldrich (lithium acetate di-
hydrate (LiAc) and deoxyribonucleic acid sodium salt from salmon testes (ssDNA)) and Merck
(polyethylene glycol 4000 (PEG)). In vivo recombination of the clusters is facilitated by connector
sequences on the cassettes [346]. Transformants were plated on Qtray (NUNC) containing YEPhD
agar medium and a selection agent. Colonies appeared on the plate after 3 days of incuba-
tion at 30°C. Single colonies were picked with Qpix 420 (Molecular Devices) into 96 well plates
containing YEPhD agar medium and selection agent and regrown for 3 days at 30°C.

Whole genome sequencing

S. cerevisiae cells (OD 5-10) were pelleted and lysed in 200 µl 0.9% physiologic salt with 2 µl RNAse
cocktail (Invitrogen) and 5mg/ml Zymolyase 100T (MP Biomedicals). The mixture was incubated
at 37°C for 45 min. 200 µl 2X cell lysis solution (0.05M EDTA, 4%SDS) was added to the mixture
and vortexed. 168 µl protein precipitation solution (10M NH4Ac) was added and proteins were
precipitated by centrifugation for 10 min at 20K rcf at 4°C. The DNA in the supernatant was precip-
itated with an equal volume of isopropanol followed by centrifugation for 2 min at 16K rcf at room
temperature. The DNA pellet was washed with 70% ethanol. The ethanol was discarded and the
pellet was left to dry and then dissolved in MilliQ water. The isolated genomic DNA was quantified
using Qubit (Thermofisher Scientific) and Nanodrop (Thermofisher Scientific), purified using Zymo
Research gDNA Clean & Concentrator kit, and sequenced using the ligation sequencing kit (LSK-
SQK109) with the native barcoding expansion (EXP-NBD114) from Oxford Nanopore Technologies
according to manufacturer instructions on a GridION device (FLOW-MIN106 flow cell).

Promoter-terminator characterization

Combinations of promoter-terminators were characterized using GFP as a reporter gene. Precul-
tures were prepared in 96-half-deep well plates (HDWP) containing 350 µl YEPhD + Pen/Strep (Invit-
rogen) and incubated at 30°C, 750 rpm, 80% humidity for 48 h. 10 µl of the grown pre-culture were
re-inoculated to MTP-R48-B FlowerPlate (m2p-labs) containing 1 ml minimal medium + Pen/Strep
(Invitrogen). The plate was incubated 48 h in Biolector® at 30°C, 800 rpm, 85% humidity. Biomass
(em. 620nm/ex. 620nm) and fluorescence (em. 488nm/ex. 520nm), each with 3 filters (gain of 100,
50, and 20), were measured every 15 min. 40 µl of 2 days-old main culture were measured using
fluorescence-activated cell sorting (BD, FACSAria Fusion) to detect single cells expressing GFP at
a flow rate of 10,000 evt/s. The signal of fluorescent proteins was detected with a bandpass filter
set at 530/30 nm for GFP. The data was recorded using BD FACSDiva 8.0.2 software to retrieve the
geometric mean of the fluorescence distribution. Data was analyzed using FlowJo (v10.6.2).
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p-Coumaric acid production experiments

Colonies were grown in 96 microtiter plates (MTP) Nunc flat bottom (ThermoFisher Scientific) con-
taining YEPhD and appropriate selection agent for 48 h at 30°C, 750 rpm, 80% humidity. Cultures
were re-inoculated in HDWP (ThermoFisher Scientific, AB-1277) containing 350 µl YEPhD and se-
lection agent and grown for 48 h. The grown cultures were reinoculated to HDWP containing 350
µl minimal media and incubated for 2 days at 30°C, 750 rpm, 80% humidity. In all plates blank
wells and wells containing a control strain (SHK0046, see Sup. Table 3) were included. For flow-NMR
measurements, 250 µl broth were sampled to a 96-deep well plate (DWP) and mixed with 500 µl
acetonitrile (Sigma Aldrich) by pipetting. The mixture was centrifuged at 4000 rpm for 10 min. 500
µl supernatant was transferred to a new DWP for analysis with flow-NMR. For LC/MS measurements
250 µl broth was sampled. 1 ml acetonitrile was added, the sample was mixed by pipetting and
centrifuged. 250 µl supernatant was diluted with 375 µl milliQ and used for analysis with LC/MS.

p-Coumaric acid quantification with automated segmented-flowNMRanalysis

The DWP plates were lyophilized to remove the non-deuterated solvents. 100 µl solution of 1 g/l in-
ternal standard 1,1-difluoro-1-trimethylsilanyl methylphosphoric acid (FSP, Bridge Organics) in MilliQ
water was added into DWP prior to the lyophilization. To the lyophilized samples, 600 µl of D2O
(Cambridge Isotope Laboratories (DLM-4)) was added and homogenized. The samples were an-
alyzed on a CTC PAL3 Dual-Head Robot RTC/RSI 160 cm robotic autosampler (CTC Analytics AG,
Zwingen, Switzerland) fluidically coupled to a Bruker spectrometer Avance III HD 500 MHz Ultra-
Shield [365]. 1H spectra were recorded with standard pulse program (zgcppr) with the following
parameters: 16 scans, 2 dummy scans, 33k data points, 16.4 ppm spectral width, 1.2 s relaxation
delay (d1), 8 µs 90° pulse, 2 s acquisition time, 15 Hz water suppression, and fixed receiver gain
of 64. Spectra were processed and analyzed using Topspin 4.1.4 (Bruker). Spectral phasing was
applied and spectra were aligned to 3-(trimethylsilyl)-1-propanesulfonic acid-d6 sodium salt (DSS-
d6, Sigma-Aldrich) at 0 ppm. Auto baseline correction was applied on the full spectrum width.
Additional third-order polynomial baseline correction for selected regions was applied if needed.
The amount of pCA (doublet, 6.38 ppm, n=2H) was calculated relative to the signal of FSP. NMR
production data per plate was normalized by the production of the SHK0046 control strain.

p-Coumaric acid quantification with LC-HR-MS spectrometry

Samples were analyzed on a Vanquish Horizon UHPLC system coupled to a Q Exactive Focus mass
spectrometer (ThermoFisher). Chromatographic separation was achieved on an Acquity UPLC®
BEH C18 column (100 x 2.1 mm, 1.7 µm, Waters), using gradient elution with 0.025% formic acid
in LC-MS grade water (A), and 90% LC-MS grade acetonitrile (B). The gradient started with 1% B
linearly increased to 50% B in 5 min, followed by an increase to 99% B in 0.1 min, kept at 99% for
1.9 min and then re-equilibrated with 1% B for 1.9 min. The flow rate was kept at 0.6 ml/min, using
an injection volume of 2 µl, and the column temperature was set to 50°C. pCA was detected in
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negative APCI mode and quantified using an external calibration line of a reference standard.
Using this chromatographic system, the coumaric acid elutes at retention times 3.05 min with m/z
163.0403 (M-H), in good agreement (within 2 ppm) with the theoretical m/z value of 163.04007.

Machine learning-guided strain design

Originally, the PAL and TAL libraries each contained 3024 different designs. However, due to prob-
lems during cassette construction, the design space was reduced to 672 designs per library. We
randomly screened 440 strains per library and classified them into four clusters based on NMR
pCA production titers. Strains from every cluster were randomly selected for sequencing. Colonies
were considered correct when they had targeted integration of the complete gene cluster (7
cassettes, one per factor, and the selection marker). For gene clusters present in more than one
correct sequenced colony, average pCA production was considered. Two datasets were used: a
complete dataset including data from producers and non-producers and a producers dataset.
Colonies with pCA production below 0.05 a.u. were considered non-producers.

From the available regressor models in the scikit-learn library, the performance of multiple
linear (MLR), support vector (SVR), random forest (RFR), and kernel ridge (KRR) regression models
was evaluated. pCA production was modeled using the factor levels (genes or their expression
strength), treated as categorical variables using one-hot encoding, as inputs (Table 9.1). Models
were evaluated on their ability to predict pCA titers measured by NMR (model output). Each
dataset was split into train (90% data) and test (10%) sets using stratification (i.e. maintaining the
proportion of the different classes in both sets). For all models except MLR, hyper-parameters were
selected based on leave-one-out cross-validation in the train set using themaximum error as score.
Predictions of models with optimized hyper-parameters were compared to the test set using the
coefficient of determination (R2) as score. This process was repeated ten times and models were
compared based on their average R2 on the test sets. Additionally, the impact of the training data
size on model performance was tested: after the train test split, percentages of the training data
from 5 to 100% were used for training, and model performance was evaluated using the test set
with R2 as score. See Sup. Figure 9.2 for an overview of the model selection strategy.

For each dataset, models selected based on R2 were trained following two different strategies:
"one-time" and "recurrent" training. In the first strategy, all data from the dataset was used for
training. In the second strategy, 90%of the datawas used for training and this process was repeated
100 times. Trained models were used to predict pCA titers for all the designs in the design space.
For each dataset and training strategy, top producers were ranked based on the frequency of
each design being predicted as top 1, top 5, and top 10 by each model (Sup. Figure 9.2).

The impact of the different factors on pCA production was evaluated by permutation feature
importance using the permutation_importance function of the scikit-learn library. In addition,
SHapley Additive exPlanations (SHAP) values were calculated using the shap library [366].

All data and scripts used are available in Gitlab. Model selection, training, and feature impor-
tance were performed using Python (v3.8.8) and Scikit-learn (v1.1.3) [367].
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Results

DBTL Cycle 1: Exploring the design space

Design: selection of factors and levels

Two independent libraries were designed depending on whether pCA was produced from Phe
(PAL route) or Tyr (TAL route) (Figure 9.1A). Any design of the libraries is formedby a 7-genes cluster (6
factors and a selection marker) integrated in the genome of S. cerevisiae (Figure 9.1B, Sup. Figure
9.1). The combination of promoter, ORF, and terminator (cassette) in the gene cluster constitutes
a factor that can take different levels depending on the chosen promoter and/or ORF. The size of
the library is determined by the number of factors and levels so library =

∏F
i=1 Li, where F is the

number of factors and Li is the number of levels of factor i. Both libraries shared factors 1 and 2
and differed in the other 4 factors (Figure 9.1B).

Factor 1 contained five ORFs: enolase (ENO1), ribose-5-phosphate isomerase (RKI1), transketo-
lase (TKL1), ARO2, and a feedback-resistant ARO4 (ARO4K229L) under the TDH3 promoter. Besides,
ARO4K229L could be downstream of two additional promoters (RPL8A, MYO4) as the expression of
this gene has resulted in significantly increased pCA titers [340, 342]. ENO1, RKI1, and TKL1 were
chosen considering that the availability of PEP and E4P can also affect production. ARO2 was
included as an additional level to test the effect of other shikimate pathway genes (Table 9.1).

Levels for factor 2 were based on the assumption of ARO1 as rate-limiting step (Table 9.1).
Rodriguez et al. observed increased pCA production when ARO1 or AROL from E. coli, which
catalyzes the phosphorylation of shikimate, were over-expressed in yeast [342]. Therefore, 4 lev-
els were chosen: expression of AROL under three different promoters (TEF1, RPL28, UREA3) and
expression of ARO1 under a strong promoter (TEF1).

The focus of factor 3 was the expression of the feedback-resistant variant ARO7G141S under
three different promoters (PRE3, ACT1, PFY1), as overexpression of this gene improved pCA titers
[340, 342]. Besides, the expression of PHEA and TYRA from E. coli with the PRE3 promoter are con-
sidered as additional levels for the PAL and TAL libraries respectively (Table 9.1). These bifunctional
enzymes have a chorismate mutase activity and either prephenate dehydratase or dehydroge-
nase activities, specific for the formation of Phe or Tyr respectively [368, 369].

Factors 4, 5, and 6 of the PAL library each focused on one of the heterologous genes required
for pCA production from Phe: PAL, C4H, and CPR under the control of three different promoters
(ENO2, RPS9A, VMA6; KI_OLE1, CHOI, PXR1; and PGK1, RPS3, CCW12 respectively). In the TAL library,
levels of factor 4 were formed by TAL under the control of three promoters (ENO2, RPS9A, and
VMA6). In order to obtain a design space with the same size as the PAL library, factors 5 and 6
included the expression of ARO9 and TYR with the same promoters used for the PAL library (Table
9.1).

Considering the factors and levels used, the number of possible designs in each library was
3024 (7 · 4 · 4 · 3 · 3 · 3).
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Table 9.1: Summary of factors and their levels in the TAL and PAL libraries.

