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Summary

Vegetation, ranging from dense forests to open grasslands, plays a vital role in sustaining

Earth’s environmental health. These diverse ecosystems are crucial, offering services like

carbon sequestration, soil stabilization, and water regulation, while providing habitats for

countless species. Forests, in particular, stand as ecological powerhouses, encompassing

nearly a third of the planet’s land area and harboring around 80% of terrestrial biodiversity.

They are instrumental in regulating freshwater flow and precipitation, crucial for agriculture,

and are key players in atmospheric carbon absorption. Supporting the livelihoods of over

1.6 billion people globally, forests’ ecological and socio-economic roles are intertwined.

Consequently, their protection and judicious management are essential to ensure the ongoing

provision of these vital ecosystem services and the sustenance of life on Earth.

Traditional forest monitoring methods, including field surveys and National Forest Inven-

tories (NFI) campaigns, are pivotal for understanding forest composition, structure, and

health. Established in the early 20th century, these approaches are crucial for forestry

management and environmental assessments. NFIs in particular, provide comprehensive,

country-specific data, supporting national forestry policies and international reporting.

Yet, these traditional methods encounter limitations in scalability, frequency, and logistics,

especially for monitoring large, remote, or inaccessible areas. With the accelerating pace of

climate change, these methods fall short in monitoring dynamic ecological variables. They

struggle to track shifts in species composition, alterations in species ranges, biodiversity

or forest disturbances such as wildfires, pest outbreaks, droughts, and heatwaves. These

limitations hinder their effectiveness in capturing the rapid ecological transformations and

the evolving dynamics of forest ecosystems.

The limitations of traditional monitoring systems are highlighted in various policy frame-

works, which emphasize the need for comprehensive and high-quality monitoring of all

forested areas. For instance, the European Union (EU)’s new Forest Strategy for 2030,

aligned with the European Green Deal and the EU Biodiversity Strategy for 2030, sets a

vision to improve the quantity, quality, and resilience of European forests. It underscores

the necessity of strategic forest monitoring, data collection, and coherent governance to

help the transition towards forests that are more adapted and resilient to climate change

and ensure their multifunctionality for the future decades.
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The integration of Earth observation data has initiated a transformative era in forest and

vegetation monitoring, significantly enhancing our capacity to assess and track vegetation

dynamics. Among the different Earth observation tools, satellites, especially those from

Landsat and Sentinel missions, offer a vast spatial coverage and a detailed enough spatial

resolution that is crucial for observing large forested areas and detecting changes over time.

The Global Forest Watch (GFW), an initiative utilizing mainly Landsat satellite imagery

to monitor forests globally, exemplifies the application of Earth observation in large-scale

forest monitoring. These satellite-based observations provide vital data on forest cover

changes, deforestation rates, and reforestation efforts, contributing to a more nuanced

understanding of global forest ecosystems and integrating traditional international reports

on the state of the forests like the FAO’s Forest Resource Assessment (FRA).

Machine learning technologies, particularly in the realm of image processing, have trans-

formed the way we analyze data from remotely sensed sources. Machine learning ap-

plications have proven effective in processing complex datasets from satellite missions,

including the intricacies of hyperspectral data, which present challenges due to their high

dimensionality. These machine learning methods are adept at identifying patterns and

changes in forest landscapes, such as variations in tree species composition, signs of forest

degradation, and impacts of climate change. The ability of machine learning algorithms

to process and analyze large collections of satellite imagery has opened new possibilities

for comprehensive and dynamic forest monitoring.

The integration of Earth observation and machine learning technologies with traditional

ground-based methods, such as NFIs, is pivotal in creating a robust forest monitoring

system. This combination allows for the validation and enhancement of satellite-based

observations with detailed ground-truth data. By merging the broad spatial coverage of

satellite data with the accuracy and specificity of field data, we can achieve a more accurate,

timely, and holistic view of forest ecosystems. This integrated approach is instrumental

in addressing the limitations of traditional methods and fulfilling the need for rapid and

responsive forest monitoring in the face of global environmental changes. It represents a

significant step forward in our ability to manage and conserve forest resources effectively,

ensuring their sustainability for future generations.

Thus, the objective of this thesis is to integrate Earth observation and machine learning

technologies with field data to enhance our understanding of ongoing vegetation dynamics

and the overall monitoring and management of forest ecosystems. This work mainly

contributes to this goal by developing and applying novel methods at different spatial and

temporal scales for vegetation modeling. More specifically, in order to accomplish this

objective, four research questions have been formulated and addressed in this work: (1)

What is the impact of climate change on potential biomes distribution based on Earth

observation and machine learning methods, and what are the projected shifts in vegetation

under various climate change scenarios? (2) What combination of Earth observation
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and machine learning methods allows to map and analyze the distribution of forest tree

species at high resolution? (3) How can these methods be applied to capture trends

and disturbance impacts on forest tree species distributions and how do these reflect the

ongoing changes in forest ecosystems? (4) What is the effect of coordinate precision of

NFI data on the accuracy of high-resolution tree species classification models?

The thesis is composed of six chapters, with Chapters 1 and 6 framing the core content and

Chapters 2 to 5 addressing the research questions presented above. Chapter 1 serves as

an introduction, delineating the current advancements in Earth observation and machine

learning as they apply to vegetation modeling and monitoring. It also identifies existing

research gaps and explores potential approaches for addressing them.

Chapter 2 investigates the projected shifts in vegetation under various climate scenarios

by developing a data-driven approach based on machine learning techniques and pollen

reconstruction datasets coming from different surveys that have been harmonized over the

years. The chapter specifically focuses on modeling the potential distribution of global

biomes, incorporating a range of climate variables to predict the current distribution and

how different climate change scenarios could alter vegetation patterns and distributions in

the future. Through this analysis, the chapter provides insights into the expected changes

in biome locations and compositions, particularly the contraction of tropical rainforests

and the expansion of higher latitude biomes like boreal forests, at polar biomes’ expense.

The chapter offers a picture of how climate change could reshape the global ecological

landscape. Given the unpredictability of the future, the method is conservative in its

conclusions: after analyzing every emission pathway scenario, it focuses on identifying key

change areas, irrespective of specific emission pathways, providing a nuanced understanding

of climate change’s impact on the global ecological landscape.

Chapter 3 presents a more sophisticated data-driven approach than Chapter 2, integrating

305 environmental predictors, primarily from Earth observation data, employing advanced

machine learning techniques alongside over 3 million tree occurrence points from different

surveys or citizen science projects. This approach is used to model the potential and actual

distribution of 16 key European forest tree species from 2000 to 2020 at high resolution.

The chapter’s core is the development and application of ensemble models for each species

and distribution type, employing a series of machine learning algorithms such as random

forest, gradient boosting, and neural networks, and utilizing spatial cross-validation to

enhance predictive accuracy and avoid model overfitting. The influence of the spatial

resolution of the environmental predictors on model performances was also tested. As

expected, not only ensemble models outperformed individual models, but ensemble models

using high spatial resolution data proved to be consistently better than the ones using

coarse resolution data.

Chapter 4 delves into the changing dynamics of six key European forest tree species

between 2000 and 2020, building upon the high resolution distribution maps generated
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in Chapter 3. This chapter focuses on the response in the realized distribution of these

species over the last twenty years by conducting a trend analysis on the distribution maps

and then degrading the results to a coarser resolution to find the prevalent spatial patterns

for each species. Findings indicate a predominant stability across species, with most areas

exhibiting consistent distribution patterns. Nonetheless, the chapter also uncovers areas of

concern, marked by declining species presence, especially at the latitudinal edges of their

natural ranges. Additionally, the chapter examines the impact of forest disturbances on

species distribution, noting a doubling in the range affected by disturbances such as wind

and fire. The findings highlight the need for proactive conservation and long-term planning

to ensure the resilience of European forests against climate-induced changes.

Chapter 5 investigates the impact of coordinate precision in National Forest Inventory

(NFI) data on the accuracy of high-resolution tree species classification models. Focusing

on seven European tree species, the chapter compares machine learning models trained

on true, precise plot coordinates with those trained on coordinates derived from publicly

available data. The chapter describes a procedure to estimate the precise plot coordinates

location with the aid of high resolution forest masks and forest types layers for the country

of the Netherlands. The analysis demonstrates that models utilizing true coordinates

consistently outperform those based on estimated coordinates. This is evident in the

higher scores reached across performance metrics used for both hard classification and

probabilistic classification problems across most species classes for the model using precise

data. The chapter highlights the critical importance of coordinate precision in ecological

modeling and underscores the need for high-quality, accurate NFI data for effective tree

species classification using Earth observation data and machine learning methods.

Lastly, Chapter 6 summarises the main findings and results of the previous chapters and

provides an overview on how they contribute towards filling the research gaps identified by

this thesis. Following that, it offers a reflection and outlook, exploring potential pathways

for future applications and new research prospects in the integration of Earth observation

data with machine learning and field data for vegetation modeling.
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Chapter 1

Introduction



2 Introduction

1.1 Background

1.1.1 Forests and climate change

Forests and other vegetation ecosystems are extremely valuable for humanity and the planet,

playing an important role in environmental sustainability and ecological balance. Their

significance extends beyond simply providing resources; they are crucial for maintaining

biodiversity, regulating water cycles, conserving soil and offering spaces for recreation and

spiritual connection. Forests are particularly important in this sense, covering nearly a

third of the planet’s land area (FAO, 2022), representing the most widespread vegetation

type globally (Banskota et al., 2014) and hosting about 80% of terrestrial biodiversity

(Cazzolla Gatti et al., 2022). These ecosystems not only support over 1.6 billion people

globally but also function as major carbon sinks, absorbing and storing carbon dioxide

(CO2) from the atmosphere, crucial in mitigating climate change (IPCC, 2021).

The health and stability of these ecosystems face increasing threats from climate change.

Changes in temperature and precipitation patterns severely impact forest health and

biodiversity (Dale et al., 2001; Forzieri et al., 2021; Keenan, 2015; Lindner et al., 2010;

Rounsevell et al., 2018). The increasing frequency and intensity of extreme weather events

such as wildfires, storms, and droughts compound these threats, leading to widespread

destruction and long-term impacts on forest recovery and resilience (Allen et al., 2010;

Patacca et al., 2023; Seidl et al., 2017). Furthermore, climate change has exacerbated the

incidence of pest infestations and diseases, which pose a significant risk to tree populations

and forest compositions (Ayres and Lombardero, 2000; Hlásny et al., 2021a; Hlásny et al.,

2021b). The intricate balance within forest ecosystems is further disrupted, as phenology

and growth rates are affected: phenological shifts, such as earlier spring leaf-out or later

autumn senescence, can disrupt the synchronization between forests and the species that

depend on them. These changes in timing can have cascading effects on ecosystems,

altering food webs and habitats (Cleland et al., 2007).

Understanding the intricacies of forest ecosystems and their fundamental processes is vital

for the multifaceted role they play; a series of measurements, analysis and experiments

is needed to understand, for instance, the potential forests may have as nature-based

climate solutions (Baldocchi and Penuelas, 2019; Seddon, 2022), their responses to climate

change (Anderegg et al., 2022; Ruiz-Benito et al., 2020) and how new forest management

strategies can be implemented to build climate-smart forests (Verkerk et al., 2020).

1.1.2 Current status of vegetation monitoring

In response to climate change pressures, the United Nations Framework Convention on

Climate Change (UNFCCC) has been instrumental in global climate action for forest

protection. First in 2008, the UNFCCC established the REDD+ (or REDD-plus) frame-

work. REDD+ (Reducing Emissions from Deforestation and Forest Degradation) aims to
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create a financial value for the carbon stored in forests. It encourages developing countries

to reduce emissions from forested lands and invest in sustainable forest management.

REDD+ extends beyond just curbing deforestation – it encompasses a broader spectrum

of strategies including forest conservation, sustainable management, and enhancing forest

carbon stocks. The framework has been pivotal in shaping national forest monitoring

systems, aligning them with the goal of climate change mitigation (De Sy, 2016). More

recently, the COP28 conference in Dubai in 2023 marked a significant milestone in this

effort. COP28 concluded with an agreement signaling the ”beginning of the end” of the

fossil fuel era. This transition away from fossil fuels is supported by the establishment of

a new fund under the UNFCCC, with commitments totaling over USD 600 million, aimed

at addressing loss and damage, including those affecting forests (Wise, 2023).

After the significant advancements made at COP28, global initiatives like the Bonn

Challenge gain renewed importance. Launched in 2011 by by the German government and

the International Union for Conservation of Nature (IUCN), the Bonn Challenge aims to

restore 350 million hectares of the world’s deforested and degraded lands by 2030. To track

restoration commitments, a systematic framework called the Bonn Challenge Barometer

was established (Dave et al., 2018). The Bonn Challenge serves as a platform for countries

and organizations to contribute towards the global forest restoration goal, aligning with

other international efforts like the Aichi Biodiversity Targets (CBD, 2011) and the Paris

Agreement (UNFCCC, 2018).

Europe’s regional actions in forest conservation and climate change mitigation are ex-

emplified by the European Union’s new forest strategy, a part of the European Green

Deal (European Commission, 2021a). The European Green Deal mirrors the global com-

mitments of COP28 and the Bonn Challenge, adapting them to the continental context.

Key elements include promoting sustainable forest bioeconomy, ensuring the sustainable

use of wood resources, protecting primary and old-growth forests, and encouraging re-

and afforestation (European Commission, 2021b). This strategy, promoting sustainable

forest bioeconomy and reforestation, is supported by the European Commission’s proposed

regulation on a forest monitoring framework, integrating remote sensing with traditional

monitoring practices (European Commission, 2023).

The evolution of forest monitoring, influenced by various policies, has been a journey

from traditional methods to more modern approaches. Initially focused on managing

and conserving forest resources, as seen with the early forest inventories of the Republic

of Venice, these methods have long been a cornerstone of forest management (Appuhn,

2010; Susmel, 1994). To provide another European example, countries like Germany have

traditionally relied on detailed field inventories, conducted every decade, to guide forest

management plans. Traditional methods primarily involved ground-based surveys and

manual inventories, each characterized by direct field observations and measurements.

Foresters and ecologists would physically traverse forested areas to gather data on various
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parameters, including tree species identification, diameter at breast height (DBH), tree

height, canopy cover, and understory vegetation types. These methods offer high-quality,

localized information, vital for comprehending forest dynamics, health, and biodiversity

and allowing for decisions about resource allocation, conservation, and exploitation. A

crucial aspect of traditional forest monitoring is the implementation of National Forest

Inventories (NFIs). NFIs provide systematic and comprehensive data on forest resources

at a national scale and they are instrumental in guiding national forestry policies and

resource management strategies, often serving as a country’s primary source of forestry

data (Fig. 1.1). While NFIs have different histories in different countries, the first examples

of NFI date back to the late nineteenth century and the beginning of the twentieth century

(Tomppo et al., 2010; United States Department of Agriculture (USDA), 2007; Von Berg,

1995), with some countries like Norway recently celebrating a century old NFI program

(Breidenbach et al., 2020). In nations where the forest industry is a major sector, NFIs

play a critical role within the national forest cluster. NFIs serve not only forestry purposes

but also provide essential strategic information for national industrial policies (Tomppo

et al., 2010). Due to their importance, NFIs must be regularly updated to reflect both

management activities like silvicultural treatments and natural factors such as infestations

and wildfires; the usual time between revisits of the same field plot ranges between 5 and

10 years (Gschwantner et al., 2022).

However, the rapid changes in forest dynamics driven by climate change (Popkin, 2021)

have brought into question the adequacy of traditional monitoring methods such as

the NFIs. These concerns stem from the rapidly evolving forest conditions which these

inventories may not accurately reflect. This has led to a realization of the growing need

for more timely and dynamic monitoring approaches. Additionally, many required forest

attributes for developing adaptive strategies are either not commonly recorded or difficult

to derive from in traditional sources (Goodbody et al., 2021). Simultaneously, the evolving

scope of forestry and environmental policies, especially in response to global challenges like

climate change and biodiversity loss, has increasingly exposed the limitations of traditional

monitoring methods. Frameworks such as the REDD+ and the Paris Agreement have

significantly influenced the direction and methods of forest monitoring. The shift has led

to the development of more comprehensive and sophisticated forest monitoring practices,

as traditional methods often fall short of the scale and frequency of data required by

modern policy needs (Wulder et al., 2024). Ground surveys, while detailed, are limited

in scope and impractical for extensive assessments, especially in remote or inaccessible

regions. This concern is further compounded by the resource-intensive nature of traditional

methods, which demand considerable manpower and logistical planning, leading to delays

in information availability (Fassnacht et al., 2024; Zweifel et al., 2023)

In addressing the limitations of traditional forest monitoring methods, forestry and

environmental monitoring have increasingly adopted advanced technologies such as Earth

Observation (EO) data, Geographic Information Systems (GIS), and Machine Learning
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Figure 1.1: Distribution of global vegetation research infrastructure, adapted from Zweifel

et al. (2023). Green and black squares indicate forested and non-forested land cover. Circles

indicate the location of existing forest observation infrastructure. White circles indicate forest

research with a high density of measurement devices and a high measurement frequency (i.e.

ICP forest (ICP Forests, 2010)). Other-colored circles refer to smaller infrastructures with a

lower density of devices and various database update frequencies of less than one day, less than

one year and more than one year. Lower map includes locations with databases not regularly

updated, like the TRY plant trait database (Kattge et al., 2020) or NFIs. Note that only NFIs

whose precise location is public are included in the figure. Refer to the original publication for

more detailed information.

(ML) techniques. These technologies offer several advantages over traditional methods,

including broader area coverage, higher frequency, and reduced manpower requirements,

facilitating near real-time monitoring. This is crucial for adaptive management and

timely policy responses to environmental changes and emergencies (Goodbody et al., 2021;

Wulder et al., 2024). The integration of these advanced techniques with traditional methods

represents a critical advancement in forest monitoring and assessing spatiotemporal changes

in forest resources, combining the detailed, local insights of traditional surveys with the

expansive coverage and efficiency of modern technologies. What began as an exploration
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of the use of black and white aerial photographs has evolved substantially. Today, these

technologies have become indispensable in the scientific domain of forestry, transitioning

from a novel concept to operational tools.

1.1.3 Earth observation and machine learning for spatiotemporal modeling

of vegetation

Earth observation systems harness spectral, spatial, and temporal information over a

local to global scale through a variety of sensors aboard satellites. The latest advances

and investments in Earth Observation Programmes (EOP) for global environmental

data acquisitions enable a comprehensive assessment of the status of vegetation: optical

sensors, like those on the Landsat series satellites from the NASA and the U.S. Geological

survey, and the Sentinel-2 satellite from the European Copernicus program, offer high

resolution (respectively, 30 m and 20-10 m) imagery that is crucial for mapping forest

cover (Hansen et al., 2013) and forest changes (Potapov et al., 2020; Potapov et al., 2022),

tree species (Breidenbach et al., 2021; Grabska et al., 2020; Hermosilla et al., 2022) or

forest disturbances and forest recovery (Bonannella et al., 2022a; Senf and Seidl, 2021a;

White et al., 2017). Radar sensors, such as those on the Sentinel-1 satellite, penetrate

cloud cover and provide data regardless of weather conditions, making them invaluable for

year-round monitoring of forest biomass and structure (Babiy et al., 2022) or detecting

deforestation (Reiche et al., 2021; Welsink et al., 2023). LiDAR (Light Detection And

Ranging) technology, although less commonly available from space, provides detailed

three-dimensional information about forest canopy structure when deployed on airborne

platforms (Næsset, 2002; White et al., 2013); the GEDI (Global Ecosystem Dynamics

Investigation) mission exemplifies the usage of spaceborn LiDAR, delivering unparalleled

detail on canopy vertical structure on global scale (Dubayah et al., 2020). Hyperspectral

data enables precise applications in vegetation type discrimination (Fricker et al., 2019;

Zhang et al., 2020) or stress detection (Einzmann et al., 2021) due to its ability to capture

a wide spectrum across hundreds of narrow bands and discern subtle spectral differences

indicative of various plant properties.

Most of the continuous EOP such as MODIS, Landsat or Sentinel have also implemented a

free data policy (Woodcock et al., 2008), which has been a pivotal factor in the widespread

adoption of EO data for vegetation modeling applications. Furthermore, improvements

in the spatiotemporal resolution of EO data have significantly enhanced our ability to

detect and monitor minor changes on the land surface with greater level of detail (Berner

and Goetz, 2022; Higgins et al., 2023; Lang et al., 2023). This democratization of data

access has not only spurred a surge in remote sensing’s application in forestry but has

also underscored the essential role of freely available data in driving research and practical

interventions in forest management and conservation (Fig. 1.2).
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Figure 1.2: Yearly publications indexed by Scopus from 1991 to 2023. The queries included

were: ”remote sensing” AND ”modeling” AND ”vegetation” OR ”forest”. A total of 18979

documents were found; an increasing trend can be seen from 2008 first (Landsat open archive),

with a sudden spike in 2017 (Cloud computing geospatial analysis with Google Earth Engine).

For this reason, and thanks to the exponential increase in computing power of the last

decade (Gorelick et al., 2017; Yang et al., 2017), solutions such as Machine Learning

algorithms have recently become increasingly important in interpreting the vast and

complex datasets provided by EO technologies. ML tries to learn the relationship between

the response and the predictors through the observation of dominant patterns (Breiman,

2001b). Contrary to traditional statistical models, no kind of ecological assumptions are

explicitly embedded in ML algorithms: ML can be especially useful when dealing with

data gathered without a specific and rigorous sampling design (Ij, 2018). ML algorithms

have great potential to analyze the large amount of EO data, enabling the mapping

and monitoring of changes on multiple geographical scales in a timely manner through

reproducible research (Gobeyn et al., 2019). Liu et al. (2018) provide a complete review of

forest ecology applications of three commonly used ML methods: decision-tree learning

(DT), artificial neural network (ANN) and support vector machines (SVMs). In their

review, they show how ML algorithms have extensively been used for species distribution

models (SDM), carbon cycles, hazard (avalanches, wildfire and windstorm) assessment

and prediction and other more specific tasks like predicting aboveground biomass, growing

stock volume or tree height; Mountrakis et al. (2011) provide a review focused only on

SVMs using remotely sensed data for different vegetation modeling applications, such as

monitoring chlorophyll concentration, gross primary productivity and evapotranspiration,

or for classification of hyperspectral data. Random Forests, an ensemble learning method

that utilizes multiple decision trees, has frequently been used for tree species classification
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(Breidenbach et al., 2021; Grabska et al., 2020; Waser et al., 2021). Hamedianfar et

al. (2022) provide a review on the usage of Deep Learning methods, a branch of ML,

particularly on estimating forestry characteristics and time-series dynamics (i.e. DBH,

height, aboveground biomass, height increment etc), reporting more than a hundred of

studies for the period 2017–2020.

In this sense, the Global Forest Change product from Hansen et al. (2013) stands as

a pioneering effort in global-scale, high resolution forest monitoring. Leveraging the

information provided by the Landsat mission image archive, this initiative successfully

mapped global tree cover, delineates areas of forest loss and gain for the period 2000–2012,

all at 30 m pixel level (Fig. 1.3). While not free from limitations especially for local

analysis (O’Lear, 2020), given the importance of the product the maps have been updated

yearly and included as one of the main component of the Global Forest Watch (GFW)

initiative.

Figure 1.3: (a) Global forest cover loss, 2001-2022, shown averaged at a 0.05°resolution in

red, green and blue by epoch. Insets are full resolution zooms of (b) Chaco woodland clearing

in Paraguay, (c) shifting cultivation expansion in humid tropical forest of the Democratic

Republic of the Congo and (d) boreal forest logging and fire in Siberia, Russia. Adapted from

Hansen et al. (2013).

Building upon the methodology introduced by Hansen et al. (2013), the development of high

resolution forest attribute products began to emerge. Potapov et al. (2021) produced the

first 30 m resolution global canopy height map, using Landsat imagery and GEDI-derived

measurements. Shortly thereafter, Lang et al. (2023) improved this work by employing

Sentinel-2 data instead of Landsat to create a 10 m resolution canopy height product,
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leveraging the same GEDI data. After many previous attempts done at coarser resolutions

(Araza et al., 2023), Harris et al. (2021) mapped annual forest-related greenhouse gas

emissions and removals at 30 m for the period 2001—2019, effectively adding aboveground

biomass to the list of main forest attributes mapped at high resolution and global scale.

An excellent example of integrating traditional methods with EO data and ML tools is

provided by the National Terrestrial Ecosystem Monitoring System (NTEMS) developed

by the Canadian Forest Service to provide national-scale baseline information on Canada’s

forested ecosystems (Hermosilla et al., 2016); based largely on Landsat data, the system

provides time series high resolution maps of most of the main traditional forest attributes

included in NFI surveys (on top of the ones previously mentioned, tree species composition

was added as well) and additional forest attributes which have been recognized as essential

information in the last decade, such as data on forest disturbances intensity, drivers and

recover (White et al., 2014; White et al., 2017). Wulder et al. (2024) pushed the bar even

higher by using this data collection to propose a stand-level satellite-based forest inventory

(SBFI) system.

1.2 Research gaps

Despite the increase in availability of EO data and in opportunities provided by advanced

ML solutions, having comprehensive and accurate information on vegetation across diverse

ecosystems and different spatial and temporal scales remains a significant challenge. Due

to their inherent complexity, the responses to climate change of vegetation ecosystems are

highly variable, depending on specific spatial patterns and sensitivities to global climate

shifts. This variability introduces a feedback mechanism in vegetation-climate interactions,

raising concerns about the potential of climate change to significantly impede vegetation

activities (Mennis, 2006) or causing a variety of unexpected changes in vegetation intensity

(Chen et al., 2022; Reichstein et al., 2019). While traditionally process-based models such

as Dynamic Global Vegetation Models (DGVMs) have been employed to study vegetation

changes under various climate change scenarios (Hickler et al., 2012), these models, while

invaluable, often face challenges in capturing the full spectrum of vegetation responses to

changing climates due to their generalized assumptions and the complexity of ecological

interactions (Lasslop et al., 2020). It is true that these models often incorporate complex

interactions between climate, land use, and vegetation, but they also often struggle with

uncertainties in climate projections, limited spatial resolution, the challenge of integrating

diverse data sources for accurate predictions or the unavailability of input data (Bao et al.,

2021; Beigaitė et al., 2022; Zaehle et al., 2005). Conversely, data-driven models using ML

algorithms offer computational efficiency and adaptability by leveraging observational data

and EO technologies, albeit with interpretability and extrapolation challenges (Meyer and

Pebesma, 2021); one of the most common method using EO data for future forecasting

involves employing ML models to create a relationship between the NDVI (Normalized
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Difference Vegetation Index), used as a vegetation proxy, and climatic factors or Net

Primary Productivity (NPP) (Bao et al., 2021). This method however presents limitations

as it relies on a proxy rather than incorporating direct ground observations of vegetation

within the targeted area: Huang et al. (2021) highlight in their review the limitations of

the NDVI for accurately depicting vegetation status, particularly noting its saturation

effects. These effects could lead to significant overestimations or underestimations when

forecasting vegetation changes on a global scale especially in the tropical regions (Zeng

et al., 2023). Another approach would be to train ML models using ground observations

labeled according to a biome classification scheme to then extrapolate these models into

the future using climatic projections, thus avoiding using proxies; examples in this sense

are however few and limited in either spatial resolution or scale.

Understanding the distribution and dynamics of vegetation at the ecosystem level sets

the foundation for examining more granular ecological units. Given the importance of

forests in the overall balance of vegetation ecosystems, tree species, being the fundamental

building blocks of forests, play a crucial role in determining overall ecosystem stability.

Identifying the range, constraints and drivers of species distribution is the domain topic

of species distribution modeling; while being a relatively recent area of focus thanks to

GIS tools, delineating species distributions has always been a primary goal of ecology

(Andrewartha and Birch, 1954) and is today even more important in the context of climate

change (Afuye et al., 2021). Commonly, SDMs rely on climatic or bioclimatic factors at

a coarse spatial resolution (≥1 km), a choice mostly dictated by data availability rather

then species ecology (Guisan and Thuiller, 2005; Mayer and Cameron, 2003; Porfirio et al.,

2014), while in the temporal dimension long time averages (30-–50 years) are often used

(Iturbide et al., 2018a). Due to the prohibitive costs of field campaigns solely for species

data collection, most SDM studies depend on pre-existing, often outdated, datasets or

the Global Biodiversity Information Facility (GBIF) database, rather than incorporating

diverse, up-to-date observational data from varied sources. Furthermore, combining EO

data, and specifically the use of high spatial resolution, with ML algorithms for SDM has

only recently started to be explored (Gelfand and Shirota, 2021; Hefley and Hooten, 2016;

Pérez Chaves et al., 2018). High spatial resolution (<100 m) maps, despite usually having

slightly lower accuracy, are more beneficial for conservation purposes and management

decisions than coarser but more accurate maps (Gottschalk et al., 2011; Guisan et al., 2013;

Manzoor et al., 2018; Prates-Clark et al., 2008). Similarly, there is a growing need for

mapping products with finer temporal resolution to accurately document the rapid ongoing

ecological shifts caused by climate change. Given the focus of SDM research on long

term future forecasting (2080–2100) (Williams et al., 2007), these studies tend to assess

future species distributions by extrapolating the relationship between a species ecological

niche and its environment under equilibrium assumption. In the case of tree species,

there is general consensus that the species range would either shift towards the poles

(Berner and Goetz, 2022; Zhu et al., 2012; Zhu et al., 2014) or at higher elevations (Feeley
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et al., 2011; Maharjan et al., 2023). However, this approach risks either underestimating

or overestimating potential shifts in species distribution, as it does not account for the

ongoing changes that could be the result of not only climate but of interactions between

the environment, local conditions and other species. No studies have fully utilized dense

time series of realized species distribution maps produced with EO data to assess ongoing

shifts, which could allow for the early detection of areas at risk or the establishment of

high value conservation areas (i.e. ecological refugia). Furthermore, the identification of

an ongoing trend could allow for the development of data-driven approaches to future

forecasting.

NFI data has traditionally been used to collect and assess information on tree species

(Ewald, 2012; Rigling et al., 2013; Scherrer et al., 2022), yet they lack comprehensive

wall-to-wall coverage and their decadal frequency limits data collection to build statistically

significant trends. Integrating NFI data with the complementary information provided by

EO data and ML models presents a tested, successful strategy for creating detailed, high-

resolution products with higher temporal frequency (Hermosilla et al., 2022; Strickland

et al., 2020; Wulder et al., 2024). These results are possible only when using the precise

geographical coordinates of the NFI plots. However, the common practice of degrading

NFI plot geographic coordinates’ precision of public or open-access datasets, primarily

for privacy concerns, poses a significant barrier to remote sensing practitioners. This

degradation limits the integration of location-specific NFI observations with the dynamic

mapping capabilities afforded by EO data and ML algorithms, affects the spatial accuracy

of the derived maps and limits the scope of ecological insights that can be derived from

these products (Ceccherini et al., 2022; Fassnacht et al., 2024).

1.3 Research objectives

The overall objective of this PhD thesis is to integrate Earth observation data, machine

learning technologies and field plot data to enhance our understanding of ongoing vegeta-

tion dynamics and the overall monitoring and management of forest ecosystems. More

specifically, this thesis aims to answer the following research questions:

1. What is the impact of climate change on potential biomes distribution based on

Earth observation and machine learning methods? And what are the projected shifts

in vegetation under various climate change scenarios?

2. What combination of Earth observation and machine learning methods allows to

map and analyze the distribution of forest tree species at high resolution?

3. How can these methods be applied to capture trends and disturbance impacts on

forest tree species distributions and how do these reflect the ongoing changes in

forest ecosystems?
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4. What is the effect of coordinate precision in NFI data on the accuracy of high-

resolution tree species classification models?

1.4 Thesis overview

The thesis is composed of six main chapters, with Chapters 1 and 6 framing the core

content and Chapters 2 to 5 addressing each one of the research questions presented in

Section 1.3. Chapter 1 serves as an introduction, delineating the current advancements

in Earth observation and machine learning as they apply to vegetation modeling and

monitoring. It also identifies existing research gaps and explores potential approaches for

addressing them.

Chapter 2 investigates the projected shifts in vegetation under various climate scenarios

by developing a data-driven approach based on machine learning techniques and pollen

reconstruction datasets coming from different surveys that have been harmonized over the

years. The chapter specifically focuses on modeling the potential distribution of global

biomes, incorporating a range of climate variables to predict the current distribution and

how different climate change scenarios could alter vegetation patterns and distributions

in the future. Through this analysis, the chapter provides insights into the expected

changes in biome locations and compositions, particularly the contraction of tropical

rainforests and the expansion of higher latitude biomes like boreal forests, at polar biomes’

expense. The chapter offers a clearer picture of how climate change could reshape the

global ecological landscape; given the unpredictability of the future, the method is rather

conservative in its conclusions: after analyzing every emission pathway scenario, it focuses

on identifying key change areas, irrespective of specific emission pathways, providing a

nuanced understanding of climate change’s impact on the global ecological landscape.

Chapter 3 presents a more sophisticated data-driven approach than Chapter 2, integrating

305 environmental predictors, primarily from Earth observation data, employing advanced

machine learning techniques alongside over 3 million tree occurrence points from different

surveys or citizen science projects. This approach is used to model the potential and actual

distribution of 16 key European forest tree species from 2000 to 2020 at high resolution.

The chapter’s core is the development and application of ensemble models for each species

and distribution type, employing a series of machine learning algorithms such as random

forest, gradient boosting, and neural networks, and utilizing spatial cross-validation to

enhance predictive accuracy and avoid model overfitting. The influence of the spatial

resolution of the environmental predictors on model performances was also tested. As

expected, not only ensemble models outperformed individual models, but ensemble models

using high spatial resolution data proved to be consistently better than the ones using

coarse resolution data.
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Chapter 4 delves into the changing dynamics of 6 key European forest tree species

between 2000 and 2020, building upon the high resolution distribution maps generated

in Chapter 3. This chapter focuses on the response in the realized distribution of these

species over the last twenty years by conducting a trend analysis on the distribution maps

and then degrading the results to a coarser resolution to find the prevalent spatial patterns

for each species. Findings indicate a predominant stability across species, with most areas

exhibiting consistent distribution patterns. Nonetheless, the chapter also uncovers areas of

concern, marked by declining species presence, especially at the latitudinal edges of their

natural ranges. Additionally, the chapter examines the impact of forest disturbances on

species distribution, noting a doubling in the range affected by disturbances such as wind

and fire. The findings highlight the need for proactive conservation and long-term planning

to ensure the resilience of European forests against climate-induced changes.

Chapter 5 investigates the impact of coordinate precision in National Forest Inventory

(NFI) data on the accuracy of high-resolution tree species classification models. Focusing

on 7 European tree species, the chapter compares machine learning models trained on true,

precise plot coordinates with those trained on coordinates derived from publicly available

data. The chapter describes a procedure to estimate the precise plot coordinates location

with the aid of high resolution forest masks and forest types layers for the country of the

Netherlands. The analysis demonstrates that models utilizing true coordinates consistently

outperform those based on estimated coordinates. This is evident in the higher scores

reached across performance metrics used for both hard classification and probabilistic

classification problems across most species classes for the model using precise data. The

chapter highlights the critical importance of coordinate precision in ecological modeling

and underscores the need for high-quality, accurate NFI data for effective tree species

classification using Earth observation data and machine learning methods.

Lastly, Chapter 6 summarises the main findings and results of the previous chapters and

provides an overview on how they contribute towards filling the research gaps identified by

this thesis. Following that, it offers a reflection and outlook, exploring potential pathways

for future applications and new research prospects in the integration of Earth observation

data with machine learning and field data for vegetation modeling.





Chapter 2

Global potential biomes distribution

under climate change scenarios

This chapter is based on:

C. Bonannella, T. Hengl, L. Parente, and S. de Bruin (2023). “Biomes of the

world under climate change scenarios: increasing aridity and higher temperatures

lead to significant shifts in natural vegetation”. PeerJ 11, e15593. doi: https :

//doi.org/10.7717/peerj.15593
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Abstract

The global potential distribution of biomes (natural vegetation) was modelled using 8959

training points from the BIOME 6000 dataset and a stack of 72 environmental covariates

representing terrain and the current climatic conditions based on historical long term

averages (1979–2013). An ensemble machine learning model based on stacked regularization

was used, with multinomial logistic regression as the meta-learner and spatial blocking

(100 km) to deal with spatial autocorrelation of the training points. Results of spatial

cross-validation for the BIOME 6000 classes show an overall accuracy of 0.67 and R2
logloss

of 0.61, with ”tropical evergreen broadleaf forest” being the class with highest gain in

predictive performances (R2
logloss = 0.74) and ”prostrate dwarf shrub tundra” the class with

the lowest (R2
logloss = -0.09) compared to the baseline. Temperature-related covariates

were the most important predictors, with the mean diurnal range (BIO2) being shared

by all the base-learners (i.e. random forest, gradient boosted trees and generalized linear

models). The model was next used to predict the distribution of future biomes for the

periods 2040–2060 and 2061–2080 under three climate change scenarios (RCP 2.6, 4.5 and

8.5). Comparisons of predictions for the three epochs (present, 2040–2060 and 2061–2080)

show that increasing aridity and higher temperatures will likely result in significant shifts

in natural vegetation in the tropical area (shifts from tropical forests to savannas up

to 1.7 × 105 km2 by 2080) and around the Arctic Circle (shifts from tundra to boreal

forests up to 2.4× 105 km2 by 2080). Projected global maps at 1 km spatial resolution are

provided as probability and hard classes maps for BIOME 6000 classes and as hard classes

maps for the IUCN classes (6 aggregated classes). Uncertainty maps (prediction error) are

also provided and should be used for careful interpretation of the future projections.
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2.1 Introduction

Climate change is one of the biggest threats to human civilization, with slowly accumulating

effects and unknown instabilities in front of us and future generations. To assess the

potential impacts of climate change on the environment and to help us mitigate and

prepare for negative effects, scientists offer predictions of possible futures including global

maps of the Earth’s environment in the future (Dow and Downing, 2016). Global datasets

projecting the state of the Earth’s environment include future climate predictions e.g.

