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Highlights
Light spectral composition regulates ter-
penoid biosynthesis, abundances, and
chemical diversity in both aboveground
and belowground organs, thus impacting
the nutritional and medicinal content,
aroma, flavor, and color of plants.

Red and blue (B) light regulation of terpe-
noid biosynthesis is mutually dependent,
and a light spectrum >50% of red (R)
tends to be detrimental to the biosynthe-
sis of various terpenoids.

The transcription factor elongated hypo-
In controlled environment agriculture (CEA), light is used to impact terpenoid
production and improve plant quality. In this review we discuss various aspects
of light as important regulators of terpenoid production in different plant organs.
Spectral quality primarily modifies terpenoid profiles, while intensity and photo-
period influence abundances. The central regulator of light signal transduction
elongated hypocotyl 5 (HY5) controls transcriptional regulation of terpenoids
under UV, red (R), and blue (B) light. The larger the fraction of R and green (G)
light, the more beneficial the effect on monoterpenoid and sesquiterpenoid bio-
synthesis, and such an effect may depend on the presence of B light. A large
fraction of R light is mostly detrimental to tetraterpenoid production. We con-
clude that light is a promising tool to steer terpenoid production and potentially
tailor the quality of plants.
cotyl 5 (HY5) plays a central role in UV,
R, and B light signaling regulating terpe-
noid biosynthesis.

Beside HY5, MYB and trichome-specific
transcription factors play a role in UV light
signaling affecting terpenoids.
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The affair between plants, specialized metabolites, and light
Plants are used globally by humans as a source of nutrition, ornamentation, delight, and medicine.
Approximately 25% of the pharmaceutical drugs worldwide are extracted from plant specialized
metabolites (PSMs) (see Glossary), causing high demand formedicinal plants [1]. This high de-
mand can be fulfilled by making use of efficient cultivation systems, which at the same time allow
prevention of issues regarding environmental pollution, contamination and adulteration, quality
control, and inconsistency of chemical profiles [2]. CEA offers a feasible way to mitigate these is-
sues by fully controlling environmental factors, including light, temperature, CO2, water, nutrients,
and air humidity [2,3].

PSMs include a plethoric group of compounds derived from the primarymetabolic pathways, and
are involved in most important physiological processes of a plant, including growth, development,
and survival in an environment that is often hostile [4]. To date, more than 200 000 PSMs have
been described and classified into three main groups: phenolics, terpenoids (terpenes and
steroids), and alkaloids [5]. This outstanding diversity of PSMs has been described to result
from common building units (isoprene and shikimate precursors). PSMdiversity is also due to bio-
synthetic genes from large gene families encoding homologous enzymes, enzymes producing
and modifying multiple products from the same precursor, and biosynthetic differences in
terms of time and location (organ/tissue-specific) [6]. Most PSMs are involved in the nutritional
value, flavor, aroma, and color of plant parts (leaf, stem, root, rhizomes, blossoms and flowers,
fruit, and seeds), and have found their use in human health-promoting substances [7].

Among the three groups of specializedmetabolites, terpenoids are the largest family of compounds
with physiological relevance (~80 000 known structures, of which 30 000 are found in plants) [8].
Terpenoids (Box 1) are ubiquitous in all living organisms as essential membrane components,
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Box 1. Terpenoids: structure, occurrence, and allocation

Structure

Terpenoids, also known as isoprenoids, are a group of specializedmetabolites consisting of a single or multiple five-carbon
(C5) isoprene molecule(s). Isoprenoids may present different moieties such as glycosylation, prenylation, ring closures,
unsaturation, functional groups, and oxidation [122]. When the structural skeleton does not include any modification,
therefore being a hydrocarbon, the molecule is known as terpene [123]. Here we use ‘terpenoid’ as an umbrella term
which includes terpenes and their derivatives.