Factors
Levels (promoter + ORF)

1 2 3 4 5 6 7
1 TDH3-ENO2 TDH3-RKI TDH3-TKL TDH3-ARO2 TDH3-ARO4 RPL8A-ARO4 MYO4-ARO4

2 TEF1-ARO1 TEF1-AROL RPL28-AROL UREA3-ARO4

3
PRE3-PHA
PRE3-CHS

PRE3-ARO7 ACT1-ARO7 PFY1-ARO7

4
ENO2-PAL
ENO2-TAL

RPS9A-PAL
RPS9A-TAL

VMA6-PAL
VMA6-TAL

5
KI_OLE1-C4H
KI_OLE1-ARO9

CHO1-C4H
CHO1-ARO9

PXR1-C4H
PXR1-ARO9

6
PGK1-CPR
PGK1-TYR

RPS3-CPR
RPS3-TYR

CCW12-CPR
CCW12-TYR

Build and Test: construction and screening of the combinatorial library

For each of the promoter-terminator pairs designed, cassettes formed by promoter-GFP-terminator
were constructed and transformed into yeast. Positive colonies were found for all the constructs
but the strong promoter-terminator pairs for factors 3 and 5 (PRE3-ADH1, OLE1-TDH3). Cells were
grown in BioLector bioreactors and fluorescence was analyzed using FACS. For factor 1, the fluo-
rescence of strong and medium promoters differed by an order of magnitude. For factors 2, 4 and
6, fluorescence values for the medium promoters were approximately half of those from strong
promoters. Weak promoters showed fluorescence values 1 or 2 orders of magnitudes below the
strong and medium promoters (Sup. Figure 9.3, Sup. Table 3).

Cassettes required for the in vivo assembly of the gene clusters were created by combining
promoters, ORFs, terminators, and homology regions. All cassettes except those containing the
strong promoter for factor 5 and the strong and medium promoters for factor 6 were obtained,
which reduced the size of the PAL and TAL libraries from 3024 possible designs to 672 designs per
library (Figure 9.1B).

S. cerevisiae cells expressing Cas9 were transformed with a mixture of the correct cassettes
using one-pot transformation. Cells were plated in selective media and 440 strains per library were
randomly selected for screening of pCA production. These stains were grown in 96 DWP for 48h,
pCA was extracted and samples were measured using NMR (Figure 9.2). Colonies from the PAL
route produced pCA ranging from 0 to 0.22 a.u. Colonies from the TAL route produced significantly
less pCA, with only three colonies producing above the detection limit (0.05 a.u.) and a maximum
production of 0.10 a.u.
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Figure 9.2: Screening before sequencing strategy. For each of the routes allowing pCA production, 672-member
libraries were defined. For the PAL route, production of 440 randomly selected strains was measured and 225
strains were selected for sequencing; 189 correct strains containing 91 unique pathway designs were found. For
the TAL route, 440 strains were screened from which 38 were sequenced; 30 of these strains were correct and
24 unique designs were found.

Considering the screening results, the production space was sampled including low, medium,
and high producers to obtain high-quality data for ML and to analyze the efficiency of the library
generation method. For the TAL route, 38 strains were sequenced from which 30 sequences were
correct (i.e. contained the gene cluster with 7 genes) and 24 contained unique pathway designs
(i.e. different integrated gene clusters) (Figure 9.2). Considering that 80% of the sequenced strains
were correct, the observed low pCA production was likely caused by the lower efficiency of the
TAL route and not incorrect library construction. These results agreed with previous reports that
identified the PAL route as the most suitable pathway for pCA production [340]. Therefore, the
optimization of pCA production was focused on the PAL route. Out of 672 possible designs in this
library, 225 strains were selected for sequencing based on their pCA titers, ensuring that strains from
different clusters were sequenced. We found 189 correct strains (84%) from which 91 (48%) were
unique, validating the library construction approach (Figure 9.2). Out of the 91 unique designs, 58
designs were present in one strain and 33 had multiple replicates (Sup. Figure 9.4). Besides, for all
factors at least a strain containing each of the levels was found.

Learn: model selection, training, and predictions

One of the challenges of applying ML to strain design is the training data requirements. While
some reports suggest the homogeneous sampling of the complete solution space [52], others
suggest the benefit of including mainly good producers [97]. Therefore, we divided our data into
two datasets: the complete dataset that included data from producers and non-producers and
the producers dataset. Stratification was used during training to ensure a constant proportion of
poor, medium, good, and very good producers in the train and test sets. After hyper-parameter
tuning, train sets were used to train four ML algorithms: MLR, SVR, KRR, and RFR. While MLR assumes
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a linear relationship between the factors and the response, SVR and KRR can capture non-linear
relationships, and random forest is an ensemble method that excels at handling complex interac-
tions. The performance of the models with optimized hyper-parameters was evaluated on the test
set. Models trained with the producers dataset showed better performance than those trained
using the complete dataset (Table 9.2). MLR and KRR or all models were chosen as predictors for
the complete and the producer datasets, respectively.

Table 9.2: Performance of ML methods (R2) on test data. Models were trained with training data from the
complete or producer datasets using stratification. MLR, multiple linear regression; SVR, support vector regression;
KRR, kernel ridge regression; RFR random forest regression.

Complete dataset Producers dataset
(91 designs) (63 designs)

MLR 0.70 ± 0.17 0.82 ± 0.15

SVR 0.71 ± 0.23 0.82 ± 0.19

KRR 0.72 ± 0.18 0.80 ± 0.11

RFR 0.72 ± 0.19 0.82 ± 0.16

Selectedmodels were trained in eachdataset using twodifferent learning strategies: "one-time
training" and "recurrent training" (Sup. Figure 9.2). The first strategy consisted of one-time training
with all the available data and did not provide uncertainty in the predictions. The second strategy
was based on recurrent learning on 90% of the available data which reduced the impact of
possible outliers in the training data and allowed uncertainty quantification of predictions. Trained
models were then used to predict the pCA titers of the 672 designs from the full design space.
Considering that models selected for each dataset had similar performances (Table 9.2), designs
were ranked based on the frequency in which each design was predicted to be in the top 1, top
5, or top 10 by each model. In this way, the construction of designs commonly predicted as top
producers by different models was favored. Four rankings were obtained: the CO and CR rankings
based on the Complete dataset and the One-time or Recurrent training strategies respectively,
and the PO and PR rankings based on the Producers dataset (Sup. Figure 9.2).

Training strategies were evaluated based on their ranking of the best-measured producer
strain (BMP), the five best-measured producers (5-BMPs), and all themeasured non-producers (Sup.
Figure 9.5). Best measured producers were expected to rank high while measured non-producers
were expected to hold lower positions. Regardless of the training strategy, including non-producers
during training did not change predictions of measured top producers, but improved predictions
of measured non-producers, ensuring correct coverage of the complete design space by the ML
predictions.

In order to improve pCA production, designs predicted to render the highest titers were evalu-
ated (Sup. Figure 9.6). Notably, the BMP strain was predicted as part of the top 10 designs in all
but the CO ranking. A comparison between the levels present in the training data and the top
10 designs predicted by all the learning strategies is depicted in Figure 9.3A and Sup. Figure 9.6.
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Top predicted strains showed a preference for ARO4 under weak or strong promoters compared
to the other ORFs. For factors 2 and 3, ARO1 or AROL under a strong promoter and PHA or ARO7
under its medium promoter were favored. Finally, the strongest promoters tested for PAL and C4H
were enriched in the predicted top producers.

Figure 9.3: A. Comparison of factor levels on the training set and the top 10 predicted strains considering the
CO, CR, PO, and PR rankings. Ps, pm, and pw indicate strong, medium, and weak promoters respectively. B.
Experimental validation of the CR ranking predictions. Production relative to the BMP strain (same as CR7* strain)
is shown. The genotype of the strains follows the same color code presented in panel A. CO, complete dataset
with one-time training; CR,complete datasetwith recurrent training; PR,producers datasetwith one-time training;
PR producers dataset with recurrent training.

However, predicted pCA production improvements compared to the BMP strain were low
(6 ± 8%, 2 ± 5%, 3 ± 6%, and 1 ± 5% depending on the learning strategy used, Sup. Figure 9.7).
Therefore, we hypothesized that the initially screened library was a good representation of the
whole design space and already achieved the highest possible production. Although we used
13.5% of the full library data for model training, ML algorithms are frequently trained with data
representing circa 5% of the library design space. Therefore we tested the effect of reducing data
availability on model performance (Sup. Figure 9.8, Table 9.3). When 40% of the available training
data was used for training with stratification (equivalent to 5.4% of the library space), coefficients
of determination of the test sets remained above 0.6 for all the models but MLR regardless of the
dataset used, suggesting that the identification of 36 unique strains could have been sufficient for
ML training.
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Table 9.3: Performance of ML methods (R2) on test sets when models are trained with training data size equal to
5.4% of the library. MLR, multiple linear regression; SVR, support vector regression; KRR, kernel ridge regression;
RFR random forest regression.

Complete dataset Producer dataset
No stratification Stratification No stratification Stratification

MLR 0.52 ± 0.24 0.56 ± 0.23 0.61 ± 0.25 0.65 ± 0.23

SVR 0.57 ± 0.25 0.65 ± 0.21 0.64 ± 0.27 0.73 ± 0.22

KRR 0.61 ± 0.22 0.67 ± 0.16 0.65 ± 0.21 0.64 ± 0.19

RFR 0.65 ± 0.22 0.70 ± 0.20 0.70 ± 0.24 0.75 ± 0.22

DBT Cycle 2: expansion of the original design space

ML analysis suggested that the optimal production possible considering the initial design space
had already been found. In order to validate this prediction, top predicted designs by all the
learning strategies were constructed. Figure 9.3B shows predicted and measured production of
the top 7 designs in theCR ranking. As expected, the production of these strains did not significantly
improve with respect to the BMP strain. Similar results were obtained with the top strains from the
CO, PO, and PR rankings, with production remaining within the BMP mean ± 20% (Sup. Figure 9.9).

To improve pCA production, the original design space had to be expanded, and permutation
feature importance and SHAP values were used to guide the new designs. Feature importance
identifies the factors with the biggest influence on model performance by shuffling the levels of a
factor and evaluating the decrease in model accuracy. Factor 5 (C4H expression) was identified
as the most relevant factor, followed by factor 4 (PAL expression) (Figure 9.4A, Sup. Figure 9.11). Pre-
dicted top producers had C4H under the strongest promoter tested, and never chose the weaker
promoter for PAL, suggesting higher expression of these genes could lead to higher production.
This was confirmed by the SHAP values, a technique for explainable ML, that not only identifies
significant factors but also determines how they affect the model output [366]. For all the training
strategies used (except the MLR model with the producer dataset), the highest positive impact on
model output was caused by expressing C4H and PAL under the strongest promoters. Similarly, the
highest negative impact was caused by the expression of C4H and PAL under weaker promoters
(Figure 9.4B, Sup. Figure 9.12). The importance of these genes was confirmed by substituting the
promoters of PAL and/or C4H with weak promoters in the BMP strain and the best strain in the CR
ranking (CR1). In both cases, strains with lower expression of PAL and/or C4H showed significantly
reduced pCA tiers (Figure 9.4C). Besides, although unsuccessful cassette construction prevented
testing the effect of different expression levels of CPR, changing the promoter of CPR in the BMP
and CR1 strains did not significantly change pCA production (Sup. Figure 9.10).
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To further increase the expression of the genes, strains with double copies of each gene were
created using BMP and the best-constructed strain from the CR ranking (CR4) as hosts. Positive
colonies containing double copies of ARO4 and ARO4-AROL-ARO7-PAL-C4H-CPR in the BMP host
and PAL-C4H-CPR in the CR4 host could not be obtained. As expected, when extra copies of
factors 1 (ARO4), 2 (AROL or ARO1), and 3 (ARO7 or PHEA) were integrated, production of pCA
did not significantly change (Figure 9.4D). Production did not significantly increase either when
double copies of PAL or C4H were integrated. Even though average production increased with a
double copy ofC4H, this changewas not significant (Figure 9.4D). The integration of a double copy
of the complete gene cluster was only achieved in one colony of the CR4 host, and its production
was similar to strains with an extra copy of C4H. In both hosts, double copies of PAL and C4H
resulted in significantly increased production (63% in BMP and 58% in CR4). Besides, significantly
increased production was also found when double copies of PAL-CPR (36%) and C4H-CPR (60%)
were expressed in CR4; and PAL-C4H-CPR were expressed in BMP (68%) (Figure 9.4D).

The observed increase in pCA production, only obtained when expanding the original design
space, confirmed that the original space had been sufficiently sampled and validated feature
importance and SHAP values as strategies to guide its expansion.