Representative Concentration Pathways (RCPs) (Hayhoe et al., 2017), future land use

predictions e.g. Chen et al. (2020) and (Hurtt et al., 2020), human population scenarios

(Jones and O’Neill, 2016), future terrestrial ecosystems maps (Nolan et al., 2018), future

ecosystem productivity (Yin et al., 2023), and future gridded emissions (Fujimori et al.,

2018). Even though the accuracy of these projections in the far future cannot currently be

validated, such exercises are deemed useful as they help reveal patterns and assess the

impact of scenarios. In essence, there are two main approaches to envision the future state

of Earth’s environment (Hayhoe et al., 2017; Reichstein et al., 2019):

1. Process-based mechanistic modeling: simulating evolution of the environment using

biophysical process-based Earth System Models (ESM);

2. Data-based modeling: training predictive models using observations from the past

and then extrapolating these models into the future;

Process-based modeling is often preferred by physicists as the relationships between model

entities are explicitly defined. Examples of projected changes of land use based on the global

Earth System Models are the LUH2 project (Hurtt et al., 2020) and Lund–Potsdam–Jena

managed Land (LPJmL) model (Rolinski et al., 2018). In the case of data-based modeling,

predictions and results of analyses are based on finding relationships between the target

property and covariates and then fitting statistical models that are next used to predict

values based on unseen combinations of states in feature space. Two common approaches

here are: (1) use actual ground observations i.e. monitoring stations to fit spatiotemporal

models (Hengl et al., 2018), and (2) use complete Earth observation data cubes and then

basically all pixel combinations to visualize and model relationships (Mahecha et al., 2020).

An advantage of the data-based modeling is that it is often computationally less demanding

than process-based modeling and it can be extended by adding more covariates (Beigaitė

et al., 2022). In addition, process-based modeling requires several assumptions and, in the

case of chaotic behaviour or non-linear spatial scaling of features, it is often difficult to

produce credible predictions. On the other hand, data-based modeling comes with the

risks of producing poor predictions in the extrapolation space and the models are often

difficult to interpret (Meyer and Pebesma, 2021). Yet, strict data-based modeling requires

neither subjective parametrization nor model assumptions, and hence it can be considered

less complex to start with. It is not to say that the approaches are mutually exclusive and
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can’t be combined: there is a full spectrum of models from process-based to data-based,

which includes hybrid physics-based data-driven models. Different approaches exist in this

sense: using data-driven models but constrain the results with boundary conditions derived

from physics-based climate models (as suggested by Lindgren et al. (2021)), including the

representation of natural processes in the data-driven model (Higgins et al., 2012) or using

process-based models whose results have been parametrized and calibrated on real data

(Higgins et al., 2023).

Predictions of future states of climate, land cover, terrestrial ecosystems, human population

and similar have proven to be useful, with many of the datasets being frequently cited and

used to communicate our possible futures (https://probablefutures.org/). Su et al.

(2021) modeled yield gains under Conservation Agriculture (CA) and various practices for

the future climate scenarios and found out that overall performance of CA will most likely

decrease in the future in most temperate regions in South America, including Uruguay,

southern Brazil and northern Argentina for barley, cotton, rice, sorghum and sunflower.

Krause et al. (2022) has recently modelled the impacts of anthropogenic land cover

changes on global Gross Primary Productivity (GPP) using maps of historical agricultural

expansion and future land-use changes based on the 25 km resolution LUH2 dataset (Hurtt

et al., 2020). Their results indicate that global GPP might get further reduced owing to

agricultural expansion and to extents that depend on the prevailing scenario. Beigaitė

et al. (2022) provides predictions of future distribution of MODIS vegetation types using

machine learning and focusing on climate extremes (e.g. extreme cold days). Their results

indicate that prediction accuracy can be improved by extending the averaged climatic

conditions with maps of climate extremes e.g. bioclimatic variables and similar.

When it comes to mapping future vegetation, only few datasets are available and typically

at coarse resolutions. Nolan et al. (2018) provides predictions of terrestrial ecosystems in

the future as a function of annual temperature and simple logistic spline regression with

ordered categories. Their results suggest that terrestrial ecosystems are at risk of major

transformation. Despite these recent efforts, there is still no analysis of the main future

trends in air temperature and precipitation and the magnitude of such change on potential

vegetation on a global scale. Furthermore, most of these datasets are provided without per

pixel uncertainty estimates. The existence of various biome classification schemes makes

things even more confusing, since they can be overly subjective (Higgins et al., 2016) and in

some cases they implicitly invoke climate (Moncrieff et al., 2015) in their definition: many

of the early biome classification schemes included climate in their definition as a proxy for

functional characteristics, traits and adaptations that were difficult to map properly at a

global scale (Moncrieff et al., 2016) and only later on schemes based on Plant Functional

Traits (PFTs) or ecosystem productivity have been developed; a paradygm shift has also

taken place in the last decades, from considering biomes a deterministic entity to a more

dynamic concept, a result of an ensemble of different processes and feedback loops (Mucina,

2019). However, the lack of datasets at high resolution that could be used to predict

https://probablefutures.org/
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biome envelopes that follow the functional-based classification scheme is a limitation for

its application to a global scale. Scientific studies that use data-driven approaches to

forecast the state of vegetation into the future are usually limited on the spatial scale,

spanning one or more countries or one continent at most (Maksic et al., 2022; Zevallos

and Lavado-Casimiro, 2022), while another limitation consists in the usage of mostly one

algorithm only (Random Forest) to conduct the analysis. The purpose of this study is to

use a data-driven approach to provide consistent projections of future potential natural

vegetation under different climate scenarios, including uncertainty estimates: we provide

projections of 20 biomes for three (3) climatic scenarios (RCP 2.6, 4.5 and 8.5) for the

future 60 years. To do that, we extend the work of Hengl et al. (2018), which used a biome

classification scheme based on PFTs and tried to spatialize it to the whole globe by using

an ensemble of climatic, topographic and remotely-sensed predictor variables. Compared

to Hengl et al. (2018), we apply the following three substantial improvements:

1. Instead of only using Random Forest, we use an ensemble of three learners of different

types, which allowed quantifying the prediction uncertainty;

2. For each pixel we provide class probabilities and prediction errors computed by

bootstrapping;

3. Modeling is done using a consistent set of covariates so that the effects of climate

change are controlled purely by the climatic projections.

The paper is divided in four parts: (1) we first describe our predictive mapping framework

based on using biome training points (Harrison, 2017); (2) we evaluate the accuracy of the

fitted ensemble model using spatial cross-validation and generate predictions for the three

future scenarios; (3) we next aggregate predictions according to the IUCN Global Ecosystem

Typology classification system (Keith et al., 2020) to make our product comparable with

an international standard and (4) we finally highlight the most pronounced changes per

continent and biome type.

2.2 Material and methods

2.2.1 General workflow

We modeled the potential distribution of biomes on a global scale for current and future

time periods using an ensemble machine learning approach. The model was trained on

reference biome data compiled from pollen and fossil reconstructions (Harrison, 2017)

along with regional environmental variables describing topography and long-term climatic

averages. We used CHELSA climatological data (Karger et al., 2017) from the time period

1979–2013 to simulate the baseline potential natural distribution of biomes for the current

(2022–2023) time period: since our goal was to model the potential natural vegetation, we

tried to predict which PFT-based class of biome would be the dominant one in a specific
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location based on environmental variables only. Future climatic conditions instead cover

the epochs 2041–2060 and 2061–2080. For the future epochs we considered three different

climate change scenarios using the concept of “Representative Concentration Pathways”

(Van Vuuren et al., 2011), or, in short, RCPs. The ones used in this study are RCP 2.6,

RCP 4.5 and RCP 8.5.

The output of the projections is provided as probability maps (0–100%) at 1 km spatial

resolution, with the probabilities in each pixel summing to 100%. For each class we also

provide model uncertainty maps. We excluded the continent of Antarctica, because of the

presence of permanent ice areas and lack of training points. Also other areas covered by

water bodies, barren land and permanent ice according to ESA’s global land cover maps

for the period 2000–2015 (ESA, 2017) were excluded from the analysis. We generalized

the 20 biome classes analyzed in this study to 6 classes following the Global Ecosystem

Typology classification system employed by the International Union for Conservation of

Nature (IUCN) (Keith et al., 2020). We then compared the two epochs for each of the

climatic scenarios with the current time period: using the latter as a baseline for the

distribution of potential natural vegetation, the goal was to identify those areas where the

change in climatological conditions could lead to a shift in the potential distribution.

2.2.2 Training points

Figure 2.1: Global spatial distribution of the BIOME 6000 dataset enriched by Hengl et al.

(2018). Despite the added pseudo points, there are still large areas (Patagonia, Sahara region,

Central Africa and most parts of Australia) not covered by any observation.

We used the BIOME 6000 data set, compiled by Harrison (2017), with additional 350

pseudo observations to cover under-represented areas in South America (Fig 2.1) as

described in Hengl et al. (2018), for a total of 8,959 points. The BIOME 6000 project aims

to reconstruct past vegetation distributions from pollen and fossil records from different

time periods, from the recent past (the last 50 years) to approximately 21 ka ago; in

this study, following Hengl et al. (2018), we only used the points belonging to the most
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recent time period. The method, described by Prentice and Webb III (1998), was used to

assign the recovered taxa to PFTs, which were next ascribed to a specific biome following

PFT-based biomes definitions. From the first version of the data set to its final publication

by Harrison (2017), almost 20 years have passed: over this period, multiple surveys have

been conducted on the same locations, resulting in more than one biome reconstruction per

location. Furthermore, initially absent regions have been added to the original data set. To

avoid issues with harmonization of nomenclature between biomes, Harrison (2017) provide

a standardized classification legend that can be globally applied (32 biomes in total) and

a megabiome classification legend (8 megabiomes in total). While the megabiome system

implies a necessary loss of information due to generalization, the original standardized

classification system devised by Harrison (2017) has been considered too detailed and

location-specific to be used for global modeling (Hengl et al., 2018). We adopted the

20 classes (Fig. 2.2) system devised by Hengl et al. (2018) for the sake of data-model

comparison.

Figure 2.2: Number of observations per biome class. Note the strong imbalance between the

different classes, with the most abundant class (”cool mixed forest”) counting > ∼1500 obser-

vations while the least abundant (”prostrate dwarf shrub tundra”) counts < 20 observations.

2.2.3 Predictor variables

A total of 72 spatially explicit and harmonized variables representing climatic, bioclimatic

and topographic factors were used for modeling purposes. All the layers were resampled

to a standard grid covering latitudes between 87.37°N and 62.0°S and reprojected to the

coordinate reference system EPSG:4326 before the analysis. The original spatial resolution

of the layers was used during the spatial overlay with the point dataset, while for the rest
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of the calculations all the layers were resampled to a spatial resolution of 30 arcseconds

(approximately 1 km at the equator).

We used long-term climate data and projections as provided by the CHELSA project

(Karger et al., 2017). For future scenarios, we followed the work of the Intergovernmental

Panel on Climate Change (IPCC) Assessment Reports (AR) based on narratives and

outcomes of the Coupled Model Intercomparison Project (CMIP). IPCC AR5 (IPCC,

2014) featured CMIP5 model results using the concept of Representative Concentration

Pathway (RCP), where each projected climatic scenario is labelled according to a possible

increase in radiative forcing (from 2.6 to 8.5 W/m2) values by 2100 due to increase in

greenhouse gasses (GHG) emissions. The new IPCC AR6 (IPCC, 2021) featured instead

CMIP6 model results while using a different concept, the ”Shared Socioeconomic Pathways”

(SSP): while RCPs did not include any socioeconomic factors in their modelization, SSPs

included several assumptions on how population growth, technological development, climate

policies and other similar factors would evolve by 2100. A subset of the new 50 CMIP6

models has been considered overly sensitive (i.e., ”too hot”) and with climate warming

in response to carbon dioxide emissions that might be larger than supported by other

evidence (Hausfather et al., 2022; Zelinka et al., 2020). For this reason, we decided to

exclude CMIP6 models from our analysis and rely instead on CHELSA v.1.2 data with

CMIP5 calculations, using an ensemble of 5 Global Circulation Models (GCMs): the

Max-Planck-Institute Earth System Model (MPI-ESM-mr) (Giorgetta et al., 2013), the

version 5 of the Model for Interdisciplinary Research on Climate (MIROC5) (Watanabe

et al., 2010), the Community Earth System Model version 1 that includes the Community

Atmospheric Model version 5 (CESM1-CAM5) (Neale et al., 2010), the version 5 of the

Institut Pierre Simon Laplace Coupled Model (IPSL-CM5A-MR) (Dufresne et al., 2013)

and the First Institute of Oceanography-Earth System Model (FIO-ESM) (Qiao et al.,

2013). Since most of the GCMs are interdependent between each other, and not all of them

include the three RCP scenarios we analyzed in this study, we followed the suggestions of

Sanderson et al. (2015) for the selection process.

To train the model, we used average values for the period 1979–2013 for 17 bioclimatic

variables, i.e., annual mean temperature, mean diurnal range, isothermality, temperature

seasonality, maximum temperature of the warmest month, minimum temperature of

the coldest month, temperature annual range, mean temperature of the wettest quarter,

mean temperature of the driest quarter, mean temperature of the warmest quarter, mean

temperature of the coldest quarter, annual precipitation, precipitation of the wettest

month, precipitation of the driest month, precipitation of the wettest quarter, precipitation

of the driest quarter, precipitation of the warmest quarter and precipitation of the

coldest quarter. The Precipitation Seasonality (BIO15) was not included because of its

excessive number of missing values in the layers of the future time periods. We also used

monthly minimum, average and maximum temperature and monthly precipitation, for a

total of 66 climatic and bioclimatic predictor variables. They can be downloaded from
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https://chelsa-climate.org/downloads/. We used 6 additional predictor variables

representing topographic conditions, i.e., sine and cosine of aspect, slope, upslope curvature

and downslope curvature. These covariates have a 3 arcsecond resolution (∼ 90 m at the

equator) and they were derived from MERIT DEM (Yamazaki et al., 2017). MERIT DEM

layers can be downloaded from http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_

DEM/.

2.2.4 Model building and evaluation

We used an ensemble machine learning approach based on stacked generalization (Wolpert,

1992). Ensemble modeling techniques involve training several independent models with

the same input data and then aggregating each of the model outputs into the final

predictions. Stacked generalization uses the outputs of the individual models to train an

additional model (meta-learner from here on) which then produces the final predictions.

We used Random Forests (RF) (Breiman, 2001a), Generalized Linear Models (Nelder and

Wedderburn, 1972) with Lasso regularization (Tibshirani, 1996) and Gradient-boosted

trees (GBT) (Friedman, 2002) as component models for the ensemble model. To reduce

overfitting in the training phase, we used a 5–fold spatial cross validation (Roberts et al.,

2017): the out-of-fold predictions were used to train the meta-learner. Spatial cross

validation was implemented by a 100 × 100 km grid and using the tile ID as the blocking

variable during the training of the models. We used multinomial logistic regression (Wright,

1995) as the meta-learner.

Predictions are delivered as probability maps (0-100%) together with uncertainty maps:

the standard deviation of the predicted values by the base learners serves as an indication

of model uncertainty. The principle is that the higher the standard deviation, the more

uncertain the model is regarding the proability to be assigned to the pixel (Brown et al.,

2020). In contrast, for the hard class map we used the probability maps to calculate a

per-pixel confidence metric. Contrary to Hengl et al. (2018), we chose not to use the

per-pixel entropy (Shannon, 1948) but the margin of victory (Calderón-Loor et al., 2021)

The margin of victory is defined as the difference between the first and the second highest

class probability value in a given pixel. Potential values in this case would go from 0 (i.e.

no difference between the first two classes, highest confusion possible) to 100 (the model

is certain in the class probability value attribution, no confusion with other classes); in

short, high values would be measures of low uncertainty, while low values would indicate a

high uncertainty. All the analysis were performed using R (version 4.1.1) (R Core Team,

2021a) and, specifically, the mlr package (Bischl et al., 2016). For more details on the

hyperparameter space used for the other component models and the overall architecture

of the ensemble model, see Bonannella et al. (2022d).

We calculated the variable importance for each of the component models using Gini

importance for RF, the gain metric for GBT (Shi et al., 2019) and the coefficients for

https://chelsa-climate.org/downloads/
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
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the minimum value of λ for GLM (Hastie et al., 2016): we took the 20 most important

variables across the component models and retained the variables that these learners had

in common. We then report these as the most important variables for the ensemble model.

The predictive performance of the ensemble model was assessed through 5–fold spatial

cross validation repeated 5 times with overall accuracy and the R2
logloss (Bonannella et al.,

2022d) as performance metrics. We then computed the R2
logloss in addition to more classic

metrics used for classification problems, like the True Positive Rate (TPR) and the F1

score (Van Rijsbergen, 1979) to assess model performances per class.

2.2.5 Shifts in potential biomes

While for data-model comparison we used the original 20 classes classification system

from Hengl et al. (2018), to compare the model outputs we translated the classes in the

IUCN Global Ecosystem Typology (Keith et al., 2020). This system classifies biomes

based on functional characteristics and their structural role in the ecosystems rather than

on climate, species distribution or vegetation patterns. Its principle is very similar to

that of the BIOME 6000 classification system Prentice and Webb III (1998). The IUCN

system comprises six hierarchical levels, with the three upper ones being realms, biomes

and functional groups: the definitions of the functional groups are quite different from

those of BIOME 6000, so we aggregated the 20 classes used in this study at the biome

level according to the IUCN. We focused on the biomes present in the terrestrial realm,

which include the following:

• T1 - Tropical-subtropical forests biome;

• T2 - Tempereate-boreal forests and woodlands biome;

• T3 - Shrublands and shrubby woodlands biome;

• T4 - Savannas and grasslands biome;

• T5 - Deserts and semi-deserts biome;

• T6 - Polar/alpine (cryogenic) biome;

• T7 - Intensive land-use biome.

Since the focus of this paper is on potential biomes, the ”T7 - Intensive land-use biome”

class was not considered. The complete translation scheme is available in Table 2.1: we

calculated the IUCN class by aggregating the per-class probability values of the BIOME

6000 classes according to the translation scheme. We computed the margin of victory for

the IUCN classes as well and we used those maps to highlight areas with high confidence

(i.e. low confusion) predictions. To assess change in potential biome class in fact, we

calculated the difference in hard class between the potential biomes map of the current

period and each of the future periods and RCP scenarios. We first reprojected all the

IUCN classes and relative margin of victory maps to the Interrupted Goode Homolosine
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projection, which is an equal-area composite projection. We chose it specifically to provide

an unbiased (i.e. without geographical distortions) estimate of the areas subjected to

change. In the results we discuss change dynamics only for the aggregated IUCN classes

and only for pixels having a margin of victory ≥ 50%; pixels with a margin of victory <

50% are not considered.

Table 2.1: Overview of the translation scheme used to pass from BIOME 6000 to IUCN

classes

BIOME 6000 class (from Hengl et al. (2018)) IUCN class

Tropical deciduous broadleaf forest and woodland T1 - Tropical-subtropical forest biome

Tropical evergreen broadleaf forest

Tropical semi evergreen broadleaf forest

Cold deciduous forest T2 - Temperate-boreal forests and woodlands biome

Cold evergreen needleleaf forest

Cool evergreen needleleaf forest

Cool mixed forest

Cool temperate rainforest

Temperate deciduous broadleaf forest

Temperate sclerophyll woodland and shrubland

Temperate evergreen needleleaf open woodland T3 - Shrublands and shrubby woodland biome

Warm temperate evergreen and mixed forest

Xerophytic woods scrub

Tropical savanna T4 - Savannas and grassland biome

Desert T5 - Desert and semi-desert biomes

Steppe

Erect dwarf shrub tundra T6 - Polar/alpine (cryogenic) biome

Graminoid and forb tundra

Low and high shrub tundra

Prostrate dwarf shurb tundra

2.3 Results

2.3.1 Model performances and variable importance

The hyperparameter tuning resulted in the following architecture for the ensemble

model:

• Random forest: 452 trees, minimum node size 9, mtry 10, while the other hyperpa-

rameters were set to default;

• Gradient boosted trees: 20 boosting rounds, maximum depth per tree 5, learning

rate 0.5, minimum loss reduction to split a leaf node 10, subsample ratio of the

training instances 1, subsample ratio of columns when constructing each tree 0.5.

The other hyperparameters were set to their defaults;

• Generalized Linear Models with Lasso: λ value 1.1 × 10−5;
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Figure 2.3: Distribution of a) the biome classes according to the BIOME 6000 classification

scheme and b) the margin of victory for the current time period. The margin of victory is

here used as an indication of uncertainty. High values (blue in figure) indicate high confidence

in the attribution of dominant class by the model, while low values indicate high uncertainty.
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• Multinomial logistic regression: multinomial function to minimize the loss.

The ensemble model had a moderate accuracy; according to the 5–fold spatial cross

validation the overall accuracy is 0.67 and the R2
logloss 0.61. Model performances per class

are shown in Table 2.2. The ”tropical evergreen broadleaf forest” is the class with the

greatest gain in predictive performances (R2
logloss = 0.74) compared to the baseline logloss,

while the ”prostrate dwarf shrub tundra” is the worst predicted class, with a negative gain

in predictive performances compared to the baseline logloss (see Fig. 2.3).

The latter may be attributed to the very small (n.obs = 11) number of points in the

training data for this specific class. It is also the only class with negative gain in predictive

performances: all the other classes go from weak (”cool evergreen needleleaf forest”, R2
logloss

= 0.30) to consistent (”temperate sclerophyll woodland and shrubland”, R2
logloss = 0.71)

increase in predictive performances. The three models captured different parts of the

feature space despite the relatively few (72) number of predictor variables. From the

top-20 predictor variables, only one is shared across all component models, BIO2, the

mean diurnal range. RF was the only component model which selected a topographic

predictor (elevation) as one of the most important variables, while the other two models

focused mostly on the climatic variables. RF and GBT shared 9 out of 20 predictor

variables, with 7 out of these 9 being temperature-related (mean or maximum temperature

and temperature-derived bioclimatic variables). GLM with Lasso differed mostly from

the other two component models in the selected most important predictor variables.

GLM was the only component model selecting variables from the group of the minimum

temperatures.

Table 2.2: Results of the repeated 5–fold spatial cross validation per class

Class N.obs TPR F1 R2
logloss

Cold deciduous forest 199 0.51 0.57 0.53

Cold evergreen needleleaf forest 890 0.78 0.76 0.62

Cool evergreen needleleaf forest 198 0.23 0.31 0.30

Cool mixed forest 1548 0.81 0.79 0.62

Cool temperate rainforest 93 0.66 0.70 0.59

Desert 328 0.51 0.55 0.50

Erect dwarf shrub tundra 138 0.36 0.42 0.50

Graminoid and forb tundra 123 0.41 0.49 0.36

Low and high shrub tundra 391 0.68 0.66 0.63

Prostrate dwarf shrub tundra 11 0.00 0.00 -0.09

Steppe 884 0.67 0.66 0.46

Temperate deciduous broadleaf forest 958 0.62 0.62 0.47

Temperate evergreen needleleaf open woodland 302 0.58 0.59 0.52

Temperate sclerophyll woodland and shrubland 153 0.76 0.74 0.71

Tropical deciduous broadleaf forest and woodland 215 0.42 0.47 0.49

Tropical evergreen broadleaf forest 333 0.79 0.77 0.74

Tropical savanna 291 0.77 0.71 0.67

Tropical semi evergreen broadleaf forest 160 0.40 0.43 0.54

Warm temperate evergreen and mixed forest 976 0.73 0.67 0.52

Xerophytic woods scrub 387 0.45 0.48 0.42
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2.3.2 Future predictions

Examining the biome state transitions from the current conditions to the future epochs, we

found that most locations remained stable. Filtering the transitional areas with the margin

of victory across all scenarios and epochs using 50% as a safety threshold value considerably

reduced the predicted transitional area: less than 1% of Earth’s surface showed signs of

change, with the least changes found in the scenario RCP 2.6 (5.6× 105 km2) and the most

in the scenario RCP 8.5 for the epoch 2061–2080 (5.0 × 106 km2). For epoch 2040–2060,

the main changes shown by all three scenarios are as follows: areas belonging to the

polar/alpine biome will transition to the temperate-boreal forest biome and areas from the

tropical forest biome will transition to more drier biomes, like the savannas and grasslands

biome the shrublands biome and, in some cases, the deserts and steppes biome.

Figure 2.4: Biome transitions predicted for epoch 2040–2060 for the three climatic scenarios.

Only the pixels that transitioned are represented in this diagram, so the percentages represent

different amounts of surface area across the scenarios. For each plot, on the left axis the

proportion of transitioned pixels in the current conditions and on the right axis the final state

according to each climatic scenario: a) shows the transitional areas for scenario RCP 2.6, b)

for scenario RCP 4.5 and c) for scenario RCP 8.5.

The same tendency can be observed for the temperate-boreal forest biome, with the

difference that transitional areas are almost equally split between the shrublands biome

and the deserts and steppes biome. It is interesting to notice that almost all the transitioned

pixels from the tropical forest biome would change to savannas and grasslands biome in

the RCP 4.5 and RCP 8.5 scenarios, while for scenario RCP 2.6 one third would change to

the shrublands biome (see Fig. 2.4). According to scenario RCP 2.6, most of the changes

would happen in the polar/alpine biome, so at higher latitudes, while for the other two

scenarios the tropical areas seem to be the ones most affected. For scenario RCP 2.6, the

transitional areas are also more equally split across the different classes, while for scenarios



2.3 Results 29

RCP 4.5 and RCP 8.5 almost 50% and 60% of the transitional areas would shift to the

savannas and grasslands biome.

Figure 2.5: Spatial location of biome transitions as predicted by our ensemble model according

to the three climatic scenarios for epoch 2040–2060. Colors on the main map show the degree

of agreement between the three climatic scenarios: a value of 1 means that only one of the

scenarios considers the pixel as transitioning, while a value of 3 shows complete agreement

across the three scenarios. Inserts show towards which biome the current pixels are transitioning

to according to the different scenarios. Inserts a), d) and e) show the main trends, with

transitions from T6 (polar) to T2 (boreal forest) in a) and from T1 (tropical forest) to T4

(savannas) in d) and e)

Fig. 2.5 shows the geographic locations of the biome shifts according to the three climatic

scenarios. It is possible to discern different clusters where the changes are located: the
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most noticeable is in the tropical area, between the Equator and 15°S; in South America,

the region affected corresponds with the southern edges of the Amazon rainforest, which

would shift from a tropical forest biome to savanna. In Central Africa, in the contiguous

borders of Angola, Congo and Zambia, the shift goes instead from shrubland or steppic

biomes to savanna. In the transitioning areas where all the scenarios agree in predicting

change, there is one area that includes most of the shifts: between 60°and 75°N, just

around the Arctic Circle. At this latitude, most of the areas currently in the polar/alpine

class would shift to the boreal/temperate forest class. Big clusters can be observed in

the northern parts of Canada and Alaska, while smaller clusters occur in Scandinavia,

European Russia and some areas in Siberia. In most cases, scenario RCP 2.6 involves the

smallest amount of transitions, while RCP 8.5 involves the greatest. However, there are

also some areas where this does not hold, as can be seen in Fig. 2.5c and Fig. 2.5f. In the

first case, scenario RCP 2.6 involves the greatest amount, while in the latter it is greater

than scenario RCP 4.5 but smaller than scenario 8.5. In general, all three scenarios agree

in predicting a change in some 3% of the cases, while if we consider the two most radical

scenarios the percentage rises to 11%.

Figure 2.6: Biome transitions predicted for epoch 2061–2080 for the three climatic scenarios.

Only the pixels that transitioned are represented in this diagram, so the percentages represent

different amounts of surface area across the scenarios. For each plot, on the left axis the

proportion of transitioned pixels in the current conditions and on the right axis the final state

according to each climatic scenario: a) shows the transitional areas for scenario RCP 2.6, b)

for scenario RCP 4.5 and c) for scenario RCP 8.5.

For epoch 2061–2080, we found similar trends to the ones observed in the previous epoch:

all of the pixels from the polar/alpine biome tend to shift to the temperate-boreal forest

biome and the pixels from the tropical forest biome would shift towards the savannas and

grassland biome (see Fig. 2.6). The tendency shown in Fig 2.4a, with the transitioning

pixels from the tropical forest biome split between the shrublands biome and the savannas

and grassland biome, is in this epoch even more pronounced: the ratio is reversed, with one
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third of the pixels transitioning to the savannas and grassland biome and the rest towards

the shrublands biome. In the other two scenarios, once again, almost all transitioning

pixels from the tropical forest biome would shift to the savannas and grassland biome.

Figure 2.7: Spatial location of biome transitions as projected by our ensemble model according

to the three climatic scenarios for epoch 2061–2080. Colors on the main map show the degree

of agreement between the three climatic scenarios: a value of 1 means that only one of the

scenarios considers the pixel as transitioning, while a value of 3 shows complete agreement

across the three scenarios. Inserts show towards which biome the current pixels are transitioning

according to the different scenarios. Inserts a), d) and e) show the main trends, with transitions

from T6 (polar) to T2 (boreal forest) in a) and from T1 (tropical forest) to T4 (savannas) in

d) and e) Inserts b) and c) show instead the tendency to drier ecosystems in temperate areas.
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Another recurring pattern is how most of the transitioning pixels from the temperate-boreal

forest biome are equally split between the shrublands biome and the deserts and steppes

biome, so either the canopy of those forests would become more open and the ratio between

trees and shrub would increase in favor of the latter, or they become so dry that the

trees are replaced by steppic vegetation. For scenario RCP 2.6, 80% of the transitioning

pixels are part of the tropical forest biome, the temperate-boreal forest biome or the

polar/alpine biome, with nearly 39% coming from the polar/alpine biome, while the classes

which would gain most of this surface area are the temperate-boreal forest biome and

the shrublands biome. In the other two scenarios, the polar/alpine biome covers a more

marginal importance across the transitioning pixels: it is the third most important. Some

differences can be observed in the transitioned classes as well: in scenario RCP 2.6, about

40% of the pixels go to the temperate-boreal forest biome, while in the other two scenarios

the savannas and grassland biome takes from 55% to 60% of the transitioned classes.

Figure 2.8: Predicted probability of occurrence of ”warm temperate evergreen and mixed

forest” class, zoom in on the area around the Pyrenees. The probability values over time show

that the class is slowly shifting towards northern latitudes. Only the RCP 4.5 scenario is shown

since it is considered as the ”middle of the road” scenario. Points indicate training points from

the BIOME 6000 dataset.

Fig. 2.7 shows the geographic locations of the shifts for the epoch 2061–2080. The two

big clusters observed in the previous epoch remain, as well as the area around the Arctic

Circle; the transitioning pixels where all three scenarios agree in predicting change are also

located mostly in these two areas. Compared to the previous epoch, more small clusters

of pixels, with no specific spatial pattern, are visible in the African continent from the

Equator to 15°N (mostly around the Gulf of Guinea), Western India and Mediterranean

Europe (mostly around the Pyrenees, see Fig. 2.7b); by checking the probability layers, it

is possible to see the gradual shift (see Fig. 2.8) in vegetation conditions over time.



2.4 Discussion 33

Contrary to the previous epoch, the mapped changes in the scenarios seem to be more

consistent: all the inserts in Fig. 2.7 show that scenario RCP 2.6 is the one which projects

the smallest number of transitioning pixels, while RCP 8.5 projects the most. The scenarios

in this epoch also have a higher degree of agreement: all three scenarios agree in considering

as changing 7% of all the transitioning pixels, while the value for agreement between two

scenarios is just 8%. In general, if in the previous epoch most of the transitioning pixels

were located either in the tropics or around the Arctic Circle, in this epoch we see them

appearing in the temperate areas as well.

2.4 Discussion

2.4.1 Model evaluation and comparison with previous works

In this study we trained an ensemble machine learning model to classify the current and

future potential distribution of biomes under different climate change scenarios. Our results

show that it is possible to produce relatively accurate maps of natural vegetation using

ensemble machine learning approaches and to reach consistent accuracy values even with

a limited selection of predictor variables. Comparing our results with the previous work of

Hengl et al. (2018), we achieved an increase in the overall accuracy by using an ensemble

model and only 72 instead of 158 predictor variables: in the previous task the most accurate

model (Random Forest) shows a spatial cross–validation overall accuracy of 0.33, less than

half of what we estimate with the improved model (0.67). The performance values per class

show some degree of agreement: when comparing TPR values both studies consider the

“prostrate dwarf shrub tundra” class as the worst predicted, while they disagree in the best

predicted class (“temperate sclerophyll woodland and shrubland” for Hengl et al. (2018),

“cool mixed forest” in this study); while our TPR values are consistently lower across all

classes, TPR values reported by Hengl et al. (2018) are for the model with no spatial

partitioning. Model outputs are provided in probability values and not as hard classes

in both studies; furthermore, the dataset is heavily imbalanced, as shown in Fig. 2.2.

This makes logloss, and the R2
logloss, a better metric to report model performances since it

indicates how close the predicted value for an observation and its respective label is; logloss

is also one of the most robust performance metrics when it comes to imbalanced data

(Ferri et al., 2009). The fact that Hengl et al. (2018) used other performance metrics that

do not fit the task at hand to report per class results, may have caused an overestimation

of those values.

In machine learning, increasing the size of the feature space is expected to provide more

discriminating power (Hall and Holmes, 2003), at the cost of higher computation time.

However, it can also increase the complexity of the task at hand to the point that the

added information is redundant or introduces noise in the model (Bellman and Kalaba,

1957). While feature selection procedures help considerably in tackling this problem, in



34 Global potential biomes distribution under climate change scenarios

this case we used expert knowledge to select only climatic and topographic predictor

variables. By doing that, we managed to achieve a twofold goal: reduce task complexity

(i.e. less features) while maintaining consistent values of accuracy, and keeping the model

simple enough to be able to transfer it to future epochs without introducing too many

assumptions in the modeling framework; a similar approach to calculate future projections

was used by Anjos et al. (2021), Maksic et al. (2022) and Zevallos and Lavado-Casimiro

(2022), respectively, for the whole South America, Brazil and Peru. In the case of Zevallos

and Lavado-Casimiro (2022), they used a Random Forest model and achieved higher levels

of accuracy; however, they trained it on a smaller (6 bioclimatic) set of predictor variables,

used a 80:20 train test split and did not use any spatial partitioning. Considering the huge

differences in accuracy in the results obtained by Hengl et al. (2018) in their Random

Forest model with and without spatial partitioning, there’s the risk that predictions from

Zevallos and Lavado-Casimiro (2022) may have been optimistic; on the other hand, their

analysis is focused on just one country and not on a global scale, so it is still possible to

reach high levels of accuracy on a limited study area.

Data-driven approaches in this topic mostly deploy Random Forest models, with predictions

with high levels of agreement with process-based models: Lindgren et al. (2021) used

Random Forest to reconstruct past global vegetation and compared their results with the

LPJ-GUESS global dynamic vegetation model; the model was able to produce comparable

results to the LPJ-GUESS when enough training data was available, with bad performances

when predicting in the Last Glacial Maximum, the epoch with the least training data.

Extrapolation and transferability are two common issues of machine learning models and

data-driven approaches in general, which have limited the reliability of such methods in

environmental modeling (i.e. invasive species modeling, past vegetation reconstruction,

future vegetation forecasting etc) (Qiao et al., 2019). However, ensemble modeling is

known to provide more advantages than using individual machine learning models, since

ensemble models reduce model uncertainty (Bonannella et al., 2022d; Mehra et al.,

2019). For future projections, ”ensemble datasets” are more common than ensemble

models: climate is assumed to be the major driving force for large-scale vegetation patterns

(Whittaker and Marks, 1975); starting from this assumption, multiple studies create the

training dataset by averaging together temperature and precipitation values as calculated

by different GCM simulations (Anjos et al., 2021; Beigaitė et al., 2022), hence why we

chose an ensemble of five independent GCMs. The model used in this study could benefit

from using such datasets: while studies on performance comparisons between the different

GCM simulations are available for the CMIP5 project (Sanderson et al., 2015), the same

can’t be said for the new CMIP6 simulations; future applications of the experimental

design presented in this study that would use CMIP6 simulations, could benefit from using

an ensemble dataset of all 50 of the GCM simulations instead of relying on the data of

only five models.
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2.4.2 Biome shifts: key emerging trends

We evaluated changes in potential biomes in two future epochs and across three different

climatic scenarios: our results show that the distribution of the biomes on land in the

future will mostly (≥99% land surface) remain the same. The limited geographic extent of

the biome shifts under all three scenarios has probably to do with the chosen conservative

threshold in margin of victory; despite that, the projections show specific emerging trends

in biome shifts in precise locations of the globe that, while differing in size, are common

across all the climatic scenarios.

One of these emerging trends is the transition from a polar to a boreal forest biome in the

global north, around the Arctic Circle: in both of the epochs analyzed in the study, it is

one of the most evident and consistent transitions in all three climatic scenarios, with its

extension increasing in epoch 2061–2080. According to the future climatic projections, all

three scenarios forecast either a modest or consistent rise in temperatures by 2100, from

well below 2° C for scenario 2.6 and around 5° C for scenario RCP 8.5. Areas where this

change was predicted currently present vegetation not belonging to the ”boreal forests and

woodland biomes” class mostly due to the fact that the low temperatures are a limiting

factor for the presence of trees. The hypothesis that the thawing of permafrost would

lead to the tree line advancing towards the North Pole finds more and more evidence, the

last one provided by Berner and Goetz (2022) using Landsat time-series: their results

on vegetation greenness for the period 1985–2019 showed a prevalence of greening in the

pan-boreal vegetation. It is important to point out how this phenomenon is not uniform

across the circumpolar arctic vegetation: while greening was more prevalent than browning

phenomena, browning was still predicted in those areas where summers have become

warmer and drier in the last 40 years. Our results, regardless of the scenario, show that

while the change will happen, it won’t be uniform across North America, Asia and Europe:

North America seems to be the one that will be most affected, while only in few areas

of Siberia all scenarios agree in a biome shift. Our maps can be used to locate hot spots

of change, from which the shift can then expand: the model used in this study doesn’t

take into account many factors, such as the feedback effects on the carbon cycle caused

by the permafrost thaw (Smith et al., 2022) or soil temperature, moisture and content,

which, in turn, affect vegetation productivity and functional types (Berner et al., 2020).

For this reason it is important to be cautious when assessing biome change implications.

On top of that, we focus on the potential conditions that define a biome and not on what

is currently on the ground: species that live in a biome may not be able to keep pace with

the climate change advance (Rees et al., 2020), and while our maps may show that the

conditions for a shift are present in a specific location, its reality may be different.