Terpenoids can be classified according to the number of isoprene (C5) present in the molecule skeleton: one isoprene is a
hemiterpenoid (C5), two a monoterpenoid (C10), three a sesquiterpenoid (C15), four a diterpenoid (C20), six a triterpenoid
(C30), eight a tetraterpenoid (C40), and more than eight polyterpenes (C[n>40]) [123]. Other examples include homoterpene
(irregular acyclic C11 or C16) and sesterterpenoid (C21,22,25,26,27) [124]. Terpenoids are subclassified based on the arrange-
ment of the molecular skeleton and the presence of various moieties/modifications. For instance, monoterpenoids can be
subclassified as acyclic, monocyclic, and bicyclic [123]. Similarly, sesquiterpenoids are also found in the same subclasses
as monoterpenoids, but also as tricyclic [123] and sesquiterpenoid lactones (artemisinin) [46]. Diterpenoids are
subclassified as bicyclic, tricyclic (tanshinone) [28], tetracyclic, and macrocyclic (taxol) [15,125]. Triterpenoids
are subclassified as acyclic, monocyclic, bicyclic, tricyclic, tetracyclic (cucurbitacins) [126], pentacyclic, tetranortripenoids
(limonoids) [127], and triterpene glycosides (saponins) [128,129]. Finally, meroterpenoids (cannabinoids) form another
subclass of terpenoids with phenolic moieties [130].

Occurrence and allocation

The occurrence of terpenoids in various vegetative and reproductive plant organs ismostly associatedwith their physiological
function and is influenced by the environment. In most cases, terpenoids are produced, accumulated, and contained
(preventing autotoxicity) in the cells of specialized structures with secretory activity [10,131]. Terpenoids are commonly found
in internal (laticifers, resin ducts, oil glands) and external (colleters, and trichomes) secretory structures [131].

Internal secretory structures are found in the xylem, phloem, cortex, and parenchyma; such structures are found in the cy-
toplasm and contain oils, oleoresins, crystals, and others [131]. For instance, laticifers (latex producers) and resin ducts are
internal secretory structures in conifers that allow the transport of oleoresins (mixtures of mono-, sesqui-, and diterpenoids)
from the production site to the site of mechanical damage through an interconnected canal system [10]. Resin ducts can
be found in roots, stems, leaves, and flowers [131]. Other similar structures include resin cells and blisters, generally absent
or at very low densities, and can be induced upon biotic stress [10]. Oil cavities are also internal secretory structures that
can be found in the leaves, coupled with epithelial cells, but also throughout the whole plant, producing essential oils [131].