Figure 9.4: A. Representative example of feature importance results, where f1, f2, f3, f4, and f5 refer to factors
1 to 5. B. Representative example of SHAP values, where ps, pm, and pw refer to strong, medium, and weak
promoters, respectively. C. Effect of substituting promoters of PAL and/or C4H by the weakest alternative (pw)
in two different hosts: best-measured producer (BMP) and predicted top producer by the complete recurrent
strategy (CR1). D. Effect of integration of double copies of genes in two different hosts: BMP and the constructed
predicted top producer by the complete recurrent strategy (CR4). Significant differences compared to each
host are indicated by *. Colonies with double copies of ARO4 and the complete gene cluster were not obtained
in the BMP host. Colonies with double copies of PAL-C4H-CPR were not obtained in the CR4 host and a single
colony was obtained with the correct integration of the complete gene cluster.
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Discussion

Accelerating the design of industrially relevant strains is crucial to transition to a bio-based econ-
omy. To exploit the full potential of microorganisms, combinatorial optimization of metabolic path-
ways is required. However, this involves the construction and testing of an exponentially growing
number of strains which becomes unfeasible [89]. Alternatively, the solution space can be sam-
pled following a rational or randomized approach. Statistical design of experiments reduces the
number of strains to build and test while maximizing the information gained about the complete
solution space. However, it requires the construction of specific strains and it is sensitive to experi-
mental limitations: information is lost when a strain cannot be built [87]. As shown here, ML presents
an alternative to learn from randomly generated libraries of strains which is robust to missing data.
Besides, when ML is used, libraries can be flexibly designed to include factors with different number
of levels based on prior knowledge. We used factor 1 to explore genes that could influence pCA
production assigning 7 levels to this factor. Instead, we assigned 3 levels to factors 4, 5, and 6,
aiming to fine-tune the expression of the required heterologous genes. We used 4 levels for factors
2 and 3 to simultaneously test the effect of homologous genes from different origins and tune
the expression of one of them. The robustness and flexibility of the ML approach were also shown
when some of the designed levels could not be implemented experimentally. Although the de-
sign spaces of the TAL and PAL libraries were reduced from 3024 members to 672, the relationship
between the remaining levels could still be efficiently explored.

Another challenge to combinatorial pathway optimization is the need for the characteriza-
tion of genetic parts that ensures that the solution space is sufficiently explored. This is especially
important when the aim is to fine-tune the expression levels of pathway genes [96, 97, 98, 357].
In principle, the optimization of gene expression would benefit from the use of quantitative vari-
ables as factors (e.g. GFP fluorescence, protein levels) as they would allow the identification of
an optimal expression level [333]. However, although effort is taken to appropriately characterize
how regulatory elements affect gene expression, this is seldom achieved as in vivo expression
depends on factors such as the downstream gene [370] or the gene order in an operon [32] and
cannot be accurately predicted. Alternatively, regulatory elements can be treated as categorical
variables reducing the impact of the characterization data [357]. This approach allowed us to
include non-characterized promoters as members of the library and avoid a further decrease in
the design space size. Besides, the use of categorical variables does not limit factor levels to differ-
ences in expression strength. As shown here, factors might include levels that represent differences
in expression but also different ORFs, broadening the scope of ML-guided pathway optimization
to the selection of genes from different origins or alternative over-expression targets.

A limitation to the use of ML is the requirement for sufficient and quality data for training [52].
We showed that including non-producers as part of the training set is not required to find top
producing strains but improves predictions of poor producers which helps ensuring that the design
space has been sufficiently sampled. This is especially important when the top producer is already
present in the training data. Although we trained ML models with data representing 13.5% of
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the library, we showed that when the amount of data used for training decreased, stratification
during training improved the mean R2 and reduced its standard deviation (Figure S12, Table 9.3).
Stratification allowed the classification of samples based on production. Therefore, a sufficient
number of samples from each category should be present in the training data. As shown here,
this can be achieved using a screening before sequencing approach, which allowed an efficient
exploration of the design space and reduced the chance of sequencing duplicate designs.

ML algorithms cannot predict the performance of strains with factor levels different from those
used during training [358]. Still, they can be used to determine whether the best producer from
the library is present in the training data and justify the expansion of the original design space.
When this is required, feature importance and SHAP values can be used to guide this expansion
and point at the most relevant factors which, in this case, led to a 68% improvement in pCA
production. Notably, while feature importance only points as the significant factors, SHAP values
provide additional information regarding how the factor’s levels influence the model output [366].

The highest titers of pCA measured in this study were 0.51 ± 0.03 and 0.52 ± 0.06 g/l obtained
using the BMP strain with additional copies of PAL-C4H or PAL-C4H-CPR. These strains were culti-
vated in 96DWP with minimal media and 20 g/l of glucose resulting in 0.03 g/g pCA yield. However,
higher titers and yields of pCA have been reported. Rodriguez et al. obtained 1.96 g/l of pCA
(0.04 g/g) by expressing AROL, feedback-resistant variants of ARO4 and ARO7, eliminating com-
peting metabolic pathways and using synthetic fed-batch media [342]. Production was further
improved by Liu et al. by combining the TAL and PAL pathways and including a phosphoketolase
pathway to increase E4P availability. This strain produced 3.1 g/l in shake flasks and up to 12.5 g/l
in bioreactors operated as fed-batch with a maximum yield of 0.15 g/g [340]. Considering these
results, the production of our developed strains could be further improved in the next cycles that
focus on gene deletions and media and bio-process optimization. This optimization would benefit
from an improved experimental throughput achievable, for instance, using barcode sequences
to mitigate sequencing costs [371] or a pCA biosensor for titer estimation [372]. This throughput, in
turn, could allow the simultaneous testing of gene deletions, process conditions, and gene overex-
pression using multiple gene copies that could lead to further increased production. However, a
trade-off between the build and test capacity and efficiency and the complexity of the learning
step must be established by ensuring that a minimum percentage of the library space (e.g. 5%)
can be used for model training. When this throughput is not achievable, sequential DBTL cycles,
as those presented here, are useful to identify the relevance of the tested factors and levels and
decide whether they are maintained or replaced in subsequent optimization cycles.

This study is an example of how ML-guided DBTL cycles can accelerate the generation of effi-
cient strains. This approach is robust to experimental limitations and its flexibility regarding design,
which can be expanded beyond the traditional tuning of gene expression. We propose a screen-
ing before sequencing approach to allow for stratification during training, especially important for
small datasets. Furthermore, we showed how feature importance and SHAP values can be used
to expand the original design space and further improve strain performance.

197



Model-Guided Strain Engineering | Chapter 9

Declaration of interest

RvdH, PZ, SG and JS are employed by dsm-firmenich, VAPMdS has interests in LifeGlimmer GmbH.

Acknowledgment

This project was founded by the Netherlands Organization for Scientific Research (NWO; project
number GSGT.2019.008) and the European Union’s Horizon 2020 research and innovation pro-
gram under grant agreement 814408 (Shikifactory100). Additionally we would like to thank Moniek
Jonkers for her help with the laboratory automation workflows and Lieke Meijvogel, Sharina Chan-
der, Judith Vis, Sylvana Suisse, Wibo B. van Scheppingen and Leon Coulier for execution and
support with the analytical workflows.

Data availability

Scripts, data, and supplementary tables are available atGitlab, Zenodo,and the published version
of the chapter.

198



9

Machine learning for pathway optimization

Supplementary Figures

Sup. Figure 9.1: A. Cassettes used for library transformation. A cassette is a combination of promoter, open
reading frame (ORF), and terminator. Cassettes containing promoter-ORF combinations shown in orange could
not be obtained. B. Schematic representation of the integration of a gene cluster. Connector sequences a to h
represent homology regions for in vivo recombination of cassettes (C1 to C6) and the selection marker cassette
(SM); flank sequences homologous to the genome integration site are shown as F.
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Sup. Figure 9.2: Model selection and training strategies. Genotype and production data were divided into two
datasets: the complete and producer datasets which differ in the inclusion of data from non-producers. Each
dataset was used for hyper-parameter (HP) tuning of four ML models: multiple linear regressor (MLR), support
vector regressor (SVR), kernel ridge regressor (KRR), and random forest regressor (RFR). The accuracy of models
with optimal HP was evaluated on the test sets. For each dataset, two learning strategies were applied: one-time
training, where all the data was used for training, and recurrent training, where 90% of the training data was
iteratively used for training.

Sup. Figure 9.3: A. Promoter-terminator characterization by GFP fluorescence measured using fluorescence-
activated cell sorting (FACS). B. Zoom-out for the fluorescence values.
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Sup. Figure 9.4: Characterization of strains with the correct sequences from the PAL library. Frequency of strains
with the same designs (left) and average pCA production of designs with replicates (right).

Sup. Figure 9.5: Ranking of top measured producers, top 5 measured producers, and non-producers based on
four different training strategies. Results are given per model used in each strategy: MLR, multiple linear regressor;
KRR, kernel ridge regressor; SVR, support vector regressor; RFR, random forest regressor. *Ranking of non-produces
excludes design 560 which is predicted to produce by all models independently of the training strategy. The
BMP was ranked in the top 0.1% to 15% depending on the model used and regardless of the training strategy.
Similarly, the 5-BMPs were always predicted to be, at least, in the top 22% of the library. Measured non-producers
were ranked in the bottom 46% or 60% of the library depending on the dataset used for training (complete or
producers respectively). CO, complete dataset with one-time training; CR, complete dataset with recurrent
training; PR, producers dataset with one-time training; PR producers dataset with recurrent training.
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Sup. Figure 9.6: Summary of top 10 predicted producers by each learning strategy: CO, complete dataset with
one-time training; CR, complete dataset with recurrent training; PO, producers dataset with one-time training; PR
producers dataset with recurrent training. Designs are ranked based on the frequency (Freq.) they are chosen
as top 1 (T1), top 5 (T5), or top 10 (T10) by the different models. Factor 1 (F1) refers to ARO4 except an E is shown
(ENO1), factor 2 (F2) refers to AROL except a 1 is shown (ARO1), factor 3 (F3) refers to ARO7 unless a P is shown
(PHEA), factor 4 (F4) refers to PAL, factor 5 (F5) refers to C4H and factor 6 (F6) refers to CPR. Predicted designs
shared by different learning strategies are linked by lines or highlighted in grey. * Indicates designs equal to the
best-measured producer strain (BMP strain).

Sup. Figure 9.7: Predicted pCA production by the top 10 ranked strains found using four different learning strate-
gies. Production relative to the predicted production of the top measured producer is shown. CO, complete
dataset with one-time training; CR, complete dataset with recurrent training; PR, producers dataset with one-
time training; PR producers dataset with recurrent training.
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Sup. Figure 9.8: Effect of training data size on accuracy of predictions of different ML algorithms (MLR, multiple
linear regression; SVR, support vector regression; KRR, kernel ridge regression; RFR, random forest regression) with
the complete or producers datasets. Negative R2 values obtained for some test-train splits were omitted for
the calculation of mean and std (these values are obtained when the average of the training data is a better
estimator than the trained model).
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Sup. Figure 9.9: Validation of ML predictions. Comparison of measured and predicted production of the pre-
dicted top producers relative to the production of the best-measured producer (BMP). Genotypes of the plotted
strains are shown in the right panel where * indicates strains equal to BMP. Factor 1 (F1) refers to ARO4, factor 2
(F2) refers to AROL except when 1 is shown (ARO1), factor 3 (F3) refers to ARO7 except when P is shown (PHEA),
factor 4 (F4) refers to PAL; factor 5 (F5) to C4H, and factor 6 (F6) to CPR. Promoter strengths are represented by
color intensity. Strain names are defined based on the ranking they belong to and their position in the ranking,
when two strains share the same position they are followed by (1) and (2). CO, complete dataset with one-time
training; CR, complete dataset with recurrent training; PR, producers dataset with one-time training; PR produc-
ers dataset with recurrent training.

Sup. Figure 9.10: Effect of substituting the CPR promoter in two different hosts: the best-measured strain (BMP)
and the top producer in the CR ranking.
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Sup. Figure 9.11: Permutation feature importance results obtained using the complete (A) or the producers (B)
datasets. f1, f2, f3, f4, and f5 refer to factors 1 to 5
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Sup. Figure 9.12: SHAP values obtained using the complete (A) or the producers (B) datasets. ps, pm, and pw
refer to strong, medium, and weak promoters, respectively.

206







10
CH

A
PT

ER

General Discussion

Sara Moreno Paz



Model-Guided Strain Engineering | Chapter 10

The objective of this thesis was to deploy various modeling methods for guiding and ac-
celerating the design of cell factories and bioprocesses. The foundational elements
of this work encompass four modeling approaches: kinetic modeling (Chapter 2),
constraint-based modeling (Chapters 3, 4, 5), design of experiments incorporating lin-
ear regression and statistical analysis (DoE) (Chapters 7, 8), and machine learning (ML)
(Chapter 9). While kinetic and constraint-based modeling rely on a mechanistic under-
standing of the system under study, DoE and ML are data-driven strategies for optimizing
the analyzed system. Furthermore, omic analysis is a valuable tool for obtaining a com-
prehensive overview of the investigated system, especially when minimal information
is available (Chapter 6). In this section, I will evaluate the employed modeling strate-
gies and reflect on the strain and bioprocess design stages where their application is
most pertinent. Then, I will ponder about the interplay between optimization and under-
standing in biotechnological research. Subsequently, I will examine the emergence of
biofoundries and the associated challenges and opportunities of harnessing robotic plat-
forms, computer-aided design, and human knowledge. I will conclude by discussing to
what extent automation has the potential to fulfill biotechnology’s promises and highlight
the imperative need for critical sustainability assessments of biotechnological processes.