The second trend relates to the transition from tropical forest to savannas and grasslands,

in particular in the southern edges of the Amazon and the Congo rainforests. Both the

entity and the extension of this shift across the climatic scenarios follow the same pattern
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that we found for the transition from polar to boreal, with the highest value of pixels

shifting found in the epoch 2061–2080 for scenario RCP 8.5. The consequences of climate

change on the Amazon rainforest are a critical area of research given its importance for

global climate regulation and biodiversity (Foley et al., 2007; Lawton, 1998) and have

been the subject of extensive research in the scientific community. While the full extent of

these changes has not yet been completely understood, higher temperatures and variations

in rainfall regime have been causing longer and more severe dry seasons (Agudelo et al.,

2019; Arias et al., 2015; Xu et al., 2022), with an increase in frequency of droughts, floods

and fires (Barlow et al., 2020; Lovejoy and Nobre, 2018; Marengo and Espinoza, 2016); a

recent study by Gatti et al. (2021) has demonstrated how the southeastern edge of the

Amazon rainforest has already reached the tipping point, acting as a net carbon source

instead of a carbon sink. These findings agree with the projections showed in our results,

which now are part of a long series of studies showing alarming signs of an incoming

process of savannization in the area; the feedback loop created by a disruption in the

carbon cycle such as the one showed by Gatti et al. (2021) could further exacerbate the

savannization process. On the same note, Sampaio et al. (2007) were the first to show

how when deforestation exceeds 40%, the savanna would become the new stable state of

the ecosystem in south, east and partially central Amazonia due to altered precipitation

patterns; climatological projections from Higgins et al. (2016) show how a rise by only 2°
C in average temperature could lead to a loss of 50% of suitable areas for forest specialist

species and an increase by 11%-30% for savanna species. While less studies on the Congo

rainforest are available in literature, the projected savannization process can be attributed

to the same causes: Giresse et al. (2023) have shown that the Congo rainforest has been

resistant to change in the last 1000 years and it was not possible to identify any serious

human impact over this period. However, the current increasing mix of climate change

and human pressures (deforestation, agriculture expansion and other factors) may lead to

unforeseen consequences: the current rainfall regime of much of the African rainforests is

close to a threshold that favours savannas over rainforests (Malhi et al., 2013), so even

a small alteration of this regime can cause large scale changes in the rainforest-savanna

transition zone.

Overall, the shifts in biomes identified in this study portray a picture of minor or consistent

changes across all the different biomes on the planet due to either an increase in temperature

or decrease in precipitation/moisture conditions: this agrees with a similar existing

dominating browning trend for global vegetation recently identified by Higgins et al. (2023)

for the last four decades (1982–2015). Their approach is particularly relevant for the

context of the present study, since they combined a process-based approach by using a

dynamic plant growth model adjusted for climate with a data-driven approach by using

Advanced Very High Resolution Radiometer (AVHRR) NDVI and EVI time series to

describe vegetation activity. These shifts may have significant ecological implications for

the distribution and diversity of plant and animal species, as well as societal implications
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for human communities that depend on these ecosystems. It is likely that these shifts

will also have economic impacts, as the distribution of resources such as timber, livestock

grazing and agriculture or the potential displacement of human population; the alterations

of the services that these ecosystems provide, such as climate regulation and flood control,

have also to be considered. These shifts may contribute to the loss of biodiversity, as some

species may not be able to adapt to the new conditions in their range: the loss of tropical

and subtropical biomes can have a negative impact on the species that depend on these

biomes for their survival, as many species have narrow habitat requirements and are not

able to adapt to changes in their environment. The expansion of boreal biomes, on the

other hand, can have a positive impact on the species that depend on these biomes, as

they will have access to new areas with suitable habitat.

2.4.3 Technical limitations

There are some limitations to this study that should be considered. First, the dataset used

to train the model was heavily imbalanced, with some classes having a very small number

of observations: this has significantly affected the model performances for certain classes;

on top of that, some locations are underrepresented, with limited or no observations. This

is a serious limitation of the study, as the model may not be able to accurately predict

the vegetation in those locations due to a lack of data. This highlights the importance of

gathering more comprehensive ground truth data in the future to improve the model’s

accuracy and prediction abilities in those locations.

Secondly, while the use of expert knowledge to select the predictor variables let us to

reduce the complexity of the task, it may also have introduced biases or limitations to

the model’s ability to accurately represent the full range of conditions present in different

biomes; feedback loops (vegetation-climate interactions) or anthropogenic factors (human

disturbances, deforestation) were also not considered in the study. One of these effects

which are difficult to incorporate in data-driven models is the fertilization effect of increasing

concentration of CO2 in the atmosphere, or CO2 fertilization effect (CFE): process-based

models are known to be able to include and parametrize this factor, event though the

mechanisms and limits of it are still not completely understood. Ballantyne et al. (2012)

observed that since the 1960s the carbon uptake by both terrestrial and oceanic ecosystems

has increased instead of declining, while a study by Chen et al. (2022) calculated how

approximately 44% of the increase in global Gross Primary Productivity (GPP) since the

2000s can be attributed to the CFE. This proved to be especially important for the in the

tropical region, with different satellite-based or in-situ studies showing patterns of greening

in these areas (Anchang et al., 2019; Stevens et al., 2017). Thus, not including this effect

in our model may lead to overestimate the amount and the type of shifts in the tropical

region: for example, the chapter on the African continent of the last IPCC report (Trisos

et al., 2022) mentions an overall continental trend in woody plant expansion, especially in

the non-arid areas, with high confidence that the trend is attributable to the CFE. This
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is in contrast with the desertification and contraction trend that was instead highlighted

by the previous AR: since the AR6 had at its disposal longer time-series of observations,

the trend captured by the previous AR, and hence the CMIP5 GCM projections, may

have been overly pessimistic in some regions. Not including the CFE in our study and the

usage of CMIP5 projections may have biased the results in favor of a desertification trend

for some areas. All the simulations from the study from Friend et al. (2014) predicted a

consistent increasing trend in CO2 for every RCPs: so while our model may accurately

capture a shift in the boreal region, due to the fact that the limiting factor for those

biomes is temperature, it may capture a different type or extent of shifts in the tropical

region, where neither temperature or precipitation are the limiting factors. On the other

hand, however, Higgins et al. (2023) found the contribution to regreening from the CFE

to be limited and Wang et al. (2020) observed a significant decline in the CFE on a global

scale for the period 1982–2015. Overall, even if in this study we identified several hot spots

of change in the tropical region, there is still high uncertainty for the future of biomes and

their shifts there.

We also excluded from the study area those locations that are currently covered by

permanent ice: glacial retreats due to climate change is a well known issue and the

exclusion of these areas may also underestimate the potential changes in biomes in

surrounding areas that may be influenced by the loss of glaciers. It is important to consider

the inclusion of these areas in future studies to obtain a more comprehensive understanding

of the potential impacts of climate change on the distribution of biomes. Another limitation

is that the model can’t be considered spatiotemporal: while spatial relationships are taken

into account during the modeling through the use of spatial partitioning, the temporal

relationship is not considered since the model is trained on only one point in time. The

model doesn’t know that the three epochs analyzed in the study have an order in the

temporal dimension: the phenomenon we want to predict at location x for epoch 2061–2080

is not only a function of the predictor variables in the features space, but also of the

realization of the phenomenon in previous states. The result, in the worst case scenario, is

that the predicted values for one location may not be reliable over time: an example in

our case would be a pixel labeled as “desert” for the current epoch, “forest” in the epoch

2040–2060 and “desert” once again in epoch 2061–2080, something that can be perfectly

explained from a mathematical standpoint, but highly questionable from an ecological

perspective.

Together with the heavily imbalanced dataset, this is another important reason to use the

margin of victory to analyze the results. The inclusion of the margin of victory allows users

to more accurately interpret the predicted maps and make more informed decisions based

on the data. Without the margin of victory, the probability outputs could potentially be

overinterpreted, leading to incorrect conclusions. The classification task examined in this

study presented a total of 20 classes, with the model output per class constrained, for

each pixel, to sum to 100%; the conservative threshold allowed us to focus our analysis
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Figure 2.9: Spatial location of biome transitions for scenario RCP 8.5 epoch 2061–2080. In

red: all the areas that will change according to our model with a margin of victory value ≥50%.

In yellow: all the transitioning areas with margin of victory values <50%.

only on those areas where the model found considerable differences in probability output

between the dominant class and the remaining classes (see Fig. 2.9). Even though the

class probabilities in this study are model-based predictions and model fit is far from

perfect, the margin of victory gives an impression of the uncertainty in our projections.

We acknowledge our inability to predict the future and to make claims about biome shifts

that would certainly happen. It is however possible to indicate the confidence of our

projections through the uncertainty layers provided. That’s why we recommend to use

the uncertainty layers to filter the predicted areas using conservative (≥50%) thresholds

in case of future use of these maps in other works: false positives may thus be avoided

while still identifying the main patterns.

2.5 Conclusions

In this article we applied a methodological framework to predict current and future potential

distribution of biomes under different climatic change scenarios using an ensemble machine

learning approach. We focused our efforts on improving the caveats of previous work

from Hengl et al. (2018), achieving greater accuracy in predicting current biomes and

providing future distribution of biomes along with measures of prediction uncertainty

to correctly interpret and use the maps. In general, our ensemble model achieved fairly

accurate (overall accuracy = 0.67, R2
logloss = 0.61) results. Using expert knowledge to select

only a limited number of predictor variables, we were able to achieve reasonable accuracy

values while keeping the model simple enough to be able to transfer it to future epochs

without introducing too many assumptions. Temperature-related predictor variables were

considered as the most important to produce accurate predictions. Overall, this study
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demonstrates that an ensemble machine learning approach can be effective in modeling

the potential distribution of biomes on a global scale and in identifying areas where

climatological changes could lead to shifts in the distribution of these biomes.

Even though relatively small shifts in the distribution of biomes were projected under

the RCP 2.6 and RCP 4.5 when compared to RCP 8.5, one of the significant findings of

this study was the identification of areas where the change in climatological conditions

could lead to a shift in the potential distribution of biomes regardless from which of the

emission pathways analyzed will happen in the future. The biomes expected to shift the

most are the tropical and subtropical biomes, particularly the tropical rainforests: these

biomes are expected to experience a decrease in their potential distribution in the future

time periods towards savanna and grassland biomes, a process called “savannization”.

In contrast, biomes located at higher latitudes, such as boreal forests, are expected to

experience an expansion in their potential distribution in the future time periods at the

expense of the polar biomes.

Further research is needed to better understand the factors that drive these shifts and

the potential consequences for the distribution and diversity of plant and animal species,

as well as for human communities. We hope that this study will contribute to the

broader field of study by providing a framework that can be used to better understand

the potential impacts of climate change on the distribution of biomes and their associated

ecosystems, and by identifying areas where these impacts could be particularly significant.

We recommend that this information is used by policy makers and land managers to make

informed decisions about the management and conservation of these ecosystems, and to

take action to mitigate the negative consequences of climate change.
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Abstract

This paper describes a data-driven framework based on spatiotemporal machine learning

to produce distribution maps for 16 tree species (Abies alba Mill., Castanea sativa Mill.,

Corylus avellana L., Fagus sylvatica L., Olea europaea L., Picea abies L. H. Karst., Pinus

halepensis Mill., Pinus nigra J. F. Arnold, Pinus pinea L., Pinus sylvestris L., Prunus

avium L., Quercus cerris L., Quercus ilex L., Quercus robur L., Quercus suber L. and Salix

caprea L.) at high spatial resolution (30 m). Tree occurrence data for a total of 3 million

points was used to train different algorithms: random forest, gradient-boosted trees,

generalized linear models, k-nearest neighbors, CART and an artificial neural network.

A stack of 305 coarse and high resolution covariates representing spectral reflectance,

different biophysical conditions and biotic competition was used as predictors for realized

distributions, while potential distribution was modelled with environmental predictors

only. Logloss and computing time were used to select the three best algorithms to tune

and train an ensemble model based on stacking with a logistic regressor as a meta-learner.

An ensemble model was trained for each species: probability and model uncertainty maps

of realized distribution were produced for each species using a time window of 4 years

for a total of 6 distribution maps per species, while for potential distributions only one

map per species was produced. Results of spatial cross validation show that the ensemble

model consistently outperformed or performed as good as the best individual model in

both potential and realized distribution tasks, with potential distribution models achieving

higher predictive performances (TSS = 0.898, R2
logloss = 0.857) than realized distribution

ones on average (TSS = 0.874, R2
logloss = 0.839). Ensemble models for Q. suber achieved

the best performances in both potential (TSS = 0.968, R2
logloss = 0.952) and realized

(TSS = 0.959, R2
logloss = 0.949) distribution, while P. sylvestris (TSS = 0.731, 0.785,

R2
logloss = 0.585, 0.670, respectively, for potential and realized distribution) and P. nigra

(TSS = 0.658, 0.686, R2
logloss = 0.623, 0.664) achieved the worst. Importance of predictor

variables differed across species and models, with the green band for summer and the

Normalized Difference Vegetation Index (NDVI) for fall for realized distribution and

the diffuse irradiation and precipitation of the driest quarter (BIO17) being the most

frequent and important for potential distribution. On average, fine-resolution models

outperformed coarse resolution models (250 m) for realized distribution (TSS = +6.5%,

R2
logloss = +7.5%). The framework shows how combining continuous and consistent Earth

Observation time series data with state of the art machine learning can be used to derive

dynamic distribution maps. The produced predictions can be used to quantify temporal

trends of potential forest degradation and species composition change.
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3.1 Introduction

Reforestation and forest restoration are considered key strategies for tackling climate

change by enhancing CO2 sequestration (Domke et al., 2020; Lefebvre et al., 2021; Nave

et al., 2019). Under the European Green Deal and the European biodiversity strategy for

2030, the European Union has committed to plant at least 3 billion additional trees by

2030 (European Commission, 2021b). At the same time, tree deaths due to bark beetle

infestations and increased drought fueled by a warming climate have reduced the total

forest area of Germany by 2.5% since 2018 (Popkin, 2021). Obtaining reliable information

on forest tree species distribution in both space and time is now urgently required for

stakeholders and decision-makers in order to develop effective forest management and

adaptation strategies (Keenan, 2015).

Understanding the range, constraints and drivers of species distribution has always been a

primary goal of ecology (Andrewartha and Birch, 1954). However, only with the advent

of Geographical Information Systems (GIS) and the usage of extensive digital maps of

environmental variables were ecologists able to access powerful enough tools to study

species distributions at landscape scales (Franklin, 1995). Progress in this direction has

given rise to a new field called Species Distribution Modelling (SDM) (Franklin, 2010):

maps of species ecological niches are made by associating values of different predictors to

known locations of the target species and then used to predict distribution in geographic

space where no field data for the target species is available. Commonly, SDMs rely on

climatic or bioclimatic factors at a coarse spatial resolution (≥1 km) while in the temporal

dimension long time averages (30-–50 years) are often used (Iturbide et al., 2018a). Whilst

forest distribution maps are often used to guide management decisions happening at local

scales, the potential impact of differences in resolution of the predictor variables on the

results is often overlooked (Porfirio et al., 2014). For conservation purposes, previous

studies have shown how distribution maps with high spatial resolution (< 100 m) and

slightly lower prediction accuracy are actually more useful than coarser (> 250 m) but

more accurate maps (Gottschalk et al., 2011; Guisan et al., 2013; Manzoor et al., 2018;

Prates-Clark et al., 2008). Therefore, even at the cost of overall map accuracy, finer spatial

resolution maps are more valuable for practical use. For these reasons, Earth Observation

(EO) data, and specifically the use of high spatial resolution data, have grown in use for

SDM applications (Gelfand and Shirota, 2021; Hefley and Hooten, 2016; Pérez Chaves

et al., 2018).

In addition to the clear need for finer spatial resolution mapping, there are similar needs

to drive research towards producing finer temporal resolution mapping. This is due to the

recent and relatively swift change in disturbance regimes and weather patterns, which are

significantly altering the ecological niches of tree species on a temporal scale of less than a

few decades instead of centuries. The impact of these changes on tree species has become

more noticeable from year to year, with growth decline (Martinez del Castillo et al., 2022)
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and increased mortality rates (Senf et al., 2018; Senf et al., 2021) demonstrated in literature

as already occurring across large forested areas. Including the temporal domain in tree

species distribution studies is therefore fundamental to capture the temporal evolution of

these change processes. However no general consensus has yet been reached on the influence

of these new high spatial and temporal resolution data sources on SDM performances.

The inclusion of spatiotemporal data sources in SDM studies requires taking an additional

effort when choosing the appropriate modeling technique, a task that has proved to be

difficult even with traditional spatial-only data sources (Elith and Graham, 2009), let

alone when also attempting to include the temporal dimension.

Aside from spatial and temporal considerations of predictor variables and species ob-

servations, in the last decade ecologists have conducted hundreds of studies purely to

determine which modeling methods best suit the needs of SDM. Model choices have

thus far proven to be highly impactful, with distribution maps derived with different

models from the same dataset leading to quite opposite conclusions (Araújo and New,

2007; Pearson et al., 2006). Inter-model variability in projections has been tackled using

ensemble modeling, where numerous independent models are fit using a range of methods

applied to the same input data while the outputs of the individual models are aggregated

into the final prediction. Ensemble modeling is a solution to high model variance and it

has been demonstrated that reducing variance also reduces the effect of model overfitting

and extrapolation (Zhou, 2019). This is achieved at the cost of increased model complexity,

reduced model interpretability, and increased computational time (Zhou, 2019). As such,

the few examples of ensemble modeling approaches that have been investigated for SDM

applications are limited to mean, median and weighted average approaches (Hao et al.,

2019). These approaches are intuitively simple to implement and interpret, and involve, in

the first two cases, just taking the mean or median of the predictions of the individual

models as the final prediction. The weighted average approach is similar but scales the

predictions by weights assigned based on predictive performances of the models obtained

from cross validation. A robust ensemble technique that, to our knowledge, has not been

tested yet for SDM is stacking or stacked generalization. In this approach outputs made

by the individual models are the inputs of a meta-learner (i.e. a model that learns from

other models) which then produces the final prediction (Wolpert, 1992).

We tested this ensemble technique on European forest tree species distribution. There is

no shortage of information on European tree species distribution: the European Atlas of

Forest Tree species is among one of the largest data sources with information on forest tree

species for Europe (San-Miguel-Ayanz et al., 2016). It describes in detail the autoecology

of 76 different forest tree species and provides geographical information on each species

in the form of chorological maps, probability of presence maps and maximum habitat

suitability maps. Recently, the Atlas has been further expanded with future projections in

different climatic scenarios (Mauri et al., 2022). While these predictions are certainly useful

to determine potential species composition of European forests, new methods are now
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needed to deal with the more and more attention to reproducibility of studies (Fidler et al.,

2017), increasing spatial and temporal resolution of predictor variables (Zhu et al., 2019)

and availability of ecological “big data” (i.e. gathered by multiple sources such as sensors,

cameras etc.) (Hampton et al., 2013). Furthermore, SDM studies use high-dimensional

data which is often non-linear and does not meet assumptions of conventional statistical

procedures (Zhang and Li, 2017). For this reason, and thanks to the exponential increase

in computing power of the last decade (Gorelick et al., 2017), solutions such as Machine

Learning (ML) algorithms have recently become very popular for SDM studies. ML tries

to learn the relationship between the response and the predictors through the observation

of dominant patterns (Breiman, 2001b). Contrary to traditional statistical models, no kind

of ecological assumptions are explicitly embedded in ML algorithms: ML can be especially

useful when dealing with data gathered without a specific and rigorous sampling design (Ij,

2018). ML algorithms have great potential to analyze the large amount of data available

nowadays, enabling the mapping and monitoring of changes on multiple geographical

scales in a timely manner through reproducible research (Gobeyn et al., 2019).

In this sense, the objectives of this study were (a) to test different ML algorithms to

develop a framework for modeling species distribution in space-time, (b) to assess the

importance of various sources of EO data on model performances for mapping tree species

distributions and (c) to explore and quantify the specific importance of high resolution

data on model performances.

3.2 Material and methods

3.2.1 General workflow

We modeled potential and realized distribution for 16 forest tree species for continental

Europe for the time period January 2000 – December 2020 using a spatio-temporal ML

approach. The general workflow used to derive the distribution maps is shown in Fig.

3.1. We modeled the potential distribution as a baseline to assess the importance of EO

data sources: we used only environmental predictors (i.e. temperature, precipitation, wind

speed, water vapor and topographical variables) and environmental absences (i.e. location

with known environmental conditions not suitable for the target species, following the

definition used by Lobo et al. (2010)) to produce a neutral model for baseline species

potential.

As an additional source of homogeneously distributed true absence data we used the Land

Use/Cover Area Survey (LUCAS) (EUROSTAT, 2017) dataset: in-situ observations of

land use and land cover distributed on a 2 × 2 km grid covering the whole European

Union (see d’Andrimont et al. (2021) for more information and https://ec.europa.eu/

eurostat/web/lucas/data/lucas-grid for the official grid). Final prediction maps show

the probability of presence (0–100%) of at least one individual of the target species in the

https://ec.europa.eu/eurostat/web/lucas/data/lucas-grid
https://ec.europa.eu/eurostat/web/lucas/data/lucas-grid
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Figure 3.1: General workflow illustrating the preparation of the point data, the predictor

variables used, model building (feature selection — hyperparameter optimization — training)

and preparation of distribution maps for one species. The process was identically replicated

for all the species.

area covered by a 30 m pixel. Probability of presence is relative to the mapped target

species, irrespective of the potential co-occurrence of other species in the same 30 m pixel

and should not be confused with the absolute abundance or proportion of each species

in the pixel area. The sum of the presence probabilities of different species in the same

pixel can thus exceed 100%. We produced one potential distribution map and six realized
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distribution maps for each species: the assumption is that the conditions in the study

area that determine the potential distribution of the species did not change over the

time period analyzed; this does not hold for the realized distribution. We split the time

period analyzed in six time windows according to the following scheme: (1) 2000–2002, (2)

2002–2006, (3) 2006–2010, (4) 2010–2014, (5) 2014–2018 and (6) 2018–2020.

To ensure transparent reporting and reproducibility, we described the dataset according

to the ODMAP protocol suggested by Zurell et al. (2020). We implemented the workflow

in the Python (Van Rossum and Drake, 2009) and R (R Core Team, 2021b) programming

languages. More technical details on preprocessing steps and packages used according to

ODMAP (Zurell et al., 2020) are presented in Table S1 (found in https://zenodo.

org/record/6516728/preview/Supplementary_material.pdf#subsection.0.1) (Bo-

nannella et al., 2022c).

3.2.2 Study area

The study area covers the European continent, that is all countries included in the Corine

Land Cover (CLC) database (Büttner et al., 1998) except Turkey (Fig. 3.2). European

forests cover 33% of the continent’s land area. Owing to the variety of climatic conditions

across both latitudinal and longitudinal gradients, twelve out of the 20 FAO Forest

Ecological Zones are represented in European forests (Rigo et al., 2016). The European

Atlas of Forest Tree Species (San-Miguel-Ayanz et al., 2016) reports detailed information

for a total of 76 forest tree species. From those, a selection of 16 were chosen and modelled

in this study. The complete list of species is presented in Table S1.

3.2.3 Training points

Preparing and combining legacy occurrence points

A total of 2,454,997 tree species occurrence points from three different sources were

gathered. The majority of points (71%) comes from the Global Biodiversity Information

Facility (GBIF). National Forest Inventory (NFI) data from multiple EU member states

published by Mauri et al., 2017 forms another 23% of the dataset. The remaining 6%

comes from the LUCAS dataset.

Entries were filtered for species included in the European Atlas of Forest Tree Species

(San-Miguel-Ayanz et al., 2016). Occurrences with a taxonomy rank other than species or

genus were omitted. Same applies to points which had flags indicating serious location

issues (i.e. missing coordinates). Geometries were re-projected to coordinate reference

system ETRS89 / LAEA Europe (EPSG: 3035). A high resolution land mask for Europe

(Hengl et al., 2020) was applied to further exclude misplaced occurrence points. GBIF

taxon and genus keys were derived for the other two data sources. Quality flag variables for

location accuracy and date were established from existing metadata to indicate potentially

https://zenodo.org/record/6516728/preview/Supplementary_material.pdf#subsection.0.1
https://zenodo.org/record/6516728/preview/Supplementary_material.pdf#subsection.0.1
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Figure 3.2: Map of the study area showing presence points only. Points are aggregated at a

coarse resolution (30 km) scale and absence points are omitted for visualization purposes.

problematic entries. The harmonized point dataset has information on species and genus

(including respective GBIF keys), year of observation, country, original data source, citation,

and license among other auxiliary variables.The dataset was published separately (Heisig

and Hengl, 2020).

We used yearly forest masks derived from Witjes et al. (2022) to decide upon including

point data lacking the year of observation. Witjes et al. (2022) provides yearly probability

maps at 30 m for the 2000–2020 for 43 land cover classes according to the CLC level 3

legend. We overlaid the points with the probability maps with prevalent forest (classes:

311, 312, 313 and 323) or woodland-shrub (324, 333) cover. Points were used only if

the probability value extracted for at least one of the classes was ≥50% for all the years

considered. Each unique combination of longitude, latitude and year was then considered

as an independent sample. An additional quality flag was added to distinguish points

coming from this operation and the points with original year of observation coming from

source datasets.
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Preparing non-occurrence points

A total of 883,630 land cover points were gathered from the LUCAS database as provided

by Eurostat and used as absence data. All LUCAS survey data (2006, 2009, 2012, 2015 and

2019) was used: each survey was first downloaded individually and then aggregated. As

for the occurrence points, spatial and temporal information were used to uniquely identify

one observation. All main land cover classes were used for selecting observations for the

absence dataset with the exception of class C (Woodland class), as points belonging to that

class already served the selection of presence data. For potential distribution only, points

coming from human influenced land cover classes (class A and B) were also excluded. This

choice was taken assuming that cities (class A) and croplands (class B) could be suitable

areas for the target species if only environmental criteria are met. Two presence-absence

datasets were produced for each species, one to be used for potential distribution and one

for realized distribution. Locations in space and time of the target species were considered

to be true presences, while presence locations of other species and observations from the

LUCAS dataset were assumed to be the true absence locations. Presence locations of

other species used as true absence were additionally filtered by overlaying them with a

rasterized chorological map downloaded from the European Atlas of Forest Tree Species

portal for each of the target species. Only points falling outside the geographical extent of

the target species chorological map were used as absence locations for modeling.

Spatial thinning

Combining different data sources to generate the tree occurrence points produced a dataset

with unknown sampling design, while LUCAS points are regularly distributed across the

whole study area. To overcome the problem of uneven sampling intensity and spatial

clustering, we applied a spatial thinning procedure using the spThin R package (Aiello-

Lammens et al., 2015). A distance of 2 km was considered as minimum distance between

the points, to harmonize the sampling intensity between presence and absence data. The

procedure was repeated 10 times: at each iteration, the algorithm randomly removes one

observation from the dataset until no observation is left with a nearest neighbor closer than

the thinning distance. Among the 10 datasets obtained, the one with the largest number

of records was retained and used for modeling. However, the package was not developed

for large datasets: the implementation of the thinning algorithm cannot be processed in

parallel and computation time can take even days with a number of observations ≥ 3000.

Due to these computational constraints, we first overlaid the points with a 10× 10 km grid

and ran the thinning procedure per tile. Results of this operation are shown in Table S2

and Fig. S1 (found in https://zenodo.org/record/6516728/preview/Supplementary_

material.pdf#subsection.0.2) (Bonannella et al., 2022c).

https://zenodo.org/record/6516728/preview/Supplementary_material.pdf#subsection.0.2
https://zenodo.org/record/6516728/preview/Supplementary_material.pdf#subsection.0.2
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3.2.4 Predictor variables

A total of 305 harmonized variables covering continental Europe at different spatial

resolution were used as predictors to model the realized distribution of the species. In this

study we included both dynamic (i.e. time-series of data of different temporal resolution)

variables covering the time period January 2000 – December 2020 and static (i.e. variables

not expected to change during the modelled time period) variables. A subset of only 103

variables were used instead to model the potential distribution (see Fig. 3.1). All data was

reprojected in the coordinate reference system ETRS89 / LAEA Europe (EPSG: 3035)

before the analysis.

Dynamic data

We used a reprocessed version of Landsat ARD data provided by Global Land Analysis and

Discovery (GLAD) (Potapov et al., 2020): time series used in this study covers the period

1999–2020. Cloud and cloud shadow pixels were removed from the images, maintaining

only the quality assessment-QA values labeled as clear-sky. Afterwards, individual images

were averaged by season according to three different quantiles (25th, 50th and 75th) and

the following calendar dates for all periods:

• Winter: December 2 of previous year until March 20 of current year,

• Spring: March 21 until June 24 of current year,

• Summer: June 25 until September 12 of current year,

• Fall: September 13 until December 1 of current year.

84 images (3 quantiles × 4 seasons × 7 Landsat bands) were produced for each year.

Missing values were imputed using the Temporal Moving Window Median algorithm. For

more details on the preprocessing of Landsat data for this study see Witjes et al. (2022).

7 different spectral indices (see Table 3.1) were computed for each year and season using

the 50th quantile only, for a total of 7 x 4 = 28 spectral indices variables per year.

A reprocessing of the ERA5 Land hourly dataset has been used to have monthly aggregates

of air temperature (2 meters above ground), surface temperature and precipitation. Original

ERA5 data was aggregated to daily data, and subsequently to monthly data, with increased

resolution (1 km) using CHELSA data (Karger et al., 2020): in this way the general

spatial and temporal pattern of ERA5 Land dataset was kept while using the fine spatial

detail coming from the CHELSA dataset. For air and surface temperature we obtained

the monthly minimum, mean and maximum, while for precipitation the monthly sum for

a total of 84 climatic time series layers.
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Table 3.1: Table with Landsat-derived spectral indices used in this study.

Spectral Index Abbreviation Formula Reference

Enhanced Vegetation Index EVI 2.5 × NIR−RED

NIR + 6 ×RED − 7.5 ×BLUE + 1
(Huete et al., 2002)

Enhanced Vegetation Index 2 EVI2 2.5 × NIR−RED

NIR + 2.4 ×RED + 1
(Jiang et al., 2008)

Modified Soild Adjusted Vegetation Index MSAVI (2 ×NIR + 1) −
√

(2 ×NIR + 1)2 − 8 × (NIR−RED)

2
(Qi et al., 1994)

Normalized Burned Ratio NBR
NIR− SWIR2

NIR + SWIR2
(Key and Benson, 1999)

Normalized Difference Vegetation Index NDVI
NIR−RED

NIR + RED
(Tucker, 1979)

Normalized Difference Wetness Index NDWI
NIR− SWIR1

NIR + SWIR1
(Gao, 1996)

Soil Adjusted Vegetation Index SAVI (1 + 0.5) × NIR−RED

(NIR + RED + 0.5)
(Huete, 1988)

Static covariate datasets

As additional static covariates, we used the following datasets:

• 19 bioclimatic variables (Hijmans et al., 2005) for the period 1979 - 2013 to provide

a baseline of the actual state of the climate; we used bioclimatic variables from the

CHELSA dataset since it has been claimed to better match data from meteorological

stations than WorldClim (Karger et al., 2017),

• 50 chorological maps downloaded from the European Atlas of Forest Tree Species web

portal. Chorological maps provide a qualitative overview of the spatial distribution of

a species over an area, differentiating between native and introduced. We considered

both the native and introduced areas as the potential distribution of a species for

the time period covered by the study,

• Global bare ground cover from Hansen et al. (2013). The layer provides information

on bare ground cover on a percent (1–100) scale,

• Solar direct and diffuse irradiation,

• 13 cloud fraction layers (monthly averages and annual average) derived from MODIS

(Wilson and Jetz, 2016),

• Digital terrain model (DTM) for Europe (Hengl et al., 2020) and DTM-derived

(slope, hillshade) variables,

• Easterness, northness (Olaya, 2009), and positive and negative openness,

• Probability of surface water occurrence at 30 m resolution derived from Landsat

time series (Pekel et al., 2016),

• Height above nearest drainage (HAND) and flow accumulation area at 90 m resolution

from the MERIT Hydro global hydrography datasets,
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• Long-term flood hazard map calculated on a 500 years time period (Dottori et al.,

2016),

• Water vapor pressure (kPa) based on the WorldClim2.1 dataset (Fick and Hijmans,

2017),

• Long-term snow probability based on MODIS (MOD10A2) and available at https:

//doi.org/10.5281/zenodo.5774953,

• Monthly wind speed (1998–2018) from TerraClimate.

For more details on spatial and temporal resolution, preprocessing and data sources see

the supplementary material.

3.2.5 Feature selection

Features for potential and realized distribution for each species were selected using the

Recursive Feature Eliminitation (RFE) strategy, implemented in the scikit-learn library

(Pedregosa et al., 2011). For each combination of species and modelled distribution we

trained a random forest classifier (num.trees = 50, default values were used for the other

parameters): RFE fits the model and removes the weakest feature until a specified number

of features is reached, then ranks the importance of the features based on the model’s

coefficients (for regression-based models) or feature importance (for random forest).

The minimum number of features was not known before hand: to select this number, we

ran the Recursive Feature Elimination with a spatial 5–fold Cross Validation (RFECV),

using the logarithmic loss, or logloss, as a scoring estimator. Logloss is one of the most

robust performance metrics when it comes to imbalanced datasets (Ferri et al., 2009).

Logloss is indicative of how close the predicted probability for an observation i is to the

corresponding label y. For binary classification with label y ∈ 0, 1 the overall logloss was

calculated as:

Logloss = − 1

N

N∑
i=1

yi · ln [p(yi)] + (1 − yi) · ln [1 − p(yi)] (3.1)

where N is the total number of observations and p(yi)is the predicted probability for

an observation with yi = 1. It follows that values close to 0 indicate high prediction

performances, with logloss = 0 being a perfect match, and values that are positive to

infinite are progressively worse scores. For comparison, the value of logloss for random

assignment depends on the number of classes (a) and the prevalence of the classes (b):

for binary classification and a balanced (50:50) dataset with N = 10 observations, the

equation (3.1) gives a value of 0.69.

https://doi.org/10.5281/zenodo.5774953
https://doi.org/10.5281/zenodo.5774953
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We ran the RFECV on a 25% random subsample for each species and modelled distribution;

this operation was replicated 5 times. For each iteration we selected the minimum of

the logloss function (see Fig. S2 in https://zenodo.org/record/6516728/preview/

Supplementary_material.pdf#subsection.0.3) and the averaged result was then used

as the minimum number of features for the RFE.

3.2.6 Model building and evaluation

Modeling methods

To build an ensemble model, we decided to compare predictive performances and com-

puting time (hyperparameter tuning — cross validation — prediction time) of different

machine learning algorithms on a random 25% subset of observations for both poten-

tial and realized distribution datasets. A detailed workflow of this process is shown in

Fig. S3 (in https://zenodo.org/record/6516728/preview/Supplementary_material.

pdf#subsection.0.4). We decided to conduct this test on seven different species: choice

of the species was based on the spatial distribution of the training points and the ratio

between presence and absence points. In this way, algorithms performances could be tested

on different ecological conditions (latitudinal and longitudinal gradient) and imbalance of

classes. The species selected were: A. alba, C. sativa, F. sylvatica, P. abies, P. halepensis

and P. sylvestris.

We compared seven different algorithms: Random Forests (RF) (Breiman, 2001a), Gradient-

boosted trees (GBT) (Friedman, 2002), Classification trees (CART) (Therneau and

Atkinson, 2011), Generalized Linear Models (Nelder and Wedderburn, 1972) with Lasso

regularization (Tibshirani, 1996) (just GLM from now on), C5.0 (Quinlan, 1986), K-nearest

neighbor (KNN) (Fix and Hodges, 1989) and Artificial Neural Network (ANN) (Ripley and

Venables, 2017). Analyses were conducted using the mlr package (Bischl et al., 2016). For

each algorithm, a hyperparameter space was defined: combinations of hyperparameters

were generated per model based on a grid search of 5 steps per hyperparameter. More details

on the hyperparameter space are available in Table S3 (found in https://zenodo.org/

record/6516728/preview/Supplementary_material.pdf#subsection.0.5).

Selecting component models

We evaluated each combination of hyperparameters by comparing logarithmic loss values

during a 5–fold spatial cross validation replicated 5 times: we used spatial instead of normal

cross validation for hyperparameter tuning because it reduces overoptimistic performance

results in the presence of strong data clustering (Schratz et al., 2019). We used the tile

ID produced in the tiling system for Europe as the blocking parameter in the training

function in mlr. All the compared algorithms were used in ”probability” mode, that is,

predicting for each observation in the dataset a probability value for presence (class 1) and

absence (class 0). Besides the performance achieved in the logloss metric, computing time

https://zenodo.org/record/6516728/preview/Supplementary_material.pdf#subsection.0.3
https://zenodo.org/record/6516728/preview/Supplementary_material.pdf#subsection.0.3
https://zenodo.org/record/6516728/preview/Supplementary_material.pdf#subsection.0.4
https://zenodo.org/record/6516728/preview/Supplementary_material.pdf#subsection.0.4
https://zenodo.org/record/6516728/preview/Supplementary_material.pdf#subsection.0.5
https://zenodo.org/record/6516728/preview/Supplementary_material.pdf#subsection.0.5
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for the hyperparameter tuning, a 5–fold spatial cross validation and prediction time for a

30 km tile were also considered as additional criteria: we calculated the computing time

only for the species that had the highest computational costs (P. sylvestris). This gave us

an estimate of how long the process of training each component model could take during

the building of the ensemble model. We used logloss performance as the first criteria

to choose the component models: only in the case of two or more methods performing

within one standard deviation from the average performance, we chose the computationally

fastest.

Training ensemble model using stacking

Stacked generalization involves combining predictions made by level 0 models and using

them as training data for a level 1 model (or meta-learner from now on) (Wolpert, 1992).

To limit overfitting in the training data, we used a 5–fold spatial cross validation: the

out-of-fold predictions were used to build a level 1 training dataset for the meta-learner.

We used logistic regression as a meta-learner, which is usually the most used model for

classification problems (Gomes et al., 2012). Final predictions are delivered as probability

maps (0–100%) for presence together with model uncertainty maps: we consider as model

uncertainty the standard deviation of the predicted values of the base learners. The

principle is that the higher the standard deviation the more uncertain the model is

regarding the right value to assign to the pixel (Brown et al., 2020).

Variable importance assessment

To assess to what extent the three level 0 models used different parts of the available feature

space and the agreement between these models, we compared the variable importance

when possible. For RF and CART we used Gini importance, for C5.0 the ”percentage of

training set samples that fall into all the terminal nodes after the split”(Quinlan, 1986),

for GBT the gain metric (Shi et al., 2019) and for GLM the coefficients for the minimum

fitted value of λ (Hastie et al., 2016). To better analyze the results, we aggregated the

whole set of variables in 7 macro-classes:

• Climate (i.e. precipitation, wind speed, water vapor, snow probability etc.),

• Temperature (i.e. time series of recorded temperatures for the observed time period),

• Bioclim (i.e. bioclimatic variables from CHELSA),

• Topography (i.e. DTM and DTM-derivative variables),

• Landsat band (i.e. all percentiles, all seasons),

• Distribution (i.e. species distribution maps from European Atlas of Forest Tree

Species),

• Spectral index (i.e. spectral indices derived from Landsat bands).
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Model evaluation

Predictive performance of the ensemble model was assessed through spatial 5–fold cross-

validation repeated 5 times (Roberts et al., 2017) with logloss as performance metric.