External secretory structures are tightly associated with the epidermal layer, and can be found in most ferns, angiosperms,
and gymnosperms. Glandular trichomes are external secretory structures, consisting of multicellular (glands) epidermic
extensions, found in bud scales, leaves, stems, and reproductive organs, producing and accumulating a vast variety of
terpenoids [10]. Glandular trichomes act as minuscule factories of organic compounds composing essential oils [132].
Other specialized glandular trichomes include stinging hairs and colleters, which are also external secretory structures pro-
ducing resinous substances and essential oils that act as a protective barrier preventing desiccation and biotic attack
[131]. Some popular examples of plants with glandular trichomes producing terpenoids include Cannabis sativa L.
[133], Solanum lycopersicum [134], Artemisia annua L. [135], and Ocimum basilicum [136]. Essential oils are com-
posed of 90% terpenes/terpenoids; hence, oil cavities, glandular trichomes, and colleters are important sites for terpe-
noid biosynthesis [137]. It is important to mention that the terpenoids produced in vivo are termed volatile or ethereal oils,
while essential oils is the term used when the volatile oils have been extracted [131].
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Glossary
Blue (B) light: photons of wavelengths
in the range 400–500 nm.
Cannabinoids: meroterpenoids
containing a phenolic moiety that can be
found, but not exclusively, in Cannabis
sativa L. Two examples with health
benefits for humans are Δ-9
tetrahydrocannabinol (THC) and
cannabidiol (CBD).
Controlled environment agriculture
(CEA): any type of plant production
system in which climate conditions are
partially or completely controlled. This term
includes indoor systems, greenhouses,
vertical farms, and plant factories.
Daily light integral (DLI): the cumulative
amount of photons of wavelengths in the
range 400–700 nm incident on one
square meter over a 24 h period.
Elongated hypocotyl 5 (HY5): a basic
leucine zipper (bZIP)-type transcription
factor described as a master regulator in
light-induced pathways involved in the
interaction with all photoreceptors
sensing photons from the UV-B to the
far-red spectra.
Far-red (FR) light: photons of
wavelengths in the range 700–800 nm.
Green (G) light: photons of
wavelengths in the range 500–530 nm.
Medicinal plant: any plant the organs
and derivatives thereof contain specialized
metabolites with therapeutic properties
that can be developed into
pharmaceutical, cosmetic, and nutritional
formulations.
Phytochrome interacting factors
(PIFs): a family of transcription factors
containing a basic helix–loop–helix (bHLH)
domain that physically interacts with red
and far-red light photoreceptors.
Phytoene synthase (PSY): an enzyme
responsible for the first catalytic step in
carotenoid biosynthesis.
Plant specialized metabolites
(PSMs): also referred to as secondary
metabolites, are compounds involved in
different plant physiological processes,
including plant defense, stress
response, growth, and development.
Many of these compounds have been
anthropogenically used for the
development of applications in
pharmaceutical, textile, food, flavor, and
aroma industries.
Quality of plants: an anthropogenic
concept determined by the interaction
between the phenotypes of plants and
the senses of humans, which defines
acceptability, fitness for consumption,
and use.
including eukaryotes (e.g., cholesterol), protozoa (biogenetic precursor of cholesterol, the triterpene
cycloartenol or the pentacyclic triterpene tetrahymanol), and prokaryotes (membrane polyterpenic
surrogates: hopane, bacteriohopane, α-,Ω-dipolar carotenoids, tricyclopolyprenols, and isoarborinol)
[9]. These metabolites can function as herbivore deterrents, allelopathic/toxic molecules, attractants
of pollinators and beneficial predators, hormone precursors (gibberellins, cytokinins, brassinosteroids,
strigolactones, and abscisic acid), thermotolerancemolecules (isoprene andmonoterpenes), electron
carriers (plastoquinone and ubiquinone), and pigments with photosynthetic, photoprotective, and/or
antioxidant activity (phytol in chlorophyll and carotenoids) [10–14]. From an anthropogenic perspec-
tive, the use of terpenoids is economically important in various industries: namely, pharmaceutical,
cosmetic, fragrance, and food. Some remarkable examples include applications in flavor and
aroma (menthol), antimalarial (artemisinin) and anticancer (taxol), and production of biomaterials and
biofuels (oleoresin or crude turpentine) [15].
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Red (R) light: photons of wavelengths
in the range 600–700 nm.
Terpenoids: also known as
isoprenoids, a group of specialized
metabolites consisting of a single or
multiple five-carbon (C5) isoprene
molecule(s). Isoprenoids may present
different moieties such as glycosylation,
prenylation, ring closures, unsaturation,
functional groups, and oxidation.
Without any structural modification
(hence a hydrocarbon), the molecule is
known as a terpene. In this review we
use ‘terpenoid’ as an umbrella term
including terpenes and their derivatives.
UV-A light: photons of wavelengths in
the range 315–400 nm.
UV-B light: photons of wavelengths in
the range 280–315 nm.
UV-C light: photons of wavelengths in
the range 100–280 nm.
White (W) light: photons of
wavelengths in the range 400–700 nm.
Yellow (Y) light: photons of
wavelengths in the range 530–600 nm.
Light is considered as a crucial environmental factor to produce specialized metabolites in plants
[1]. Because CEA allows the modulation of light properties [3], it has been used to regulate spe-
cialized metabolites in plants so that they yield more nutritious, healthier, andmore appealing pro-
duce [1,2,7,16,17]. Light spectrum affects the production of all PSMs [1]. Plants perceive light
spectra via five groups of photoreceptors that activate signaling pathways determining morpho-
logical, physiological, and metabolic responses [18]. These photoreceptors are categorized
according to their sensing spectral range: phytochromes (PHYs) sense mostly in the region of
600–750 nm but also 400–485 nm; cryptochromes (CRYs), phototropins (PHOTs), and
Zeitlupe/flavin-binding Kelch/LOV Kelch Protein (ZTL/FKF1/LKP2) in the region of 350–500 nm;
and UV resistance locus (UVR8) at 280–350 nm [18–20]. Light spectrum has a role in regulating
the biosynthesis and accumulation of terpenoids which are involved in the quality of the plant
(determining aroma, flavor, color, and medicinal and nutritional properties). Light spectrum can
affect the biosynthesis of terpenoids by upregulating and downregulating various enzymes of
the biosynthetic pathways [1,21–24]. For example, in young grape leaves terpene synthase
(TPS) activity increased under low UV-B (8.25 μW cm–2 for 16 h/d) compared with no and high
UV, leading to augmented contents of membrane terpenoids, including stigmasterol, lupeol, and
sitosterol [25]. Moreover, after exposing Prunus persica L. leaves and fruits to UV-B for 48 h,
gene transcript levels of two TPSs changed (PpTPS1 decreased and PpTPS2 increased). Conse-
quently, reducing and enhancing the content of linalool (sweet, floral, and alcohol notes in flavor
quality) and (E,E)-α-farnesene (woody, citrus, green, and fruity notes), respectively [26]. Further-
more, red (R) light stimulates triterpenoid biosynthesis in plantlets of Aquilaria agallocha grown
in vitro, specifically regulating genes related to the production of curcubitacin E and I (antitumoral)
in Aquilaria and Gyrinops trees [27]. By contrast, light spectra containing >60% blue (B) light
downregulate the expression of six biosynthetic terpenoid genes, and therefore have a suppressive
effect, involved in the production of the medicinal abietane diterpene tanshinone IIA in hairy roots of
Salvia miltiorrhiza [28].