Preface
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Modeling along DBTL cycles

Many factors affect the performance of cell factories and, in general, bioprocesses, rendering
them difficult to understand and steer [14, 25]. This becomes even more challenging when con-
sidering that most of these factors are not independent and should, therefore be simultaneously
evaluated. A pathway optimized in one organism might not be optimal when a different organism
is employed or even when the metabolism of the original organism, or the expression of one of the
pathway’s genes is modified [340]. Moreover, the behavior of the microorganism also depends on
the environmental conditions, and a process that performs well at lab-scale will most often suffer
limitations at larger scales [25].

Factors affecting bioprocesses can be optimized using one factor at a time (OFAT) experi-
mentation. When this approach is followed factors are optimized individually holding all other
experimental variables constant [332]. However, as the interplay between different factors cannot
be ignored, OFAT experimentation often leads to suboptimal strains and processes. For example,
if the expression of a gene is limiting, the optimal expression of the other genes will only be found
as long as the expression of the limiting gene is high. Combinatorial optimization, based on the
simultaneous evaluation of multiple factors, captures these interactions, can better guide the op-
timization process, and must be prioritized over OFAT experimentation. This ensures the correct
identification of the individual effect of a variable on the response as well as the effect of multiple
factor interactions [73, 332]. However, evaluating all the factors that affect the performance of
strains and bioprocesses simultaneously requires an experimental throughput currently unavailable.
Hence, although combinatorial experimentation is essential, iterative experimentation is needed.

Design-Build-Test-Learn (DBTL) cycles are a good approach to tackle the iterative experimen-
tation process. Although experimentation has to be sequential, DBTL rounds centered on the
optimization of a pathway, the cell’s metabolism, or the bioprocess can be alternated and com-
bined without any specific order [339]. For instance, strains can be first optimized at the pathway
and metabolic levels followed by process optimization. If at that point, new limitations are found,
they could be solved by re-engineering the strain.

At any of these stages, the models explored during this thesis can help the researcher with
the decision-making process. For example, if a kinetic model of the studied pathway is available
(Chapter 2) it could be used to select which pathway genes are important and which expression
levels are relevant. At the same time, methods based on genome scale metabolic modeling
such as CFSA (Chapter 3) could provide a list of relevant metabolic engineering targets. Then,
random combinations of strains containing (or not) these targets or expressing them at different
strengths could be created and analyzed usingmachine learning (Chapter 9). In this way, themost
important enzymes could be determined and further explored in combination with environmental
factors, at a lower throughput, using statistical experimental design (Chapter 8). Strain engineering
and bioprocess design are highly dynamic practices and, in this section, I focus on modeling
approaches that prove valuable at various stages of this process (Figure 10.1).
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Figure 10.1: Thesis overview. Chapters are organized based on their focus on different stages during strain and
bioprocess development. Modeling approaches used in the chapters are ordered on a scale considering their
relevance to understanding and/or optimizing the studied system. DoE, design of experiments; ML, machine
learning; GEM, genome-scale metabolic models. Pathway, metabolism, and bioreactor icons were obtained
from freepik.com.

A focus on pathways

Chapters 2, 7, and 9 aimed at optimization at the pathway level: curcumin production in P. putida
with the aid of a kinetic model, in silico curcumin production based on various DoE designs, and
p-coumaric acid production in S. cerevisiae employing machine learning (Figure 10.1).

In Chapter 2, P. putida strains expressing the curcumin pathway were constructed and the
acquired production data was used to create ensemble kinetic models of the pathway. The cur-
cumin pathway involves several promiscuous enzymes capable of catalyzing competing reactions,
which complicates the determination of optimal gene expression levels for the pathway genes.
Strains were constructed to incrementally expand the range of possible substrate utilization by
introducing new genes, and experiments with different strains and substrates were conducted. This
approach aimed to facilitate model parameterization and deepen the mechanistic understand-
ing of the pathway. However, the acquired data was not sufficient to obtain accurate parameter
estimates and, instead, ensemble models were used. Even when not fully parameterized, mod-
els can serve as hypothesis generators [118], and the use of ensemble models allows the study
of system properties [211, 373]. In Chapter 2 ensemble models were enough to understand the
pathway dynamics and obtain a 4.1-fold improvement in curcumin yield from tyrosine.
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The approach followed in Chapter 2 was fundamentally different from that proposed in Chap-
ters 7 and 9. Chapter 7 delved into the use of fractional factorial designs for the optimization of
gene expression in a production pathway. Based on a predetermined design, strains were con-
structed and tested in silico and specific information about the system, including main effects and
interactions between factors, was obtained. Alternatively, in Chapter 9 a random library of S. cere-
visiae strains was constructed and analyzed using ML. In both cases, mechanistic understanding
of the studied system was not required, and the only prerequisite was the selection of factors with
a potential effect on production and tunable levels. Notably, DoE and ML are complementary
techniques and ML models can be trained with data generated by DoE designs [374]. Similarly,
random data can be used to train multiple linear regression models (Chapter 9, [95]). However, as
demonstrated in Chapter 7, the use of experimental data generated by DoE designs resulted in
better linear models than those trained with random data. The decision to construct rational or
random libraries depends on the ease of library construction, the desired information gain, the
required flexibility for factors types and levels, and the experimental capabilities. For instance,while
in vivo recombination in yeast is highly efficient [357], construction of random libraries in bacteria
such as E. coli requires a more tedious process that starts with in vitro library construction and is
followed by transformation [375]. Moreover, random libraries usually contain a larger number of
strains which also requires high-throughput strain characterization facilities [98, 357].

In addition to the fractional DoE approaches explored in Chapter 7, other DoE designs that
allow different numbers of levels per factor are available [32, 76]. Yet, ML provides higher flexibility
in testing various factors and their levels, which allowed the exploration of different levels of gene
expression and the expression of different genes in Chapter 9. Moreover, in this chapter, the num-
ber of levels per factor was selected based on the expected effect on production. However, this
flexibility comes at the expense of increased difficulty in model interpretability. Although feature
importance and SHAP values aided in the interpretation of these models, elucidating interactions
among factors fromMLmodels remains challenging [100, 366]. When identifying these interactions
is a priority, the DoE strategies discussed in Chapter 7 are more suitable, as DoE provides known
information gains after experimentation. Alternatively, ML algorithms designed to detect interac-
tions could be employed [376]. When possible, the use of these "transparent" models should be
prioritized over the use of "opaque" models and post-hoc explainability techniques such as local
approximations, model simplification, or feature relevance explanations [102].

Last, DoE and ML can also be employed to facilitate the parameter estimation process in
kinetic models. For instance, optimal experimental design approaches select experiments that
reduce the variance of estimated parameters in mechanistic models [78, 377]. Following the
curcumin pathway example, Van Rosmalen et al. found that fermentations withmultiple substrates
could improve the estimation of kinetic parameters compared to single substrate experiments
[77]. ML can, in turn, be used to accelerate the parameterization process of kinetic models [378]
or to solve more complex tasks such as inferring the structure of a biochemical network from data
[379].
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A focus on metabolism

WhileGenome-scaleMetabolicModels (GEMs) are not suitable tomodel pathways predominantly
determined by enzyme kinetics, as the curcumin pathway explored in Chapter 2, they serve as the
primary tool for guiding metabolic engineering at the genome scale. Constraint-based modeling
has been used to successfully design strains to overproduce metabolites such as succinic acid,
lycopene, or L-valine [24]. Chapters 3 and 4 leveraged this tool to design cell factories employ-
ing two competing strategies: growth-uncoupled and growth-coupled production (Figure 10.1).
Growth-uncoupled production, explored in Chapter 3, separates growth and production phases
to alleviate metabolic stress, improving growth and production rates [160]. This separation can be
achieved through operational changes, like nutrient limitations [274], or dynamic metabolic regu-
lation based on metabolite sensing and gene circuits [159]. On the other hand, growth-coupled
production, as investigated in Chapter 4, is based on the necessity to produce the target metabo-
lite for growth, and is often combined with Adaptive Laboratory Evolution (ALE) [380, 381]. While
growth-uncoupled production directs substrate use towards metabolite production, it can lead to
phenotype loss due to the accumulation of mutations. Instead, growth-coupled strategies ensure
sustained production over longer time frames at the expense of biomass generation as by-product.

InChapter 3Comparative Flux Sampling Analysis (CFSA) exemplified howGEMs can streamline
strain design. Despite various tools available for this purpose [152, 153, 154, 155], we focused on de-
veloping a method to design growth-uncoupled production strategies based on flux sampling, en-
suring the complete exploration of theGEM’s solution space. AlthoughCFSA ranks reaction targets
using multiple criteria, including statistical testing and user-defined parameters, the quantitative
effects of suggested manipulations cannot be estimated, and success in improving production is
not guaranteed. In contrast, the growth-coupled approach in Chapter 4 linked the desired path-
way to growth, ensuring high fluxes through the pathway in vivo. If the growth-coupling approach
is successful, Flux Balance Analysis (FBA) simulations with growth as an objective can estimate in
vivo production fluxes. While Chapter 3 created a tool that predicts targets with minimal human
intervention, Chapter 4 illustrated the "art" of GEM modeling, which requires experience to pose
the right questions and perform appropriate simulations to obtain the sought answers. Although
ranking pyruvate-releasing reactions for growth-coupled production was straightforward, deci-
sions on gene deletions and the use of a biosensor during laboratory evolution were not. Similarly,
calculating maximum yields based on FBA simulations with production as an objective was easy,
but identifying the metabolic engineering strategies to achieve these yields required careful, man-
ual examination of flux predictions. Although one of the strains developed in Chapter 4 achieved
89.3% of themaximum 4-hydroxybenzoate pathway yield fromglycerolminimalmedium, its growth
rate was very low (0.008 ± 0.000 h-1). Strategies to improve this growth rate could be devised using
CFSA to identify reactions with significant flux changes when "normal" glycerol metabolism is sub-
stituted by different variants of the shikimate-dependent catabolism. Additionally, a new round of
ALE could be employed to enhance the strain’s phenotype, likely through changes in regulators
not included in GEMs.
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A common drawback of Chapters 3 and 4, also shared with other GEM-based strain design
approaches, is the ample solution space characteristic of GEM simulations [59]. This results in
solutions where reactions that are active in the model are inactive in vivo and vice versa. In both
cases, the use of extended GEMs such as the enzyme-constrained GEM (ecGEM) employed in
Chapter 5, which considers the limited capacities of the cells to synthesize and store proteins,
could improve predictions. These proteomic constraints facilitate more accurate prediction of
metabolic fluxes andcellular phenotypes, andconsequently the development of bettermetabolic
engineering strategies for improving the performance of microbial cell factories [24]. Besides,
similarly to the pathway optimization process, combinations of metabolic engineering targets
suggested by GEMs and their interactions can be studied with the aid of DoE and ML [357].

A focus on bioprocesses

In bioprocess modeling, microbial growth is considered within the framework of a reactor where
mass transfer and mixing occur [382]. The translation of laboratory processes to commercial-sized
volumes is recognized as the major risk in new bioprocess development [25]. Therefore, process
modeling often prioritizes scale-up. Computational fluid dynamics is employed to estimate non-
ideal mixing conditions in large vessels and provide insights into nutrient gradients that affect cell
responses [25]. While studying the detailed mechanisms of these processes is very relevant, Chap-
ters 5, 6, and 8 underscore the importance of considering environmental conditions during the
design of cell factories. Chapter 5 focused on metabolic changes in S. cerevisiae as a function
of the reactor operation, Chapter 6 explored P. putida’s response to oxygen and glucose limita-
tion, and Chapter 8 proposed DoE as a strategy for simultaneous pathway, media, and process
optimization (Figure 10.1).