To investigate if the ensemble model outperformed the component models, we compared

results of the spatial cross validation of the ensemble with the results of the component

models. To be able to compare performances between different species, we converted

logloss performances used the following formula:

R2
logloss = 1 − Loglossm

Loglossr
(3.2)

where Loglossm is the performance achieved by the model and Loglossr is the value

for random logloss, used as a baseline for predictive performances. Values close to 1

indicate high predictive performances, while values close to 0 indicate lower performances,

with 0 meaning that the model is no better than a random guess. We also reported a

threshold-dependent metric, the True Skill Statistic (TSS) and a threshold independent

metric, the area under ROC curve (AUC), as they are commonly used metric to evaluate

SDMs predictive performances (Chakraborty et al., 2021; Shabani et al., 2018). TSS was

computed using the default threshold value (0.5) when assigning predicted probabilities

values to the presence or absence class. Logloss is one of the least sensitive metric to

prevalence (Ferri et al., 2009), hence our choice of logloss as a primary performance metric

to compare different models coming from different training datasets.

To assess the effect of high resolution products on predictive performances, we excluded

Landsat bands and Landsat-derived spectral indices from the list of predictors used for

realized distribution. We then applied our spatio-temporal machine learning framework

(feature selection — hyperparameter tuning — ensemble model training) on each species

and ran a 5–fold spatial cross validation repeated 5 times to evaluate model performances.

For the ensemble model we used the same component models (RF, GBT and penalized

GLM) and meta-learner (logistic regression). Results of this analysis were then compared

with the performances achieved by the ensemble models using Landsat data.

3.3 Results

3.3.1 Spatio-temporal machine learning framework

Table 3.2 shows that RF on average had the highest predictive performances for all species,

with GLM coming closer. RF scored the lowest logloss among all the other algorithms in

9 cases out of 14 and scored the same as GLM in 1 case out of 14. In the remaining cases,

GLM scored the lowest logloss value, with RF scoring the second lowest. On average,

GLM performed better in in potential distribution tasks, with RF clearly outperforming
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every other algorithm in realized distribution tasks. Overall, GLM and RF always scored

the lowest logloss values, from two to three times lower than all the other algorithms in

some cases.

Table 3.2: Average logloss for the compared algorithms and for the subset of seven target

species. In bold are highlighted the best performing learners for each task.

Species Distribution ANN C5.0 GBT GLM KNN RF CART

A. alba Potential 0.242±0.024 0.053±0.009 0.097±0.003 0.027±0.003 0.120±0.021 0.033±0.006 0.063±0.008

C. sativa Potential 0.210±0.019 0.118±0.020 0.128±0.003 0.058±0.006 0.197±0.033 0.057±0.008 0.132±0.011

F. sylvatica Potential 0.516±0.027 0.114±0.011 0.138±0.003 0.055±0.004 0.108±0.012 0.060±0.004 0.184±0.014

P. abies Potential 0.390±0.017 0.176±0.010 0.199±0.005 0.144±0.006 0.314±0.022 0.114±0.005 0.292±0.009

P. halepensis Potential 0.220±0.023 0.053±0.012 0.092±0.003 0.019±0.002 0.075±0.015 0.023±0.003 0.070±0.013

P. sylvestris Potential 0.655±0.041 0.370±0.017 0.358±0.005 0.318±0.008 0.569±0.030 0.232±0.006 0.430±0.013

Q. robur Potential 0.422±0.019 0.117±0.012 0.144±0.004 0.065±0.004 0.152±0.026 0.068±0.007 0.154±0.010

A. alba Realized 0.383±0.030 0.145±0.017 0.140±0.007 0.106±0.009 0.245±0.059 0.059±0.009 0.151±0.021

C. sativa Realized 0.316±0.025 0.175±0.031 0.161±0.010 0.118±0.017 0.351±0.065 0.077±0.010 0.173±0.017

F. sylvatica Realized 0.654±0.055 0.118±0.010 0.147±0.005 0.129±0.007 0.209±0.039 0.057±0.011 0.200±0.025

P. abies Realized 0.666±0.053 0.180±0.011 0.208±0.009 0.177±0.009 0.467±0.042 0.125±0.008 0.280±0.035

P. halepensis Realized 0.292±0.034 0.065±0.014 0.104±0.004 0.025±0.005 0.074±0.022 0.025±0.005 0.084±0.013

P. sylvestris Realized 0.656±0.043 0.451±0.013 0.473±0.009 0.478±0.009 0.776±0.052 0.304±0.006 0.549±0.012

Q. robur Realized 0.642±0.049 0.105±0.016 0.133±0.005 0.091±0.011 0.200±0.057 0.053±0.008 0.200±0.030

The absolute difference between values scored by GLM and RF is lower than when RF had

the advantage over GLM. This indicates a high reliability of RF performances even when

other models outperform it. The ANN scored the highest logloss values in all tasks, so it

was immediately excluded from the pool of level 0 models to choose from. It was time

consuming to find a common hyperparameter range well suited for different tasks, since

neural networks are often extremely situation-dependent. After a preliminary selection,

we used the range shown in Table S3: despite that, our results remained inferior to those

obtained with the other learners. On top of that, the mlr implementation of neural

networks, based on the deepnet R package (Rong and Rong, 2014), doesn’t allow the use

of ReLU (rectified linear activation function) as an activation function, which would have

been beneficial for our purposes. Based on logloss performances, we selected RF and GLM

as the first two components of the ensemble. Based on similar values of logloss (within one

standard deviation of the average performance) scored by C5.0, GBT, KNN and CART,

we used computational costs to choose the third component model (Table 3.3).

KNN was excluded due to computing time values being from one to two order of magnitude

higher than the ones scored by the other models. Even though CART scores very low values

in cross validation and prediction time in both potential and realized tasks, tuning time

is the second highest, just behind KNN. C5.0 is faster than GBT in the whole potential

workflow (446.8 seconds against 741.6) but slower in the realized workflow (1327.7 seconds

against 1006.4). Considering both workflows, GBT proved to be faster and more consistent

in cross validation and prediction time, showing an increase in tuning time of just 30%

with double the amount of training data (see Table S2).
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Table 3.3: Hyperparameter tuning, cross validation and prediction time for each model and

distribution task. Time values are reported in seconds. Tests were conducted in a parallel

computing setup on a CPU server running 2 x Intel(R) Xeon(R) Gold 6248R - 3.00GHz (96

threads) with 504 GB RAM.

Distribution Process ANN C5.0 GBT GLM KNN RF CART

Potential Tuning 561.2 310.7 527.2 448.9 2433.6 104.4 576.5

Potential Cross validation 57.2 44.7 192.5 620.4 356.9 240.2 26.5

Potential Prediction 24.1 91.4 21.9 14.8 19272.9 35.5 15.4

Realized Tuning 1031.6 964.2 688.4 859.1 12321.9 396.6 1650.2

Realized Cross validation 119.2 165.4 290.8 1372.9 1445.1 805.5 114.9

Realized Prediction 26.1 198.1 27.2 17.3 > 1 day 52.4 17.4

Total 1819.2 1774.5 1748.0 1455.5 > 1 day 1634.6 2400.9

3.3.2 Variable importance

Of all the features used in both potential and realized distribution, 60 are considered

important for both tasks. For potential distribution, diffuse irradiation, precipitation of

the driest quarter (BIO17) and precipitation of the driest month (BIO14) were the most

important and most frequent predictors across all component models and species (see Fig.

3.3).

The density distributions per macro-class help understanding how the Bioclim macro-class

was the one with on average both most important and most frequent variables. Other

variables are more species-specific: the minimum surface temperature of April records the

highest absolute value in relative importance but it was important for only one species (Q.

robur, see Fig. S7 in https://zenodo.org/record/6516728/preview/Supplementary_

material.pdf#subsection.0.7). The Temperature macro-class accounts the highest

numbers of predictors, but the values recorded in both variable importance and frequency

are the lowest among all the macro-classes. The Climate macro-class had the largest

variety in predictors and variables in this class are homogeneously spread out across all

the species in both variable importance and frequency.

For realized distribution, the summer aggregates of Landsat green (25th, 50th and 75th

quantiles) were the three most important and most frequent variables across all models and

species, closely followed by the summer aggregates of Landsat red and fall aggregates of

NDVI (Fig. 3.3). While the Spectral Index macroclass clearly outperformed the other ones

in relative importance, the Bioclim class scored as the most frequent across all the species.

The distribution maps scored the highest values for variable importance (distribution of

the F. excelsior and the Tilia spp.) but they were species-specific.

Overall, the component models show more differences in variable importance in the

potential distribution models than in the realized ones. On average, RF and GBT selected

the same variables in the top–10 but not always in the same order, while GLM tended to

https://zenodo.org/record/6516728/preview/Supplementary_material.pdf#subsection.0.7
https://zenodo.org/record/6516728/preview/Supplementary_material.pdf#subsection.0.7
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Figure 3.3: Relative variable importance vs frequency of the variables of the top–20 most

important across the component models and all species for potential (a) and realized (b)

distribution. Each plot can be divided in four quadrants, from the top left clockwise: variables

with high relative importance but low frequency (i.e. important for one or few species), variables

with high importance and high frequency (i.e. important for all species), variables with low

importance and high frequency (i.e. they occured often but were not important) and variables

with low importance and low frequency. Labeled dots are variables that recorded high values

of relative variable importance or frequency.
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choose completely different variables (i.e. spectral indices for realized distributions and

wind speed for potential distribution). This suggests how the ensemble models tend to

use a wider proportion of the feature space than single models. This tendency is most

apparent in the potential distribution models. In the realized distribution models, the

component models agree in selecting the top-10 most important variables predictors from

Landsat bands or Spectral indices. RF and GBT considered on average the Landsat bands

as the most important, while GLM selected the spectral indices more often.

3.3.3 Accuracy assessment

Figure 3.4: Aggregated results of the accuracy assessment per model and distribution

expressed using AUC, TSS and R2
logloss
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Fig. 3.4 shows that on average the ensemble model outperformed all component models in

both potential and realized distributions. AUC values seem to be overoptimistic and with

low variability for all algorithms and distributions, with the largest interquartile range

(IQR) being GLM - potential, going from 0.97 to 0.99. Values for TSS and R2
logloss seem

to be more conservative, with the ensemble still having the highest average (TSS = 0.898,

0.874 and R2
logloss = 0.857, 0.839, respectively, for potential and realized distribution)

values, and lowest IQR (TSS = 0.85 - 0.96, 0.82 - 0.92 and R2
logloss = 0.82 - 0.93, 0.81 -

0.89, respectively, for potential and realized distribution). While results from our modeling

framework proved GLM and RF being the best models in both potential and realized

tasks (see Table 3.2), GBT achieved overall better performances than both algorithms.

In general, the models for potential distribution achieved better predictive performances

than those for realized distribution; however potential distribution has greater IQRs as

well as larger outliers.

Fig. 3.5 shows the performances of the ensemble model per species and distribution. Results

for the component models are available in Table S4 and S5 (found in https://zenodo.

org/record/6516728/preview/Supplementary_material.pdf#subsection.0.8). Fol-

lowing the trend shown in Fig. 3.4, differences in performances are minimal if we look at

the AUC results, while they grow significantly if we look at the TSS and R2
logloss ones. We

see that for both potential and realized distribution, models for Q. suber achieved the best

performances (TSS = 0.968, 0.959 and R2
logloss = 0.952, 0.949, respectively, for potential

and realized distribution), while P. sylvestris (TSS = 0.731, 0.785 and R2
logloss = 0.585,

0.670) and P. nigra (TSS = 0.658 0.686 and R2
logloss = 0.623, 0.664) achieved the worst.

Furthermore, while Q. suber model has overall best performances in all metrics, in both

potential and realized distribution AUC grades P. sylvestris as the worst and P. nigra as

the second worst; the opposite is true for TSS scores. For R2
logloss, P. sylvestris scored

as the worst in potential distribution and second worst in realized distribution, with the

opposite happening for realized distribution.

3.3.4 Influence of high resolution on predictive performances

Fig. 3.6 shows that ensemble models for realized distribution including Landsat data

consistently outperformed models without Landsat data. In all metrics, values scored by

the Landsat models show higher median and average values than the ones without Landsat

and lower IQR range. The same trend is shown by all metrics: like in the previous cases

shown in section 3.3.3, AUC values are high, reaching 1 for some species, and with low

IQR. TSS and R2
logloss show a larger IQR and lower median and average values than AUC:

given the large differences in values scored by the models in TSS and R2
logloss, these two

metrics proved to be more helpful to discriminate model performances across multiple

species. On average, including Landsat data increases TSS performances by 6.5% and

R2
logloss by 7.5%, while when comparing median values the increase in performances is

higher in TSS (+7.5%) and lower in R2
logloss (+7%).

https://zenodo.org/record/6516728/preview/Supplementary_material.pdf#subsection.0.8
https://zenodo.org/record/6516728/preview/Supplementary_material.pdf#subsection.0.8
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Figure 3.5: Results of the accuracy assessment per model and distribution for the ensemble

model only expressed using AUC, TSS and R2
logloss

3.4 Discussion

3.4.1 Modeling framework

Combining models using the ensemble approach is thought to reduce model uncertainty

and increase its robustness in modeling species distributions (Araújo and New, 2007). We

used ensemble with stacked generalization as ensemble approach, which has not been tested

yet for species distribution modeling. We also trained the models in a spatio-temporal

framework, expecting the models to generalize better when predicting in a temporal

window not included in the training data.
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Figure 3.6: Aggregated results of the accuracy assessment for modeling realized distribution

with and without the Landsat bands and spectral indices expressing using AUC, TSS and

R2
logloss

Part of the intent of the paper was to provide a robust reproducible framework to model

species distributions based on ensemble ML. Hao et al. (2020) used a similar methodological

framework to the one used in this study. They modelled the distribution of 13 species of the

genus Eucalyptus in South Australia and tested performances of ensemble model against

individual models; they used mean and weighted average as ensemble strategies. They

also tested cross validation versus spatial cross validation for model performances. The

study doesn’t specify which type of distribution was modelled: according to the definition

provided in our study, we can compare their results with our potential distribution results.

Their results show how spatial cross validation performances were more conservative

than non spatial cross validation ones when compared with performances on independent

validation sets. This supports and reinforces our use of spatial cross validation as a

validation strategy for the modeling framework. Ensemble models performed well but were

outperformed by untuned individual models and by a tuned GBT. There was also no clear

advantage in predictive performances when using different ensemble strategies. This is in

contrast with our results, where the ensemble based on stacking outperformed even tuned

component models (13 cases out of 16), performed as good as the best component model (2

out 16) and in just one case performed worse (tuned GBT was better than the ensemble).
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However, this is true only when comparing results from the Logloss and R2
logloss: AUC and

TSS both show that the ensemble outperformed or performed as good as tuned GBT in all

cases and never performed worse. Given the very few occurrences in which the ensemble

performed worse, this may be an indication of stacking being a better ensemble strategy

when modeling species distribution. Valavi et al. (2021) reported an ensemble of tuned

individual models as outperforming all other ML and regression based algorithms when

benchmarking model performances on potential distribution of 225 different species; their

results also show nonparametric technques outperforming traditional regression methods.

Among SDM studies focused on testing and comparing different SDM methodologies, the

study from (Valavi et al., 2021) is also one of the few reporting computation time for all

the models: this is a metric seldomly reported, but relevant when considering the optimal

trade-off between accuracy and time, a well-known issue in the ML field (Hosseinzadeh

et al., 2021).

In our cross validation estimates, AUC proved the least useful of the performance met-

rics used in this study, with low variability in AUC scores among different species and

distributions despite the difference in predictor variables used and amount and source (i.e.

LUCAS, other tree species) of absence data. A general trend shown by the other metrics

is mostly picked up (i.e. ensemble superior to base models, models for Q. suber being the

most accurate), but AUC scores are too similar to ascertain critical problems or possible

artifacts in our models. Both TSS and the R2
logloss provided more useful metrics, showing

models for P. sylvestris and P. nigra performing poorly compared to other models in

both potential and realized distribution. Our results seem to agree with the ones from

Chakraborty et al. (2021), who predicted current and future potential distribution of tree

species over Europe using an ensemble framework based on averaging. We compared

our results only with species present in both studies (A. alba, F. sylvatica, P. abies, P.

sylvestris, Q. robur): final model AUC values are all ≥0.94 on both test set and external

validation set, while TSS values start from 0.80.

RF and GLM are the best component models to map both potential and realized dis-

tributions when trained on a data sample, but GBT often outperforms RF or even the

ensemble when tuned and trained on the whole dataset. In general, differences in predictive

performances between the ensemble and the component models are also higher in potential

distribution than in realized distribution. The list of variable importance per component

model, species and task may give an insight to this: in the potential tasks, the component

models use different parts of the feature space before the predictions are combined by

the meta-learner. All the models select as most important variables for the task different

predictors. For realized distribution tasks, the models all agree in selecting either Landsat

bands or spectral indices as most important variables, resulting in predictions that are

highly correlated and with less variance between the models.
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Ensemble modeling is known to perform best when there is a high diversity between

the base models and no or negative correlation between their outputs (Zhou, 2019).

The introduction of Landsat bands and spectral indices in general greatly increased the

predictive performances of the models for realized distribution compared to potential

distribution models. However, this also homogenized predictions, which makes the second

condition reported above not always respected. We separately compared the repeated

spatial cross validation performances of ensemble and component models excluding the

Landsat bands and spectral indices. In this case, the ensemble never performed worse than

the best component model. In general, if the ensemble provides predictive performances

as good as or worse than the best component model, the best component model must

be preferred (Zhang and Ma, 2012). However, ensemble models can still provide more

advantages than individual models since they reduce model uncertainty and are more

robust towards extrapolation (Mehra et al., 2019).

High resolution or hyperspectral data have not been used so far for SDMs but are extremely

popular in tree species classification: the usage of such predictors has consistently increased

over the years the predictive performances of ML tree species classifiers (Deur et al., 2020).

Such data is not always available on a large spatial and temporal scale, so studies including

these predictors usually cover a limited area compared to the one covered by our study.

Bridging this gap may help having operational continental scale species distribution

maps. Similarly, ML methods have mostly been used for tree species classification,

where predictor variables such as temperature or precipitation are seldomly included and

environmental variables not throughly considered, rather than for SDM. Despite that, we

found in literature several studies which agree with our results: when classifying five (three

broadleaves and two conifers) forest tree species in Portugal,  Loś et al. (2021) found out

that GBT outperformed RF and KNN, reaching accuracy values ≥90% using Sentinel-2

reflectance bands only. Wessel et al. (2018) similarly reached high level of accuracy using

only Sentinel-2 bands in German forests, but their best results were achieved using an

object-based multitemporal Support Vector Machine (SVM) classifier: despite SVM being

a very powerful ML method, it was was purposefully excluded from this study due to its

computation intensity and lack of parallelization.

In our study, the ANN tested performed poorly, mostly due to the limited implementation

options in the R environment of this method. Contrary to our results, Raczko and

Zagajewski (2017) found ANN outperforming RF and SVM when including hyperspectral

data; however, they also showed that ANN seemed to be the algorithm which predictions

were strictly dependent from the dataset used, while RF and SVM showed more stable

performances: the extreme sensibility of ANN to perturbations is a well known issue

in the ML field (Colbrook et al., 2022). This issue is partially solved by Convolutional

Neural Networks (CNNs), which have achieved considerable results when applied for SDM

purposes, even when compared with ML methods such as GBT and RF. CNNs also showed

to be particularly promising when commonly used remotely sensed predictor variables
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such as LiDAR (Light Detection and Ranging) and hyperspectral high resolution data

are available (Fricker et al., 2019; Zhang et al., 2020). In some cases, CNNs have even

outperformed tuned ML methods given their ability to grasp how local landscape structure

affects prediction of species occurrence, in contrast with more conventional ML methods

which cannot acknowledge the influence of environmental structure in local landscapes

(Deneu et al., 2021; Sothe et al., 2020). The ML framework presented in this study could

greatly benefit from the inclusion of CNNs.

3.4.2 Species distributions

Our cross-validation accuracy assessment results indicate high predictive performances for

all species, in both potential and realized distributions. In the case of mapping potential

distribution, diffuse irradiation and precipitation of the driest quarter (BIO17) are the

most important predictors overall. These results are partially in contrast with Dyderski

et al. (2018), who modelled current and future potential distribution of 12 tree species over

Europe. We compared our results only with species present in both studies (A. alba, F.

sylvatica, P. abies, P. sylvestris, Q. robur): in their case, temperature-related bioclimatic

variables (BIO1, BIO5, BIO7 and BIO10) were more important than precipitation-related

bioclimatic variables. Few peer-reviewed studies have reported on the importance of

predictors other than bioclimatic ones in shaping species’ potential distributions. We

found that, on average, each component model considers two or more predictors from the

Bioclim macro-class among the top-10 most important variables to predict the potential

distribution. Previous findings in literature have shown the importance of bioclimatic

variables when modeling species distributions (Fourcade et al., 2018), but this may also

be a consequence of bioclimatic variables and elevation being the most employed, if not

the only, predictors in numerous SDM studies (Fois et al., 2018). Bucklin et al. (2015)

compared the influence of different sets of environmental predictors on model performances,

but the list of predictors used in the study included human influenced factors, so their

results cannot be used to assess the driving factors for potential distributions. Even if

our results show the bioclimatic variables as the most important predictors for potential

distributions, further studies in this direction may be needed. The scale of the study

may affect the importance of predictor variables: on a large scale, distribution may be

influenced by macro environmental factors, while at a local scale, other environmental

factors may limit distribution more significantly. Walthert and Meier (2017) and Weigel

et al. (2019) proved that soil properties are more important than either bioclimatic or

only climatic variables when modeling potential tree species distribution at, respectively,

country and regional scale.

Variable importance confirms that Earth Observation layers such as the 25th, 50th and

75th quantile summer aggregates for the Landsat green and red band and the 50th

quantile fall aggregates of NDVI are overall the most important layers for mapping realized

distribution of species. The inclusion of Landsat data and derived spectral indices increases
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predictive performances and contains more detailed information on species distribution

ranges. Importance of NDVI is well known since it is one of the most used proxies in

vegetation studies such as biodiversity estimation (He et al., 2009; Madonsela et al., 2017),

net primary productivity (Schloss et al., 1999) and land degradation (Easdale et al., 2018),

phenology (Fawcett et al., 2021) and species composition changes (Wang et al., 2021).

NDVI incorporates information from the red and the near-infrared (NIR) portion of the

electromagnetic spectrum. Vegetation’s behavior in this portion of the spectrum has long

been used in vegetation mapping to distinguish between coniferous and deciduous tree

species (Hoffer, 1984). The green band, although usually less important than the red

and NIR band, has already proved useful in vegetation mapping to classify forest types

(Gao et al., 2015), predict forest variables (stem volume, diameter and tree height) at

species level (Astola et al., 2019) and forest biomass at community level (Nandy et al.,

2017).

Comparing our results with chorological maps from the European Atlas of Forest Tree

Species (San-Miguel-Ayanz et al., 2016), we can see that in general both potential and

realized distribution correctly capture the species ranges. Overall, potential distribution

maps show homogeneous patterns of high probability values for all target species, while

realized distribution maps show very fragmented patterns. The realized distribution model

helps discriminating the presence or absence of the species due to biotic or other external

factors. A high geographical overlap between probability maps of realized distribution of

different species may reflect co-existence within the same forest stands and could help in

clearly define forest communities.

However, our results have to be interpreted and analyzed carefully: contrary to process

based models, correlative models describe the patterns, not the mechanisms, in the associa-

tion between species occurrences and predictor variables; for this reason, correlative SDMs

risk overlooking potentially important driving factors determining species distributions

since they cannot distinguish between direct and indirect effects (Sirén et al., 2022). A

known issue in this sense is the masking effect of abiotic factors on competition and

predation: SDMs could estimate abiotic predictors as the most important for species

abundance, even in those cases when distribution is strongly affected by competition

(Godsoe et al., 2017) or when biotic interactions are strictly correlated with abiotic factors

(Filazzola et al., 2020).

ML methods strongly depend from high quality datasets, so a considerable effort was

spent in creating two different presence-absence datasets for each target species, one for

potential and one for realized distribution: while the same geographical extent was used

for both datasets, different rules were used to select true absence (LUCAS dataset) or

pseudo-absence (other tree species occurrences) points. This modeling choice may be

one of the causes of cross validation estimates for potential distribution being higher

than for realized distribution. Restricting the study area from which true and pseudo
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absence points are collected reduces the applicability of the models for predictive purposes

(Pearson and Dawson, 2003), with unpredictable effects on future projections (over- or

under-prediction, see Thuiller et al. (2004)). On the other end, no spatial constraint leads

to unwanted situations where larger scale differences rather than local ones are picked,

leading to the infamous SDM case of ”there-are-no-polar-bears-in-the-Sahara” (Lobo et al.,

2010). Chefaoui and Lobo (2008) proved how best hypotheses for potential distribution are

obtained using absence points that are placed farther apart than the ones needed for the best

hypotheses on realized distribution, hence using the same study area for both distributions

may have lead to an overstimation of presence in potential distribution. Furthermore,

Lobo et al. (2010) proved that for realized distribution best practice would be to avoid

the absences from nearest localities due to possible contamination with methodological

absences; while this was not an issue when considering absences coming from the LUCAS

dataset, using information of other tree species occurrences as pseudo-absence may have

affected our models. The criteria used to select pseudo-absence occurrences in SDM

represent a big challenge in SDM, such that the topic has been the focus of multiple studies

in the last decade (Iturbide et al., 2018a; Iturbide et al., 2018b; Senay et al., 2013).

3.4.3 High resolution contributions: is finer always better?

Bioclimatic variables available only at coarse spatial resolution were used as predictor

variables in both potential and realized distribution. The Landsat bands and the spectral

indices were not the only high resolution layers used in this study: terrain and terrain-

derived predictors were also included at 30 m resolution. However, despite the terrain

data high resolution, the tree species potential distribution patterns mostly reflect the

original spatial resolution of the bioclimatic variables. Thus, climate influences species

distribution at the European scale. Even though this might indicate that mapping potential

distributions at high resolution may not be necessary, it can still be useful for different

case studies. For example, comparing the difference, and hence mapping the gap, between

potential and realized distribution at the same fine scale may prove to be an invaluable

tool for both forest managers and conservation planners that work on the local level.

Potential distribution maps can be used to identify suitable areas for species in reforestation

and restoration programs; realized distribution maps can inform the forest managers on

the presence or absence of said species in those areas at a particular point in space and

time (Fig. 3.7). By removing the biotic factors that limit the presence of the species

in a potential reforestation site, using multiple distribution maps and including expert

knowledge on species synecology, structurally complex forest stands could be planned and

developed in a much more informed and data-driven way. A similar approach could be used

by conservation planners. Potential distribution is modelled by studying the relationship

between a species and the environmental conditions found in its native range, where the

species is at equilibrium (Jiménez-Valverde et al., 2011). Invasive species are usually more

abundant and productive in the introduced range than in their native ranges (Hierro et al.,
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Figure 3.7: Realized distribution of Fagus sylvatica for the period 2018-2020. Detailed insets

show a region around L’Aquila city, in Central Italy. The Fagus sylvatica forest on the northern

outskirts of the city was affected by a serious wildfire in 2007. The realized distribution maps

can be used to track compositional changes through time.

2005). This is due to the absence of biotic factors that normally limit species distribution

in their native range in the introduced range. Thus, a species that occupies only 10% of its

potential distribution in its native range may end up occupying a bigger percentage of it

in the introduced range. Estimation of potential distribution in the introduced range that

depends only on environmental factors are conservative by definition, potential distribution

maps may provide a good indication to conservation planners of how much the invasive

species could spread in the introduced range.

For realized distribution, including high resolution predictor variables in the model not only

increases predictive performances but also lowers overall and local values of uncertainty.

For forest management purposes, a large, consistent, standardized, long-term and high

resolution image collection such as the one provided by the Landsat program can help

extending in space and time information on tree species presence, composition and

abundance. A spatial resolution of 30 m is particularly well suited for NFI applications:

Strickland et al. (2020) derived probability maps of forest tree species for a 25 years time

period (1985–2010) using yearly Landsat composites to extend missing information from
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the Canadian NFI and estimating changes in forest cover, species composition and forest

disturbances. The increasing availability of even higher-spatial resolution satellite data

from the European Copernicus program (i.e. Sentinel 1 and 2) and commercial providers

(i.e. Planet) can potentially further enhance predictions by including more data and a

better spatial matching of in-situ and satellite-derived information.

3.5 Conclusions

In this paper we have developed, tested and reported a methodological framework for

predicting potential and realized distributions of 16 forest tree species using ensemble

ML and analysis-ready EO data. In general, our ensemble models achieved better pre-

dictive performances than individual models when modeling both potential and realized

distribution, while performing as good as the best individual model in the worst cases.

Bioclimatic variables proved in general to be the most important and frequent predictors

for potential distribution across Europe, mainly through precipitation-related predictors

(BIO17 and BIO14) even at high resolution (i.e. on a local scale), while reflectance-based

covariates were the most important predictors of the realized distributions. Overall, real-

ized distribution proved to be more complex to map accurately than potential distribution

and, among the species analyzed, distributions of specialist species proved easier to classify

than pioneer species. In general, the ensemble and component models achieved better

predictive performances for the potential distributions than for the realized distributions

as judged from the cross-validation estimates. Our results indicate a consistent increase

in predictive performances for realized distribution when adding high resolution data,

especially Landsat data at 30 m resolution and spectral indices to the list of predictors.

Significant findings of our work include: (a) distribution mapping for forest tree species

can be efficiently automated to the level of full automation, but this assumes high quality

/ artifact free training points with a homogenous distribution of occurrence and absence

points whenever possible; (b) complexity of ML methods can be significantly reduced by

implementing efficient hyperparameter tuning and feature selection; (c) analysis-ready,

high resolution reflectance time-series layers are maybe cumbersome to prepare and gap-fill

for clouds and artifacts, but overall come as the most important inputs for maximizing

predictive performances of realized tree species distribution.

We have released the maps and the code under open data / open source licenses to

enable other similar research and to help speed up land restoration and reforesta-

tion projects in Europe. The code is publicly available in our GitLab repository

at https://gitlab.com/geoharmonizer_inea/spatial-layers/-/tree/master/veg_

mapping, while the datasets and predictions of tree species are available as Cloud-Optimized

GeoTIFFs on Zenodo (see https://doi.org/10.5281/zenodo.5818021) and can be dis-

https://gitlab.com/geoharmonizer_inea/spatial-layers/-/tree/master/veg_mapping
https://gitlab.com/geoharmonizer_inea/spatial-layers/-/tree/master/veg_mapping
https://doi.org/10.5281/zenodo.5818021
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played in 2D and 3D using the compare tool on the EcoDataCube.eu viewer (see Fig.

3.8).

Figure 3.8: Difference between potential and realized distribution for Fagus sylvatica in

Northern Spain for the period 2018–2020 visualized using slider in the EcoDataCube.eu viewer

(https://ecodatacube.eu). ©Copyright OpenGeoHub & CVUT Prague & mundialis &

Terrasigna & MultiOne 2020–2022.

Even though we achieved high values of predictive performances, we still recognize many

future areas of improvements. Given the importance of Landsat data for the results of

this study, using a larger and higher resolution stack of reflectance-based predictors could

help to improve precision of the predictions. A good example in this direction would

be fusing all EO data currently available such as Harmonized Landsat Sentinel-2 (HLS)

(Claverie et al., 2018a) and eventually Sentinel 1 datasets. Hyper-spectral images (i.e.

from future hyper-spectral missions such as ENMAP, see https://www.enmap.org/) are

also proving to be useful to discriminate between different tree species and especially those

that grow under dominant species (Fricker et al., 2019; Shen and Cao, 2017). As any

ML-derived product, our predictions would benefit from having more and better quality

data on tree species, in particular those that come from NFI plots: it is now crucial to

have such data freely available to monitor processes such as species compositional changes,

niche shifts, forest regrowth and degradation, as recently stated by Nabuurs et al. (2022).

Exploring more sophisticated and different ML algorithms such as Deep Learning (DL)

techniques (Lakshminarayanan et al., 2016) to our ensemble framework is also another

area of improvement given the wide variety of applications these methods possess and

the results obtained in comparison with other conventional ML algorithms (Anand et al.,

2021; Choe et al., 2021; Deneu et al., 2021).

https://ecodatacube.eu
https://www.enmap.org/
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European forest dynamics, even though some recent results indicate increased mortality in

European forests (Popkin, 2021; Senf et al., 2018; Senf et al., 2021), are probably among

the least troubling in comparison to other continents. Our methodological framework

could potentially be implemented at a global scale, and possibly through Google Earth

Engine (GEE) (Hoogen et al., 2021) or through the European Space Agency’s OpenEO

platform (https://openeo.cloud/) to produce high resolution (10–30 m) predictions of

forest dynamics. Globally, there are many more tree species which are more important

for forest management and monitoring. For example, South America as a whole has

4 times the amount of tree species present in Europe and 50% of all tree species on

Earth (Cazzolla Gatti et al., 2022); in Brazil, it has been estimated that about 220 tree

species cover most of the land and represent over 95% of the biomass (i.e. so called

“hyper-dominant species” (Draper et al., 2021)). Scaling up the approach described in this

paper to help producing objective predictions, to assist with monitoring forest dynamics

and to support reforestation efforts globally is part of our next objectives.

https://openeo.cloud/
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Current trends in European forest

tree species distribution shifts

This chapter is based on:
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trend analysis and forest disturbance assessment of European tree species: concern-

ing signs of a subtle shift”. Forest Ecology and Management 554, 121652. doi:
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Abstract

Climate change poses a significant threat to the distribution and composition of forest tree

species worldwide. European forest tree species’ range is expected to shift to cope with the

increasing frequency and intensity of extreme weather events, pests and diseases caused

by climate change. Despite numerous regional studies, a continental scale assessment of

current changes in species distributions in Europe is missing due to the difficult task of

modeling a species realized distribution and to quantify the influence of forest disturbances

on each species. In this study we conducted a trend analysis on the realized distribution

of 6 main European forest tree species (Abies alba Mill., Fagus sylvatica L., Picea abies L.

H. Karst., Pinus nigra J. F. Arnold, Pinus sylvestris L. and Quercus robur L.) to capture

and map the prevalent trends in probability of occurrence for the period 2000–2020. We

also analyzed the impact of forest disturbances on each species’ range and identified the

dominant disturbance drivers. Our results revealed an overall trend of stability in species’

distributions (85% of the pixels are considered stable by 2020 for all species) but we also

identified some hot spots characterized by negative trends in probability of occurrence,

mostly at the edges of each species’ latitudinal range. Additionally, we identified a

steady increase in disturbance events in each species’ range by disturbance (affected range

doubled by 2020, from 3.5% to 7% on average) and highlighted species-specific responses to

forest disturbance drivers such as wind and fire. Overall, our study provides insights into

distribution trends and disturbance patterns for the main European forest tree species. The

identification of range shifts and the intensifying impacts of disturbances call for proactive

conservation efforts and long-term planning to ensure the resilience and sustainability of

European forests.
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4.1 Introduction

Tree species have repeatedly demonstrated remarked adaptability over time, changing their

geographical distributions in response to large scale fluctuations in the climate (Cheddadi

et al., 2016; San-Miguel-Ayanz et al., 2016; Svenning et al., 2010; Svenning and Skov,

2007). Over centuries up to millennia, these adjustments have highlighted the delicate

balance between species survival and the environmental conditions that either support or

negate their existence. Owing to their long generation time, trees are however particularly

sensitive to climate change. The current, unprecedented rapid climate change has the

potential to drive major shifts in tree species distributions (Hanberry and Hansen, 2015;

IPCC, 2022) to the point that it could alter the global location of entire biomes (Berner

and Goetz, 2022; Bonannella et al., 2023; Gonzalez et al., 2010).

Two decades of studies have significantly improved the detection and attribution of biome

shifts to climate change (Higgins et al., 2023; Lindner et al., 2010). Numerous studies

address the expected shifts in distributions of tree species using Species Distribution

Models (SDMs) (Franklin, 2010), which map the ecological niche of the species in space

under current conditions, and then include different climatic scenarios projections to

predict the geographical boundaries of the niche in the future (Dyderski et al., 2017;

Mauri et al., 2022; Thuiller et al., 2008; Zhang et al., 2017). There is general consensus

regarding the response of species’ ranges to climate change, pointing towards poleward

(Berner and Goetz, 2022; Zhu et al., 2012; Zhu et al., 2014) and upward (Feeley et al.,

2011) shifts in distribution ranges. Studies using tools like SDMs have mainly focused on

predicting potential species distributions. In contrast, modeling the realized distribution

is an inherently complex task and extrapolating this model into the future is even more

challenging. Despite its complexity, modeling the realized distribution in current conditions

may still be feasible, for example using Earth Observation (EO) data, but there are only

few examples of such exercises (Bonannella et al., 2022d; Gelfand and Shirota, 2021;

Hefley and Hooten, 2016). Compared to previous studies focusing on long term future

predictions using climate models, using EO data based models allows for timely and

consistent assessments of ongoing changes (Strickland et al., 2020): EO data does not only

provide higher temporal resolution compared to, for example, periodic surveys such as

National Forest Inventories (NFIs) programs, but also offers a broader spatial coverage,

including remote or inaccessible regions which are difficult to monitor from the ground.

EO data also offers a compelling advantage to extensive field surveys in terms of cost

efficiency: accessing and processing EO data is nowadays remarkably streamlined due to

the free availability of large collections of data, like the Landsat mission (Zhu et al., 2019),

or tools able to analyze such large collections like the cloud computing platform Google

Earth Engine (Gorelick et al., 2017). While field campaigns like NFI programs have been

used to detail current ongoing changes in species distributions at regional or national scale

(Ewald, 2012; Rigling et al., 2013; Scherrer et al., 2022), the decadal temporal resolution,
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the limited geographic extent (national at most) and access (only few users can actually

harvest all the useful information these collections of plot data offer) of these surveys

makes their use for tree species shifts assessment challenging (Nabuurs et al., 2022). Due

to these reasons, a comprehensive understanding of changes in tree species distributions

trends at large (i.e. continental) scale in the face of climate change is still lacking.

Particularly European forests have recently faced a barrage of severe threats as an effect

of previous forest management decisions and climate change (Senf and Seidl, 2021a).

These disturbances have increased consistently over the last century (Patacca et al., 2023;

Schelhaas et al., 2003; Seidl et al., 2011) with the most pronounced intensification occurring

in the last two decades (Senf et al., 2018). This intensification has caused extensive tree

loss and drastic changes in the structure and dynamics of European forests (Maes et al.,

2023; Popkin, 2021; Senf and Seidl, 2021a). Several studies identified positive correlations

between tree species diversity and abundance and the provision of ecosystem services

(Brockerhoff et al., 2017; Gamfeldt et al., 2013; Himes et al., 2020). Hence, their decline

not only negatively affects the environment but human societies as well (FAO, 2022;

FOREST EUROPE, 2020). Given the importance of the topic, numerous studies have

analyzed European forest disturbances qualitatively (Forzieri et al., 2021; Seidl et al.,

2017; Sommerfeld et al., 2018), quantitatively (Patacca et al., 2023) and spatially (Senf

and Seidl, 2021a; Senf and Seidl, 2021b). While some researchers focused on dissecting

specific disturbance events, seeking to unravel the causes or the impacts of individual

storms (Chirici et al., 2019; Kronauer, 2007), fires (Ganteaume et al., 2013; San-Miguel-

Ayanz et al., 2012) or pests (Hlásny et al., 2021b), others analyzed the species-specific

effects of these disturbances. Schmidt et al. (2010) tried to estimate the risk of storm

damage for different groups of species, spruce and Scots pine in particular in Southwestern

Germany; Hlásny et al. (2021a) and Kautz et al. (2023) analyzed drivers and symptoms of

European spruce bark beetle outbreaks on the spruce in Central Europe and Moris et al.