Light intensity and photoperiod also affect the biosynthesis of terpenoids. Decreasing solar light
intensity (maximum 1600 μmol/m2/s) by 16% or 33% using shading nets enhanced the produc-
tion and accumulation of two pentacyclic triterpenoids with several pharmacological activities
(ursolic acid and oleanolic acid) in Glechoma longituba aboveground plant tissue [29]. Moreover,
in Lippia gracilis grown in vitro, a low light intensity (26 μmol/m2/s) resulted in a more complex ter-
penoid composition (more constituents detected) when compared with higher light intensities
(51–130 μmol/m2/s) [30]. Highest terpenoid production in G. longituba was associated with a
daily light integral (DLI) ≤19 mol/m2/d, while in L. gracilis more diverse terpenoid profiles
were associated with a DLI that occurs at 2 mol/m2/d. In addition, it was also observed that ter-
penoid profiles significantly increased as the DLI values increased 1–4 mol/m2/d in Lippia alba
plantlets grown in vitro [31].

The ubiquity, physiological relevance, and biological activity of terpenoids and their involvement in
the quality of plant-derived products that are cultivated and consumed by humans make these
molecules a target to understand plant behavior. The various applications of terpenoids, and
therefore their high demand in the global market, mean that these metabolites are often chemi-
cally synthesized [32]. To produce these compounds in a ‘greener’ way, metabolic engineering
has been exploited as a technological approach, allowing the control of environmental conditions
and cell growth, regulation of biosynthesis, and extraction [15,32,33]. However, the metabolic
pathway of terpenoids is rather complex, making genetic modification approaches difficult and
resource-intensive [32]. Alternatively, harnessing the plants metabolic machinery to enhance
the production of terpenoids by using light modulation offers an easier, controllable, and noncon-
troversial option [34]. In this review we synthesize recent developments on light regulation of
Trends in Plant Science, Month 2024, Vol. xx, No. xx 3
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terpenoid biosynthesis and accumulation in different plant organs. Furthermore, we convey a de-
tailed analysis of terpenoids that have been described to be affected by light and are involved in
the organoleptic, nutritional, and medicinal quality of plant organs.

Raison d’être: a connection between terpenoids and quality of plants
Quality of plants is an anthropogenic concept determined by the interaction between the pheno-
type of plants and the senses in humans, defining acceptability and appropriateness for con-
sumption and use. Quality is assigned based on morphophysiological characteristics, including
water and mineral content, tissue appearance and consistency, and PSM composition [35].
PSM composition can be the determinant of aroma, flavor, taste, pigmentation, medicinal, and
nutritional properties in plants, and terpenoids are protagonists in this narrative (Figure 1).

A substantial part of a plant’s odor consists of volatile compounds produced via terpenoid bio-
synthetic pathways [36]. All plant parts produce volatile terpenoids, and their emission to the en-
vironment functions as an environmental cue for attraction of pollinators, deterring predators, and
plant–plant communication [37]. Also, volatile terpenoids are important stress regulators because
they can act as antioxidants by quenching photo-oxidative stress, as well as stabilizing pigment–
protein complexes resulting in more thermotolerant thylakoid membranes [38]. Volatile terpe-
noids are relevant for the quality, and consumer acceptance thereof, of various plant-derived
commodities (fruits, leaves, and flowers). Quality of plants can be evaluated via aroma composi-
tion, which also influence flavor (taste and olfaction) [39]. Volatile terpenoids are predominant
aroma components in P. persica (linalool), Citrus x sinensis [(+)-valencene], Fragaria x ananassa
(linalool and nerolidol), and Camellia sinensis (linalool, β-ocimene, β-pinene, and geraniol)
[40–42]. In flowers, volatile terpenoids (monoterpenoids, sesquiterpenoids, and diterpenoids)
have been researched in the composition of over 556 floral scents [37,43].