During process optimization, cell growth is often represented using Monod’s equation, cell
metabolism is simplified to Herbert-Pirt relations, and efforts are made to model the reactor system
[58]. In contrast, when GEMs are employed to model cell metabolism, a detailed description of
the metabolic network is possible due to the steady-state assumption [59]. In Chapter 5, dynamic
Flux Balance Analysis (dFBA) was used to simulate cell metabolism in the reactor environment,
expanding the reactor model and providing insights into intracellular fluxes. This allowed the con-
sideration of metabolic changes, such as those occurring at different growth rates, during the
strain design process. Furthermore, metabolic changes captured by dFBA can serve as a basis for
process control and design. For example, Chang et al. used dFBA to compute glucose feeding
and dissolved oxygen profiles that maximize ethanol production in S. cerevisiae [383]. Similarly, Raj
et al. developed the mcPECASO framework for designing two-stage fermentation processes with
optimal titer, rate, and yields based on dFBA simulations [160]. While detailed kinetic models can
also be embedded within reactor simulations, they are often limited to a few relevant metabolic
pathways [384].
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The combination of (ec)GEMs and dFBA in Chapter 5 allowed for the comparison of yields
and productivities among different strains and dynamic production processes. However, various
process parameters such as pH, temperature, pressure, or shear stress may affect cell factory per-
formance through mechanisms not included in GEMs [25]. In Chapter 8, we proposed estimating
the effect of these factors using DoE. Although DoE has traditionally been used for the optimiza-
tion of the fermentation process [79, 80, 81, 82, 83, 84, 85], this work, along with Zhou et al. and
Brown et al., emphasizes the importance of simultaneous strain and bioprocess optimization to
avoid selecting sub-optimal strains that only perform well in laboratory settings [88, 89]. In this way,
we showed how DoE can identify genetic and process parameters with a significant influence
on production, establishing factors that should be prioritized in down/up-scaling plans. Similar to
pathway optimization strategies, ML can also be used to study the relationships between relevant
environmental factors [94]. However, the throughput of testing multiple production conditions in
down-scaling bioreactors is still often limited [50].

While in Chapter 5, the study of cell metabolism was limited by available knowledge, the ap-
proach described in Chapter 8 can identify factors that impact the cell’s performance without
providing explanations about their relevance. Instead, Chapter 6 aimed to increase understand-
ing regarding how P. putida adapts to low oxygen concentrations, commonly encountered in
industrial-scale reactors [25, 385]. In this chapter, the use of omics data enabled a comprehensive
overview of the cell at the transcriptomic and proteomic scales. Although we only observed a
limited change in the proteome of P. putida cells grown under oxygen limitation, condition-specific
GEMs,constrainedwith proteomic datasets, can be createdwhen significantmetabolic rearrange-
ments are found [59, 381]. Moreover,Chapter 6 also emphasized the influence of growth conditions
on cell physiology. While exponentially growing P. putida cells only produce pyoverdine when iron
is limiting [282, 313, 320], slow-growing cells produce this compound during glucose-limited growth.
Pyoverdine production impacted the biomass yield on glucose and further highlights the interac-
tions between pathways, metabolism, and bioprocess, and the importance of their combinatorial
optimization.

In silico DBTL

The throughput for constructing and testing strains is rapidly increasing, enabling the generation
of extensive datasets for model training [49]. However, not all research groups have access to
such facilities, and the creation of full factorial libraries that test all possible factor combinations
becomes rare as the number of factors increases. The lack of a known "ground truth" (i.e. the real
relationships between factors and their interactions with the response) complicates the compar-
ison between alternative modeling approaches that aim to optimize production. In Chapters 8
and 9, we identified the best combinations of tested factor levels for p-coumaric acid production.
However, only the in silico approach in Chapter 7 ensured an unbiased evaluation of computa-
tional methods. This chapter used one of the kinetic models developed in Chapter 2 to generate a
full factorial library of strains with different concentrations of the pathway enzymes and determine
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the actual best combination of factors for optimal production. Subsequently, DoE designs were
evaluated based on their ability to identify the true best strains. Similar approaches have been
employed to compare methods for pathway optimization, including different ML models [333],
reinforcement learning strategies [334], or random sampling and D-optimal designs [335]. Addi-
tionally, kinetic models have been used to compare optimal experimental design methods for
parameter estimation [386]. As demonstrated in Chapter 7, the use of these in silico approaches
allows the evaluation of the robustness of the computational methods to characteristics inherent
to biological datasets, such as missing data or noise. However, although noise is often included
in these studies, evaluating realistic scenarios that consider the inability to construct some of the
desired strains, as experienced in Chapters 8 and 9, should also become a common practice in in
silico studies. Similarly, including the burden of high expression of multiple genes on cell physiology
would also contribute to in silico DBTL cycles that more closely resemble their in vivo counterparts.

Finally, I would like to highlight the additional educational value of in silico studies. Numerous
experiments can be easily simulated and multiple hypotheses can be tested and compared
enhancing the learning experience and facilitating the understanding of the studied methods.

Optimization and understanding: two sides of the same coin

In recent decades, the field of biology has transitioned from a primarily descriptive science to
an engineering discipline [387]. According to ChatGPT, a scientist is "an individual who engages
in the systematic and empirical study of the natural world seeking to understand, explain, and
predict natural phenomena and explore the underlying principles that govern the universe". In
turn, an engineer is "a professional who applies scientific and mathematical principles to design,
develop, and create practical solutions to real-world problems". In other words, a scientist aims to
understand the natural world while an engineer tries to apply scientific knowledge. In my opinion,
a biotechnologist combines traits from both definitions as someone who aspires to comprehend
biological principles (understanding) so they can be applied to address relevant problems (opti-
mization).

When the understanding of metabolism was limited, and targeted genetic modification tools
were unavailable, random mutagenesis facilitated the over-production of important compounds
such as penicillin [27]. Now the knowledge about cell metabolism and molecular biology tech-
niques for directed genetic modification has significantly increased. For example, the construction
of the Keio collection of E. coli single knock-outs has enabled the systematic analysis of gene
function, providing deeper insights into cell behavior [388]. This enhanced understanding has, in
turn, driven the rational design of multiple metabolic engineering strategies for metabolite over-
production [174, 180, 186, 188]. Additionally, this knowledge has been gathered in mechanistic
models that can also guide the development of new insights. For example, the use of ecGEM and
dFBA in Chapter 5 led to the hypothesis that carbon catabolite repression is essential to obtain
maximum growth rates when limitations at the proteome level are considered. A similar conclusion
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was recently reached by Liu et al., who based on ecGEM simulations followed by omic analysis,
suggest the minimization of proteome reallocation to explain metabolic transitions in sequential
utilization of mixed carbon sources of lactic acid bacteria [389]. Likewise, Elsemman et al. devel-
oped a GEM with compartment-dependent proteome constraints that provided deeper insights
into the physiology of S. cerevisiae [170], and Mishra et al. developed a kinetic model of lipid
metabolism revealing the presence of a futile cycle in triacylglycerol biosynthesis [118]. These ex-
amples show how understanding, especially when collected in knowledge-based models, leads
to optimization, the identification of knowledge gaps, and, in turn, new mechanisms. However,
when model predictions fail, as experienced in Chapter 2, human creativity (and luck) are re-
quired to rectify the model, allowing for the generation of new knowledge at the expense of
trial-and-error experimental approaches [52].

Rational engineering and mechanistic models are constrained by existing knowledge and
result in extended developmental times. For example, compared to the detailed understanding of
cell metabolism, less is known about how the cell’s regulatory network operates. When regulation is
limiting, random mutagenesis, typically in the form of ALE, proves extremely useful for gaining new
insights and improving production [380]. In this way,ALE is a goodexample of howoptimization can
be followedby understanding. InChapter 4, ALE was employed to rewire P. putida’s metabolism for
a shikimate-derivedcatabolism (SDC). Whole-genome sequencing of the evolved strains identified
miaA and mexT as key regulators whose deletion allowed increased fluxes through the shikimate
pathway. While the primary goal of the ALE experiment was to optimize SDC, this optimization led
to new biological knowledge.

Similarly to how ALE is acknowledged by biologists as a valuable knowledge source, data-
driven models can complement mechanistic models, unraveling complex biological mechanisms.
However, a universal method to enhance the interpretability of black-box models, equivalent to
whole-genome sequencing in ALE experiments, is still missing,which hinders the extraction of knowl-
edge from data-driven approaches. Despite a lack of straightforward interpretation, ML models
can lead to the generation of new hypotheses. For instance, ML models trained on metabolome
concentrations from strains with different enzyme knockouts enabled the identification of candi-
date genes crucial for metabolic regulation [390]. Furthermore, ML models are used to estimate
parameters such as enzyme catalytic constants [391, 392], which can later be incorporated into
mechanistic models [393, 394]. The combination of mechanistic and ML methods enhances their
interpretability and facilitates the connection between optimization and understanding. For exam-
ple,Ma et al. developed a "visible" neural network based on gene ontology to predict S. cerevisiae
growth as a function of its genotype [395]. Taking a different approach, Dugourd et al. used ML
to integrate gene expression data and GEMs to identify possible pathways explaining observed
phenotypes [38], and Yuan et al. developed graph neural networks with each node represent-
ing a molecular species [396]. In this way, data-driven optimization can lead to new metabolic
engineering strategies that, when comprehended, can improve mechanistic understanding [52].
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Although the field of explainable ML is expanding [102], we should acknowledge that we
might never understand how complex ML algorithms make their predictions, breaking the link
between optimization and understanding. Despite the discomfort this affirmation causes in the
scientific community, I view this development as a necessary step for biotechnology. I believe
that, while ML can accelerate the much-needed application of biotechnological research, it will
coexist with the advancement of mechanistic models that serve the inherent human desire for
understanding.

Scientific value is typically defined by the understanding of genetic or molecular mechanisms.
However, these validatedmechanisms are often insufficient formaking accurate predictions about
complex biological systems [52]. Therefore, a deeper understanding of experimental design and
optimization strategies is also relevant for the scientific community. For instance, Cambray et al.
identified sequence properties with a significant effect on translation efficiency through the use
of a full factorial design and appropriate statistical testing [397]. Similarly, Brown et al. identified
genotype-genotype and genotype-environment interactions relevant to understanding ethanol
production in S. cerevisiae in different environmental conditions, thanks to DoE-based experimen-
tation [89]. Thus, studies such as those described in the in silico DBTL section are essential for
advancing biological knowledge beyond optimizing the production of a target molecule. Con-
sidering that artificial neural networks were inspired by real neurons, it is not unreasonable to think
that biology can inspire more and better algorithms [52]. Unraveling mechanisms is important,
but their identification should not completely overshadow other exciting developments within
biotechnology, a field with the potential to harness both understanding and optimization.

The future: automated biofoundries

Biofoundries are integrated molecular biology facilities that include robotic liquid-handling plat-
forms, high-throughput analytical instruments, and the software, personnel, and data manage-
ment systems required to run the equipment [49]. The goal of biofoundries is to streamline and
accelerate the design, construction, and testing of biological systems, such as engineeredmicroor-
ganisms. Examples of biomanufacturing biofoundries include the SYNBIOCHEM [338], the Agile
[96], and the MIT Broad biofoundries [339]. While the MIT biofoundry achieved the production
of six out of ten target molecules in 90 days [339], SYNBIOCHEM accomplished the production
of 17 out of 25 material monomers in 85 days [338]. However, biofoundries alone will unlikely be
enough to increase the number of biotechnological products that reach the market. Yet, as long
as high throughput design, experimentation, and analysis are combined with people trained and
passionate about multidisciplinary collaborations, biofoundries present a unique opportunity for
industrial biotechnology.

Biofoundries accelerate the build and test phases of the DBTL cycle, reducing the effort
needed to construct and test strains and facilitating targeted strain construction for hypothesis
testing. For instance, the CFSA tool developed in Chapter 3 suggests some metabolic engineering
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strategies that lackdirectmechanistic reasoning suchas the up-regulation of hydroxymethylglutaryl-
CoA synthase (HMGS) for lipid synthesis. With traditional strain construction timelines, there is a
trade-off between testing novel targets based on model predictions and improving production. If
the experimenter aims at improving production, modifying other reactions, with obvious mecha-
nisms that do not require GEM modeling, would likely be prioritized. Alternatively, high-throughput
strain construction enables more exploratory experiments, rather than every construct being an
attempt to improve titer [88]. Additionally, facilitating experimentation will also allow a better esti-
mation of parameters in kinetic models thanks, for example, to the generation of time-series data
at high resolution [54].

Besides enabling the creation of big datasets, automation will likely reduce systematic errors
during experimentation, improving reproducibility and the quality of the generated datasets [52].
However, compared to other fields such as language models used, for example, for the develop-
ment of ChatGPT [398], the amount of data generated with biological systems is relatively small,
yet noisy and heterogeneous [52]. When a few factors are considered, automation will allow the
generation of full factorial libraries, and optimal strains will be directly identified. However, consider-
ing the vast amount of factors that affect strain performance, brute-force approaches will not be
enough to optimize production nor understand mechanisms, and efficient experimental design
and data analysis remain crucial [387]. Experimental designmight involve the use of kineticmodels
or GEM to find metabolic engineering targets (Chapters 2, 4), the use of statistical methods or ML
(Chapters 8, 9), or the combination of multiple approaches. For example, Young et al. used GEM
simulations to design alternative pathways for itaconic acid production followed by optimization
using response surface methods based on I-optimal designs, Plackett Burman designs, and full
factorial libraries [87]. However, efficient design and model construction are not enough when
the effect of environmental conditions is ignored. For instance, although Khamwachirapithak et
al. trained a random forest-based ML algorithm with ethanol production data obtained at 30°C,
the system behavior could not be extrapolated at higher temperatures [399]. Therefore, as exem-
plified in Chapter 8 efficient experimental designs that consider relevant environmental factors
are crucial. Additionally, as shown in Chapter 6, testing strains in multiple conditions can improve
our knowledge regarding how microorganisms adapt to living in bioreactors. In turn, this could
result in new process designs, an area where innovation is slow compared to the rapid advance of
genetic and metabolic engineering [243]. As exemplified in Chapter 7, information gain from full
factorial libraries is minimal compared to efficient designs, and I believe high throughput is better
used when testing more factors than when testing everything.