(2023) tested the resilience of beech stands to fire in Northern Italy. These localized or

context-specific studies offer valuable insights into the species’ behavior in response to

disturbances, especially if the study area is at the edges of the species range: in this case,

they can provide valuable knowledge in understanding what the species range response

could be in the future, if it will advance or recede. While insightful, these studies primarily

concerned localized (regional or national) contexts; in contrast, the pivotal aspect of our

study is to explore disturbances at a continental level, matching the scale of European

forest tree species’ ranges. Our understanding of disturbances on species’ ranges at this

scale remains currently uncharted territory.

Considering this knowledge gap and the relevance of European forests, this paper charac-

terizes changes in the distribution of key European forest tree species and the contribution

of forest disturbance events to species’ ranges for the period 2000–2020. Our research

addressed two specific research questions: (a) are there observable range shifts in European

forest tree species? (b) To what extent do forest disturbance events impact different
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tree species? To answer these we conducted a trend analysis on high spatial resolution

(30 m) time series maps of six main European forest tree species realized distribution.

We next aggregated the results of the trend analysis to coarser resolution (1 km) maps

to capture the prevalent trends. Furthermore, we used available high resolution forest

disturbance maps detailing both the year and type of disturbance to quantify how much

of each species’ range was affected by disturbances and identify the dominant disturbance

types. By following this methodology, our analysis provides spatial evidence of tree species

distributions dynamics, uncovers potential shifting patterns and provides species-specific

insights on disturbance regimes.

4.2 Material and methods

4.2.1 Tree species probability of occurrence datasets

We used the realized distribution maps produced by Bonannella et al. (2022d) to

quantify the probability of occurrence over the twenty years period of analysis. In their

study, they used a combination of EO data and Machine Learning (ML) to produce

a time series for the period 2000–2020 covering the whole European continent for 16

forest tree species at 30 m resolution. To account for the multiple conditions that

affect the realized distribution, the predictor variables used in the model include well

known static (i.e. not changing over time) variables such as long term climatic and

topographical data, but also dynamic (i.e. time series) variables such as multispectral

data coming from Landsat. A novelty of their approach was to use chorological maps of

different tree species as well to account for mutualism/competition effects. The presence–

absence point dataset used for model training was published separately and is available

on Zenodo (https://doi.org/10.5281/zenodo.6516590): presence data comes from

a harmonized and preprocessed version of existing tree species data from the Global

Biodiversity Information Facility (GBIF), the EU-Forest project (Mauri et al., 2017) and

the LUCAS survey (EUROSTAT, 2017); absence data comes instead exclusively from

the LUCAS survey. The authors then tested and combined the predictions of several

ML algorithms using an ensemble approach known as stacked generalization (Wolpert,

1992) to deliver the final predictions. The probability of occurrence (0–100%) is provided

for each species individually, irrespective of co-occurrence, meaning that the sum of the

probabilities of different species in the same pixel can exceed 100%. The 2000–2020 time

period is split in time windows of different extent: 2000–2002, 2002–2006, 2006–2010,

2010–2014, 2014–2018 and 2018–2020, for a total of six observations in time for each species

for the period of analysis. The reason of these uneven time windows is due to design

decision (i.e. a time window large enough to see changes in realized distribution over time

and short enough to have multiple points in the period 2000–2020) and data constraints

and irregularities (i.e. the SLC failure from Landsat 7 (Zhang et al., 2007)). The data

is available on Zenodo, with a different entry for each species (example for Abies alba

https://doi.org/10.5281/zenodo.6516590
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Mill. at: https://doi.org/10.5281/zenodo.5818021), and in European Environmental

Data Cube (Witjes et al., 2023) at https://ecodatacube.eu. For the purposes of this

paper we focused our analysis on only six of the tree species from Bonannella et al.

(2022d): Abies alba Mill. (silver fir), Fagus sylvatica L. (European beech), Picea abies L. H.

Karst. (Norway spruce), Pinus nigra J. F. Arnold (black pine), Pinus sylvestris L. (Scots

pine) and Quercus robur L. (Common oak). The species were chosen because of their

common occurrence (Barbati et al., 2014) in European forest, their economic importance

(Hanewinkel et al., 2013) and the fact that they represent more than 70% of the growing

stock volume in the region (FOREST EUROPE, 2020).

4.2.2 Forest disturbances datasets

We used a combination of two datasets to collect data on the the year of disturbance (Senf

and Seidl, 2021a) and type of disturbance (Senf and Seidl, 2021b). Both datasets have a pan-

European extent, 30 m spatial resolution and cover the time period 1986–2020. However,

they do not cover all European countries (i.e., Iceland is missing); our analysis was therefore

limited to the countries covered by the disturbance datasets. Firstly, the forest disturbances

map only lists the year of the greatest disturbance over the whole 1986–2020 time series,

regardless of the disturbance agent. We used the latest version of this product, available on

Zenodo at https://zenodo.org/record/7080016 (v. 1.1.4). A combination of reference

data from Landsat satellite images of visually interpreted disturbed and non disturbed

patches (available on Zenodo at: https://zenodo.org/doi/10.5281/zenodo.3561924)

and outputs from the well known LandTrendr algorithm (Kennedy et al., 2010) is used to

train a random forest classifier; the model classifies each pixel in non-forest, undisturbed

forest or disturbed forest. Information on the year of disturbance is provided from the

trend analysis of spectral bands and indices.

Secondly, the forest disturbances type map attributes to each disturbed pixel of the

forest disturbances map a code based on type of event detected, as described in Senf

and Seidl (2021b). We used the latest version of this product, available on Zenodo at

https://zenodo.org/record/8202241 (v. 1.2). Information on forest disturbance agents

was gathered from the FORWIND database for storms (Forzieri et al., 2020) and the

European forest fire information system (EFFIS) for fire related disturbances (San-Miguel-

Ayanz et al., 2012); areas classified as disturbed but with low probability for wind or fire

disturbances were assigned to the ”other” class. A set of ten predictors (four spectral, three

spatial and three landscape-based ones) was used to model the probability of a disturbed

pixel to be affected by storm, fire or neither through a random forest model. Probabilities

were then converted into hard classes in the final version of the disturbance maps, with

the following legend: ”0” for no disturbances, ”1” for other disturbances (i.e. logging,

drought, biotic disturbances such as bark beetles etc), ”2” for wind-related disturbances

and ”3” for fire-related disturbances. In both cases, maps are provided on a country scale:

for our analysis we first downloaded all the countries available and then merged them in

https://doi.org/10.5281/zenodo.5818021
https://ecodatacube.eu
https://zenodo.org/record/7080016
https://zenodo.org/doi/10.5281/zenodo.3561924
https://zenodo.org/record/8202241
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a single file with European-wide coverage matching the same spatial properties (extent,

pixel size, coordinate reference system) used by Bonannella et al. (2022d) to produce the

tree species probability of occurrence maps. We disregarded disturbances outside the time

period of the analysis (prior year 2000).

4.2.3 Trend analysis and forest disturbances attribution

To analyze the change in probability of occurrence over time, we fitted simple OLS

regression models with the probability of occurrence as the dependent variable and time

as the independent variable. We applied this procedure at pixel level and for all six

species individually. We then calculated the t-test statistic to determine the presence of an

increasing or decreasing trend according to the OLS model. By combining the regression

slope (β) of the linear model and the p-value from the t-statistics, we assigned each pixel

to one of three categories:

• positive: β > 0.25 AND p-value < 0.05

• negative: β < −0.25 AND p-value < 0.05

• no trend / stable: −0.25 ≤ β ≤ 0.25 OR p-value > 0.05

The chosen threshold of ±0.25 for the regression coefficient denotes a total change of 5% in

the probability of occurrence over the 20 years period of the analysis, which is considered a

substantial change. Pixels in the stable class have relatively constant values of probability

of occurrence over the time period analyzed. Pixels in the positive class have an increase in

probability of occurrence over the time of the analysis while the opposite is true for pixels

in the negative class; stable pixels could also experience fluctuations in the probability of

occurrence, alternating favorable and unfavorable conditions for the species, but ultimately

the net effect of these events would balance out by the end of the time series. The focus of

the analysis was on identifying the direction of change in the probability of occurrence for

each pixel and species, thereby revealing overall patterns in species distribution changes

rather than quantifying the magnitude of the trend.

To better identify and analyze these patterns, we prepared species-specific 1 km resolution

layers displaying the proportion (0-100%) of positive, stable and negative pixels within

each cell: this aggregation of the 30 m results at 1 km allowed us to filter out local mature

stand changes or other local variations, distinguishing genuine signals from isolated ones or

false positives. Each species was modelled independently in Bonannella et al. (2022d), so

model accuracy varies between different species; the aggregation at 1 km helps in removing

false signals caused by this variability. In addition, in areas undergoing intense forest

management, due to clearcuts or relatively aggressive thinning operations, 30 m pixels

may display very diverse spatial patterns, with a pixel having a strong positive slope

(β > 1) next to a pixel with strong negative slope (β < −1) (Fig. 4.1). While from a trend

analysis perspective those isolated pixels may provide information on, respectively, the
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species advancing or retreating, the spatial context is instrumental in discerning weak

signals from true niche shifts. The aggregation at 1 km filters those weak signals out and

ensures us that the identified patterns are robust, providing a clearer understanding of the

ecological dynamics at play.

Figure 4.1: Example of the 30 m workflow for a production forest in Southern Sweden.

Production forests are areas intensively managed: this creates local variations in probability of

occurrence over time. Results of the trend analysis would then reflect this through chessboard-

like spatial patterns in the slope values. The aggregation of the results at 1 km resolution is

then necessary to correctly interpret the results of the analysis.
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As a final step, following the trend analysis and the spatial quantification, we overlayed slope

values of each species with the forest disturbances maps. This allowed us to differentiate

between disturbed and non-disturbed pixels and, for the disturbed pixels only, assign the

year of disturbance and disturbance type.

4.3 Results

4.3.1 Changes in probability of occurrence

For each species we visually inspected a histogram of the slope values. The modes of all

histograms corresponds to zero slope (i.e., stable), as shown in Fig. 4.2. However, for four

of the six species investigated, the modal histogram bin is very different from its direct

neighbors. For these four species, the zero slope bin holds 40% to 50% of the total number

of pixels, with beech having the greatest proportion, closely followed by spruce. Between

50% to 70% of the pixels are distributed in the ”-0.1”, ”0”, and ”0.1” bins, indicating

that the majority of the pixels is classified as stable and not having a clear increasing

or decreasing trend. For the two pine species instead, the ”0” bin holds less than 20%

of the pixels and the frequency distributions are remarkably flatter, with the majority

distributed over the bins left of the mode.

Figure 4.2: Distributions of slope pixels per species; given the significant difference in absolute

number of pixels across the species analyzed, the values are normalized. The color of the

stacked histogram bins represents the frequency of pixels affected or not by a disturbance

event.
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Figure 4.3: Proportions of pixels with, from left to right, increasing (positive class) trend

in probability of occurrence, no trend (stable class), and decreasing (negative class) trend in

probability of occurrence over 1× 1 km blocks for all species. The dark grey background marks

the countries included in the study area. Note the legend employs unequal interval widths to

facilitate distinguishing varying proportions and comparing spatial patterns within or across

species.
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Fig. 4.3 depicts the spatial patterns of positive, negative or no trends (stable in the figure):

the column representing pixels with stable probability of occurrence over time is the one

that has a more evenly distributed presence throughout the study area. The mapped

distributions (Fig. 4.3) confirm the general trends in Fig. 4.2 that despite a large fraction

of stable situations, there are much more negative than positive trends. Furthermore,

the pixels in the stable column that have high values form large clusters that cover the

extent of one or more countries rather than being concentrated in specific localized regions.

This suggests that the areas considered stable cover a large portion of the total realized

distribution of each species compared to areas with majority of positive or negative trends,

which exhibit more distinct and localized hot spots. While this is true for almost all the

species, the spatial patterns for black pine match what was highlighted previously in the

distribution of the slope values: when compared with the other species, black pine is

the sole species that lacks hot spots for positive trends and has a much more dispersed

distribution of pixels with prevalent negative trends than pixels with a prevalent stable

probability of occurrence over time. Except for black pine, the hot spots for negative

trends consistently exhibit a notable pattern characterized by their localization at the

latitudinal edges of each species distribution.

Even though five of the six species share this pattern, there are some differences in the

negative hot spots’ spatial locations; with most of them being located in Central and

Northern Europe. For the silver fir, beech and oak, the hot spots seem to coincide with

the northeastern edge of their distribution in the study area. The proportion values

vary between 25 and 60%. Spruce presents a consistent negative hot spot towards the

northernmost edge of its distribution like the other species, but also exhibits additional

hot spots in the southern edge and in other areas. Notably, as the range extends further

north, these hot spots are mostly located in regions with relatively low (500–1000 m.a.s.l.)

elevation for the species (i.e. Carpathians, Ardennes) or even at sea level (i.e. Poland

coastline). Similar considerations can be made for Scots pine, where the negative hot

spots are located in the north (Finland, Baltic states) or at the lowest elevations of places

located in the southern edge of the range (Provence in France, hilly areas surrounding the

Pyrenees, the Cantabrian and Leon mountains in Spain). Areas with prevalent negative

trends exhibit in general moderate values (40-50%) but certain portions of the negative

hot spots for spruce, Scots pine, and black pine stand out with very high values (95-100%).

Notably, these three species show elevated values primarily in the southern regions such

as Spain, France, Slovenia, and parts of Romania, while the northern regions’ hot spots

remain in the moderate range.

Regarding positive trends, no clear hot spots can be discerned: pixel values vary between

very low (5-10%) to low (20-30%) proportions and there are only few exceptional cases

where they reach moderate (40-50%) proportions. Most of the pixels with low to moderate

values correspond to specific mountain ranges (Alps, Norwegian Alps and Carpathians).

Other areas with pixels in that value range are more species-specific: the Dinaric Alps for
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beech and oak, Scotland and Ireland for spruce and Scots pine, with Scots pine having

some additional concentrations of positive trends in Galicia and Normandy.

4.3.2 Effects of forest disturbances

Figure 4.4: Species specific distribution of disturbances over time. Top: percentage of 30 m

pixels affected by disturbances relative to the species total realized range. Bottom: disturbance

types normalized to the total number of disturbed pixels.

In addition to analyzing the slope values distributions, we flagged pixels affected by

disturbances and used color-coded bars in the histograms to have a visual representation

of the disturbance status of the pixels (see Fig 4.2). Pixels affected by disturbances fall
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into the ”0”, ”-0.1” and ”-0.2” histogram bins, with a prevalence of disturbed pixels in

the ”0” bin. The similarities stop there, since each slope distribution seems to behave

differently and no consistent trend can be picked up. Beech and spruce have the greatest

proportion of pixels in the ”0” histogram bin. Both black pine and Scots pine have an

equal proportion of disturbed pixels across all histogram bins, mostly left of the mode

(until bin ”-0.9”), while on the right it stops much earlier (bin ”0.3”).

The distribution of disturbed pixels over the years shows some common patterns among all

the species (see Fig. 4.4 top); at least 2% of the total range of all the species is affected by

disturbances every year, with most species having peaks in the year 2000, 2005 and 2020,

which corresponds to a sudden increase of wind-related disturbance events. It is especially

evident for the silver fir, where the percentage of pixels disturbed by wind goes from a

value of 10-15% every year, up to more than 50% in the year 2020. There is an increasing

trend of disturbed pixels over time, with all the species having on average 2% more of

their range affected by disturbance events by the end of the time series. The other class is

the most prevalent across all the years, reaching peaks of 90% in some years, with the

exception of years affected by intense wind events where the percentage drops to 40-50%

for some species. Among the coniferous species, spruce and Scots pine are the ones most

affected by disturbances, with 5% of the range on average every year and peaks around

6.5%; while the silver fir has a lower average score. Silver fir is the coniferous species with

the highest percentage of its range affected over the time period of analysis (8%). Black

pine is the only species which is consistently affected by fire events (10% of the disturbed

pixels on average every year, with peaks around 30%), while the other coniferous species

are affected by fire much more sporadically. Both broadleaved species follow almost the

same pattern in both proportion of affected range and distribution of disturbance types,

with beech slightly more affected by fire events than oak.

4.4 Discussion

4.4.1 Species’ ranges assessment

In this study we conducted a trend analysis of the time series of probability of occurrence

for different forest tree species on a European scale to identify potential shifts in tree species

distributions in the last two decades. Our results show that, on average, the probability

of occurrence among the pixels for all the species is rather stable for significant areas in

Europe (no significant positive or negative trend), suggesting a predominant status quo in

the species distributions over the study area. However, despite this high stability, there

are some ongoing changes in species distribution patterns shared across the species and

for different regions. While among these subtle variations we have identified both positive

and negative trends, the latter are more prevalent than the former and that Northern

and Central Europe shows more negative hot spots than other parts. Furthermore, the
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various patterns among the species analyzed suggest a different response to the wide

range of environmental stressors each species is subjected to. These results still need to

be approached with caution as for some of the analyzed species from Bonannella et al.

(2022d), the model performance is not very high. This could lead to underestimation

or overestimation of the species’ realized distribution and incorrect conclusions about

increasing or receding species ranges. While the authors provide model uncertainty maps

together with the probability maps, their analysis did not involve plot data such as NFI

plots with precise locations. They used a filtering procedure to achieve a high spatial

confidence (i.e. enough to be used for 30 m resolution maps) for datasets whose locational

precision is either difficult to assess (i.e. GBIF) or is degraded to coarse resolution by

definition (EU-Forest). For this reason, the precision of the distribution maps is expected

to be somewhere between the species level and forest type level. In the current study we

aggregated the results from 30 m to 1 km to filter out false signals (i.e. areas with intense

forest management, local mature stands changes etc.); this process may also have canceled

out the effect of potentially misclassified areas in the distribution maps.

In our analysis, it is interesting to note that areas with the highest values (90-100%) of

pixels with no increasing or decreasing trend in probability of occurrence across all the

species roughly align with what is reported in literature as their native range (Bonannella

et al., 2022d; San-Miguel-Ayanz et al., 2016): the places where species have historically

persisted and adapted over time despite external perturbations are associated with a

high degree of stability. While it is true that the current state of European forests is far

from being natural (Strona et al., 2016) and that they have been influenced by humans

for centuries (Kaplan et al., 2009), the identification of these stable regions within the

native range of the species highlights the importance of preserving and protecting these

areas to safeguard the diversity of European forests. For some species such areas can be

considered as ecological refugia (Ashcroft, 2010), potentially providing valuable insights

for conservation strategies. For instance, areas with stable probability of occurrence for

the silver fir are localized in the Alpine regions of Central Europe (Tinner et al., 2013),

well known as the species native range; for beech and oak vast parts of temperate Europe

are classified as stable, which are areas where the two species have thriven for centuries

(Fang and Lechowicz, 2006; Jones, 1959); for spruce in the central and northeastern Alps,

the Carpathians and Scandinavia (Aarrestad et al., 2014; Lata lowa and Knaap, 2006) and

for Scots pine the stable areas are mostly located in Scandinavia, with some clusters on

the border between Germany and Poland (Eckenwalder, 2009; Krakau et al., 2013).

While this overall trend is in agreement with the results of Maes et al. (2023), who showed

that forest conditions across Europe have been even improving from 2000 to 2018, the

areas with a prevalence of negative trends can’t be ignored. Multiple studies have shown

that climate change, by the end of the century, will considerably alter the distribution of

European tree species (Mauri et al., 2022) and will be especially threatening for coniferous

species (Dyderski et al., 2017), so it becomes crucial to scrutinize any signs of possible range
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contractions to differentiate between localized phenomena and large-scale shifts. The areas

with a prevalence of negative trends can represent hot spots where this phenomenon could

spread or, alternatively, they could be isolated episodes caused by extremely particular

events occurring in those locations.

Our results reveal that the hot spots of negative trends generally lie at the edges of each

species latitudinal range, suggesting these areas might be more exposed to unfavorable

factors (climate change impacts, natural disturbances or lack of thereof, habitat fragmen-

tation and species-specific disturbances). These factors could push the species beyond

their optimal conditions, leading to range contractions or reduced fitness. Examples of

the effects of these stressors on a European scale are numerous: Neumann et al. (2017)

localized hot spots of tree mortality in both Northern (Scandinavia, mainly Finland)

and Southern (Cantabrian and Leon mountain ranges in Spain) Europe for the period

2000–2012 due to extreme climatic variability, hot spots that align with our results for

some tree species, mainly spruce, black and Scots pine; Senf et al. (2018) later proved how

tree mortality rate, mainly due to changes in climate and land-use, has doubled in the last

decade compared to the previous two.

Quantifying climate change impacts on tree species and their range may be difficult, as

each species may respond differently to these stressors (Fei et al., 2017). Previous studies

on the subject have shown a variety of responses, the most common being upward (Feeley

et al., 2011; Lenoir et al., 2008; Morin et al., 2008) and poleward (Berner and Goetz,

2022; Hanberry and Hansen, 2015) shifts due to temperature increases, but downward

shifts are also not uncommon (Crimmins et al., 2011). While in some cases a slight

increase in temperature outside the species optimal range has proven to be beneficial for

tree growth due to the CO2 fertilization effect (Mart́ınez-Vilalta et al., 2008), a steady

increase has proven to be one of the most important drivers of tree mortality, especially in

Mediterranean Europe (Archambeau et al., 2020). Because of their economical importance,

most of the species analyzed in this study have been historically planted outside of their

native range, as is the case for spruce and Scots pine.

It is no coincidence that several of the negative trends hot spots that also have the highest

proportion (90-100%) values for these two species are found at low elevations in Central

(i.e. Slovakia, Czech Republic, Poland) and Southern (all Spain except the Pyrenees)

Europe that are outside of their native range, where the species have been naturalized

through continuous forest management practices (Caudullo et al., 2017; San-Miguel-Ayanz

et al., 2016). These results align with a long list of studies assessing either stress or

decline for the two species in those areas (Aguadé et al., 2015; Kolář et al., 2017; Rigling

et al., 2013; Sedmáková et al., 2019). In contrast, the negative trends hot spots in the

moderate (40-50%) range found in the northernmost part of Scandinavia for the same two

species align with the results of Maes et al. (2023), which indicate a general reduction in

ecosystem productivity (NDVI) and soil organic carbon (SOC) in the area rather than
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a species-specific issue. Hot spots for Scots pine extend further in the northern part of

Finland, while spruce stays stable in the area: both trends have been confirmed by a

tree-ring analysis conducted by Mäkinen et al. (2022) on the data from the last Finnish

NFI, which found a declining trend for Scots pine especially in sites with mineral soils

and in peatlands. Hot spots for very stable species like beech in south-eastern Sweden are

also well known: beech does well especially in the south-west, where water availability is

high, and gets progressively worse moving north, as shown by Martinez del Castillo et al.

(2022).

Our results indicate that the proportion of positive trends is notably smaller compared to

stable and negative trends for all the tree species analyzed, reaching moderate (40-50%)

values at best and without consistent hot spots. This was also expected: colonizing new

suitable areas through upward or poleward shifts to compensate for range erosion is a

difficult task for most of the European tree species due to their low dispersal ability

(Mauri et al., 2022; Svenning and Skov, 2004). Evidence of latitudinal (i.e. poleward

or southward) shifts in communities of adult trees are still rare (Hanberry and Hansen,

2015) and trees natural dispersion capabilities are deemed to be insufficient to face the

future risks posed by climate change (Jump and Peñuelas, 2005; Zhu et al., 2012), with

assisted migration being a possible solution to the issue (Mauri et al., 2023). Our results

for the species analyzed in this study suggest a higher degree of stability in the species’

ranges, with signs of localized negative trends in the last two decades. A combination of

lean and crash phenomena, as described by Lenoir and Svenning (2015), characterizes

the situation observed in the species analyzed. The presence of overall stable range edges

and shifting optimum, alongside localized declines, within the existing range, suggests

significant dispersal limitations and the early stages of a shifting process that lags behind

climate change. This phenomenon is often referred to as climatic debt in the scientific

literature (Dullinger et al., 2012; Tilman et al., 1994). As we see in our results, the species

can persist within their current range and even their native range, as indicated by the

areas with prevalent stable probability of occurrence, despite environmental conditions

being sub-optimal, for instance, for sexual reproduction and expansion. However, the

species may eventually confront this climatic debt through abrupt range shifts, potentially

leading to widespread forest dieback, particularly when critical thresholds are crossed

due to repeated extreme climatic events or climate-induced pest outbreaks (Ba lazy, 2020;

Menezes-Silva et al., 2019; Pietrzykowski and Woś, 2021).

4.4.2 Species disturbances patterns

Our results show a consistent increase over time in disturbances over the species realized

distribution, which is in line with the reported intensification of disturbance regimes in

the last two decades for European forests (Hlásny et al., 2021b; Patacca et al., 2023; Senf

and Seidl, 2021b). While our study did not focus on the magnitude of these disturbance

events on each species, the slope distributions show that most of the disturbed pixels have
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values of β coefficient close to 0 for the time period analyzed. This could be interpreted

as disturbances having a negligible effect on the probability of occurrence during this

time period; however, it might also be a result of the majority of the disturbance events

being concentrated at the beginning or the end of the time series. The OLS model is

fitted over only six points in time, with each point capturing the average situation of 3-4

years, and the information on the year of disturbance is limited to the greatest disturbance

only. Information on recurring events over the same area is therefore not available, even

though the probability of occurrence could experience fluctuations due to other disturbance

events; this limitation in the data could lead to a severe underestimation of the effect

of disturbances on species probability of occurrence. Furthermore, as for the species’

ranges assessment, some areas of Europe the distribution maps may depict forest types

rather than forest species. The disturbance analysis was conducted at 30 m and is not

affected by the 1 km aggregation we applied to the species range analysis; any potential

misclassification in the distribution maps directly influences species-specific conclusions of

the disturbance analysis, with once again possible under- or overestimation of disturbance

events per species. This is an additional reason on why we decided to focus on qualitative

trends only regarding disturbances and we advice caution when reporting these results for

future research.

Results for both the affected range and disturbance types for spruce and Scots pine align

with what in general is reported in literature: well known for their high susceptibility to

wind-induced disturbances (Mitchell, 2013; Peltola et al., 1997), information on the effects

on these species of the major wind storms (Kronauer, 2007; Kronauer, 2000; Seidl and

Blennow, 2012; Valinger et al., 2014) or bark beetles outbreaks (Jaime et al., 2019; Mezei

et al., 2017; Wermelinger et al., 2021) are also well documented. Despite this, our findings

indicate that for other species, like silver fir or even the broadleaved species, the percentage

of pixels affected by wind disturbances in the years of severe storms is higher (≥ 50%)

than for spruce and Scots pine. While it has been proven that silver fir is more sensitive

to wind than Scots pine and less than the spruce (Schmidt et al., 2010), broadleaved

species, and in particular the beech – oak group, are in general less sensitive to wind than

coniferous species (Klaus et al., 2011; Seidl et al., 2017; Wohlgemuth et al., 2022). This

discrepancy can be attributed to the significant impact of the other disturbance class,

which includes logging, drought and bark beetles, for spruce and Scots pine: not only

these two species have a relatively larger distribution range compared to other species,

but also higher harvesting rates (FOREST EUROPE, 2020). Coniferous species have also

been more affected by drought (Pardos et al., 2021) due to forest management practices

(i.e. monospecific stands) than broadleaved species and by bark beetles (Hlásny et al.,

2021a), with spruce in particular being affected by multiple severe Ips typographus (L.)

outbreaks in the last decade (Patacca et al., 2023; Romeiro et al., 2022). A combination of

all these factors may overshadow the prominence of wind-induced disturbances for spruce
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and Scots pine. This highlights once again the importance of having accurate and up to

date spatiotemporal information on forest disturbance drivers.

Black pine stands out among the other species not only for keeping an overall stable trend

in affected range but also for being affected by fire more frequently and intensely: compared

to the other species analyzed in this study, black pine native range includes regions where

wildfires have historically been a regular occurrence (Isajev et al., 2004). When compared

to other Mediterranean pines (i.e. Pinus halepensis Mill. or Pinus pinaster Ait.) however,

black pine lacks fire-adaptation mechanisms (Rodrigo et al., 2004); it can tolerate low

intensity surface fires, but crown fires are usually either stand replacing or lead to the

development of non-forest ecosystems (i.e. grasslands or shrublands) (Ganatsas, 2010;

Lucas-Borja et al., 2021). This behavior is consistent with the negative trends observed

for the species in Catalonia, which, according to the disturbance type map we used from

Senf and Seidl (2021b), is also one of the two hot spots mostly affected by wildfires in

Mediterranean Europe. There is a chance that the majority of the pixels in the area

classified as undisturbed but with negative trends were previously affected by wildfires in

the years not covered by our analysis. Large fires in the area are common and the last

one before 2000 was in 1998, with more than 24,000 ha of forest cover completely burned

(Rodrigo et al., 2004). While fire can explain a significant portion of the disturbances

and its higher proportion compared to the other species is significant, it is still limited

in comparison to the prevalence of the other class. As we know that black pine is also

fairly harvested (FOREST EUROPE, 2020), there is a significant component of logging

in the other class. However, due to the lack of clear distinction within this class, further

interpretation on the effects of the other class on black pine is challenging, making it a

limitation in our ability to clearly infer the individual impact of the different disturbance

types within the other class.

Broadleaved species show distinct patterns in their response to disturbances compared

to coniferous species. While they exhibit similarities with other conifers in terms of the

percentage of affected range and the proportion of wind and other disturbances, the

distribution of disturbed pixels for broadleaved species is concentrated either in the mode

of the slope distribution or evenly spread to the right of the mode (reaching ”1.2” – ”1.3”

bins for the oak), indicating their ability to cope with disturbances. Other studies have

highlighted how disturbances seem to be of minor concern for broadleaved species, to the

point of being advantageous to them: Moris et al. (2023) showed that beech has high

resilience to fires due to its fast resprouting ability and Scherrer et al. (2022) observed

how beech outlived and even replaced spruce and Scots pine in those areas affected by

wind or other disturbances. Salvage logging, a common practice for windthrown trees

(Lindenmayer et al., 2012), has also contributed in the past to conversion from coniferous

to broadleaved stands through natural regeneration only (Götmark and Kiffer, 2014;

Jonášová et al., 2010). However, recent studies have pointed out that despite their

resilience, broadleaved species may face challenges under increased frequency and intensity
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of disturbances, especially during prolonged drought spells. Mathes et al. (2023) analyzed

the effect of three consecutive years of drought (2018–2020) on beech dominated forests

in Germany and their study revealed a significant reduction in radial growth, indicating

that severe droughts can override the effects of competition on tree growth. Overall, while

disturbances might pose a danger by themselves for coniferous species, an increase in

their frequency and intensity could potentially act as a tipping point for broadleaved

species.

4.5 Conclusion

In this study, we conducted a comprehensive trend analysis of the probability of occurrence

for the realized distribution of different forest tree species across Europe to investigate

potential shifts in their distributions over the last two decades. Our results demonstrate an

overall trend of stability in the distributions for many regions in Europe, with stable regions

largely aligning with the native ranges of each species. These stable areas hold ecological

significance and should be prioritized for conservation efforts to safeguard the diversity of

European forests. However, we also identified areas with a high proportion of negative

trends mostly situated at the edges of each species latitudinal range, specifically located

in Central and Northern Europe for the species investigated. These areas may serve as

potential hot spots of range contractions or reduced fitness for the species due to exposure

to unfavorable factors, so they should be monitored closely in the coming years. Lastly, we

identified areas with localized negative trends that were more species-specific, indicating

that the response patterns to environmental stressors vary among different species. While

our results align with several related studies, the potential limitations of the distribution

maps used in the current assessment calls for caution and also highlights the need for

more precise distribution maps that include useful information provided by detailed field

surveys such as National Forest Inventories. Our analysis on forest disturbances focused

on quantifying affected range and most prominent disturbance drivers for each species.

Disturbance patterns have shown an increase over time in species affected range for all

species, with some disturbance agents being very species-specific. The other disturbance

class, remains the most prevalent disturbance type for all the species: this highlights the

difficulty in precisely discerning the individual impact of different disturbances due to the

absence of information on each disturbance agent other than wind and fire.

In conclusion, our study provides insights into distribution trends and disturbance patterns

for some of the most important tree species in European forests in the recent past.

Notably, this research introduces a novel approach by making use of Species Distribution

Models mostly based on Earth Observation data, which enables consistent assessments

of the ongoing changes in tree species distributions. This methodology contributes to

understanding the observed trends, particularly the emerging changes in certain areas,

which appear to be more pronounced in the recent years. Furthermore, the observed trends
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emphasize the significance of species-specific responses to environmental stressors and the

need for more accurate spatiotemporal information on forest disturbances to monitor and

understand these responses in the long term. It is imperative to proactively plan for the

future species composition of European forests, alongside with preserving what we already

have or adopting assisted migration practices. Careful evaluation and consideration of

which species to plant where are essential to strike a balance between fostering adaptability

and safeguarding the integrity of natural ecosystems. Our results for the last two decades,

however, underscore the urgency of taking prompt actions, especially considering the long

time period forest will require to adapt to climate change.



Chapter 5

Impact of NFI coordinate precision

on high resolution tree species

classification

This chapter is based on:

C. Bonannella, L. Parente, B. Lerink, S. de Bruin, and M. Herold (2024b).

“Impact of NFI coordinate precision on high resolution tree species classification”. In

preparation
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Abstract

This study assesses the impact of coordinate precision on high-resolution tree species

classification in the Netherlands by comparing two models: a True Coordinates Model

(TCM), using precise National Forest Inventory (NFI) coordinates, and an Estimated

Coordinates Model (ECM), using publicly available, approximate coordinates. We devel-

oped an estimation procedure to identify a set of locations for each NFI plot potentially

capturing the true location. However, this procedure included the actual true location

pixel in only 10% of the cases; the ECM was then trained with all the subsampled pixels.

This highlights the limitations of using estimated data and underscores the need for access

to precise NFI data. In our analysis, the TCM demonstrated superior performance over the

ECM. Specifically, the TCM achieved an Overall Accuracy of 0.71, compared to just 0.45

for the ECM. Additionally, the TCM exhibited a R2
logloss of 0.40, indicating a moderate

increase in performance compared to a naive classifier, whereas the ECM’s R2
logloss barely

reached 0.03. The Prediction Interval Coverage Probability (PICP) for the 95% PI for

the TCM was 0.88, while for the ECM it was only slightly lower (0.86), so both models

were overconfindent in their predictions. In terms of species classification, ”Fagus spp”

and ”Picea spp” showed the highest balanced accuracy in the TCM, whereas ”Picea

spp” presented the lowest balanced accuracy in the ECM. These results demonstrate the

significant impact of coordinate precision on the accuracy of tree species classification

models. Our study highlights the challenges in integrating remote sensing data with NFIs,

especially in terms of data precision and availability, advocating for a combined approach

of precise NFI coordinates with advanced remote sensing techniques for high resolution

forest management products. Overall, this research underscores the need for precise spatial

data and improved data-sharing practices in forestry and remote sensing, contributing to

more effective environmental management and conservation efforts.
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5.1 Introduction

Accurate knowledge of tree species distribution is fundamental for a wide range of applica-

tions in forest inventory and both forest and environmental management. This information

is crucial for underpinning sustainable forest management practices and informing neces-

sary reporting requirements (Bontemps et al., 2022; Bussotti and Pollastrini, 2017; Gillis

et al., 2005), aids in species-specific growth and yield estimation (Pretzsch et al., 2015;

Tompalski et al., 2014), plays a vital role in carbon modeling (Temesgen et al., 2015) and

is critical for understanding responses and adaptations to climate change (Bonannella

et al., 2024a; Hof et al., 2017; Mauri et al., 2023).

The traditional approach of collecting tree species data mainly involves National Forest

Inventories (NFIs) conducted at periodic intervals, as information on tree species is one

of the basic forest inventory attribute (Tomppo et al., 2010). However, this approach

frequently results in gaps in both spatial and temporal coverage. While these inventories

typically detail species assemblages based on criteria such as basal area or canopy cover

(Barbati et al., 2014; Barbati et al., 2007; Tomppo et al., 2010), they often fall short in

providing necessary information for in-depth ecological assessments and informed decision-

making. The periodic nature of NFIs often results in gaps in spatial and temporal coverage,

limiting their utility: the spatial sampling of NFIs, based on permanent plots, poses

challenges in a priori stratified sampling or assessing commission errors, among other

limitations. For example, the permanent plots might not be distributed in a way that

adequately covers and represents these varied strata, potentially leading to skewed or biased

data. Additionally, the extended temporal gaps between successive plot measurements,

often ranging from 5 to 10 years (Gschwantner et al., 2022), hinder the ability to deliver

timely information.

In response to these limitations, remote sensing technologies, particularly Earth observation,

have emerged as crucial tools offer a promising complementary approach. The European

Union’s Forest Strategy for 2030, a key component of the European Green Deal, recognizes

the potential of such technologies. It envisages actions for enhancing forest protection

and sustainable management, with a specific focus on improving forest monitoring. This

includes proposals for an EU-wide forest observation framework, providing open access

to detailed, regular, and timely information on forest conditions (European Commission,

2023). This strategy aligns with the increasing use of high-resolution satellite data, which

have significantly advanced the capabilities for forest monitoring at various scales.

Thus, remote sensing provides an opportunity for spatially comprehensive assessments

at an increased temporal frequency to fill spatial and temporal gaps coming from using

traditional approaches; it also enables comprehensive assessments with systematic and

transparent methodologies (Coops et al., 2023; Wulder et al., 2024). In this sense, tree

species classification using remote sensing data is an evolving research field marked by
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diverse methodologies and varying scales of application, to the point that comprehensive

reviews recently published, such as the one by Fassnacht et al. (2016), are already partially

outdated. Studies have employed different remote sensing data types, including moderate

to high-resolution satellite imagery from Landsat and Sentinel-2 missions, more specialized

data like hyperspectral and LiDAR or a combination of all of them. The choice of data

often influences the scale and precision of the analysis. For instance, very high-resolution

data (pixel size <1 m), allows for detailed tree species analysis at the individual tree level

but are often constrained by operational costs and limited areal extents (Waser et al.,

2014). Conversely, medium-resolution data from Landsat and Sentinel-2 satellites have

been utilized for broader regional or national studies, offering cost-effective solutions for

extensive area coverage despite challenges like cloud cover and limited image acquisition

dates (Breidenbach et al., 2021; Hermosilla et al., 2022; Welle et al., 2022). Furthermore,

continent-scale analyses have utilized high-resolution hyperspectral data, coupled with

field data, to develop models for tree species classification, assessing both general and

site-specific models (Marconi et al., 2022). The methods employed in these studies are

as varied as the data sources. Machine learning techniques, notably Random Forest

classifiers, have been widely used due to their effectiveness in handling complex datasets

and producing reliable classifications (Axelsson et al., 2021; Dalponte et al., 2012). The

inclusion of additional environmental variables, such as topographic predictors, climatic

variables, spectral indices or phenological metrics, has been found to enhance classification

accuracy significantly (Grabska et al., 2020; Waser et al., 2021; Ye et al., 2021).