Carotenoids are non-volatile terpenoids essential for the photosynthetic apparatus acting as ac-
cessory pigments, photoprotectors, antioxidants, and hormonal precursors [44]. Carotenoids
can determine the visual, nutritional, and medicinal quality of plant-derived commodities, includ-
ing leaves, fruits, stems, flowers, and underground organs [45]. Examples of carotenoids include
carotenes (α-, β-, γ-carotene, and lycopene) and xanthophylls (zeaxanthin, β-cryptoxanthin, and
lutein), which are not only responsible for the yellow–orange pigmentation in plants, but also
determine provitamin A, antioxidant, and anti-inflammatory activity [16,44]. Another example is
the sesquiterpenoid lactone artemisinin, which determines the medicinal quality of Artemisia
annua L., as it has potent antimicrobial, antitumoral, and other pharmacological activity [46].
Also, the medicinal quality of the rhizomatous plant Curcuma longa is derived mainly from
monoterpenoids and sesquiterpenoids produced in its rhizome [47].

In many plants terpenoids provide aroma, flavor, and determine medicinal properties. Such is the
case for Cannabis sativa L., inflorescences, where more than 120 terpenoids (myrcene, β-
caryophyllene, α-humulene, geraniol, linalool, β-pinene, and others) are responsible for the char-
acteristic aroma and flavor, but also for enhancement of the therapeutic properties (analgesia, an-
timicrobial, and anti-inflammatory) by interacting with other terpenoids (cannabinoids) [48,49].

Regulation of terpenoids by light
As of today, the combination of cultivation systems with advanced lighting technologies and plant
production have allowed us to explore and better understand terpenoid plasticity upon modu-
lated light environments. In horticultural and plant physiological research, light is taken as a factor
that can influence plant growth, morphology, physiology, as well as specialized metabolism via
quality (spectrum), duration (photoperiod), and quantity (DLI). We discuss the recent insights
4 Trends in Plant Science, Month 2024, Vol. xx, No. xx
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Figure 1. Light as a tool to steer the production of various classes of terpenoids in different plant organs, and
their role in determining the quality of plants. Abbreviations: CBCA, cannabichromenic acid; CBDA, cannabidiolic acid;
CBGA, cannabigerolic acid; THCA, Δ9-tetrahydrocannabinolic acid.

Trends in Plant Science
regarding light-regulated terpenoid profiles and abundances, with diverse occurrence and alloca-
tion, and their slightly different underlying mechanisms based on organs of several plant species.

Fruits
Tomato fruits are produced and consumed worldwide due to their nutritional value which is given
by the presence of terpenoids (carotenoids and tocopherols), phenolic compounds, and other
nutrients [50]. The most abundant carotenoids in tomatoes are β-carotene and lycopene, con-
sumption of which has been related to various health-promoting properties [50]. Aside from the
Trends in Plant Science, Month 2024, Vol. xx, No. xx 5

CellPress logo


Trends in Plant Science
nutritional and medicinal quality, lycopene is also involved in the visual quality of tomatoes
(Figure 1) [51]. Light spectra during cultivation, so pre-harvest, can affect tomato fruit carot-
enoid composition. Exposing tomato plants after anthesis to natural light supplemented
with monochromatic blue light resulted in higher content of the tetraterpenoids lycopene
and β-carotene in tomato fruits compared with supplementation with monochromatic R
light (50 μmol/m2/s, 12 h/day) [52]. Although lutein levels were also increased by B and R
light, they progressively decreased over time after anthesis [52]. Postharvest light spectra
can affect terpenoid accumulation in tomato fruits [50]. Continuous postharvest exposure
to supplemental monochromatic B light significantly increased the content of lutein and β-
carotene, while α-carotene was increased by supplemental monochromatic B and green
(G) light compared with other treatments [dark, R, white (W) light, and far-red (FR) light]
[50]. Moreover, lycopene accumulation can be more pronouncedly increased with supplemental
monochromatic FR and G light, compared with W, B, and R light [50]. Complementarily, mature
green-stage tomatoes stored under R light (0.005–0.023 μmol/m2/s, 15 min/day) showed higher
accumulation of lycopene compared with low R:FR and darkness, and such improvement could
be reversed by the application of 15 min of FR light after red light; these changes were not visually
obvious in the color of the tomato [53].