While experimental design and mathematical modeling can link the design and learning
phases of DBTL cycles, new designs based on knowledge from previous rounds must be imple-
mented during building. This implementation is not straightforward: a GEM simulation might indi-
cate the optimal flux through a reaction, a kinetic model can suggest an optimal enzyme con-
centration or a data-driven model might advise doubling the strength of a promoter. Accurately
implementing any of these recommendations in vivo is currently impossible. Even when effort
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is taken to characterize genetic parts [44, 45], expression is dependent on factors such as the
downstream gene [370] or the gene order in an operon [32] and cannot be accurately predicted.
Although modeling tools to predict expression levels from sequence data are available [43, 400,
401], they are not perfect, and the relationship between gene expression, enzyme concentration,
fluxes, andmetabolites increases the complexity of the problem. Alternatively, as shown inChapter
9, genetic factors can be considered categorical features, limiting the need for characterization.
This simplification, however, misses some of the quantitative information about these variables: if
gene expression is continuous, an optimum can be found, which is not possible if it is represented
by categories. This can affect metabolic optimization when only the optimal flux through a re-
action, like the HMGS example in Chapter 3, improves production. The need for characterization
should be coupled with the need for standardization creating standardized, open source, proto-
cols for building and testing as well as adhering to FAIR (Findability, Accessibility, Interoperability,
and Reusability) principles during data and metadata generation [26, 402, 403].

Automation can convert biofoundries into self-driving labs (SDL) that combine robotics for
automated experiments and data collection with artificial intelligence (AI) that uses these data to
recommend follow-up experiments [404]. Casini et al. and Robinson et al. highlight how different
optimization strategies are required for different target molecules and how the combination of de-
sign algorithms, bioinformatics, manual curation, and literature search is needed [338, 339]. In this
context, the optimization strategies described in all chapters of this thesis endow the scientist with
information to make decisions in an unbiased and informed way during sequential DBTL cycles.
Especially, the methods presented in Chapters 8 and 9 efficiently suggest the performance of new
experiments based on the coefficients of linear models or feature importance and SHAP values.
Similarly, CFSA (Chapter 3) directly provides metabolic engineering targets for implementation. The
next step to achieve an SDL is the use of ML algorithms able to autonomously design sequential
experimental rounds based on previous results. For instance, Zhang et al. optimized tryptophan pro-
duction in yeast [357]. Although the first DBTL cycle required the identification of factors and levels
based on GEM simulations and human knowledge, ART, an ML algorithm, suggested levels to test
in subsequent rounds to balance exploration of the design space and the completion of superior
strains. Similarly, Pandi et al. developed METIS, a versatile active ML workflow with a simple online
interface for the data-driven optimization of biological targets with minimal experiments [100]. This
algorithm designs random factor combinations for the first DBTL or leverages preexisting datasets
and uses active learning to suggest posterior DBTL runs. METIS also includes a feature importance
module to identify the most crucial components during system optimization, providing the basis
for a deeper understanding of the system itself. When these types of algorithms are connected
to robotic systems, DBTL cycles can be performed without the need for human intervention [98].

Beyond the combination of laboratory automation and ML, automated scientists are possible
[405]. For instance, Lila is a system developed by Amyris that autonomously made more than
100,000 in silico designs targeting the production of 454 small molecules, ordered 1,850 genes for
synthesis, created 32,000 distinct microbial strains and analyzed more than 10,000,000 data points
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throughout 105 partially overlapping DBTL cycles [405]. Lila rapidly generates metabolic routes,
identifies genetic elements for perturbation, and specifies the design and re-design of microbial
strains within seconds tominutes. The strains outlined by Lila are then constructed and phenotyped
as part of a largely automated in-house pipeline.

Although human intervention is not required, scientists play a role in curating choices made
by the system, such as refining the metabolic model or suggesting custom protein modifications
[405]. An overview of Lila’s modules and their relationship with some of the methods in this thesis is
presented in Figure 10.2. AlthoughAI has the potential to revolutionize biology, its implementation is
currently extremely expensive [406]. Besides, the use of AI comes with a set of ironies including how
our capacity to understand it and adapt to its limitations and biases decreases as its intelligence
increases [407]. To avoid deskilling, AI should be able to work with people and facilitate, but not
always replace, human decision-making as a key objective in their design [407].

Figure 10.2: Example of an automated scientist. Parts of the Lila platform are analogous to a human scientist’s
workflow. Diamonds represent input points in which human scientists interact with Lila. The use of fermentation,
omics, and kinetics data as well as the use of genome scale metabolic modeling (GEM) and design of experi-
ments (DoE) is highlighted. This figure is a modification of Figure 2 from Singh et al. [405].

It is not clearwhether the advantages of biofoundries and SDLs stem fromenhancedalgorithms
or simply increased testing capacities and data availability. From a practical standpoint, achiev-
ing economic feasibility in biotechnological processes, whether through improved algorithms or
increased throughput, is what matters. However, the journey to achieve this goal is important from
a scientific perspective, as it will unveil new exciting knowledge on how numerous genetic and
environmental factors affect cell physiology and, thus, the performance of cell factories. These
lessons will most likely be only the tip of the iceberg, and new unpredictable discoveries are likely
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to occur along the way. Moreover, when multiple factors are considered, no throughput will be suf-
ficient, and truly AI-driven methods (and their associated technology) will emerge. Therefore, the
scientific community must have access to biofoundries, and initiatives like the Global Biofoundry
Alliance are crucial. In this alliance academic biofoundries collaborate to facilitate the collec-
tive sharing of experiences and resources, working together to overcome shared challenges and
unmet scientific and engineering needs [408].

Besides the technical difficulties, one of the main challenges that hinders the development
of SDLs is, in my opinion, sociological: computer scientists and automation engineers need to
work together with molecular and synthetic biologists [387, 409]. These communities do not only
differ on their problem-solving approach, but, more importantly on which problems they consider
worth solving [52, 404]. Biologists do not need to turn into mathematicians, nor do mathemati-
cians into biologists. However, effective communication between these groups must be achieved.
Therefore, an education that includes multidisciplinary projects to favor collaboration, as well as
fosters personal development, for instance, through Inner Development Goals, is essential [410].
Open-minded people willing to recognize the limit of their knowledge, eager to share the personal
motivations behind their work, and prone to listen to those with a different background and appre-
ciate their efforts, will therefore become key players in the new development of biotechnology.

Can biotechnology fulfill its promises?

The work presented in this thesis contributes to the creation of model-driven approaches applied
in DBTL cycles for the design of microbial cell factories and bioprocesses, thereby enhancing our
understanding of biological systems. When modeling approaches are coupled with laboratory
automation and AI for the creation of self-driven labs, the potential for experimentation becomes
unprecedented. This potential will be harnessed for the successful development of biotechnologi-
cal processes as well as to facilitate the validation of fundamental research.

In July 2023, over three-quarters of the European Union citizens considered climate change a
very serious problem [411]. This is not surprising: when one opens any news provider they are likely to
find a permanent section on wildfires, droughts, heatwaves, storms, or flooding. Rising greenhouse
gas concentrations underscore the urgency of climate action, making it a dominant global risk in
the coming decade [412]. Encouragingly, despite its controversy, the 28th United Nations Climate
Change Conference (COP28) in December 2023 acknowledged the need to transition away
from fossil fuels [18]. This presents an opportunity for biotechnology to fulfill its promises and offer
sustainable alternatives to hundreds of petroleum-based chemicals.

However, for biotechnology to play a significant role in the fight against climate change, we
must not forget that bio-based and sustainable are not synonyms. While we cannot ignore the
fact that the bioeconomy is embedded in the socioeconomic context and needs to create value
and compete with traditional industries [12], emphasis must be placed on the use of sustainable
substrates and life cycle assessments for bio-based products [17, 26, 413]. Aligning with the plane-
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tary boundaries framework, which aims to establish a safe operating space for humanity within
the Earth’s environmental limits, one of the few powerful means of combating climate change is
restoring global forest cover to late 20th century levels [414]. However, the current focus on biomass
as a replacement for fossil fuels may hinder this reforestation effort [414]. Hence, there is a pressing
need for alternative substrates, focusing on waste degradation, such as the use of lignocellulosic
biomass [187, 415, 416], and the capture and conversion of C1 gases [211, 417, 418, 419]. Although
biotechnology is now centered on the production of high-value-added products, establishing
bio-based production of bulk chemicals and fuels will have a more significant impact on reducing
greenhouse gas emissions [14, 24]. In all these applications, life cycle assessments that consider
the recycling and biodegradability of bio-based products are essential [17], and legislative efforts
that fight "greenwashing" are facilitating steps in the right direction [420].

We are facing unprecedented challenges that demand exciting scientific and technological
solutions. Tackling climate change collectively is imperative, and even small contributions must be
celebrated. As demonstrated in this thesis, efficient links between all DBTL phases can advance
biotechnology, leading to improved cell factories and new biological knowledge that, in turn,
support the creation of a sustainable, bio-based future.
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Summary

Biotechnology harnesses the power of nature and translates it into applications that improve the
quality of our lives and the environment. These applications range from food production through
fermentation, the discovery of new drugs, or the development of crops resistant to pests, to pro-
duction of biofuels or cultivated meat. Specifically, industrial biotechnology focuses on the use of
microorganisms, referred to as cell factories, to produce bio-based chemicals as an alternative to
petroleum-based production contributing to the fight against climate change. However, design-
ing these cell factories is difficult since we do not completely understand how a cell works and
how the desired production affects the functioning of the cell. Moreover, designing bio-process
(i.e. how the cell will grow and produce at scale) is hindered by the lack of predictability of the
performance of the cell factory in industrial settings compared to laboratory scale. The complex
interplay among the numerous factors that affect the performance of cell factories prevents accu-
rate predictions of how the microorganism will behave when genetic or environmental variables
are perturbed. Instead, bioprocess engineers often have to go through intensive experimentation
to optimize production resulting in long developmental times that make the market implementa-
tion of biotechnological processes difficult.

Design-Build-Test-Learn (DBTL) cycles are a systematic approach to strain and bioprocess
design to iteratively improve the performance of a biological system. In these cycles cells and
experiments are designed to acquire the desired information gain, strains are built and tested in
the specified conditions, and data is gathered and analyzed to inform the design phase of the
following cycle. To leverage all the information acquired in DBTL cycles, and accelerate the design
of cell factories, the design and learning phases must be efficiently linked. This can be achieved
using mathematical modeling, which encompasses knowledge-based and data-driven models.
In this thesis, knowledge-based models including kinetic models (Chapter 2) and genome-scale
metabolic modeling (Chapters 3, 4, 5) are combined with the analysis of omics data (Chapter 6)
and the use of statistical design of experiments (Chapter 7, 8) and machine learning (Chapter 9).

Chapters 2 to 4 use mechanistic models to optimize the production of curcumin, a molecule
with application in the food and pharmaceutical industries, to design metabolic engineering
strategies for growth-uncoupled production of target metabolites, and to guide the construction
of Pseudomonas putida strains with a new-to-nature carbon catabolism that improves produc-
tion of shikimate-derived metabolites. In Chapter 2, we employed dynamic pathway modeling,
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systematic testing of isoenzymes, and optimization of gene expression levels and substrate con-
centrations in P. putida to enhance the biosynthesis of curcuminoids. The use of kinetic ensemble
models guided the design of production strains, emphasizing the importance of tuning gene ex-
pression. The optimized strain achieved 10.8 ± 1.8% of the maximum curcumin yield on tyrosine,
representing a 4.1-fold increase in production efficiency and the highest reported yield to date.
Chapter 3 introduces Comparative Flux Sampling Analysis (CFSA), a strain design method that
involves comparing completemetabolic spaces associatedwithmaximal or near-maximal growth
and production phenotypes based on genome-scale metabolic modeling. The comparison, sup-
ported by statistical analysis, identifies reactions with altered flux, suggesting targets for genetic
interventions such as up-regulations, down-regulations, and gene deletions. CFSA was applied to
the production of lipids by Cutaneotrichosporon oleaginosus and naringenin by Saccharomyces
cerevisiae, successfully identifying engineering targets consistent with previous studies and propos-
ing new interventions. Chapter 4 employs, in turn, a combination of metabolic modeling, rational
engineering, and adaptive laboratory evolution to radically refactor bacterial metabolism. Specif-
ically, a new-to-nature shikimate pathway-dependent catabolism was created in P. putida by
reprogramming the shikimate pathway as the dominant pathway for growth. Whole-genome se-
quencing of the evolved strains identifiedmiaAandmexT as key regulators whose deletion allowed
increased fluxes through the shikimate pathway. The resulting strain diverts the majority of its car-
bon catabolism flux through the shikimate pathway, producing 0.35 mol/mol 4-hydroxybenzoate
in glycerol minimal medium during growth, achieving 89.2% of the maximum predicted path-
way yield. These chapters prove the potential of knowledge-based models for metabolic and
pathway optimization. Additionally, while Chapters 2 and 4 highlight the versatility of P. putida’s
metabolism and its potential for the production of complex compounds, Chapter 3 provides a
robust, easy-to-use, host-independent method for the design of metabolic engineering strategies.