Despite significant advancements in remote sensing technologies and their integration

with NFIs, a critical challenge remains in the effective utilization of NFI data for species

distribution modeling. Coops et al. (2023) demonstrate the potential of multi-source

remote sensing data for near real-time forest inventory, underscoring the importance of

timely and accurate data for informed decision-making. However, the limited availability

and accessibility of precise, plot-level NFI data, as noted by Fassnacht et al. (2024), poses

a significant barrier. This limitation is particularly pronounced given the common practice

of degrading the precision of geographical coordinates for public release, primarily to

protect landowner privacy (Nabuurs et al., 2022). Ground surveys remain fundamental for

assessing forest resources: Wulder et al. (2024) showcase the feasibility and benefits of

implementing a stand-level satellite-based forest inventory, yet the successful application of

such methodologies hinges on the availability of accurate ground-truth data. The current

scenario, where remote sensing practitioners often rely on publicly available, spatially

imprecise NFI data, raises concerns about the accuracy of tree species distribution derived

from these datasets. This gap in precise, publicly accessible NFI data not only hampers the

potential synergies between NFIs and remote sensing but also limits the scope of ecological

insights that can be derived from these products (Bonannella et al., 2022d; Bonannella

et al., 2024a). The ultimate goal would be to achieve a synergistic integration of NFIs with
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satellite data, harnessing the potential of an integrated approach for advanced monitoring

of forest resources (Ceccherini et al., 2022; Fassnacht et al., 2024).

Addressing this research gap, our study focuses on evaluating the effectiveness of tree species

classification models by comparing outcomes derived from precise coordinates against

those generated using publicly available coordinates. To ensure a balanced comparison,

we developed and tested a novel procedure aimed at identifying a set of locations for each

NFI plot potentially capturing the true location from the publicly available data. These

approximated points are then employed as training data in our tree species classification

models. Rather than focusing on model accuracy and producing reliable tree species maps,

in this study our objective is to rigorously assess the influence of coordinate precision on the

accuracy of tree species models through a comparative analysis. We tested this approach

on the Netherlands. The results of this analysis can provide insights in understanding

the constraints imposed by current data-sharing protocols and underscore the necessity

for enhanced data accessibility and sharing practices. Additionally, our research aims

to offer a critical perspective into the integration of NFIs with Earth observation data,

thereby contributing to the advancement of more precise and reliable forest inventory

methodologies.

5.2 Material and methods

5.2.1 Dutch National Forest Inventory

The Dutch National Forest Inventory (NFI) is a valuable source of information regarding

the state of forests in the Netherlands. Its historical roots date back to 1938, but, in this

study, we used NFI measurements conducted between 2000 and 2020. Consequently, our

dataset comprises data from the 5th Dutch NFI (NBI-5), carried out during 2001-2005,

the 6th Dutch NFI (NBI-6), conducted in 2012-2013, and the 7th Dutch NFI (NBI-7),

executed in 2017-2021 (Schelhaas et al., 2022).

The 7th Dutch NFI employed an unaligned systematic sampling approach with a density

of one plot per square kilometer. Initially, a digital forest map was generated based

on LULUCF (Land Use, Land-Use Change, and Forestry) maps and aerial photographs

(Dirkse et al., 2001; Nabuurs et al., 2003). The forest definition used for this map adheres

to FAO guidelines (FAO, 2004). Subsequently, a 1 × 1 km INSPIRE-compliant grid

(European Parliament, 2007) was superimposed over the forest map. Within each grid cell,

a plot was randomly selected for data collection, with the condition that only plots within

forested areas were considered for field visits. While each iteration of the NFI ideally

aims to measure approximately 3600 plots, the actual number of plots varies over the

years. This can be attributed to several factors, primarily related to accessibility issues

(Schelhaas et al., 2022). In earlier iterations of the NFI (NBI-5 and NBI-6), the dataset

comprised 50% permanent plots and 50% temporary plots (Tomppo et al., 2010). However,
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in the 7th NFI, all sampled points were treated as permanent (Schelhaas et al., 2022).

In this study we used plots having at least two observations in time; this left us with a

total of 8586 NFI plots almost equally spread over the different forest inventory campaigns

(Fig. 5.1).

Figure 5.1: Distribution of NFI plots across the forest inventory campaigns used in this study.

The original coordinates of these plots were reported in the Dutch coordinate reference

system (EPSG:28992). To align these coordinates with the INSPIRE-compliant grid, we re-

projected them to the coordinate reference system ETRS89 / LAEA Europe (EPSG:3035).

The exact plot locations are not publicly disclosed. Instead, the publicly available coor-

dinates correspond to the centroids of the INSPIRE-compliant grid cells encompassing

the plots. The plot locations are typically situated within a radius of approximately 0.5

kilometers from the publicly disclosed grid cell centroids. This arrangement is designed to

protect sensitive forest inventory data while still allowing for certain levels of analysis.

Given the vast individual tree species list recorded in the NFI, species were aggregated into

main dominant tree species groups where possible; for example Quercus petraea, Quercus

robur, Quercus rubra and other oaks were all grouped in the class ”Quercus spp”. This

was necessary because not all individual species are equally represented (e.g., only 1–2

plots across the three NFI surveys). Consequently, certain plots had to be grouped within

miscellaneous categories, such as ”other broadleaved”, to accommodate these variations

in species representation. To classify the NFI plots accordingly we used the information

provided by the tree-level data of the NFI. Specifically, we considered attributes such as the

number of trees, tree species, and basal area. Within each plot, we identified the dominant
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species group, which served as the reference data for our modeling. The dominant species

group was determined as the one with the highest fraction of basal area relative to the

total basal area of the trees in the plot. This information allowed us to assign a stand

purity coefficient to each plot. The stand purity coefficient informs the algorithm about

the relevance of a data point for dominant species modeling. Pure stands are deemed

most informative because they exhibit a more homogeneous spectral signature compared

to mixed stands. For this reason, our modeling only considered plots with a stand purity

coefficient >= 0.8, which further reduced the number of NFI plots to 4256.

Figure 5.2: Distribution of dominant species. Note the strong imbalance between the different

classes, with Pinus spp counting >1500 observations while most of the other classes count <

200 observations.

5.2.2 Tree canopy extent

In our procedure using approximate NFI plot coordinates, we utilized the European tree

canopy extent dataset from Turubanova et al. (2023). The layers have 30 m spatial

resolution and cover the time period 2001–2021 at a yearly temporal resolution. This

dataset was used as a proxy for a forest mask. The product defines tree canopy extent

by a land cover class having at least 5 m tree canopy height. This comprehensive time

series was generated by integrating annual tree canopy height and removal maps. The

tree canopy height data were derived using an empirical modeling approach based on

the bagged regression tree method, utilizing multidecadal spectral data from the Landsat

archive. This was coupled with calibration data from Airborne Laser Scanning (ALS)

collected from mainly Scandinavian countries and spaceborne Global Ecosystem Dynamics

Investigation (GEDI) lidars (Dubayah et al., 2020).
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5.2.3 Forest types layers

Witjes et al. (2022) developed a spatiotemporal ensemble machine learning framework to

generate land use/land cover (LULC) yearly time-series maps for Europe for the period

2000–2019 at 30 m resolution. They used a harmonized legend based on the CORINE land

cover product (Bossard et al., 2000) and the LUCAS survey (d’Andrimont et al., 2020) for

a total of 43 predicted land use/land cover classes. A distinct feature of their framework

is the generation of not just yearly dominant land cover classes, but also probability layers

for each of the 43 classes. This approach marks a significant departure from conventional

LULC products, offering a nuanced and multifaceted understanding of land cover dynamics.

The framework predicts the probability of each land cover class per pixel, providing also

per-pixel uncertainty values. In our research, we focused specifically on two classes only:

”Broad-leaved forest” and ”Coniferous forest”.

5.2.4 Predictor variables

Landsat GLAD ARD collection 2

The Landsat Analysis Ready Data (ARD) from the Global Land Analysis and Discovery

(GLAD) team at the University of Maryland is one of the few globally consistent archives for

historical time series of normalized surface reflectance derived from the Landsat satellites

collections Potapov et al., 2020. The original GLAD Landsat ARD, however, often contains

cloud contamination and image artifacts, necessitating extensive preprocessing for effective

use in modeling and analysis. To address these limitations, we developed an enhanced

version of the GLAD Landsat ARD-2.

The GLAD Landsat ARD-2 is a comprehensive dataset encompassing 16-day interval

tiled composites of images. Spanning from 1997 to 2022, it provides 23 images per year,

culminating in a total of 598 global images. This dataset includes six reflectance (blue,

green, red, near-infrared, short-wave infrared 1, and short-wave infrared 2) bands, one

thermal band and a detailed quality flag for each pixel. This flag categorizes pixels as land,

water, cloud, cloud shadow, topographic shadow, hill shade, snow, haze, cloud proximity,

shadow proximity, other shadows, or as buffered proximity of these categories. Based on

its quality flag, we derived a space-time overcast-sky mask, identifying points classified as

cloud, cloud shadow, haze, cloud proximity, shadow proximity, or other shadows as ’gaps ’

for further processing.

First, from the 16-days time interval time series, a bimonthly product was derived per-

forming weighted temporal aggregation. The procedure combines four images from the

original product into one aggregated image. The last image of a year (covering November-

December), is produced using the last three images of the current year and the first images

of the next year of the GLAD Landsat ARD (for the last two months of 2022 only three

images were used). The temporal aggregation involves a weighted averaging of the four
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images, where each weight corresponds to the clear sky fraction of the tile in the temporal

frame. The so obtained images are scaled and stored as byte in different compressed

GeoTIFF files for each band, tile and time-frame.

In addition to the six reflectance bands from the enhanched GLAD Landsat ARD-2 dataset,

we also incorporated several key vegetation and water indices as predictor variables for our

modeling purposes. These indices include the the Enhanced Vegetation Index (EVI), the

Normalized Burn Ratio (NBR), the Modified Normalized Burn Ratio (NBR2) also called

Normalized Tillage Index (NDTI), the Normalized Difference Snow Index (NDSI), the

Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index

(NDWI). Each of these indices is derived from different combinations of the reflectance

bands and provides unique insights into vegetation health, moisture content, burn severity,

and overall ecological conditions. We further used the following temporally aggregated

indices:

• Bare Soil Fraction (BSF), determined by the proportion of time the NDVI is < 0.35

(Castaldi et al., 2019)

• Number of Seasons (NOS), a measure indicating the annual count of crop cycles (Li

et al., 2014)

• Crop Season Ratio (CSR), representing the percentage of the year during which a

pixel shows active crop growth (Estel et al., 2016)

These indices are essential for capturing natural or anthropogenic processes that require a

longer temporal frame for sensible quantification. This approach is particularly pertinent

in a country like The Netherlands, characterized by its intricate agricultural spatial

patterns.

Climate data

The ERA5 Land hourly dataset was temporally aggregated to obtain monthly data of air

temperature (2 meters above ground), surface temperature and precipitation. The original

ERA5 data was first aggregated to daily data, and subsequently to monthly data, with

increased resolution (1 km) using CHELSA climatic data (Karger et al., 2020): in this way

the general spatial and temporal patterns of ERA5 Land dataset were retained whilst using

the finer spatial detail from the CHELSA dataset. For air and surface temperature we

obtained the monthly minimum, mean and maximum, while for precipitation the monthly

sum for a total of 84 climatic time series layers. Additionally, we used 17 bioclimatic

variables (Hijmans et al., 2005) for the period 1979–2013 to provide a baseline of the

actual state of the climate. We used variables from the CHELSA dataset since it has been

claimed to better agree with data from meteorological stations than WorldClim (Karger

et al., 2017).
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Topographic data

The elevation data utilized in this study was derived from the Digital Terrain Model (DTM)

for Europe, as developed by Hengl et al. (2020). This model represents a comprehensive

integration of various high-resolution digital surface models (DSMs) and elevation data

points. Specifically, it combines GEDI Level 2B (Dubayah et al., 2020) and ICESat-2

(ATL08) (Markus et al., 2017) elevation points with well-known DSMs, including ALOS

AW3D30 (Tadono et al., 2016), GLO-30 (Strobl, 2020), and MERIT DEM (Yamazaki

et al., 2017). An ensemble machine learning approach was employed to harmonize these

diverse data sources, resulting in a refined 30 m resolution elevation product covering the

entirety of Europe. We also used other DTM-derived topographical variables such as slope,

aspect, easterness, northness, and Topographic Wetness Index (TWI).

5.2.5 Sampling-based estimation of precise NFI plot locations from public

coordinates

We developed a multi-step procedure utilizing publicly available NFI plot coordinates,

dominant species information, and auxiliary raster layers to approximate the precise

coordinates of the NFI plot. This procedure operates within the spatial context of the

1×1 km INSPIRE-grid cell, delimitating a subsample of 30 m pixels from the broader

population of pixels within the cell. All the pixels within this subsample are treated

as training points for our model. The dominant species information used as reference

data for the model is derived from the original NFI plot. It’s worth noting that this

process can result in the inclusion of hundreds of pixels for each NFI plot. To account for

potential inaccuracies in the spatial location of these training points, we assign each newly

generated training point a weight of 1/n, where n represents the total number of pixels in

the final subsample. This weighting approach helps inform the model about the reliability

of these training points, considering the possibility of high spatial location inaccuracies.

To match the characteristics of the NFI plots with precise coordinates in the feature space

for modeling purposes, for this procedure we selected only the NFI plots with stand purity

coefficient >= 0.8.

In our analysis, we utilized the tree canopy extent maps developed by Turubanova et al.

(2023) to generate dynamic forest/non-forest masks for each 1×1 km km grid. This

approach is particularly crucial given the non-permanent nature of some of the NFI plots

in our study. For instance, plots measured in the 5th Dutch NFI may not necessarily be

present in the 6th Dutch NFI or viceversa. On top of that, the dominant species of the

plot may change over different surveys. To accommodate this variability, our forest masks

are designed to be dynamic, necessitating yearly tree extent layers. For a given plot, the

forest mask is derived based on the tree extent layer corresponding to the year of the plot’s

survey, as well as layers from up to five years prior. For example, if a plot was surveyed in

2006, the tree extent layers from 2001 to 2006 are utilized. In determining forest status



5.2 Material and methods 103

within these masks, we apply a stringent threshold: a pixel is classified as forest only if it

is consistently identified as forested in all the selected yearly layers.

Figure 5.3: Workflow to determine set of potential locations containing exact NFI plot

coordinates: initial public plot coordinates (orange) and precise plot coordinates (red) within a

1×1 km grid cell (red border), over a Sentinel-2 RGB composite (a); refinement using dynamic

forest mask highlights potential precise plot locations in those pixels classified as ”1” (b);

refinement using combined forest and forest type masks (coniferous) narrows down potential

plot locations (c); the ultimate subset of pixels selected as candidates for the precise plot

locations (d). The precise plot location (red dot) is captured within this final pixel subset.

We further refined this selection of pixels using the forest type layers from Witjes et al.

(2022); in particular, the choice between ”Broad-leaved forest” and ”Coniferous forest”

layers was determined by the dominant species present. After that, we analyzed the

distribution of probability values within the grid cell for the chosen forest type layer.

To identify the most likely pixels representing the actual location of an NFI plot, we

set a threshold based on the 90% of the maximum pixel value found in the distribution.

Only pixels with values equal to or exceeding this threshold were considered as potential

candidates. This approach ensures that we sample from the most representative pixels
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within the grid cell, significantly enhancing the accuracy of our plot location approximation.

In the next stage of our procedure, the pixels selected based on the 90% threshold are

reclassified as ”1” within our forest type mask. This reclassification is a critical step towards

pinpointing the precise location of the NFI plots. The final phase involves integrating

this forest type mask with the forest mask derived from Turubanova et al. (2023). By

multiplying these two masks, we effectively isolate the pixels that are most representative

of the actual forest conditions and the specific forest type of each NFI plot. The pixels

that emerge from this multiplication process are then regarded as the prime candidates

for accurately representing the precise locations of the NFI plots (Fig. 5.3).

5.2.6 Model building and evaluation

In assessing the efficacy of classification models to compare the effects of using true

coordinates or estimated coordinates, we prioritized interpretability and robust evaluation.

Random Forests emerged as the optimal choice, offering an accessible yet sophisticated ma-

chine learning solution: Random Forests is a non-parametric, ensemble-learning algorithm

based on classification trees where each tree is grown with a different subsample of train-

ing data and predictor variables (Breiman, 2001a). This method’s intrinsic randomness

effectively counters overfitting. Compared to other powerful machine learning algorithms

such as Gradient Boosting, Support Vector Machine or Artificial Neural networks, Ran-

dom Forests is also less sensitive to hyperparameter tuning: this means that default

hyperparameter values often result in near-optimal performance (Probst et al., 2019).

Nevertheless, we kept all hyperparameter values as default but we decided to tune the

num.trees parameter, setting an hyperparameter search space between 100 and 1000 trees,

using random search as a search strategy and logarithmic loss as our scoring estimator to

evaluate the model’s performance across different settings. The weights generated during

the estimation procedure for the sampled pixels were used for the estimated coordinates

model. Since we were interested in probabilities per class, the model was trained with

the ”prob” option, so that the final model would output probabilities instead of hard

classes.

For the purpose of validation, we utilized the remaining records from the 7th Dutch

National Forest Inventory as an independent validation set from the 4236 NFI precise

plot locations previously selected. The validation set consisted of 1305 observations in

total. Given that the tree species classification problem consists not only of probabilistic

assessments but also traditionally addresses the need for hard class mapping, we evaluated

our models using a set of both classical hard labeling metrics like Overall Accuracy (OA),

as well as probabilistic/scoring rules such as Brier the score (Brier, 1950) and a pseudo R2

based on logarithmic loss (Bonannella et al., 2022d). To compare class performances

we instead used balanced accuracy (Soleymani et al., 2020), F1 score, Brier score and

R2
logloss. After that we generated 100 bootstrapped iterations for both training sets (using

true and estimated coordinates) and trained an equivalent number of Random Forest
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models. This process enabled us to compute a 95% prediction interval (PI) for each class

in the dataset. We then utilized these PIs to calculate the Prediction Interval Coverage

Probability (PICP), a measure that evaluates the accuracy of the predictions within the

PI in the probability space.

5.3 Results

5.3.1 Sampling-based estimation procedure

The estimation procedure used a total of 2930 plots coming from the 5th and 6th Dutch

NFI, using the public coordinates as input generated from the centroid of the 1×1 km

grid. This approach generated a total of 83714 potential pixel coordinates across the

considered time period (2001–2013). Given the dynamic nature of several plots during this

timeframe, each set of spatial and temporal coordinates was treated as a distinct entry

in the estimation process. Consequently, given the same spatial coordinates but different

time reference, the potential locations associated with a specific plot number varied over

time, as illustrated in Figure 5.4.

Figure 5.4: Selected pixels as potential candidates for NFI plot locations in year 2003 (a) and

in year 2013 (b). Notice the forest patch next the centroid coordinates being absent in 2013

and that in both cases the precise NFI coordinates (red dot) are captured by the selection.

In the estimation process, for 87% of the plots with public coordinates, a sample of pixels

meeting the procedure’s filtering criteria was selected as potential candidates for the true

location. However, for the remaining 13% of the plots, no pixel satisfied these criteria.

Upon comparing these estimated locations with the actual, true coordinates, it was found

that the procedure accurately identified the true location in only 10% of the cases. The

average number of pixels sampled for each public coordinate plot was 41, with the median

being 17 and the mode being 1. In very few cases the procedure sampled a number of
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pixels in the order of hundreds, reaching almost 700 pixels per public coordinate plot (Fig.

5.5

Figure 5.5: Distribution of potential sampled pixels per number of plots. Sampled pixels

are grouped in bins of 25 elements. Notice how for more than 50% of the plots used for the

estimation procedure the pixels sampled are below 50.

5.3.2 Model performances and uncertainty assessment

The hyperparameter tuning resulted in a total of 557 trees for true coordinates model

(TCM from now on), while this number increased up to 772 for the estimated coordinates

model (ECM from now on). On average, the performances of the TCM on the validation

set achieved moderate OA values (0.71), while, as expected, the ECM had much lower

performances, reaching OA values of only 0.45. The Brier score indicates good overall

performances in the probability space by both models, as the score for the TCM is 0.07

while is only 0.1 for the ECM. The R2
logloss provides additional information on the model

performances, as the metric reaches values of 0.40 for the TCM, meaning a moderate

increase in performances of up to 40% compared to a naive classifier, while the same

metric for the ECM barely reaches 0.03. The two models performances across the different

evaluated performance metrics per class are shown in Table 5.1.

In evaluating the classification performance by class, the TCM uniformly outperformed

the ECM in terms of balanced accuracy. The TCM achieved notably high balanced

accuracy scores, especially for the classes ”Fagus spp” and ”Picea spp,” both reaching

0.98, which reflects a substantial equilibrium between sensitivity and specificity, as well

as a pronounced ability to differentiate these species accurately. In contrast, the ECM’s

performance peaked at a balanced accuracy of 0.70 for the ”Other broadleaved” class,
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demonstrating its relative struggle to maintain the same level of discriminative power,

with ”Picea spp” presenting the lowest balanced accuracy across all classes.

The F1 scores were markedly higher in the TCM, especially for ”Pinus spp” and ”Other

broadleaved” classes; in contrast, the ECM’s F1 scores were generally lower, with particu-

larly low scores for ”Pseudotsuga menziesii”, while it was even impossible to calculate it

for the ”Picea spp” class. The R2
logloss for the TCM, although not extremely high as no

class reaches values > 0.5, were positive for all classes, suggesting good improvements of

the TCM model compared to a naive classifier; conversely, the ECM reached even negative

R2
logloss values for several classes, implying a performance worse than random guessing

for those classes, particularly for ”Larix spp”. The Brier scores for both models were

relatively low across species, suggesting reasonable calibration of probabilistic predictions.

However, the TCM generally reported slightly lower Brier scores, indicating more accurate

probability estimates for the presence of species compared to the ECM.

Table 5.1: Comparison of model performace metrics per class.

Bal. Accuracy F1 Score R2
logloss Brier Score

Class TCM ECM TCM ECM TCM ECM TCM ECM

Fagus spp 0.98 0.55 0.29 0.18 0.48 -0.22 0.04 0.05

Larix spp 0.87 0.54 0.23 0.12 0.37 -0.36 0.03 0.04

Other broadleaved 0.78 0.70 0.68 0.42 0.32 -0.13 0.10 0.11

Picea spp 0.98 0.48 0.08 NaN 0.48 0.12 0.03 0.03

Pinus spp 0.86 0.64 0.84 0.62 0.49 0.19 0.11 0.19

Pseudotsuga menziesii 0.95 0.51 0.34 0.05 0.40 0.02 0.05 0.05

Quercus spp 0.77 0.56 0.67 0.25 0.33 -0.18 0.12 0.17

Passing on to the PICP scores calculated over the 100 bootstrapped iterations, it’s evident

that the overall PICP scores for both models (TCM: 0.88, ECM: 0.86) fall below the target

set for this analysis (95% PI). This discrepancy indicates that the models’ prediction

intervals are narrower than intended, reflecting an overestimation of their predictive

accuracy (Table 5.2). The TCM PICP score is closer to the target than the ECM one,

suggesting a marginally better estimation of the prediction interval. The TCM consistently

demonstrates PICP scores close to the target for the ”Fagus spp”, ”Larix spp” and ”Picea

spp” classes, with the last two having model based PIs slightly too wide (PICP score:

0.96). The remaining classes however have PICP scores close to 0.8 or even 0.7 (”Quercus

spp”), suggesting that the model based PIs for these classes are too narrow and not well

calibrated. The ECM follows the same trend but performs worse than the TCM, with

”Picea spp” and ”Larix spp” having PICP scores close to target while exhibiting much

narrower PIs for the other classes. The TCM PICP scores are all closer to target than the

ECM PICP scores except for the ”Other broadleaved” and ”Quercus spp” classes, which

are also the classes with the narrowest PIs for both models. Overall, the TCM shows
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better calibrated PIs than the ECM, although they are still too narrow compared to the

target PI.

Table 5.2: PICP scores computed over 100 bootstrapped iterations

Class TCM ECM

Fagus spp 0.95 0.92

Larix spp 0.96 0.94

Other broadleaved 0.81 0.83

Picea spp 0.96 0.95

Pinus spp 0.82 0.70

Pseudotsuga menziesii 0.93 0.93

Quercus spp 0.71 0.77

Overall 0.88 0.86

5.4 Discussion

5.4.1 Estimation procedure evaluation

The results from the sampling-based estimation procedure, which managed to include the

true location pixel in the selected subsample in only 10% of the cases, highlight significant

challenges in ecological data accuracy when using distorted plot coordinates for modeling

purposes. Furthermore, the methodology employed in building the forest masks, which

involved the combined use of a general forest mask derived from Turubanova et al. (2023)

and a more specific forest type mask derived from Witjes et al. (2022), had significant

implications on the results. On one hand, this approach had the advantage of selecting

only those pixels that were identified with high confidence by both products, potentially

enhancing the reliability of the pixels chosen for analysis. This dual-filtering process

could lead to a higher degree of precision in terms of the spatial locations being truly

representative of forested areas, thus strengthening the validity of the extracted data.

The method inherits the biases and limitations of both products used to derive the forest

mask and the forest type mask. The biases of each product, when combined, may have led

to a systematic exclusion or inclusion of certain areas inside the 1×1 km grid cell, thereby

skewing the results of the sampling procedure when selecting the potential true location

pixels. This dual reliance not only amplifies the inherent inaccuracies of each individual

product but also introduces new complexities into the analysis. Therefore, while the use

of two distinct products for forest mask construction may have seemed advantageous

in theory, in practice, it appears to have contributed to the paradox of achieving high

precision (i.e. a small number of sampled pixels) but overall low accuracy (i.e. including
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in only 1 case out of 10 the pixel with the true location in the sampled pixels). The

outcomes of our sampling-based estimation procedure, may be further contextualized by

considering the unique spatio-temporal forest context of the Netherlands. As per the

7th Dutch National Forest Inventory, forests cover only 11% of the country’s land area

(Schelhaas et al., 2022). This limited forest coverage, coupled with the fact that 54%

of these forests are even-aged and only about 30% are relatively single-species stands

(Schelhaas et al., 2022), presents a distinct challenge. In contrast to the more homogeneous

forest landscapes typical of Scandinavian regions, where productive forests dominate, the

Dutch forests’ heterogeneous nature likely exacerbates the difficulty of accurate location

estimation. Even with precise raster layers employed in the estimation process and filtering

the NFI plots by stand purity coefficient, these conditions inherently complicate the task,

potentially contributing to the less than optimal results observed in our procedure. This

highlights the importance of considering regional forest characteristics and their impact

on the efficacy of sampling methodologies in ecological studies.

Comparing our results with the ones from Bonannella et al. (2022d), which also utilized

a forest type layers from Witjes et al. (2022) to filter species presence plot data, reveals

some interesting parallels and divergences. Their approach, like ours, grappled with the

challenges of data accuracy and spatial resolution. However, not only they benefitted

from a relatively more comprehensive dataset, including harmonized data from various

sources like GBIF or the LUCAS survey, but their response variable differed significantly

in its fundamental objectives and methodologies. While our study aimed at tree species

classification, a task that typically involves mapping all species collectively and then

assigning each pixel to the species with the highest probability, Bonannella et al. (2022d)

focused on species distribution modeling (SDM) and, in particular, mapping both presence

and absence of different tree species. This distinction is crucial as tree species classification

presents inherently greater challenges than SDM. In classification, the complexity lies not

only in accurately identifying forested areas but also in differentiating between multiple

species within these areas. This process requires a more nuanced understanding of species-

specific characteristics and their spatial distribution, often leading to higher levels of

uncertainty and complexity in the model.

In addition, the approach of Bonannella et al. (2022d) was characterized by mapping each

tree species individually. This method, while potentially offering more detailed insights

into the distribution of each species, contrasts with the common practice in tree species

classification where a collective mapping of all species is followed by the probabilistic

assignment of the pixels. This difference in approach can have significant implications for

the accuracy and applicability of the results. Mapping species individually allows for a more

focused analysis, potentially yielding more precise distribution patterns for each species.

However, it might also overlook the interactions and competitive dynamics among different

species, which are crucial elements in understanding forest ecosystems. Furthermore, it’s

important to note that Bonannella et al. (2022d) did not employ a coordinate estimation
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procedure akin to ours. Instead, they utilized a filtering process to include or exclude

plots with degraded coordinates. By directly using the distorted coordinates without

attempting to reverse-engineer the degradation, their study possibly incorporated the

inherent inaccuracies of the public datasets. While this approach simplifies the data

processing workflow, it may also result in the perpetuation of systematic errors present

in the original data sources. In contrast, our attempt to estimate the true coordinates,

despite its limited accuracy, represents an effort to mitigate the impact of such inaccuracies

on our analysis. These methodological differences underscore the varied challenges and

trade-offs inherent in ecological modeling. The choice between using degraded coordinates

directly or attempting to correct them, as well as the decision to map species individually

versus collectively, fundamentally shapes the nature and utility of the resulting models.

As such, these approaches reflect differing priorities and constraints, each with its unique

set of advantages and limitations.

5.4.2 TCM vs ECM

Using distorted NFI plot coordinates and their effects on modeling outputs has been

investigated in previous studies in particular for SDM: McRoberts et al. (2005) for example

demonstrated that the degradation of coordinates significantly affects model estimates;

this negative effect diminishes when the distortion exceeds a certain threshold, such as

32 km. This finding suggests that while high resolution modeling is desirable for accuracy,

it becomes counterproductive if the underlying spatial data is significantly distorted. Or

rather, it raises a fundamental question: why would one engage in high resolution modeling

if accurate estimates are only achievable at such a broad scale? In essence, the benefit

of high resolution data is lost if the coordinate accuracy is not up to par. It’s a clear

indication that the scale of modeling must be carefully considered in relation to the quality

of spatial data available. In their study, Gibson et al. (2014) examined the implications of

using accurate versus degraded coordinates in SDMs, building on the same NFI dataset

previously analyzed by McRoberts et al. (2005) from the Forest Inventory and Analysis

(FIA) database. This investigation was focused on how the scale of input data affects

model outputs in the context of climate change scenarios. They discovered that enlarging

the grid size in SDMs can significantly skew the predicted distribution ranges of species,

highlighting the necessity of aligning the spatial resolution of the model with the precision

of the input data. Their findings indicated minimal differences between the models using

true and altered coordinates: this can be attributed to the alignment of the coordinate

alteration radius with the grid size of both the input data (climatic and bioclimatic layers

at 1 km resolution) and the output (distribution maps at the same resolution), suggesting

that the scale of analysis can mitigate the effects of coordinate accuracy.

It becomes evident that while high resolution modeling offers a granular view of ecological

dynamics, its effectiveness is heavily contingent on the precision of the underlying spatial

coordinates. Degraded coordinates can significantly undermine the utility of high resolution
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data. On the other hand, models built on true coordinates, even if at a somewhat coarser

resolution, may provide more dependable insights, particularly for broad-scale ecological

studies like those examining the impacts of climate change (i.e. future projections,

forecasting and similar approaches). Our study’s comparative analysis of the TCM and

the ECM exemplifies this, demonstrating the superior accuracy and reliability of the

TCM due to its use of true coordinates. The overall results of the TCM model merit

discussion, particularly considering their moderate performance despite certain limitations

in the modeling approach. Notably, the model achieved a commendable level of accuracy

even without the implementation of advanced techniques such as hyperparameter tuning,

ensemble modeling, feature selection, or the integration of more complex covariates like

hyperspectral and radar data, or other multispectral-derived covariates such as tasseled

cap transformations or phenology proxies. This outcome underscores the inherent strength

of the modeling framework used, suggesting that even basic implementations can yield

significant insights in tree species classification.

However, it’s important to acknowledge the potential impact of our methodological choices

on the model’s performance. The decision to filter points by survey alongside the application

of a stand purity coefficient, inevitably led to a reduction in the number of training points

available to the model, totaling less than 3000. This reduction in training data size may

have influenced the model’s effectiveness, as machine learning algorithms like random

forests typically benefit from larger datasets. More data often equates to improved model

robustness and predictive accuracy, as it allows the model to capture a wider range of

variability and nuances present in the target species’ distribution and characteristics. In

light of these considerations, while the models demonstrated good accuracy with the

available data and techniques, future enhancements in data quantity and quality, as well

as the incorporation of more sophisticated modeling techniques, could further elevate their

performance. This suggests a promising avenue for advancing tree species classification

models, leveraging more comprehensive datasets and refined analytical methods to achieve

even greater accuracy and ecological insight.

The challenges we identified in our study regarding the limitations of using public or

estimated coordinates in tree species classification are echoed and expanded upon in the

broader context of forestry research. Both Wulder et al. (2024) and Coops et al. (2023)

illustrate the significant benefits of combining precise NFI coordinates with advanced

remote sensing techniques, proposing innovative, dynamic, and comprehensive approaches

to forest inventory. This approach aligns with our findings, indicating a notable accuracy

gap when using estimated coordinates. Hermosilla et al. (2022) further supports this,

identifying geographic coordinates as one of the most important variables in their tree

species classification model, emphasizing the complications in species classification that

arise from less accurate spatial data. Fassnacht et al. (2024) explores the evolving role of

Earth observation data in forestry, stressing the importance of high-resolution and precise

spatial data in enhancing remote sensing applications. This perspective resonates with
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our study’s observation of the limitations of degraded coordinates, bolstering our call for

the necessity of using precise NFI coordinates to improve the effectiveness of classification

models. In summary, our study’s challenges reflect a broader requirement in forestry and

geo-information science for the integration of precise NFI coordinates into not only tree

species classification models, but forest monitoring as a whole. We advocate for wider

access and public sharing of NFI true coordinate data, recognizing its crucial role in

enabling more accurate, efficient, and impactful forestry research. This collaborative effort

in data sharing is vital for fully leveraging remote sensing technologies, fostering innovation,

and effectively responding to environmental challenges and transformations.

5.5 Conclusions

In this study, we compared two different models for classifying forest tree species at

high resolution in the Netherlands and focused on the outcomes derived from using the

National Forest Inventory plot precise coordinates against those generated through an

estimation procedure from the publicly available coordinates. Our findings highlighted

several important points.

Firstly, a significant part of our research involved developing a method to identify a

set of locations for each NFI plot potentially capturing the true location from public

data. The estimation procedure demonstrated that it successfully incorporated the actual

location pixel within the selected samples for only 10% of the cases, reflecting the inherent

difficulty of the task. This result underlines the challenge and limitations inherent in using

estimated or degraded data for ecological studies. This finding is critical, as it reflects the

limitations of current data-sharing protocols and emphasizes the need for enhanced access

to precise NFI data. Secondly, the comparison between the TCM and ECM revealed a

stark difference in performance. While it was expected that the TCM would perform better

than in classifying the tree species, the difference across the whole spectrum of performance

metrics used highlights a considerable disparity between the two models and is a testament

to the significant impact of coordinate precision on the accuracy of high resolution tree

species models. The precise location data allowed for a more detailed, reliable prediction

of tree species distribution, which is crucial for informed decision-making in forestry.

Moreover, the research shed light on the challenges of integrating remote sensing data

with NFIs, particularly concerning the availability and precision of NFI data. The limited

accessibility of precise, plot-level NFI data poses a significant barrier to maximizing the

synergies between NFIs and remote sensing. This gap not only hampers the potential

of these integrated approaches but also limits the ecological insights that can be derived

from such models. The study’s findings also have broader implications for forest inventory

and management. The integration of precise NFI coordinates with advanced remote

sensing techniques, as proposed by Wulder et al. (2024) and Coops et al. (2023), presents

a promising direction for enhancing forest monitoring and management. This approach



5.5 Conclusions 113

aligns with our observation of the limitations of degraded coordinates and reinforces the

necessity for true NFI coordinates to improve the effectiveness of classification models and

forest inventories.

In conclusion, this research highlights the critical need for accurate spatial data for high

resolution tree species classification. It also emphasizes the importance of improved data-

sharing practices and collaboration in the field of forestry and remote sensing. This study

demonstrates that while models using estimated coordinates can provide baseline insights,

access to precise NFI data is essential for more accurate and impactful forestry research

and environmental management. The study advocates for a synergistic integration of

NFIs with remotely sensed data, recognizing the potential of such an integrated approach

for advanced monitoring of forest resources. The findings call for a collective effort in

data sharing and transparency, which is vital for leveraging remote sensing technologies

effectively, fostering innovation in forest inventory, and responding to environmental

challenges and transformations.





Chapter 6

Synthesis
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This thesis has contributed towards advancing the exploration of integrating Earth obser-

vation data, machine learning techniques and field plot data to deepen our understanding

of ongoing vegetation dynamics and improve monitoring and management of forest ecosys-

tems. More specifically, the thesis contributed to this topic with assessing the impact

of climate change on biomes distributions under different climate change scenarios and

identifying potential hot spots of change (R.O.1) regardless of the upcoming climatic

scenario. Furthermore, it helped with developing a data-driven framework combining EO

data and ML techniques for high resolution mapping of both potential and realized tree

species distributions (R.O.2) at a continental scale. Such methodology made possible the

investigation of ongoing changes in forest ecosystems and the impact of forest disturbances

on tree species distributions (R.O.3) at a continental scale, identifying areas with signs of

ecological niche shifts. Lastly, it examined the effect of coordinate precision in field plot

data for high resolution tree species classification modeling (R.O.4), showing the necessity

of using precise field plot coordinates to fully exploit the opportunities offered by EO data

and ML technologies in forest and environmental monitoring.

In this general discussion, the key findings and insights from the previous chapters will be

synthesized to offer actionable guidance for forest modelers and remote sensing practitioners

on effectively integrating EO data, ML techniques and field data. For this reason, the

outcomes of this thesis are not limited to this dissertation only but also include open-source

code, computational notebooks with tutorials, training datasets, blog articles and time

series maps of biomes and tree species distributions. These resources, distributed under the

CC BY 4.0 license, are freely accessible online, facilitating further research and application

in the field.