Under R light, resulting in a high R:FR ratio, PHY activity is increased, leading to phytochrome-
interacting factor (PIF) degradation, and inducing the expression of phytoene synthase
(PSY) genes, via elongated hypocotyl 5 (HY5), which are enzymatic rate determinants in carot-
enoid biosynthesis (Figure 2) [52]. High levels of lycopene are observed with high PHYs, HY5, and
PSY expression levels [52]. Complementarily, B light induces the expression of CRYs to later bind
PIFs and E3 ubiquitin-ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), inhibiting
and preventing the degradation of HY5 to consequently promote the biosynthesis of lycopene
(Figure 2) [21]. R, B, and FR light seem to be indispensable regulators of carotenoid biosynthesis,
and their effect depends on the developmental stage. Therefore, deepening our understanding of
different R:B:FR ratios is essential to identify suitable light spectra maximizing carotenoid concen-
trations in the tomato.

Strawberry fruit is an iconic example of the importance of terpenoids for the quality of fruits. The
overexpression of a TPS in F. X ananassa (FaTPS1) leads to increased levels of the
sesquiterpenoid germacrene D and can improve resistance to Botrytis cinerea in the strawberry
(Figure 1) [54]. Moreover, linalool production can be upregulated upon B. cinerea infection, while
fumigation with linalool can inhibit fungal growth [55]. Flavor composition of strawberry fruits is
significantly influenced by a small fraction (0.001–0.01% of fruit fresh weight) of volatile com-
pounds (terpenoids, esters, alcohols, ketones, etc.) [41]. Themain terpenoids found in strawberry
fruits are menthanethiol, linalool, and nerolidol, although other terpenoids – including α-pinene, β-
myrcene, α-terpineol, and β-phellandrene – are present in various cultivars and developmental
stages of the fruit [41]. After postharvest exposure to R-enriched light (R film) the terpenoid emis-
sion in strawberries was maximally promoted (77% higher than under transparent film), nerolidol
being the most abundant [56]. The final step for the biosynthesis of nerolidol and linalool is cata-
lyzed by F. X ananassa nerolidol synthase 1 (FaNES1) [56,57]. Consistently with the emission
levels of nerolidol, under R film the expression of FaNES1was higher than under a spectral neutral
film [56]. In most cases, increasing the light level increases terpenoid biosynthesis, so does the
concentration and the emission, which has been postulated to be due to the presence of
multisubstrate and multiproduct TPSs [10,58]. For instance, after sunlight exposure there was
a positive correlation between Vitis vinifera pinot noir linalool/nerolidol synthase 1 (VvPNLinNer1)
gene expression and linalool concentration in the grape berry’s mesocarp and exocarp [59]. In
Mentha piperita leaves it was described that biosynthesis kinetics of most monoterpenoids is
6 Trends in Plant Science, Month 2024, Vol. xx, No. xx
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Figure 2. A simplified and hypothetical model depicting terpenoid regulation by light. TheUVRESISTANCELOCUS8
(UVR8) signaling pathway: UVR8, cryptochrome (CRY), and phytochrome (PHY) bind CONSTITUTIVE PHOTOMORPHOGENIC 1
(COP1) to prevent elongated hypocotyl 5 (HY5) inhibition. Under UV light HY5 upregulates glandular trichome-specific (WRK1) and
AP2-LIKE (AP2L1) to promote the expression of tetrahydrocannabinol synthase (THCAS) which leads to the production of Δ9-
tetrahydrocannabinolic acid (THCA) and potentially other cannabinoids and terpenoids in Cannabis sativa L flowers. UVR8 is
known to interact with MYBs (MYELOBLASTOSIS), hence it is proposed that this interaction promotes the expression of BcTPS
(β-CARYOPHYLLENE TERPENE SYNTHASE) impacting the production of β-caryophyllene in rhizomes. Under blue light,
HY5 promotes the expression of genes AaORA (Artemisia annua GLANDULAR TRICHOME-SPECIFIC), AaADS (A. annua
AMORPHA-4,11-DIENE SYNTHASE), and AaCY71AV1 (A. annua CYTOCHROME P450 MONOOXYGENASE), consequently
affecting the production of artemisinin in leaves of Artemisia annua. Under blue and high-ratio red:far-red (R:FR) light HY5
promotes the expression of PSY (PHYTOENE SYNTHASE) which regulates the production of carotenoids in tomato fruit. Under
high-ratio R:FR light PHYs inhibit phytochrome-interacting factors (PIFs) which reduce PSY and HY5 expression. Complete
arrows show the paths supported by experimental evidence while the broken arrows show hypothetical mechanisms that are
compatible with current knowledge.