InChapters 5 and 6 the focus changes to understanding howcells adapt to living in bioreactors
at the transcriptional, proteome, and metabolic levels. In Chapter 5we used Flux balance analysis
(FBA) and dynamic FBA (dFBA) to predict the growth dynamics of S. cerevisiae under various indus-
trially relevant conditions using a genome-scale model (GEM) and its enzyme-constrained version
(ecGEM). The ecGEM outperformed the GEM and, in combination with dFBA and flux sampling,
facilitated linking reactor operation and genetic modifications to flux predictions. This enabled
the prediction of yields and productivities for different strains and dynamic production processes.
Besides, the proposed approach suggested a role of proteome limitation on carbon catabolite
repression. Chapter 6 delved into the response of P. putida cells to oxygen and glucose limitations
through the use of chemostat cultivations and transcriptomic andproteomic analysis. We report an
up to 59% increase in biomass yield of slow-growing cells in oxygen limitation compared to glucose-
limited growth due to the absence of pyoverdine production. Our analysis additionally identified
923 differentially expressed genes specific to oxygen-limited growth, with only seven differentially
abundant proteins, suggesting P. putida’s resilience to long-term oxygen-limited growth. Both of
these chapters highlight the effect of growth conditions on cell physiology and the importance
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of considering bio-process-related factors during strain and bio-process design.
In Chapters 7 to 9 I move towards the application of data-driven models to optimize cell facto-

ries and understand the relationships between factors that affect the performance of the strains.
Chapter 7 presents a theoretical study on the use of Design of Experiments (DoE) for pathway
optimization. Leveraging one of the kinetic models developed in Chapter 2, the performance of a
full factorial strain library is compared to resolution V, IV, III, and Plackett Burman designs. Assessing
robustness to noise and missing data, we suggest using resolution IV designs for the optimization of
the expression of pathway genes. These designs enable the identification of optimal strains and
provide valuable information regarding the impact of factors and their interactions on production,
offering guidance for subsequent optimization cycles. Lessons learned in Chapter 7 were applied
in Chapter 8 where we used DoE to systematically explore the relationships between media, pro-
cess, and genetic factors and optimized the production of p-coumaric acid (pCA), a precursor for
a wide array of biologically relevant molecules, in S. cerevisiae. Two rounds of fractional factorial
designs identified factors significantly affecting pCA production, resulting in a 168-fold variation in
pCA titer. Additionally, the study revealed a significant interaction between culture temperature
and the expression of ARO4, emphasizing the importance of simultaneous process and strain op-
timization, already highlighted in Chapters 5 and 6. In Chapter 9 we maintain the aim to improve
pCA production in S. cerevisiae but, this time, we advocate for the generation of a random library
of strains with different genes and expression strengths and its analysis using machine learning
(ML). The use of a screening before sequencing approach allowed stratification during training
and improved ML performance on small datasets. Besides, explainable ML techniques were em-
ployed to guide the expansion of the original design space. This approach ultimately led to a 68%
increased production of pCA within two DBTL cycles. These chapters underscore the potential of
data-driven models to link the design and learning phases of sequential DBTL cycles and facilitate
the design of strains and bio-processes.

This dissertation ends with a general discussion (Chapter 10) that delves into the application
of the explored modeling approaches at different stages during the development of strains and
bioprocesses, including pathway, metabolic, and process design. I further discuss the intercon-
nection between understanding and optimization in biotechnological research and the impact
of automated biofoundries and modeling on industrial biotechnology. In addition, I reflect on
the need to use sustainable substrates and life cycle assessments to evaluate the sustainability of
bio-based products.
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APPENDICES



Resumen para el público
general

La biotecnología se inspira en la naturaleza para proteger el medio ambiente y mejorar nuestra
calidad de vida. Por ejemplo, la biotecnología permite la producción de alimentos mediante
fermentación, el descubrimiento de nuevos medicamentos, o el desarrollo de cultivos resistentes a
plagas. En concreto, la biotecnología industrial usa microorganismos, llamados factorías celulares,
para producir estos compuestos como alternativa a una producción basada en combustibles
fósiles. De esta forma, la biotecnología industrial es una de las herramientas que podemos utilizar
en la lucha contra el cambio climático. Sin embargo, diseñar estas factorías celulares no es fácil,
principalmente porque no sabemos cómo funcionan exactamente. Puedes pensar en el diseño
de un coche en el que un equipo de ingenieros decide qué piezas utilizar y sabe la función
de cada una de esas piezas. Ahora piensa en una célula. El diseño de la célula no lo hemos
hecho nosotros, se basa en miles de años de evolución y la evolución optimiza el crecimiento,
cuánto más se propague una célula, mejor. Los biotecnólogos queremos cambiar este "objetivo
celular", no nos interesa que nuestra factoría celular crezca mucho, queremos que produzca
mucho. Sin embargo, todavía no llegamos a entender por completo cómo funciona una célula,
qué pasa cuando intentamos cambiar su objetivo y, para complicar aún más todo, como las
condiciones ambientales en las que la cultivamos (lo que se conoce como bio-proceso) afectan
su funcionamiento y, por tanto, la producción de nuestro producto.

Una de las herramientas para entender y optimizar las factorías celulares y los bio-procesos son
los ciclos de DBTL (Design-Build-Test-Learn, Diseño-Construcción-Experimentación-Aprendizaje).
En estos ciclos, diseñamos las células y los experimentos a realizar para obtener la información
deseada, construimos las cepas necesarias, las probamos con las condiciones experimentales
fijadas y recogemos los datos generados para informar el siguiente ciclo. Para aprovechar toda
la información generada en un ciclo de DBTL, necesitamos poder conectar las fases de diseño y
aprendizaje. El uso de modelos matemáticos permite la conexión entre estas fases, nos ayuda
a recopilar la información generada en un ciclo de DBTL y a utilizarla para diseñar el siguiente
ciclo. En esta tesis he probado diferentes modelos con este objetivo. Algunos de estos modelos
se basan en lo que sí sabemos sobre el funcionamiento de la célula (modelos mecanísticos). Por
ejemplo, gracias al ADN de una célula sabemos qué reacciones bioquímicas pueden suceder
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en su interior y esta información se recoge en modelos metabólicos, utilizados en los Capítulos 3,
4 y 5. Además, también podemos utilizar ecuaciones diferenciales que incluyen los mecanismos
de acción de algunas enzimas (las proteínas que llevan a cabo esas reacciones) en lo que se
conoce comomodelos cinéticos, utilizados en el Capítulo 2. En vez de usar nuestro conocimiento
previo, también podemos utilizar modelos que se basan únicamente en los datos experimentales
que recogemos durante nuestros experimentos; estos modelos se denominan modelos basados
en datos. En los Capítulos 7 y 8 he usado este tipo de modelos, concretamente basados en
el diseño estadístico de experimentos: en función de la información que quiero obtener, este
método me permite decidir qué experimentos realizar. Además, en el Capítulo 9 he utilizado
aprendizaje automático ("machine learning") para obtener la máxima información posible de
experimentos realizados (más o menos) al azar. Por último, en el Capítulo 6, utilizamos lo que se
conoce como "técnicas ómicas" que, básicamente, nos permiten tomar una foto de lo que está
pasando en la célula en un momento concreto.

Ahora sabes bastante sobre los métodos que he usado pero, ¿qué he conseguido? En el
Capítulo 2 conseguimos mejorar la producción de curcumina (un colorante alimentario natural)
en la bacteria Pseudomonas putida gracias al uso de modelos cinéticos. Además, aprendemos
que controlar la cantidad de cada enzima dentro de la célula es fundamental para mejorar la
producción. En los Capítulos 3 y 4 utilizamos modelos metabólicos. En el Capítulo 3 creamos una
herramienta que nos ayuda a saber cómo modificar nuestra célula para cambiar su "objetivo"
del crecimiento a la producción. En el Capítulo 4 conseguimos cambiar el funcionamiento de P.
putida para que, cuando crezca, se vea obligada a producir nuestro producto. De esta forma,
no tenemos que cambiar su "objetivo".

Hasta ahora solo nos hemos fijado en nuestro microorganismo, pero sabemos que las condi-
ciones ambientales en las que lo cultivamos también afectan su funcionamiento. Esto lo hemos
explorado en los Capítulos 5 y 6. En el Capítulo 5 seguimos utilizando modelos metabólicos pero
esta vez añadimos una capa más y estudiamos si estos modelos son capaces de predecir cómo
el funcionamiento de Saccharomyces cerevisiae (la levadura del pan, el vino y la cerveza) cam-
bia según cambiamos la forma de cultivo. A su vez, en elCapítulo 6, estudiamos la respuesta de P.
putida a concentraciones bajas de oxígeno. Igual que nosotros, esta bacteria necesita oxígeno
para respirar y gracias al uso de "técnicas ómicas", descubrimos que es capaz de sobrevivir a ba-
jas concentraciones de oxígeno sin grandes cambios en su funcionamiento. Esto es importante,
porque cuando cultivamos nuestras factorías celulares a escala industrial, en grandes reactores,
es difícil y costoso asegurar que todas las células tengan el oxígeno que necesitan.

En la última parte de la tesis, pasamos a utilizar los modelos basados en datos. En el Capítulo
7 utilizamos uno de los modelos desarrollados para la producción de curcumina para evaluar
diferentes métodos de diseño de experimentos. En el ordenador podemos fácilmente simular cuál
es la producción de curcumina demuchas factorías celulares diferentes. Sin embargo, hacer esto
en el laboratorio requiere mucho trabajo. Por eso, en este capítulo construimos nuestras cepas in
silico (es decir, en el ordenador) y descubrimos cuál es la mejor. Después, reducimos el número
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de cepas a construir según los diferentes diseños y los evaluamos en base a su capacidad para
encontrar a la mejor cepa. Ahora que sabemos qué diseños son los mejores, podemos volver
al laboratorio y probarlos de verdad. Esto es lo que hicimos en el Capítulo 8, en base al diseño
estadístico de experimentos construimos cepas de S. cerevisiae para producir ácido cumárico
cambiando factores genéticos y ambientales. No solo conseguimos mejorar la producción de
este compuesto si no que, además, confirmamos que los factores genéticos y ambientales inter-
accionan entre ellos. El problema de este método es que no siempre podemos conseguir todas
las cepas que queremos en el laboratorio y, si esto pasa, perdemos información. Como alter-
nativa podemos generar cepas de manera (más o menos) aleatoria y utilizar machine learning
para analizar los datos obtenidos. Este es el objetivo del Capítulo 9 en el que volvemos a producir
ácido cumárico con S. cerevisiae y además aprendemos cómo generar datos de alta calidad
para mejorar el entrenamiento de nuestros modelos.