The upcoming chapter is divided into two sections: the first summarizes contributions to the

research objectives formulated in Section 1.3, comparing methodologies and findings; the

second reflects on these contributions, offering perspectives on future research opportunities

and collaborative endeavors.

6.1 Main findings

6.1.1 What is the impact of climate change on potential biomes distribution

based on Earth observation and machine learning methods? And what

are the projected shifts in vegetation under various climate change

scenarios?

Research assessing the impact of climate change on vegetation typically employs two

main approaches: global mechanistic vegetation models, which simulate the dynamics of

vegetation including carbon fluxes, sinks and sources, and empirical models that establish

correlations between climatic patterns and observed vegetation characteristics, such as

biomass, species distributions or other physical traits. Empirical studies on this subject
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typically use a mix of EO data, ML methods, and field data in their experimental setups,

yet it is rare to find a study that integrates all three elements together. Studies that do

not incorporate ML methods often produce results with coarse resolution and limited

depth due to the absence of advanced computational analysis, resulting in moderate

model performance and broad/general findings. Those excluding EO data typically face

constraints in extending their findings across various temporal and spatial scales, hindering

the ability to conduct comprehensive analyses. Meanwhile, research omitting field data

and focusing solely on EO data and ML methods tends to offer conclusions with a degree

of abstraction, as they rely on indirect vegetation indicators like NDVI, lacking direct

observational support.

In Chapter 2, the developed ensemble ML model based on stacked regularization used

for biomes distribution classification took advantage of climate projections derived from

different Global Circulation Models (GCMs), EO data in the form of high resolution

topographic layers and observational support on plant communities from field surveys.

This comprehensive approach enhances model performances by leveraging the strengths of

each data source in conjunction with the flexibility, scalability, and predictive power of ML

models. This strategy not only surpassed previous studies in terms of accuracy despite the

limited amount of training data, but also kept the experimental design relatively simple

and free from assumptions, distinguishing it from other empirical studies. Given the

limitations in model extrapolation and transferability common to ML models, addressing

these through the spatial blocking during the cross validation, alongside the use of the

margin of victory for model uncertainty quantification and the production of uncertainty

maps, has been crucial. This approach allowed the spatial visualization of areas predicted

by the model with high confidence, enhancing the practical utility of the outputs produced

in the analysis despite its inherent limitations and offering a better understanding of where

these outputs could be most trusted.

Applying a 50% margin of victory threshold to model outputs across the different climate

scenarios and epochs, the analysis in Chapter 2 indicated that by the end of the century

most of the spatial configuration of vegetation communities on the planet will stay the

same; despite that, the tundra and the tropical-subtropical forest biomes were identified

as some of the vegetation communities most at risk and susceptible to climate-induced

changes. In fact, part of the land surface area occupied by such communities is projected to

be occupied by either boreal forests, in the case of the tundra, or by savannas and grassland

biome in the case of the tropical-subtropical forest biome. While the amount of land

expected to change varies between climate change scenario and epoch, the methodology

implemented in Chapter 2 allowed not only to identify which vegetation communities and

region of the planet would be most vulnerable to changing climatic conditions but also

pinpoints areas at the highest risk of significant shifts. It also allowed to identify regions

within the same biome with higher risk, indicating that shifts in vegetation due to climate

variations will not be uniformly distributed and some areas will be more affected than
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others. Lastly, it allowed to identify specific locations that can be considered hot spots of

change, meaning areas that are projected to shift from one biome to another regardless of

the climatic scenario forecast; these hot spots are mostly located in North America, close

to the Arctic Circle, and at the southern edges of the Amazon and Congo rainforests.

6.1.2 What combination of Earth observation and machine learning methods

allows to map and analyze the distribution of forest tree species at high

resolution?

To address this research question in Chapter 3, a more detailed data-driven framework

than the one presented in Chapter 2 was developed to map the potential and realized

distribution of 16 different tree species at European scale for the period 2000–2020. Instead

of treating all 16 species as classes of a multiclass classification model like in Chapter 2, in

this case each species was mapped independently and two different models were trained for

each species, one for the potential distribution and one for the realized distribution. While

the core of the framework was still the ensemble ML model based on stacked regularization,

like in Chapter 2, given the significant computational resources needed to train two models

and map the whole of Europe at 30 m resolution for multiple species, several improvements

were incorporated in the modeling framework to achieve a good compromise between

model performances and computational demands.

First, an automatic feature selection process was implemented to reduce the feature space;

this step was necessary as the list of covariates used for the analysis included up to

300 different predictor variables, 4 times more than in the previous chapter. Secondly,

before training the ensemble ML model we compared the model performances of 7 distinct

common ML algorithms configurations, each undergoing independent hyperparameter

tuning to ensure a fair comparison. This preliminary analysis allowed to keep a good

coverage of the feature space while employing ML algorithms with different configurations

or approaches (e.g. tree based versus regression, bagging versus boosting). This is also

shown in model performances, where the ensemble model outperformed or performed as

good as the best of the component models. After training the final ensemble model, the

standard deviation of the predicted probabilities by the component models was used to

quantify the model uncertainty at pixel level, to provide a measure of uncertainty in the

probability space for the model predictions. Like for the analysis in the previous chapter,

the provision of uncertainty maps is uncommon in this type of studies and represents

an added value, offering map users insight into where and when the model outputs are

most reliable. Not only this ML-based workflow was able to provide detailed and accurate

predictions (R2
logloss = 0.857, 0.839, respectively, for potential and realized distribution

averaged across all 16 species) at different geographical and temporal scales, but is also

fully reproducible and robust enough to be applied to multiple tree species.
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The inclusion of EO data at different spatial resolutions was of paramount importance

throughout different steps of the workflow. Firstly in the preprocessing phase: the field data

recording tree species presence and absence used in the analysis was sourced from datasets

with different degrees of spatial offset. Notably, public NFI plot coordinates coming from

the EU-Forest dataset, potentially offset by up to 1 km, required careful handling. To

address this, EO land cover layers were employed to discern and exclude plots located

outside forested areas throughout the study period, ensuring the analysis focused only on

relevant areas. This allowed to use even plots with imprecise coordinates for high resolution

SDM. Secondly, during the modeling phase, and in particular in the variable importance

analysis: the EO layers at 30 m (i.e. Landsat spectral bands and indices) proved to be

the most important predictors across all 16 species for the ensemble model for realized

distribution. The importance of EO high resolution data for such modeling exercises was

furtherly assessed by conducting a comparative analysis. Models that integrated Landsat

data were pitted against those reliant on up to 250 m resolution data. The findings were

clear: models leveraging the Landsat data consistently outperformed their counterparts

across all species and evaluated performance metrics. This comparison not only highlighted

the superiority of high resolution EO data in modeling efforts but also reinforced the

necessity of such detailed data for accurate species distribution modeling. The integration

of high resolution EO data, ML techniques, and field data, even with partially degraded

spatial coordinates, within a robust modeling framework, enabled accurate spatiotemporal

mapping of forest tree species distributions across Europe.

6.1.3 How can these methods be applied to capture trends and disturbance

impacts on forest tree species distributions and how do these reflect

the ongoing changes in forest ecosystems?

When dealing with ecological niche shifts, SDM research traditionally focus on long term

ecological forecasting based on climate change scenarios and equilibrium assumptions.

This approach typically results in a bitemporal analysis over long time frames, which

often overlooks ongoing dynamics in species distributions within shorter time periods and

neglects potential insights gained from analyzing observed data using a multitemporal

approach. While the bitemporal approach was preferred due to the lack of information

on time series maps of species realized distribution, the integration of EO data and ML

methods in SDM studies offers the chance for a more granular and data-drive approach.

Forest disturbances significantly impact tree species realized distribution, yet while EO

and ML technologies have advanced the detection, analysis, and spatial mapping of

these disturbances, a comprehensive understanding of their effects on specific tree species

distributions remains lacking.

Of central interest for this thesis was not only to provide clear methods, like in the previous

chapters, but also to derive insights from the integration of EO data, ML methods and field

data. For this reason, in Chapter 4, the realized distribution time series maps for 6 forest
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tree species from Chapter 3 were analyzed to detect the presence of ongoing distribution

shifts processes over Europe. These maps were combined with existing continental high

resolution products mapping forest disturbances drivers and year of disturbance to assess

how such disturbances have influenced the range of each species analyzed and to identify

the dominant disturbance drivers. Having per-pixel information on the probability of

occurrence every 4 years for the time period 2000–2020 allowed to discern whether there

was an increase, decrease, or no significant change in trends for each species examined.

Given the similar spatial resolution between the distribution maps and forest disturbance

maps (i.e. 30 m resolution), this made it possible to categorize each pixel as either

disturbed or undisturbed during the time period analyzed, and, if disturbed, to clearly

assign disturbance type and year of disturbance. While findings on forest disturbances were

analyzed at the native resolution of the products, to derive information on species ranges

advancing or retreating results were aggregated at 1 km resolution. This step was taken to

filter out weak signals from the analysis, thereby highlighting clear and robust patterns in

species distribution changes. To make the qualitative spatial analysis even clearer, a 1 km

map was produced for each identified phenomenon - specifically, increases or decreases in

species probability of occurrence, as well as areas of stability. This approach facilitated a

more detailed and understandable presentation of the spatial dynamics affecting species

distributions.

The results showed that, across Europe and the time period analyzed, the probability of

occurrence for all species studied predominantly displayed stability, indicating no significant

changes in species distributions. These stable areas roughly align with the native range of

each species, namely those places where the species have historically persisted and adapted

over time; the identification of these areas highlight their importance for conservation

purposes of the species analyzed. However, some general or species-specific hot spots of

ongoing changes have been identified in the continent, with a prevalence of areas with

decreasing probability of occurrence over those with an increasing ongoing phenomenon.

Those areas were mainly located in Northern and Central Europe, particularly at each

species latitudinal range edges or, in some cases, outside of their original native range

due to human intervention. In such instances, species have been introduced or cultivated

outside of their native ranges for various purposes such as wood production. Identifying

these areas is crucial for distinguishing between localized incidents and broader range

contractions, as they could indicate the onset of widespread changes or merely isolated

events. Areas with an increasing ongoing phenomenon were found much rarer and scattered,

showing no clear spatial pattern. Additionally, a steady increase in disturbance events

was identified in each species range by disturbance (affected range doubled by the end of

the time period analyzed, from 3.5% to 7% on average) and highlighted species-specific

responses to forest disturbance drivers such as wind and fire. This thorough analysis

of species ranges shifts and species-specific forest disturbances was made possible only

by the extensive usage of EO data and ML methods. The insights garnered from this
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application hold significant potential for implementing broad measures aimed at preserving

the resilience of European forests, showcasing the pivotal role of advanced technologies in

ecological conservation efforts.

6.1.4 What is the effect of coordinate precision in NFI data on the accuracy

of high resolution tree species classification models?

To fully exploit the opportunities EO data and ML for high resolution ecological modeling,

precise ground information is crucial. Imprecise coordinates can significantly compromise

the ability to accurately match labeled or quantitative ground information in the feature

space during the modeling phase, potentially skewing model outcomes. NFI data is one of

the most comprehensive ground source for forest analysis but the needed access to the

precise coordinates is often challenging due to privacy and legal constraints. Chapter 5

investigates the impact of using spatially degraded coordinates versus precise coordinates

for the classification of dominant tree species in the Netherlands. To limit the confusion

in the feature space, an estimation procedure was developed to identify a set of location

potentially containing the precise coordinates for each NFI plot; while one model was

trained with the precise coordinates, the other model was trained on the subsample of

pixels coming out of this estimation procedure.

Results showed that the estimation procedure did not have much success: not only the

procedure managed to include the precise coordinates in the training subsample only

up to 10% of cases, but the model trained on this subsample of pixels achieved very

low performance scores when compared with the one trained on the precise coordinates.

Although the model using precise coordinates performed better, analysis of the PICP

scores indicated an overconfindence in predictions for both models. This highlights

that, despite employing advanced ML techniques, high quality field data and predictor

variables, the task remains inherently complex; given these challenges even with the precise

coordinates data, relying on publicly available coordinates only exacerbates the difficulty,

highlighting the critical need for making the precise location accessible to researchers and

practitioners. With greater accessibility, research could shift focus towards developing

more accurate models to address similar ecological challenges, rather than navigating

the added complexity of privacy-related data restrictions. This shift would significantly

enhance the integration of EO data, ML technologies, and field data, streamlining the

model development phase.

6.2 Reflection and outlook

This work was motivated by the growing need for methods capable to prepare and deliver

timely, temporally continuous and spatially explicit data products of vegetation attributes

at high spatial resolution. Leveraging the opportunities offered by EO data and ML

algorithms, these methods and products are designed to complement traditional vegetation
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modeling and monitoring approaches. In this context, this thesis has demonstrated

the benefits of integrating EO data and ML methods with field data to improve our

understanding of vegetation dynamics, be it either ongoing changes as explored in Chapter

3 to 5 or potential future shifts as in Chapter 2.

6.2.1 The role of integrated approaches for vegetation modeling

Understanding vegetation dynamics is crucial for economic and environmental sustainability,

especially under the threat posed by climate change. Precise, timely knowledge of vegetation

structure and composition, as well as the ability to make forward-looking projections,

is essential for sustainable management of environmental resources. EO data provides

wall-to-wall, spatially explicit characterizations of areas covered by vegetation regardless

of management, ownership, or protection status, with up to several decades of spectral

information (Wulder et al., 2019), while ground-based measurements, often in the form

of extensive networks, provide detailed baseline information on the state of vegetation

ecosystems and form the foundational level of most traditional vegetation monitoring

frameworks (Fassnacht et al., 2024; Zweifel et al., 2023). Co-registration of ground-

based measurements with EO data, coupled with the pattern-recognition ability in a

multidimensional data space offered by advanced machine learning techniques, could

be the backbone of new standardized methods for vegetation modeling and monitoring

(Gessler et al., 2024; Zweifel et al., 2023), to the point that ML for satellite data has

become a branch of ML in and of itself (SatML - (Rolf et al., 2024)). While ground-based

measurements have historically been crucial for developing, calibrating, and validating

EO-based approaches (e.g. FLUXNET (Baldocchi et al., 2001), U.S. FIA program (Lister

et al., 2020), Swedish NFI (Olsson, 2015)), ML models developed from EO and field data

are now transcending traditional monitoring methods. These models have evolved into

comprehensive systems capable of monitoring, simulating, and predicting environmental

and human activity interactions, showcasing their potential to redefine ecosystem analysis

and management strategies.

In their review, Radeloff et al. (2024) discuss the importance of producing systematic

satellite data products for monitoring and managing Earth’s surface changes due to global

climate and land use changes and categorize these products into five thematic areas,

based on their relevance to sustainable management, societal benefits, and global change

challenges. These products are further prioritized into three levels: essential, which are of

the highest importance and currently feasible with mature algorithms; desirable, which are

technically achievable but not as urgently needed; and aspirational, which require further

research and development. Information on forest types and tree species is included in

the aspirational tier: while some examples of national level of tree species information

are reported by the review, an integrated approach based on EO data, ML algorithms

and ground measurements for large scale tree species mapping has not been developed

yet. Thus, to address this methodological gap, this thesis has contributed in providing a
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framework for high resolution spatiotemporal mapping of presence-absence of individual

tree species at continental scale (Chapter 3) alongside an analysis on ongoing tree species

shifts (Chapter 4). Notably, the proof-of-concept examples highlighted in the review related

to tree species mapping all rely on precise NFI plot coordinates for their machine learning

frameworks; in this context, Chapter 5 has contributed with a practical demonstration on

stressing the critical need for researchers to have access to such precise coordinates. For

any progress to be made in this direction, such access is essential.

Contributions from Chapters 3 to 5, using free and open EO data and being full reproducible,

stand to significantly improve national forest monitoring strategies specifically within the

European Union. In fact, this alignment with the European Commission’s initiative for a

new forest monitoring system (European Commission, 2023) underscores the potential for

these scientific advancements to be adopted and implemented across member states. This

proposal from the European Commission seeks to integrate advanced EO technologies

with ground observations to develop a comprehensive, high quality monitoring system.

By providing a blueprint for such integration, this research facilitates the creation of a

unified monitoring framework. Such contributions are pivotal for countries looking to

enhance their forest resilience strategies and meet reporting requirements under EU policies,

ensuring that decision-making is supported by the most accurate and comprehensive data

available. This approach not only aligns with the EU’s goals for forest monitoring but

also exemplifies the thesis’s practical impact on shaping future policies and strategies for

sustainable forest management.

Forecasting the vegetation dynamics over the long term and at an appropriate spatial

scale is essential for decision making to reduce the impacts of environmental disasters such

as land degradation and drought. However, the response of vegetation to climate change

remains poorly understood. Despite a globally consistent greening trend has been observed

since 1980 (De Jong et al., 2011; Zhu et al., 2016), it is not possible for traditional linear

approaches or mechanistic models, which rely on the assumption of stationarity, to detect

nonlinear changes in vegetation and then forecast them into the future. Forward-looking

projections using mechanistic models show large discrepancies between each other (Anav

et al., 2013), but even when using approaches that allow to smooth these discrepancies

like the multi model ensemble mean (MME) (Zhu et al., 2017), these models tend to

overestimate the impact of the CO2 fertilization effect on the greening trends (Zhu et al.,

2016), effect which has been shown to plateau over the last decades (Higgins et al., 2023;

Wang et al., 2020; Zhao et al., 2020). Integrated approaches combining EO data, ML

methods and ground observations do not suffer from the same limitation (Ferchichi et al.,

2022). A practical example of such integrated approaches for forward-looking projections

was presented with the simulations conducted in Chapter 2: the chapter described a fully

reproducible data-driven framework able to identify which vegetation communities and

regions would be most vulnerable to changing climatic conditions that can be updated

at any time given more field data observations or new GCM climatic projections. While
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the model is relatively simple compared to mechanistic models providing similar type of

information (Anderegg et al., 2022; Nolan et al., 2018) and does not include feedback

loops, the predicted shifts are in line with ongoing greening and browning phenomena

observed by EO data for the last four decades in those same areas (Berner and Goetz,

2022; Gatti et al., 2021; Higgins et al., 2023).

Contributions from Chapter 2 and 4 could be useful at European scale to reach the targets

set by the new Nature Restoration Law (European Commission, 2022): this law sets binding

targets to restore 20% of EU land and sea areas by 2030, extending to all ecosystems

by 2050, to combat biodiversity loss and climate change. It requires member states to

develop National Restoration Plans, focusing on habitats crucial for carbon storage and

mitigating natural disasters, directly supporting the EU’s biodiversity and climate goals.

By offering a predictive analysis of vegetation community vulnerabilities and detailing

current and future species shifts, contributions from this thesis could help ensuring that

National Restoration Plans are both proactive and grounded in comprehensive scientific

understanding.

6.2.2 Towards seamless integration: overcoming data challenges in vegetation

modeling

Modeling and monitoring spatiotemporal dynamics of vegetation at both high spatial

and temporal resolution is fundamental for informing decision-makers and shaping policy-

making processes, providing insights for effective climate change mitigation and adaptation

strategies. Recent advancements in in Earth Observation Programmes (EOP), like the

Landsat and Sentinel series, have significantly improved vegetation analysis capabilities

across a vast spectrum of scales, facilitating both local and global studies. The integration of

ML with EO data, supported by advances in computing power and algorithm development,

has simplified the analysis of large datasets, revealing patterns and insights in the data

that were previously difficult if not impossible to detect. The implementation of a free data

policy for major continuous EOPs has democratized data access, propelling the use of EO

data for vegetation modeling applications and emphasizing the importance of open-access

data in forest management and conservation efforts.

The development of both commercial (i.e. Google Earth Engine, Microsoft Planetary

Computer, Amazon Web Services) and non-commercial cloud computing platforms (SEPAL,

openEO, Joint Research Centre Big Data Analytics Platform), has revolutionized access to

EO data and the application of ML algorithms for global scale analysis. These platforms

offer robust infrastructures that eliminate the need for individual researchers to worry

about physical infrastructure or computing power, making it significantly easier to perform

comprehensive analyses. On these platforms, EO data is frequently provided in an Analysis

Ready Data (ARD) format, streamlining the workflow by eliminating the need for extensive

preprocessing and allowing researchers to dive straight into analysis (Dwyer et al., 2018;
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Potapov et al., 2020). The SpatioTemporal Asset Catalog (STAC) further simplifies

accessing EO data by standardizing how geospatial data is catalogued and queried, thereby

enhancing the efficiency of data discovery and utilization across these cloud platforms

(STAC Community, 2024).

Google Earth Engine (GEE), for instance, has emerged as a leading platform in this

field, offering access to a vast archive of satellite imagery from multiple EOP and a

high performance computing (HPC) environment to process and analyze data at scale.

This has opened up new possibilities for monitoring environmental changes, land cover

classification, and water resource management, among other applications: Venter and

Sydenham (2021) for example reported producing a 10 m resolution land cover map for

the whole of Europe in just 4 days of computing on a single research user account. The

Horizon 2020 project openEO has proposed a harmonized API (Application Programming

Interface) facilitating access to various cloud infrastructures using essentially the same

source code (Schramm et al., 2021). By reducing complexity and fostering interoperability

across platforms, these developments have democratized EO data analysis, allowing for in

depth, cost effective environmental assessments accessible to a broader range of researchers

and practitioners.

However, the effectiveness of these advanced tools is fundamentally constrained by the

availability and quality of reference data. Despite the wealth of EO data and the analytical

power of ML, the scarcity of accurate, high resolution ground information emerges as

a critical bottleneck. Reference data are essential for calibrating and validating remote

sensing models, yet they are often limited in spatial coverage, outdated, or inaccessible

due to proprietary restrictions.

A notable example in literature that underscores the importance of the proper usage of

reference data involved the analysis by Ceccherini et al. (2020), who used the Global

Forest Change (GFC) maps from Hansen et al. (2013) to prepare remote sensing based

estimates of harvested forest area over EU26, comparing these estimates with the national

statistics on harvest removals officially provided by individual countries. Their findings

revealed large inconsistencies between the remote sensing estimates and national statistics,

particularly after 2015 and for Nordic and Baltic countries, with an increase in harvested

area over the continent of about 49%. This claim started a long discussion in the media and

in scientific journals, which ended only recently with the analysis provided by Breidenbach

et al. (2022). By comparing the GFC maps with a series of 120,000 NFI plots from the

Finnish and Swedish NFI, they demonstrated that the claimed increase in harvested area

was actually due to improvements in the map’s detection capabilities after 2015 and not an

actual increase in harvest activities in either Finland or Sweden. This incident underscores

a critical gap between the potential of EO and ML technologies and the limitations

imposed by inadequate reference data. It accentuates the urgent need for comprehensive,
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open access datasets that can support the next generation of forest monitoring solutions,

ensuring that such analyses are grounded in reliable and up to date information.

In response, efforts like the Forest Observation System (FOS) (Schepaschenko et al., 2019)

and the OpenForest catalogue (Ouaknine et al., 2023) have emerged, targeting the critical

data challenges that hinder effective forest data collection and utilization. The FOS, a

collaborative international effort, focuses on creating and sustaining a global database

of in-situ forest biomass and canopy height measurements. In contrast, OpenForest

aggregates 86 open access forest datasets from various spatial scales, enhancing machine

learning applications in forest biology; for instance, contributions from Chapter 3 of this

thesis are included within OpenForest. Additionally, the Global Biodiversity Information

Facility (GBIF) compiles biological collections from a wide array of species, beyond just

vegetation, supporting SDM applications, while the Global Forest Biodiversity Initiative

(GFBI) amasses over 1.2 million plot records globally, with its data enabling the mapping

of tree species diversity on Earth as demonstrated by Cazzolla Gatti et al. (2022). On a

European scale, the EU-Forest dataset (Mauri et al., 2017) significantly expands available

information on tree species distribution across Europe by harmonizing forest plot surveys

from European NFIs for a total of more than 700,000 plots. The International Co-operative

Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests)

(ICP Forests, 2010) was instead devised to provide information on air pollution on forests

and collects another 18,000 plots across 42 countries within the European continent.

Shifting from multinational towards national datasets, and specifically NFIs, a prime

example of this category is the U.S. Forest Inventory and Analysis (FIA) program; this

dataset is not only open access but also includes geospatially referenced information.

Given this wealth of open access datasets containing forest information, it might seem

puzzling that ground reference data still represents a significant bottleneck for integrated

approaches. The core of this issue lies in the accessibility of precise geographical coordinates

for plot data from various networks and frameworks, especially NFIs. These datasets

often withhold exact locations or provide them with diminished precision, severely limiting

their utility for high resolution modeling and analysis as demonstrated in Chapter 5. All

the open access datasets mentioned in the previous paragraph indeed provide spatially

explicit information, but the highest level of detail for the such coordinates is an area of

1×1 km surrounding the precise plot coordinates; for some datasets the spatial resolution

can be significantly coarser, with areas as large as 16×16 km (ICP Forests) or more.

Having the precise coordinates for the co-registration with EO data is a fundamental step

in the workflow of integrated approaches, as co-registration of EO data with spatially

degraded coordinates leads to significant misalignments. These inaccuracies in spatial

matching directly impact the feature space identified by ML models, resulting in models

that, when trained on such compromised feature spaces, are often entirely inaccurate at

high resolutions. The discrepancy between the actual and received by the model locations
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distorts the model’s understanding of vegetation patterns, leading to unreliable outcomes

when applied to high resolution analyses.

A closer examination of the methodologies employed in Chapters 3 and 5 reveals differences

that further illustrate these challenges. Despite seeming similarities, these chapters diverge

not only in their input data points but also in their response variable. For instance,

Chapter 3 used a harmonized dataset characterized by plots where the spatial coordinate

precision varies (very precise for LUCAS, up to 1 km for EU-Forest and GBIF datasets),

in contrast to Chapter 5, which employed precise coordinates and compared them with

estimated/spatially degraded coordinates. Chapter 3 focused on mapping potential and

realized distribution, while Chapter 5 was focused on dominant tree species classification:

even though the response variable for ”realized distribution” and ”dominant tree species”

might seem similar at first, they represent fundamentally different aspects of forest ecology

and modeling purposes; by definition, a model used to solve a tree species classification

problem faces always a more complex and overall needs more data and assumptions than

a model used for a realized distribution problem. In Chapter 3, the analysis on potential

distribution greatly benefitted from climatic data inputs which aligned closely with the

spatial bias of the plot data, approximately 1 km; the resulting maps and spatial patterns,

together with model performances and uncertainty quantification, could be considered

reliable and of easy interpretation. However, the analysis on realized distribution may

contain some challenges, the main one arising from mismatches between the resolution of

the most important predictor variables, Landsat data at 30 m, and the plot data coordinates.

While the misalignment in this case is not as impactful as for tree species classification

problems, it may have caused optimistic model performances and uncertainty estimates.

Furthermore, Chapter 3’s methodology includes a direct use of distorted coordinates

without attempting to reverse-engineer the degradation, a strategy that simplifies data

processing but may perpetuate systematic errors from the original data sources. Using

the precise location of NFIs plot data would have greatly improved the quality of outputs

produced in this chapter.

After these considerations, a straightforward conclusion would be to publicly release the

precise NFI plot locations; however, the situation is complex, as there is an ongoing debate

in the scientific community regarding the openness of such data (Gessler et al., 2024;

Nabuurs et al., 2022; Päivinen et al., 2023; Schadauer et al., 2024), with arguments on

both sides. The concerns about releasing NFI plot locations revolve around the potential

compromise of the randomness and representativeness of these plots. Critics argue that

making geocoded plot data public could encourage changes in plot management, thereby

introducing a bias that is difficult to detect. Permanent plot data derive their validity

from being random samples, and revealing their exact locations could lead to targeted

management practices or alterations by landowners aware of plot locations, thus skewing

the data intended for unbiased national forest assessments (Päivinen et al., 2023). To

address the need for using NFI data without publicly disclosing plot locations, several
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solutions have been proposed. One approach is conditional access, where researchers

can access precise plot locations under strict non-disclosure agreements that ensure the

data is used responsibly and ethically. Since the procedure to access the data, even with

data-sharing agreements, is quite bureaucratic and not straightforward, varying from

country to country, another suggested solution would be to include the plot locations into

secure data analysis platforms, enabling researchers to work with sensitive data within a

controlled environment without having direct access to the raw data (Gessler et al., 2024);

solutions such as having the organizations managing NFIs conducting the co-registration

procedure with EO data, as identified by Schadauer et al. (2024), are impractical from a

logistical perspective. Often, these organizations may lack the technical capacity required

for co-registration across potentially hundreds of datasets and large scale, a task that

becomes exponentially complex and resource intensive; for the same privacy reasons that

would not allow them to share the plot locations, the co-registration cannot be executed on

cloud computing platforms such as GEE. Additionally, the timeframe within which such

tasks are processed frequently extends beyond practical limits for research, particularly in

applications demanding timely or near real-time data analysis. For example, in monitoring

projects where rapid data processing is essential, the co-registration request could take

months to fulfill. By the time researchers receive the data, the situation on the ground

may have changed, necessitating a restart of the data collection and analysis cycle. This

lag not only hampers the agility and responsiveness of research but also risks rendering

the findings obsolete before they can be applied, highlighting the need for more efficient

data-sharing mechanisms that accommodate the dynamic nature of environmental research.

For such purposes, the solution proposed by Schadauer et al. (2024) is not applicable and

their claim that the quality of models would not be compromised has to be refused.

Going back to the controversy sparked by Ceccherini et al. (2020), the authors prepared

a detailed response to the NFI analysis by Breidenbach et al. (2022), addressing each

of the main claims. In their response, Ceccherini et al. (2022) acknowledged the vital

role of NFI data in assessing forest resources but highlighted its significant limitations

for validating and calibrating EO products. They argued that, despite adhering to the

state-of-the-art methodologies for sample-based validation of EO products as outlined

by Olofsson et al. (2014), the fundamental issue lies in the design of the NFI sampling

schemes. These field protocols were not conceived with the integration of EO data in mind,

posing challenges for their effective use in combination with remote sensing technologies,

especially in the case of validation of land cover change products. This implies that

even with access to precise NFI plot locations provided by the respective organizations,

researchers could indeed conduct co-registration, training ML models and generate new EO

based products of forest attributes; however, the independent validation of these products

would be challenging, if not entirely unfeasible, depending on the forest attribute mapped

and due to the inherent limitations of the NFI sampling schemes not aligning with EO

data integration requirements.
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To address these needs within the EU, several Horizon Europe projects have been initiated,

each with distinct goals and methodologies aimed at enhancing forest monitoring and

policy-making. PathFinder, which started in September 2022, focuses on enhancing the

efficiency of forest monitoring by creating high resolution maps and precisely estimating

forest attributes; in this context, one of the main goals of the project is to establish a new

European sampling scheme that thoughtfully integrates NFI and ICP Forests plots for

seamless EO data incorporation. MoniFun, started in January 2024, aspires to develop

a harmonized European Forest Multifunctionality Monitoring System (EFMMS); in this

context, one of its most relevant contributions would be the development of protocols

and routines that facilitate the usage of NFI plot data in remote sensing applications

while safeguarding the confidentiality of plot coordinates. Given that the projects are

in their early stages, their impact and contributions to forest monitoring and ground

data integration practices remain to be seen. While concrete outcomes are yet to emerge,

these projects embody a forward-looking approach to address the challenges of plot

confidentiality and ground data integration. Their progress and eventual findings will

undoubtedly contribute valuable insights into effectively leveraging NFI data for integrated

approaches using EO data and ML methodologies.

6.2.3 Enhancing the reliability of integrated approaches

Producing timely, continuous, and spatially explicit data products of vegetation attributes

at high spatial resolution is essential for informing and guiding decisions and policies

effectively. The advent of higher quality EO data, coupled with increased computational

capabilities and usage of ML methods, has significantly simplified the task of generating

predictive maps. However, the challenge lies in assessing the reliability of such maps,

namely assessing the uncertainty estimates of the target vegetation attribute. Without the

ability to produce trustworthy uncertainty estimates, the practical utility of these maps in

decision-making processes is severely limited. The recent progress in remote sensing and

computational technology has refined the presentation of vegetation attributes, making

them more accessible to end-users. For species distribution, for instance, contemporary

methods treat the suitability in the geographical space as a continuous spectrum instead

than as a binary variable (i.e. suitable / unsuitable), assigning suitability percentages

ranging from 0 to 100%, as illustrated in Chapter 3. Similarly, for identifying dominant

tree species or other categorical variables, it is now common to deliver both the hard

class map and accompanying probability maps that depict the likelihood of each species’

presence across pixels, as demonstrated in Chapter 2. Additionally, there’s a growing

trend of accompanying these estimates with pixel-based uncertainty maps, enhancing the

transparency regarding potential variances and bolstering confidence in the models, as

evidenced in Chapters 2 and 3. While such products are now more frequently requested

by the users, the practice of producing uncertainty maps is still uncommon.
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Despite the utility of such new mapping methods, model-based approaches still serve

only as supplementary tools in decision-making processes, lacking the robust statistical

uncertainty estimates characteristic of traditional design-based approaches (McRoberts,

2006). In model-based approaches, statistical inference refers to the process of using the ML

models to make predictions or estimates about a population, based on sample data: model-

based inference relies on the assumption that the chosen model accurately represents the

underlying data-generating stochastic process. This allows for the estimation of population

parameters even in the absence of comprehensive sampling designs, by leveraging the

relationships encoded within the model. The strength of model-based approaches lies in

their flexibility to incorporate various data sources and their ability to provide the response

variable in a spatially continuous form, making them especially valuable in contexts

where traditional sampling data might be limited or unavailable. In those areas where

there is reference data available from probability samples, design-based or model-assisted

approaches can be used to derive such uncertainty estimates; however, in regions where

probability samples of reference data is lacking or where data from multiple non harmonized

sampling designs need to be integrated, the reliance on model-based approaches becomes

not just a matter of convenience but of necessity.

For the former case, the utilization of globally produced mapping products, such as the

GFC maps by Hansen et al. (2013), exemplifies the necessity of model-based approaches in

regions lacking reference data. These maps, despite their well known limitations, have been

instrumental for governments, researchers, and organizations to have a qualitative overview

of deforestation trends, serving as critical tools for environmental monitoring and policy

development in the absence of localized, officially sanctioned data. The latter case fits the

previously examined European situation quite well, especially regarding the quantification

and reporting of spatially explicit products of forest attributes. The European National

Forest Inventory Network (ENFIN) was established in 2004 to promote the harmonization

of NFIs across Europe, aiming to make data and estimates comparable across borders

and over time (Vidal et al., 2016); while ENFIN has achieved good results in harmonizing

forest biomass at a European level (Avitabile et al., 2024), the full potential of these

advancements has yet to be realized in creating universally accepted mapping products,

relegating many of the existing vegetation attribute maps to stratification tools (Ceccherini

et al., 2022; Goodbody et al., 2023; Latifi et al., 2015; Latifi et al., 2012; McRoberts et al.,

2012) rather than direct reporting resources, as also evidenced in the experimental designs

of Chapter 3 and 5 of this thesis.

While model-based estimates offer valuable insights, they inherently require assumptions

about the data and the model that can introduce biases or uncertainties, which are more

challenging to quantify in a statistically rigorous manner (McRoberts et al., 2022). This

potential for increased uncertainty makes model-based approaches less desirable for critical

decision-making processes where the stakes are high and the demand for precision and

reliability is paramount (McRoberts et al., 2010). Additionally, these approaches are
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significantly limited by the quality and quantity of training data, where insufficient or

low-quality data leads to inaccuracies: in such extrapolation cases, the model may not

generalize well. For instance, in Chapter 2, the uneven geographical and class distribution

in the BIOME 6000 dataset highlights the challenge of ensuring reliable predictions across

different ecological zones. This uneven representation increases the risk of inaccurate

predictions in unrepresented areas and could have caused the notably low performance

metrics reported for the ”prostrate dwarf shrub tundra” class.

For these reasons, stakeholders tend to prefer design-based approaches to model-based

ones: design-based approaches derive their validity from the random selection of samples,

ensuring that the results are representative of the population. The strength of this

method lies in its ability to provide unbiased estimates of population parameters, as

the random selection process minimizes systematic errors and biases that can distort

findings. One of the main advantages of design-based statistical inference is its robustness

against assumptions about the underlying population distribution. Since the inference is

based on the design of the study rather than assumptions about the population, it can

provide reliable results even when little is known about the population characteristics.

This makes it particularly valuable in fields where the population distribution is unknown

or difficult to model. The recent emphasis of the FAO on establishing good practices

for design-based area estimation (Jonckheere et al., 2024), of the European Union on

establishing a harmonized forest monitoring system (European Commission, 2023) and

the allocation of substantial funding for projects like MoniFun reflect this preference for

design-based confidence intervals and uncertainty estimates over model-based alternatives.

This preference is rooted in the design-based approach’s ability to provide robust and

statistically reliable measures of uncertainty that are directly linked to the probability

sampling design.

However, the requirement for a random sampling design can be difficult or costly to

implement in practice and conducting such field sampling campaigns can be a limitation,

particularly in remote or inaccessible areas. The inclination to invest in enhancing sampling

designs, despite their associated high costs, originates from the imperative need for reliable

data capable of supporting legally binding international reporting obligations and informing

policy decisions (Gregoire and Valentine, 2007). In this context, integrating ML-produced

maps with design-based and model-assisted estimators emerges as a compelling solution

(Fassnacht et al., 2024). While model-assisted approaches effectively utilize these maps to

refine predictions of environmental attributes, combining the detailed spatial predictions

possible with ML with the statistical reliability of design-based sampling, they primarily

enhance the precision of estimates derived directly from sampled data.

Hybrid inference (Corona et al., 2014) represents a further evolution, explicitly combining

design-based, model-based, and model-assisted methodologies in a comprehensive frame-

work. Unlike model-assisted approaches, which focus on reducing estimation variance
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by leveraging predictions from external models, hybrid inference integrates these models

with the probabilistic foundation of design-based sampling and the predictive power of

model-based approaches. This integrated framework allows for a more holistic treatment

of uncertainties by considering the variance from the sampling design, the model’s pre-

dictive error, and any additional errors that may arise from mismatched spatial scales or

misalignments between field data and remotely sensed inputs.

The studies conducted in the miombo woodlands of Tanzania (Næsset et al., 2020) and the

Peruvian Amazon (Málaga et al., 2022) exemplify the superior capability of hybrid inference

over traditional model-assisted approaches in enhancing the accuracy of aboveground

biomass (AGB) estimates. In Tanzania, the calibration of global biomass maps using local

NFI data under a hybrid inference framework not only substantially reduced systematic

errors inherent in original remote sensing maps but also markedly improved the precision

of AGB estimates. This improvement demonstrates hybrid inference’s unique ability to

simultaneously tackle both random and systematic errors, providing a more holistic error

correction method than that offered by purely model-assisted approaches. Similarly, the

application of hybrid inference in the Peruvian Amazon further underscored its potential

to refine ML-derived AGB maps by comprehensively addressing a broad spectrum of

uncertainties, including measurement errors, model assumption violations, and spatial

heterogeneity. This rigorous uncertainty accounting led to more accurate, transparent, and

reliable AGB stock assessments, essential for fulfilling stringent international reporting

requirements and informing critical policy decisions. Although the precision gains appeared

negligible due to the comprehensive incorporation of uncertainties, the resultant estimates

were significantly more robust and trustworthy. Therefore, hybrid inference not only

addresses the limitations of field sampling and the challenges of integrating EO data

and ML with NFI data but also enhances the statistical reliability of the resulting

estimates.