Esta tesis termina con una discusión general (Capítulo 10) en la que considero en qué mo-
mento, durante el diseño de factorías celulares y bio-procesos, es más conveniente utilizar cada
uno de los modelos con los que he trabajado. Además reflexiono sobre la relación entre opti-
mización y aprendizaje durante el desarrollo de factorías celulares. A veces, cuando estamos
optimizando nuestra célula, descubrimos cosas sobre su funcionamiento que no sabíamos y,
de igual forma, cada vez que mejoramos nuestro conocimiento sobre el funcionamiento celular,
hacemos la optimización de los microorganismos más fácil. También discuto cómo, en mi opinión,
la combinación de modelos matemáticos y robótica, en lo que se conoce como "biofoundries"
puede acelerar la aplicación real de la biotecnología industrial. A pesar del potencial de esta
ciencia, esta disertación acaba resaltando la necesidad de estudiar en detalle su sostenibilidad
para poder garantizar un futuro verde para todos.
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Samenvatting

Biotechnologie gebruikt en vertaalt de kracht van de natuur in toepassingen die bijdragen aan
de kwaliteit van het milieu en het leven. Deze toepassingen omvatten onder andere voedselpro-
ductie door middel van fermentatie, het ontdekken van nieuwe medicijnen, en het ontwikkelen
van ongediertebestendige gewassen. De industriële biotechnologie richt zich op het gebruik
van micro-organismes, ook wel celfabrieken genoemd, om biogebaseerde chemicaliën te pro-
duceren als alternatief voor de petrochemische industrie wat bijdraagt aan de strijd tegen kli-
maatverandering. Het ontwerpen van deze celfabrieken is echter een grote uitdaging, omdat
we niet volledig begrijpen hoe een cel werkt en of de beoogde productie het functioneren van
de cel beïnvloedt. Daarnaast maakt het gebrek aan voorspelbaarheid van celfabrieken het
overbruggen van de kloof tussen bioprocesoptimalisatie op laboratoriumschaal en het industrieel
opschalen uitdagend. De complexe wisselwerking tussen de talrijke factoren die de prestaties
van celfabrieken beïnvloeden, verhindert ons om accurate voorspellingen te maken van hun
gedrag. Het is bijvoorbeeld niet duidelijk hoe micro-organismes zich gedragen als genetische fac-
toren en omgevingsfactoren worden verstoord. Productoptimalisatie is daarom vaak een intensief
experimenteel proces dat een lange ontwikkelingstermijn doormaakt.

Cycli van Ontwerpen-Bouwen-Testen-Leren (DBTL) vormen een systematische benadering
om microbiële stammen en processen te ontwerpen om de productiviteit van een biologische
systeem iteratief te verbeteren. Binnen deze cycli worden cellen en experimenten ontworpen
om de benodigde informatie te verwerven, stammen te bouwen en te testen onder de gespeci-
ficeerde condities, en data te verzamelen en te analyseren om de ontwerpfase van de volgende
cyclus te sturen. Om alle informatie die is verkregen gedurende deze cycli te benutten, moeten
de ontwerp- en leerfases efficiënt aan elkaar worden gekoppeld. Mathematisch modelleren met
zowel kennis- als datagedreven modellen helpen om dit te bereiken. In dit proefschrift worden
kennis- en datagedreven modellen zoals kinetische modellen (Hoofdstuk 2) en genoomschaal
metabole modellen (Hoofdstukken 3, 4 en 5) gecombineerd met de analyse van omics data
(Hoofdstuk 6) en het gebruik van statistisch ontwerp van experimenten (Hoofdstukken 7 en 8) en
kunstmatige intelligentie (Hoofdstuk 9).

Hoofdstukken 2 tot 4 gebruiken mechanistische modellen om de productie van curcumine –
een molecuul met toepassingen in de voedingsindustrie en de farmaceutische industrie – te opti-
maliseren, metabole ontwerpstrategieën te ontwerpen om groei en productie los te koppelen, en
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om het bouwen van Pseudomonas putida stammen te leidenmet een nieuw-voor-de-natuur kool-
stofkatabolisme waarmee de productie van shikimaat verbeterd wordt. In Hoofdstuk 2 hebben
we de dynamische routemodellering, het systematisch testen van iso-enzymen en de optimal-
isatie van genexpressieniveaus en substraatconcentraties in P. putida gebruikt om de biosyn-
these van curcuminoïden te verbeteren. Het gebruik van kinetische ensemblemodellen leidde
het ontwerp van productiestammen in goede banen, wat de nadruk legde op het belang van
het afstemmen van genexpressie. De maximale curcumine-opbrengst van de geoptimaliseerde
stam uit tyrosine bedroeg 10,8 ± 1,8%. Deze opbrengst komt neer op een 4,1-voudige toename
in productie-efficiëntie en is de hoogste gerapporteerde opbrengst tot nu toe. Hoofdstuk 3 in-
troduceert Comparative Flux Sampling Analysis (CFSA), een methode voor het ontwerpen van
stammen die volledige metabole ruimtes, geassocieerd met (bijna)-maximale groei- en produc-
tiefenotypes met elkaar vergelijkt op basis van genoomschaal metabole modellen. Deze vergeli-
jking, ondersteund door statistische analyses, identificeert reacties met een veranderde flux en
draagt doelen aan voor genetische interventies zoals up-regulatie, down-regulatie en gendeleties.
CFSA werd toegepast op de productie van lipiden door Cutaneotrichosporon oleaginosus en
naringenine door Saccharomyces cerevisiae. Technische doelstellingen die consistent waren met
eerdere studies werden succesvol geïdentificeerd en nieuwe interventies werden voorgesteld.
Hoofdstuk 4 maakt vervolgens gebruik van een combinatie van metabool modelleren, rationeel
ontwerp en adaptieve laboratoriumevolutie om het bacteriële metabolisme grondig te herstruc-
tureren. Concreet werd in P. putida een shikimaatafhankelijke katabole route gecreëerd door
de shikimaatroute te herprogrammeren als de dominante route voor groei. Door het sequencen
van het hele genoom van de ontwikkelde stammen werden miaA en mexT geïdentificeerd als
sleutelregulatoren. Het verwijderen van deze regulatoren resulteerde in verhoogde fluxen langs
de shikimaatroute. De verkregen stam leidt het grootste deel van zijn koolstofkatabolisme langs
de shikimaatroute en produceert daarmee 0,35 mol/mol 4-hydroxybenzoaat in minimaal glyc-
erolmedium in de groeifase,waarmee 89,2% van demaximaal voorspelde opbrengst van de route
wordt bereikt. Deze hoofdstukken bewijzen het potentieel van kennis gedreven modellen voor de
productieoptimalisatie van metabolieten. Terwijl hoofdstukken 2 en 4 de veelzijdigheid van het
metabolisme van P. putida en het potentieel ervan voor de productie van complexe verbindingen
benadrukken, biedt hoofdstuk 3 een robuuste, eenvoudig te gebruiken, gastheer-onafhankelijke
methode voor het ontwikkelen van metabole ontwerpstrategieën.

In de hoofdstukken 5 en 6 verandert de focus naar het begrijpen van de adaptatie van
cellen in bioreactoren op het niveau van transcriptoom, proteoom en metaboloom. In Hoofdstuk
5 gebruikten we flux balans analyse (FBA) en de dynamische FBA (dFBA) om de groeicurve van
S. cereviseae onder verschillende industriële condities te voorspellen. Deze FBA en dFBA wer-
den toegepast op een genoomschaal model (GEM) en zijn enzyme-gecontroleerde evenknie
(ecGEM),waarbij bleekdatdebeste voorspellingwerd verkregenmeteen ecGEM. Decombinatie
van ecGEM met dFBA en het bemonsteren van fluxen faciliteerde het linken van bioreactorcon-
dities en genetische modificatie met voorspellingen van de fluxen. Dit maakte het mogelijk om
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de opbrengst en productiviteit voor verschillende stammen en dynamische productieprocessen
te voorspellen. Daarnaast suggereerde de toepassing van deze methode dat beperkingen van
het proteoom bijdragen aan koolstofcatabolietrepressie. Hoofdstuk 6 beschrijft de respons van P.
putida cellen op zuurstof- en glucoselimitaties door middel van chemostaat cultivaties in combi-
natie met transcriptoom- en proteoomanalyses uitgevoerd. De biomassaopbrengst van langzaam
groeiende cellen was 59% hoger onder een zuurstoftekort vergeleken met een glucosetekort
als gevolg van de afwezigheid van pyoverdine productie. Deze analyse identificeerde ook 923
genen waarvan het expressieniveau toe- of afgenomen was als gevolg van het zuurstoftekort,
terwijl slechts 7 eiwitten op- of neerwaarts gereguleerd waren. Deze observaties duiden op de
veerkracht van P. putida tijdens lange-termijn zuurstoflimitaties. Zowel hoofdstuk 5 als hoofdstuk 6
benadrukken hoe de groeicondities de celfysiologie beïnvloeden en het belang van de gerela-
teerde factoren op het ontwerp van de stam en het proces.

In de hoofdstukken 7 tot en met 9 onderzoek ik het toepassen van data gedreven modellen
voor het optimaliseren van celfabrieken en het begrijpen van relaties tussen factoren die de pro-
ductie van stammen bepalen. In Hoofdstuk 7 wordt een theoretische studie over het ontwerp
van experimenten voor het optimaliseren van metabole routes gepresenteerd. Voortbordurend
op een kinetisch model ontwikkeld in hoofdstuk 2 wordt hier de toepasbaarheid van een volledig
factoriele ontwerp bibliotheek vergeleken met de resolutie VI, IV, III en Plackett Burman ontwer-
pen. Onze aanbeveling is om resolutie IV ontwerpen te gebruiken voor het optimaliseren van de
expressie van genen die de metabole route beïnvloeden. De ontwerpen maken het mogelijk
om optimale stammen te identificeren en geven inzicht wat betreft de impact van factoren en
hun interacties op productie. Dit leidt volgende cycli in goede banen. De conclusies die werden
getrokken in Hoofdstuk 7 worden toegepast in Hoofdstuk 8 waar ik DoE gebruikte voor het sys-
tematische onderzoeken van de relaties tussen de media, het proces en genetische factoren
voor het optimaliseren van de productie van p-coumarinezuur. Het laatstgenoemde metaboliet is
een uitgangsstof voor meerdere biologische relevante moleculen in S. cerevisiae. Het doorlopen
van twee cycli van fractionele, factoriele ontwerpen identificeerde factoren die een significant
en substantieel effect hadden op de productie van p-coumarinezuur. Vervolgens liet de studie
een significante interactie zien tussen de temperatuur van de cultuur en de expressie van ARO4.
Dit benadrukt het belang van het gelijktijdig optimaliseren van het proces en de stam. Dit bleek
ook uit het werk dat is gerapporteerd in de hoofdstukken 5 en 6. In Hoofdstuk 9 blijven we bij het
doel om pCA productie van S. cerevisiae te verhogen, maar hier pleiten we voor het genereren
van een random bibliotheek van stammen met verschillende genen en expressiegehaltes en
hun analyse door middel van kunstmatige intelligentie. Het toepassen van een aanpak die de
DNA-sequentie eerste verkende en vervolgens vaststelde, resulteerde in gelaagdheid gedurende
het fitten wat de voorspellingen die gebruikmaakten van kleine datasets verbeterde. Vervolgens
werden eenvoudige technieken die waren gebaseerd op kunstmatige intelligentie toegepast
voor de uitbreiding van de aanvankelijke ruimte van het ontwerp. Deze aanpak resulteerde in
een toename van de pCA productie van maar liefst 68% na het doorlopen van twee DBTL cycli.
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Deze hoofdstukken onderstrepen de potentie van datagedreven modellen om de ontwerp- en
leerfase van de achtereenvolgende DBTL-cycli aan elkaar te relateren, en om het ontwerp van
stammen en biotechnische processen te faciliteren.

Deze dissertatie sluit af met een algemene discussie (Hoofdstuk 10) die ingaat op de toepass-
ing vandeonderzochtemodelleeraanpakken voorde verschillende fases gedurende hetontwerp
van stammen en biologische processen. Dit betreftmet name het aanpassen vanmetabole routes
en het proces. Vervolgens bediscussieer ik de relatie tussen het begrip en procesoptimalisatie in
biotechnologischonderzoek en de impact van geautomatiseerde biofoundries en hetmodelleren
van industriële biotechnologische vraagstukken. Tenslotte reflecteer ik op de behoefte om du-
urzame substraten te gebruiken en het uitvoeren van levenscyclusanalyses om de duurzaamheid
van biologisch geproduceerde producten te evalueren.
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About the Cover

The coverof this thesis symbolizes the parallel scientific andpersonal developmentachievedduring
my PhD. The central motif presents a cell factory (yeast) on a journey from its natural state through
a path of successive and continuous improvements until it can leap forward and transcend the
horizons as an industrial powerhouse. Escorting it we find a fresh PhD candidate nurturing a plant -
herself. The personal growth enabled by the constant and committed care blooms into the brave,
yet vulnerable graduate and results in the thesis you are holding.
P.S. Personal growth and scientific progress are seldom achieved alone. The snail represents the
patience and support of everyone involved in my PhD journey.

Sobre la portada

El diseño de la portada de esta tesis simboliza el crecimiento logrado durante mi doctorado,
tanto científica como personalmente. El concepto central presenta una senda recorrida por
una factoría celular (levadura). Comenzando desde su estado natural, sigue un camino de
constante y sucesivo progreso hasta poder atravesar el horizonte gracias a su potencial industrial.
Acompañándola, se encuentra una joven estudiante cuidando de una planta -ella misma. El
desarrollo personal, cimentado por los cuidados constantes, florece dando lugar a una graduada,
vulnerable pero valiente, y a la tesis que tienes en tus manos.
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