While the comparative review of design-based, model-based, model-assisted and hybrid

inference methodologies reveals that each has its strengths and is best suited to particular

scenarios in large-area forest surveys, there is compelling evidence to suggest that under the

right conditions, hybrid inference emerges as a particularly powerful strategy. Specifically,

when comprehensive datasets are available, including EO and ML-produced maps alongside

robust NFI data, hybrid inference stands out for its ability to rigorously account for

various sources of uncertainty, thereby enhancing the reliability of the resulting estimates.

However, this endorsement does not diminish the value of the other approaches; rather, it

highlights the importance of selecting the most appropriate methodology based on the

survey objectives, data availability, and specific challenges at hand (Fig. 6.1). In sum,

while recognizing the inherent strengths of all four methodologies, the advantages of hybrid

inference under optimal conditions suggest that it could indeed offer the best strategy

for increasing the reliability of EO data, ML tools, and NFI data-derived maps. This
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conclusion is contingent upon a clear understanding of each method’s applicability and

the careful consideration of the survey’s specific context and goals.

Figure 6.1: Diagram depicting the spectrum of statistical inference approaches for forest

monitoring, illustrating the continuum from model-based estimation, which does not rely on

probability sampling, to design-based estimation, which does not rely on modeling. Hybrid and

model-assisted estimations are positioned between these extremes. From St̊ahl et al. (2016).

6.2.4 Prospects for future research

In the constant evolving domain of vegetation modeling and monitoring, the integration

of EO data, ML methods and field data has emerged as a pivotal approach for improving

the production, accuracy and applicability of spatially explicit data products of vegetation

attributes. This thesis highlights the ongoing need for advancements across these three key

fields, not only to maintain but also to improve the quality and relevance of such maps.

Most of the focus of this thesis regarding EO data has been on the Landsat program due

to its longevity (more than 50 years of continuous observations at the moment of writing
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this thesis (Wulder et al., 2022)); however, for near real-time monitoring applications, EO

programs with a higher temporal resolution like Sentinel have been preferred. To combine

the longevity of the Landsat program with the high temporal resolution of the Sentinel

program, multi-sensor EO data collections such as the NASA Harmonized Landsat and

Sentinel-2 (HLS) have been developed (Claverie et al., 2018b). NASA HLS harmonizes

Landsat 8/9, Sentinel-2A and -2B data to a 30 m product from 2015 onwards in the

Sentinel-2 tile grid. Landsat Next exemplifies a strategic push towards enhancing the

synergy between NASA and ESA’s EO programs, further streamlining the integration of

their datasets for comprehensive global monitoring efforts. Scheduled for launch around

2030, Landsat Next represents the forthcoming phase in the Landsat program, following

Landsat 9’s 2021 deployment. This marks a significant advancement in the program:

Landsat Next introduces a trio of satellites, each equipped with 26 spectral bands, more

than its predecessors, which featured only 11 spectral bands (Fig. 6.2).

Figure 6.2: Spectral comparison between Landsat 8/9 and Landsat Next. Image credit:

NASA Landsat Communications and Public Engagement Team.

This expansion allows for refined versions of ”heritage” bands to maintain continuity with

past data, alongside new bands aimed at enhancing Sentinel-2 data compatibility and

supporting emerging applications. Spatial resolutions will be improved, with most bands

having resolutions between 10 to 60 meters, facilitating more detailed observations. A

key innovation of Landsat Next is its enhanced temporal resolution. The constellation,
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with satellites spaced 120 degrees apart, ensures an aggregate 6-day revisit time for the

globe. This is a substantial improvement over the 16-day interval of either Landsat 8 or

9, increasing the likelihood of acquiring cloud-free images and enabling more frequent

monitoring of dynamic environmental changes.

Another interesting EO program that could improve the quality of vegetation mapping

products is the German Environmental Mapping and Analysis Program (EnMAP); launched

in 2022, this mission provides global scale hyperspectral data in the range of visible

(418.2 nm) to shortwave infra-red region (2445.5 nm) of the spectrum across a total of 224

bands at a spatial resolution of 30 m. Its design allows for a rapid revisit time of just 4

days, promising detailed and frequent monitoring of environmental changes (Storch et al.,

2023). The importance of hyperspectral data in mapping vegetation attributes, such as

tree species classification, is significant (Fricker et al., 2019; Marconi et al., 2022; Nezami

et al., 2020; Shen and Cao, 2017; Zhang et al., 2020). However, the challenge of achieving

large-scale data coverage has been a major limitation. EnMAP, with its comprehensive

hyperspectral capabilities, stands out as a particularly valuable tool in overcoming this

challenge.

ML applications of Chapter 2 and 3 were focused on ensemble modeling, specifically in

combining the predictions of multiple shallow ML models; ensemble modeling enhances

prediction accuracy, reduces risk of overfitting and overall model variance, so it can

be a way of tackling the issues of model generalization. In this sense, deep learning

(DL) approaches could provide an alternative, if not more powerful, solution for several

reasons. Unlike shallow ML models like decision trees, DL models employ multiple layers

of nonlinear processing units, or neurons, to autonomously learn complex, hierarchical

features from data. This methodology enables DL models to grasp and process data

in a human-like manner, recognizing both intricate patterns and overarching concepts.

Such an approach facilitates transfer learning, where a model, trained on one feature

space, adapts its learned insights to a distinct, albeit similar, feature space by tweaking its

task-specific layers while preserving the general knowledge of its initial layers (Hamrouni

et al., 2021; Tuia et al., 2016). However, DL models often raise concerns among scientists

for their ”black box” nature, primarily due to their limited interpretability. There is a

preference for models that, while possibly less accurate, offer greater transparency and

thus, reliability, which severely limits further research in DL applications; to mitigate this,

hybrid or physics-informed modeling presents a promising solution. These approaches

integrate domain-specific knowledge or physical laws into the ML framework, enhancing

model transparency and interpretability. By doing so, they bridge the gap between high

accuracy and interpretability, offering models that are both effective and trustworthy

(Ferchichi et al., 2022).

Forest ground data is essential for training and validation of remotely sensed based ML

model: in this sense, Zweifel et al. (2023) proposed an innovative approach to enhancing



136 Synthesis

global forest monitoring by integrating existing forest plot infrastructures into a real-time

monitoring network. They proposed using automated, standardized linking methods to

connect monitoring sites, thereby overcoming the current fragmentation of forest monitoring

efforts, enhancing the detection of patterns and facilitating near real-time assessments

of forest conditions. Meanwhile, Nesha et al. (2021) reported substantial improvements

in national forest monitoring capacities, showcasing a notable rise in the use of EO and

NFI for accurate and comprehensive forest area monitoring. From 2005 to 2020, the

adoption of EO methodologies expanded across 99 countries, while NFI utilization saw

enhancements in 102 countries, collectively covering approximately 85% of the global

forest area with high-quality monitoring data. This progress highlights a significant move

towards mitigating the fragmentation of forest monitoring efforts. These developments

collectively underscore the necessity of persisting in global efforts to enhance the accuracy

and reliability of forest ground data, fundamental for the application of ML models reliant

on EO data. The framework proposed by Wulder et al. (2024) for a satellite-based forest

inventory (SBFI) for Canada exemplifies how the integration of EO data, ML methods, and

field data can revolutionize forest resource assessment. Leveraging satellite observations to

deliver a comprehensive, stand-level inventory across Canada’s forested ecosystems, this

approach not only represents a significant leap towards establishing a national standard

for forest reporting but is also designed to be adaptable to other regions. It supports both

national and international reporting requirements by offering detailed forest attribute data,

paving the way for its adoption as a universal model for forest resource assessment.

As these technologies for vegetation modeling and monitoring evolve, they not only have

the potential to enhance mapping capabilities, providing more accurate and timely data,

but also offer an opportunity to drive policy innovation. Their progress provides a robust

foundation for data-driven decision-making. The next step involves a concerted effort to

bridge these technological capabilities with policy frameworks, ensuring that the insights

gained from cutting-edge research directly contribute to the development of informed,

effective environmental strategies.

This thesis brings to light a critical gap in the policy landscape, especially the imperative for

seamlessly integration of NFIs with EO-based monitoring. While the EU forest monitoring

proposal law (European Commission, 2023) signals a move towards incorporating remote

sensing, the contributions from Chapter 5 highlight how enhanced integration of NFI

data with EO technologies and ML models could revolutionize forest monitoring and

underscore the inadequacy of current practices that rely on spatially degraded coordinate

data. The provision of degraded coordinates starkly contrasts with the ambition for

high resolution mapping products of forest attributes, highlighting a pressing need for

policies that leverage precise, spatially explicit data for environmental monitoring. This

necessity points toward an imperative shift in policy design, advocating for a more informed

and technology-driven approach to meet the contemporary demands of forest resource

assessment and conservation.
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Supplementary material for Chapter 3

Table S1: ODMAP protocol

ODMAP element Contents

OVERVIEW

Authorship Authors: Carmelo Bonannella, Tomislav Hengl, Johannes Heisig,

Leandro Parente, Marvin N Wright, Martin Herold, Sytze de

Bruin

Contact email: carmelo.bonannella@opengeohub.org

Title: Forest tree species distribution for Europe 2000–2020:

mapping potential and realized distributions using spatiotemporal

Machine Learning

DOI: https://doi.org/10.7717/peerj.13728

Model objective Objective: Mapping/interpolation

Target outputs continuous occurrence probabilities of potential

and actual presence

Taxon 16 tree species native/commonly found in Mediterranean, tem-

perate or boreal forests in Europe

Location Europe

Scale of analysis Spatial extent (Lon/Lat): Longitude -48.52◦ E, 60.65◦ E,

Latitude 26.77◦ N, 72.02◦ N

Spatial resolution: 30 m x 30 m

Temporal resolution and extent: we modelled a single time

slice for all potential distributions (2018–2020). We split the a

20 years time period (2000–2020) in 6 time slices (2000–2002,

2002–2006, 2006–2010, 2010–2014, 2014–2018 and 2018–2020) for

realized distributions.

Type of extent boundary: rectangular

Biodiversity data

overview

Observation type: standardised monitoring and volunteer-

based surveys

Response/Data type: presence/absence data

Type of predictors Climatic, topographic, lithological, hydrological, vegetation (bi-

nary species distribution maps of other tree species), remotely

sensed (spectral reflectance)

mailto:carmelo.bonannella@opengeohub.org
https://doi.org/10.7717/peerj.13728
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Conceptual model /

Hypotheses

We modelled realized distribution using environmental and re-

motely sensed variables, while we used only environmental vari-

ables for potential distribution. We wanted to test the influence of

(i) remotely sensed and (ii) high resolution variables on predictive

performances of realized distribution.

Assumptions We assumed that species are at pseudo-equilibrium with the

environment. We assumed that distribution maps of other tree

species could be used as a proxy for interspecific interactions.

Probability of presence is relative to the mapped target species,

irrespective of the potential co-occurrence of other species in the

same 30 m pixel and should not be confused with the absolute

abundance or proportion of each species in the pixel area. The

sum of the presence probabilities of different species in the same

pixel can thus exceed 100 %

SDM algorithms Algorithms: The final SDMs were fitted using three different

algorithms: generalised linear models (GLM) with Lasso regu-

larization, gradient boosted trees (GBT), and random forests

(RF).

Model complexity: We chose different modelling parameters

to optimise each algorithm. Model settings were chosen to yield

intermediately complex response surfaces but prevent excessive

overfitting.

Ensembles: The results from the three learners were combined

in an ensemble model based on stacked generalization. We used

logistic regression with Lasso regularization as ensemble model.

Model workflow Hyperparameter tuning was conducted for all models on a a ran-

dom 25% subset of observations. We evaluated each combination

of hyperparameters by comparing logarithmic loss values dur-

ing a 5–fold spatial cross validation replicated 5 times. Models

were then fitted on the entire training dataset using the best

(lowest logloss) combination of hyperparameters. Probability

values obtained from the three models were then used to train

the meta-learner. 5-fold spatial cross validation was used for the

level 0 models. The out-of-fold predictions were used to build a

level 1 training dataset for the meta-learner.
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Software, codes and

data

Software: All analyses were conducted using R version 4.1.1 (R

Core Team, 2021b) with packages caret (Kuhn, 2021), data.table

(Dowle and Srinivasan, 2021), dplyr (Wickham et al., 2021),

minio.s3 (Leeper, 2017), mlr (Bischl et al., 2016), rgdal (Bivand

et al., 2021), sf (Pebesma, 2018), sp (Pebesma and Bivand, 2005),

spThin (Aiello-Lammens et al., 2015), stringr (Wickham, 2019),

terra (Hijmans, 2021) and custom functions and Python version

3.8.6 (Van Rossum and Drake, 2009) with packages matplotlib

(Hunter, 2007), numpy (Harris et al., 2020), pandas (McKinney

et al., 2010) and scikit-learn (Pedregosa et al., 2011).

Code availability: All codes are available on GitLab

(https://gitlab.com/geoharmonizer_inea/spatial-

layers/-/tree/master/veg_mapping)

Data availability: All data is available through Zenodo (Bo-

nannella et al., 2022b)

DATA

Biodiversity data Taxon names: Abies alba Mill., Castanea sativa Mill., Corylus

avellana L., Fagus sylvatica L., Olea europaea L., Picea abies

L. H. Karst., Pinus halepensis Mill., Pinus nigra J. F. Arnold,

Pinus pinea L., Pinus sylvestris L., Prunus avium L., Quercus

cerris L., Quercus ilex L., Quercus robur L., Quercus suber L.,

Salix caprea L.

Details on taxonomic reference system: standard biologic

taxonomy

Ecological level: individual

Biodiversity data source: Global Biodiversity Information

Facility (GBIF), EU-Forest (Mauri et al., 2017), LUCAS (EU-

ROSTAT, 2017)

Sampling design: uniform (EU-Forest, LUCAS) or unknown

(GBIF); latest instance in case of multi-temporal observations

Sample size per taxon: Abies alba Mill. (), Castanea sativa

Mill. (), Corylus avellana L. (), Fagus sylvatica L. (), Olea

europaea L. (), Picea abies L. H. Karst. (), Pinus halepensis Mill.

(), Pinus nigra J. F. Arnold (), Pinus pinea L. (), Pinus sylvestris

L. (), Prunus avium L. (), Quercus cerris L. (), Quercus ilex L.

(), Quercus robur L. (), Quercus suber L. (), Salix caprea L. ()

Country mask: European Union, Iceland, Norway and Switzer-

land

https://gitlab.com/geoharmonizer_inea/spatial-layers/-/tree/master/veg_mapping
https://gitlab.com/geoharmonizer_inea/spatial-layers/-/tree/master/veg_mapping
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Data cleaning/filtering: Point locations were filtered using a

high-resolution land mask for Europe and by leveraging existing

quality flags indicating serious location issues. A second filtering

step involved the usage of yearly high-resolution forest masks.

To overcome the uneven sampling intensity and potential point

clustering, we applied an additional spatial filter to the presence

points using the spThin R package. A distance of 2 km was

considered as minimum distance between the points, to harmonize

the sampling intensity between presence and absence data. The

procedure was repeated 10 times: at each iteration, the algorithm

randomly removes one observation from the dataset until no

observation is left with a nearest neighbor closer than the thinning

distance. Among the 10 datasets obtained, the one with the

largest number of records was retained and used for modeling.

Absence data: We used the land cover points from LUCAS

database as absence data. All land cover classes except class C

(woodland) were used as absence data for realized distribution,

while for potential distribution points belonging to class A (ar-

tificial land) and class B (cropland) were also excluded. Other

tree species presence locations were also used as absence data:

these points were first overlaid with a chorological map of the

target species and only the ones falling outside the species range

were then used as absence.

Potential biases: Spatial observation density for presence data

varies greatly throughout the study area and across different

species resulting in over- or underrepresented areas.

Data partitioning A 5-fold spatial cross validation was used to partition the data

for model fitting. Predictive performances were assessed using a

5-fold spatial cross validation repeated 5 times. Spatial alloca-

tion for the points was conducted using spatial blocking with a

blocking factor of 30 km.

Predictor variables Predictor variables:

•Climate: 19 bioclimatic predictors, solar direct and diffuse irra-

diation, 13 cloud fraction layers, 12 snow probability layers, 12

water vapor pressure layers, 12 wind speed layers, time series of

precipitation, monthly time series of surface temperature (mini-

mum, average, maximum), monthly time series of air temperature

(minimum, average, maximum)

•Topography: elevation, slope, aspect, positive and negative

openness, eastness and northness, hillshade
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•Hydrology: surface water occurrence, height above nearest

drainage (HAND), flow accumulation area and long-term flood

hazard map

•Vegetation: 50 chorological tree species maps

•Remotely sensed: 7 seasonal time series of Landsat bands (blue,

green, red, NIR, SWIR1, SWIR2 and thermal), 7 seasonal time se-

ries of spectral indices (EVI, EVI2, MSAVI, NBR, NDVI, NDWI,

SAVI), long term bare ground cover.

Data sources:

•Climate: bioclimatic predictors were downloaded from https:

//chelsa-climate.org/bioclim, solar direct and diffuse irra-

diation from https://globalsolaratlas.info/download, 13

cloud fraction layers from https://www.earthenv.org/cloud,

12 snow probability layers from https://doi.org/10.5281/

zenodo.5774953, 12 water vapor pressure layers from http:

//www.worldclim.com/version2, 12 wind speed layers from

https://www.climatologylab.org/terraclimate.html, time

series of precipitation, monthly time series of surface temper-

ature (minimum, average, maximum), monthly time series of

air temperature (minimum, average, maximum) were down-

loaded and reprocessed from reprocessed Copernicus ERA5 data

(https://doi.org/10.24381/cds.bd0915c6)

•Topography: elevation, slope, aspect and hillshade were down-

loaded from https://doi.org/10.5281/zenodo.4724549, posi-

tive and negative openness, eastness and northness from https:

//doi.org/10.5281/zenodo.4486135

•Hydrology: surface water occurrence was obtained from https:

//global-surface-water.appspot.com/, height above nearest

drainage (HAND) and flow accumulation area from http://

hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/ and long-

term flood hazard map from Dottori et al. (2016)

•Vegetation: 50 chorological tree species maps were downloaded

from https://forest.jrc.ec.europa.eu/en/european-

atlas/atlas-data-and-metadata/

•Remotely sensed: time series of Landsat bands were downloaded

from https://glad.umd.edu/ard/landsat-ard-download and

the spectral indices were derived from them; the long term bare

ground cover was downloaded from https://glad.umd.edu/

dataset/global-2010-bare-ground-30-m

https://chelsa-climate.org/bioclim
https://chelsa-climate.org/bioclim
https://globalsolaratlas.info/download
https://www.earthenv.org/cloud
https://doi.org/10.5281/zenodo.5774953
https://doi.org/10.5281/zenodo.5774953
http://www.worldclim.com/version2
http://www.worldclim.com/version2
https://www.climatologylab.org/terraclimate.html
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.5281/zenodo.4724549
https://doi.org/10.5281/zenodo.4486135
https://doi.org/10.5281/zenodo.4486135
https://global-surface-water.appspot.com/
https://global-surface-water.appspot.com/
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/
https://forest.jrc.ec.europa.eu/en/european-atlas/atlas-data-and-metadata/
https://forest.jrc.ec.europa.eu/en/european-atlas/atlas-data-and-metadata/
https://glad.umd.edu/ard/landsat-ard-download
https://glad.umd.edu/dataset/global-2010-bare-ground-30-m
https://glad.umd.edu/dataset/global-2010-bare-ground-30-m


143

Spatial resolution and spatial extent of raw data: Original

resolution of raw data goes from 5 km to 30 m. Data were

collected and overlaid with the points at their original resolution

and then resampled at 30 m resolution for map production. Data

with global coverage were clipped at the spatial extent of the

scale of analysis.

Map projection: All layers were reprojected in EPSG:3035

coordinate reference system

Temporal resolution and temporal extent of raw data:

Data with long-term aggregates or considered as not changing

for the temporal scale of the analysis (i.e. elevation) were treated

as static variables. The long-term aggregates cover the period

1979–2013 (bioclimatic layers) or 2000–2016 (cloud fraction, snow

probability, water vapor). Landsat data and derived spectral

indices cover the period 1999–2020, with a temporal resolution of

16 days. Time series of precipitation, surface temperature and air

temperature cover the period 2000–2020 with a hourly temporal

resolution.
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Data preprocessing: Cloud and cloud shadow pixels were

removed from Landsat images, maintaining only the quality

assessment-QA values labeled as clear-sky. Individual images

were averaged by season according to three different quantiles

(25th, 50th and 75th) and the following calendar dates for all

period: winter (December 2 of previous year until March 20 of

current year), spring (March 21 until June 24 of current year),

summer (June 25 until September 12 of current year) fall (Septem-

ber 13 until December 1 of current year). Missing values were

imputed using the Temporal Moving Window Median algorithm.

Spectral indices were computed for each year and season using

the 50th quantile only. Time series of precipitation, surface tem-

perature and air temperature were aggregated on a monthly scale.

The following steps were used for temperature data: (i) aggregate

CHELSA to ERA5 spatial resolution, (ii) calculate difference

between ERA5 Land and aggregated CHELSA, (iii) interpolate

differences with a Gaussian filter to 30 arc seconds and (iv) add

the interpolated differences to CHELSA. A different approach

was used for precipitation, with proportions instead of differ-

ences: using proportions ensures that areas without recorded

precipitation remain areas without precipitation; only in the

case of actual precipitation in a given area, precipitation was

redistributed according to the spatial detail of CHELSA: aggre-

gate CHELSA to ERA5 spatial resolution, calculate proportion

between ERA5 Land and aggregated CHELSA, interpolate pro-

portion with a Gaussian filter to 30 arc seconds, multiply the

interpolated proportion with CHELSA.

MODEL

Multicollinearity Collinearity analysis was not conducted.
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Model settings Model settings: Grid search with a 5 step was used to con-

duct hyperparameter tuning. Hyperparameters used in the final

models change based on the species and the distribution type.

Common settings across all models was the ”probability” mode,

to have a probabilistic (0–100) output for presence and absence.

Spatial 5-fold cross validation was used in the inner loop (training

of the three component models for the ensemble) and in the outer

loop (training of the meta-learner). All random forests model

were trained with the same number of trees (ntree = 85) due to

computational constraints. All GLM models used in the final

model were fitted with the λmin. Lasso regularization was used

for the GLM component model and for the meta-learner (logistic

regression).

Model estimates We did not analyzed the coefficients of the meta-learner in depth.

Model selection /

Model averaging /

Ensembles

We used an ensemble model based on stacked generalization

(Wolpert, 1992). Outputs made by the component models are the

input of a meta-learner which then produces the final prediction.

Non-independence

correction/analyses

None

Threshold selection None

ASSESSMENT

Performance statis-

tics

Predictive model performance on validation data (based on the 5-

fold spatial block cross-validation repeated 5 times) was assessed

using two different performance measures: area under the receiver

operating characteristic curve (AUC) and logarithmic loss (log

loss)

Plausibility check Produced maps were compared with distribution maps from

European Atlas of Forest Tree Species.

PREDICTION

Prediction output Prediction unit: We used continuous predictions of occurrence

probability per species.

Uncertainty quan-

tification

Uncertainty for the final ensemble model was accounted as the

standard deviation of the predicted probabilities of the base

learners. The principle is that the higher the standard deviation

the more uncertain the model is towards the right value to assign

to the pixel.
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Table S2: Number of presence points before and after the thinning operation.

Species Distribution Presence Absence Presence thinned Absence thinned Prevalence Prevalence thinned

A. alba Potential 45422 793484 38622 264833 0.05 0.15

C. sativa Potential 77363 796588 35068 327986 0.09 0.11

C. avellana Potential 32134 533362 28436 120445 0.06 0.24

F. sylvatica Potential 197107 750752 147655 240030 0.26 0.62

O. europaea Potential 50656 667416 5794 418689 0.07 0.01

P. abies Potential 360112 820472 284594 270365 0.44 1.10

P. halepensis Potential 233961 916627 41758 446998 0.26 0.09

P. nigra Potential 139497 1091032 29711 467060 0.13 0.064

P. pinea Potential 239254 853945 19314 464513 0.28 0.042

P. sylvestris Potential 507664 763571 283882 279289 0.66 1.00

P. avium Potential 22852 575044 21616 184178 0.04 0.12

Q. cerris Potential 13774 1106501 13072 450317 0.01 0.03

Q. ilex Potential 57213 1045184 36294 422799 0.05 0.09

Q. robur Potential 113044 655526 97113 181057 0.17 0.54

Q. suber Potential 419975 840378 12877 454942 0.5 0.03

S. caprea Potential 45753 488610 42544 75030 0.094 0.57

A. alba Realized 45422 1240411 32144 455595 0.037 0.07

C. sativa Realized 77363 1215288 29985 528953 0.064 0.06

C. avellana Realized 32134 1044035 22919 383698 0.031 0.06

F. sylvatica Realized 197107 1196053 128325 457652 0.16 0.28

O. europaea Realized 50656 1019575 5249 597376 0.05 0.01

P. abies Realized 360112 1207099 260011 448564 0.3 0.58

P. halepensis Realized 233961 1261372 36844 598154 0.19 0.06

P. nigra Realized 139497 1425066 28380 608094 0.098 0.05

P. pinea Realized 239254 1192136 17181 615999 0.2 0.03

P. sylvestris Realized 507664 1178176 239508 427508 0.43 0.56

P. avium Realized 22852 1058215 17093 430548 0.022 0.04

Q. cerris Realized 13774 1455524 11536 602902 0.0095 0.02

Q. ilex Realized 57213 1401501 32826 580366 0.041 0.06

Q. robur Realized 113044 1156574 76487 433485 0.098 0.18

Q. suber Realized 419975 1188462 12538 610216 0.35 0.02

S. caprea Realized 45753 1007707 36704 342866 0.045 0.11
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Figure S3: Distribution of presence points per species after thinning. Absence points are

omitted for visualization purposes.
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Figure S4: Log Loss performances by number of selected features.

Figure S5: Example workflow illustrating the feature selection and benchmarking process for

one species
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Table S3: Hyperparameter space for the analyzed algorithms. In light gray the name of the

R package used to implement the algorithm is reported, in brackets the name of the algorithm.

p refers to the number of predictor variables, while columns Lower and Upper indicate the

bounds of the regions in the hyperparameter space. Due to computational constraints, we

set the num.trees parameter for Random forest to 85. The tested activation functions for

the neural network were sigmoid and tanh, while for the output we tested both sigmoid and

softmax. For GLM we used the automatically generated λ sequence and selected the λmin.

Algorithm Hyperparameter Type Lower Upper

C5.0

(Classification trees) minCases integer 0 10

CF numeric 0 0.5

kknn

(k-nearest neighbor) k integer 1 50

deepnet

(Artificial neural network) learning rate numeric 0.0001 0.00001

numepochs integer 10 20

batchsize integer 50 150

hidden dropout numeric 0.1 0.3

activationfunction discrete - -

output discrete - -

momentum numeric 0 0.05

number.of.layers integer 2 4

units integer 32 64

ranger

(Random forest) mtry integer
√
p/3 p

rpart

(CART) minsplit integer 20 25

minbucket integer 5 10

cp numeric 0.01 0.1

maxcompete integer 3 4

maxsurrogate integer 4 5

usesurrogate discrete - -

surrogatestyle discrete - -

maxdepth integer 5 15

xgboost

(gradient-boosted trees) nrounds integer 10 20

max depth integer 3 5

eta numeric 0.01 0.1

subsample numeric 0.5 0.9

min child weight integer 10 20

colsample bytree numeric 0.5 0.9
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Figure S6: Relative importance of the 10 most important variables across the three component

models for potential distribution of A. alba, C. sativa, C. avellana, F. sylvatica
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Figure S7: Relative importance of the 10 most important variables across the three component

models for potential distribution of O. europaea, P. abies, P. halepensis, P. nigra
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Figure S8: Relative importance of the 10 most important variables across the three component

models for potential distribution of P. pinea, P. sylvestris, P. avium, Q. cerris
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Figure S9: Relative importance of the 10 most important variables across the three component

models for potential distribution of Q. ilex, Q. robur, Q. suber, S. caprea
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Figure S10: Relative importance of the 10 most important variables across the three

component models for realized distribution of A. alba, C. sativa, C. avellana, F. sylvatica
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Figure S11: Relative importance of the 10 most important variables across the three

component models for realized distribution of O. europaea, P. abies, P. halepensis, P. nigra
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Figure S12: Relative importance of the 10 most important variables across the three

component models for realized distribution of P. pinea, P. sylvestris, P. avium, Q. cerris
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Figure S13: Relative importance of the 10 most important variables across the three

component models for realized distribution of Q. ilex, Q. robur, Q. suber, S. caprea
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Table S4: Average logloss and R2
logloss for the component learners and the ensemble model.

Base logloss values are dependent on presence-absence ratio in the species dataset and are here

used as a baseline for predictive performances comparison.

Logloss R2
logloss

Species Distribution GBT GLM RF EML Base GBT GLM RF EML

A. alba Potential 0.058 0.107 0.063 0.048 0.381 0.85 0.72 0.83 0.87

C. sativa Potential 0.102 0.129 0.099 0.071 0.318 0.68 0.59 0.69 0.78

C. avellana Potential 0.052 0.080 0.072 0.045 0.488 0.89 0.84 0.85 0.91

F. sylvatica Potential 0.060 0.141 0.065 0.046 0.664 0.91 0.79 0.90 0.93

O. europaea Potential 0.004 0.005 0.006 0.004 0.072 0.94 0.93 0.92 0.94

P. abies Potential 0.127 0.176 0.118 0.112 0.693 0.82 0.75 0.83 0.84

P. halepensis Potential 0.025 0.027 0.029 0.018 0.292 0.91 0.91 0.90 0.94

P. nigra Potential 0.097 0.120 0.119 0.085 0.226 0.57 0.47 0.47 0.62

P. pinea Potential 0.028 0.029 0.035 0.020 0.168 0.83 0.83 0.79 0.88

P. sylvestris Potential 0.310 0.478 0.295 0.287 0.693 0.55 0.31 0.57 0.59

P. avium Potential 0.043 0.101 0.067 0.037 0.336 0.87 0.70 0.80 0.89

Q. cerris Potential 0.025 0.031 0.025 0.012 0.128 0.80 0.76 0.80 0.91

Q. ilex Potential 0.068 0.094 0.071 0.055 0.276 0.75 0.66 0.74 0.80

Q. robur Potential 0.058 0.096 0.071 0.044 0.647 0.91 0.85 0.89 0.93

Q. suber Potential 0.005 0.010 0.009 0.006 0.126 0.96 0.92 0.93 0.95

S. caprea Potential 0.053 0.062 0.083 0.050 0.654 0.92 0.91 0.87 0.92

A. alba Realized 0.030 0.036 0.039 0.033 0.243 0.88 0.85 0.84 0.86

C. sativa Realized 0.055 0.056 0.055 0.047 0.209 0.74 0.73 0.74 0.78

C. avellana Realized 0.032 0.038 0.045 0.034 0.217 0.85 0.82 0.79 0.84

F. sylvatica Realized 0.047 0.063 0.057 0.050 0.526 0.91 0.88 0.89 0.90

O. europaea Realized 0.007 0.005 0.011 0.007 0.050 0.86 0.90 0.78 0.86

P. abies Realized 0.097 0.144 0.105 0.101 0.657 0.85 0.78 0.84 0.85

P. halepensis Realized 0.016 0.018 0.023 0.015 0.221 0.93 0.92 0.90 0.93

P. nigra Realized 0.091 0.071 0.072 0.061 0.182 0.50 0.61 0.60 0.66

P. pinea Realized 0.021 0.016 0.027 0.016 0.125 0.83 0.87 0.78 0.87

P. sylvestris Realized 0.224 0.316 0.224 0.215 0.653 0.66 0.52 0.66 0.67

P. avium Realized 0.032 0.038 0.043 0.033 0.162 0.80 0.77 0.73 0.80

Q. cerris Realized 0.014 0.012 0.018 0.011 0.093 0.85 0.87 0.81 0.88

Q. ilex Realized 0.041 0.045 0.047 0.036 0.209 0.80 0.78 0.78 0.83

Q. robur Realized 0.050 0.064 0.064 0.051 0.423 0.88 0.85 0.85 0.88

Q. suber Realized 0.005 0.005 0.009 0.005 0.099 0.95 0.95 0.91 0.95

S. caprea Realized 0.043 0.058 0.059 0.046 0.318 0.86 0.82 0.81 0.86
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Table S5: Average AUC and TSS for the component learners and the ensemble model.

AUC TSS

Species Distribution GBT GLM RF EML GBT GLM RF EML

A. alba Potential 1.00 0.98 1.00 1.00 0.89 0.78 0.87 0.92

C. sativa Potential 0.99 0.96 0.99 0.99 0.75 0.64 0.71 0.82

C. avellana Potential 1.00 0.99 1.00 1.00 0.94 0.90 0.93 0.95

F. sylvatica Potential 1.00 0.99 1.00 1.00 0.96 0.88 0.96 0.97

O. europaea Potential 1.00 1.00 0.99 1.00 0.95 0.94 0.93 0.95

P. abies Potential 0.99 0.98 0.99 0.99 0.90 0.86 0.92 0.92

P. halepensis Potential 1.00 1.00 1.00 1.00 0.94 0.94 0.92 0.96

P. nigra Potential 0.97 0.93 0.97 0.97 0.54 0.44 0.56 0.66

P. pinea Potential 1.00 0.99 0.99 1.00 0.85 0.82 0.81 0.90

P. sylvestris Potential 0.94 0.85 0.95 0.95 0.70 0.53 0.73 0.73

P. avium Potential 1.00 0.98 0.99 1.00 0.90 0.76 0.86 0.93

Q. cerris Potential 0.99 0.99 0.99 0.99 0.82 0.75 0.76 0.93

Q. ilex Potential 0.99 0.98 0.99 0.99 0.78 0.66 0.78 0.83

Q. robur Potential 1.00 0.99 1.00 1.00 0.96 0.93 0.95 0.97

Q. suber Potential 1.00 1.00 1.00 1.00 0.97 0.94 0.95 0.97

S. caprea Potential 1.00 1.00 1.00 1.00 0.96 0.95 0.95 0.97

A. alba Realized 1.00 1.00 1.00 1.00 0.88 0.88 0.84 0.90

C. sativa Realized 0.99 0.99 0.99 0.99 0.71 0.73 0.67 0.80

C. avellana Realized 1.00 0.99 0.99 1.00 0.85 0.85 0.81 0.87

F. sylvatica Realized 1.00 1.00 1.00 1.00 0.94 0.93 0.94 0.95

O. europaea Realized 1.00 1.00 0.99 1.00 0.82 0.87 0.76 0.88

P. abies Realized 0.99 0.99 0.99 0.99 0.91 0.88 0.91 0.92

P. halepensis Realized 1.00 1.00 1.00 1.00 0.94 0.94 0.91 0.95

P. nigra Realized 0.97 0.97 0.98 0.98 0.54 0.56 0.55 0.69

P. pinea Realized 1.00 1.00 0.99 1.00 0.82 0.87 0.79 0.89

P. sylvestris Realized 0.97 0.93 0.97 0.97 0.76 0.68 0.77 0.79

P. avium Realized 0.99 0.99 0.99 0.99 0.76 0.77 0.73 0.82

Q. cerris Realized 1.00 1.00 0.99 1.00 0.84 0.88 0.79 0.90

Q. ilex Realized 0.99 0.99 0.99 1.00 0.79 0.78 0.75 0.85

Q. robur Realized 1.00 0.99 1.00 1.00 0.92 0.91 0.90 0.93

Q. suber Realized 1.00 1.00 1.00 1.00 0.94 0.96 0.89 0.96

S. caprea Realized 1.00 0.99 0.99 1.00 0.88 0.86 0.87 0.90
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Araújo, M. B. and M. New (2007). “Ensemble forecasting of species distributions”. Trends

in Ecology & Evolution 22.1, 42–47. doi: 10.1016/j.tree.2006.09.010.

Araza, A., M. Herold, S. De Bruin, P. Ciais, D. A. Gibbs, N. Harris, M. Santoro, J.-P.

Wigneron, H. Yang, N. Málaga, et al. (2023). “Past decade above-ground biomass change

comparisons from four multi-temporal global maps”. International Journal of Applied

Earth Observation and Geoinformation 118, 103274.

Archambeau, J., P. Ruiz-Benito, S. Ratcliffe, T. Fréjaville, A. Changenet, J. M. M.
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Büttner, G., C. Steenmans, M. Bossard, J. Feranec, and J. Kolár (1998). “The European

CORINE land cover database”. International Archives of Photogrammetry and Remote

Sensing 32, 633–638.

Calderón-Loor, M., M. Hadjikakou, and B. A. Bryan (2021). “High-resolution wall-to-wall

land-cover mapping and land change assessment for Australia from 1985 to 2015”.

Remote Sensing of Environment 252, 112–148. doi: https://doi.org/10.1016/j.rse.

2020.112148.

Castaldi, F., S. Chabrillat, A. Don, and B. van Wesemael (2019). “Soil organic carbon

mapping using LUCAS topsoil database and Sentinel-2 data: An approach to reduce

soil moisture and crop residue effects”. Remote Sensing 11.18, 2121.

Caudullo, G., E. Welk, and J. San-Miguel-Ayanz (2017). “Chorological maps for the main

European woody species”. Data in brief 12, 662–666. doi: https://doi.org/10.1016/

j.dib.2017.05.007.

Cazzolla Gatti, R., P. B. Reich, J. G. Gamarra, T. Crowther, C. Hui, A. Morera, J.-F.

Bastin, S. De-Miguel, G.-J. Nabuurs, J.-C. Svenning, et al. (2022). “The number of tree

species on Earth”. Proceedings of the National Academy of Sciences 119.6, e2115329119.

CBD, U. (2011). “COP 10 decision X/2”. Strategic plan for biodiversity 2020.

Ceccherini, G., G. Duveiller, G. Grassi, G. Lemoine, V. Avitabile, R. Pilli, and A. Cescatti

(2020). “Abrupt increase in harvested forest area over Europe after 2015”. Nature

583.7814, 72–77.

– (2022). “Potentials and limitations of NFIs and remote sensing in the assessment of

harvest rates: a reply to Breidenbach et al.” Annals of Forest Science 79.1, 1–7.
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