Trends in Plant Science
time-coordinated in a way that mRNA transcript accumulation of biosynthetic enzymes, enzy-
matic activity, and monoterpenoid content are correlated [60].

Postharvest light treatments during transportation can also prevent the loss of terpenoid-related
quality in pitaya, an edible fruit from the Cactaceae family, of which the red-colored fruits are rich in
PSMs with multiple health benefits (Figure 1) [61]. For instance, postharvest exposure of pitaya
fruits to monochromatic B light (35 μmol/m2/s, 2 h/day) has been positively correlated with de-
layed fruit senescence and increased abundances of the sesquiterpenoids α-longipinene and
longifolene, while the monoterpenoid β-linalool was found to be reduced [61].
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Leaves
A. annua L. is a medicinal plant highly valued for the presence of artemisinin, the sesquiterpenoid
lactone with antimalarial, antitumor, and antibacterial properties (Figure 1) [46], and the discovery
of artemisinin biosynthesis (by Youyou Tu, 2015 Nobel Prize in Physiology and Medicine) has led
to a paradigm shift in antimalarial drug development. R and B light are both required light spectra
for the regulation of terpenoid biosynthesis in A. annua L. The highest total content of artemisinin
per plant was observed under W (R/G/B) light, followed by monochromatic B and R light, results
that strongly correlate with the antimalarial activity (measure of medicinal quality) [46,62]. Generally
speaking, W, monochromatic R, and B light similarly affect the relative abundance of
sesquiterpenoids and monoterpenoids [62]. A proteomic analysis of A. annua L. leaves identified
442 terpenoid-related proteins, where 53, 20, and 31 proteins were uniquely expressed under R,
W, and B light, respectively [63]. From these proteins, 53% of identified sesquiterpene, triterpene,
and tetraterpene synthase genes were expressed under monochromatic R light, 58% of monoter-
pene, sesquiterpene and diterpene synthases genes under B light, and 55% of monoterpene, ses-
quiterpene, and triterpene synthases under W light [63]. Complementarily, R light resulted in the
lowest content of diverse terpenoids, including monoterpenoid (camphor) sesquiterpenoids (β-
caryophyllene, β-cubebene, germacrene D, and α-humulene), diterpenoid (neophytadiene), and
triterpenoids (γ-sitosterol and β-amyrone), all with important and indisputable pharmacological ac-
tivity [46]. However, R light can promote the production of the sesquiterpenoid, β-farnesene, and
the triterpenoid, squalene in artemisia [46]. Light spectrum affects leaf anatomical structures,
such as glandular trichomes which are the main machinery for terpenoid production [62]. Glandular
trichome density was significantly increased under monochromatic B, G, R, and yellow (Y) light,
compared with W light and darkness [62]. However, high-pressure sodium (HPS) plus natural
light with supplemental G and UV-B light significantly increased trichome density compared with
supplemental B, FR, R, and W light [64]. It is thought that optimization of artemisinin yield via in-
creased trichome density could be achieved by manipulating light spectra; however, in the afore-
mentioned examples there was no correlation between the content of artemisinin and increased
trichome density [62,64]. Light, as opposed to darkness, can downregulate and upregulate gene
expression of enzymes upstream of the mevalonate (MVA) and methylerythritol phosphate (MEP)
pathways, respectively, suggesting that both pathways differ in their responses to light [65]. More-
over, light transcriptional regulation of the MEP pathway has been described in different plants
(Arabidopsis thaliana, Antirrhinum majus, A. annua L., Ginkgo biloba, Oncidium orchids, and
Nicotiana benthamiana), altogether highlighting that an entire set of enzymes in the upstream sec-
tion is light regulated: that is, 1-deoxy-d-xyloluse 5-phosphate synthase (DXS), 1-deoxy-d-xylulose-
5-phosphate-reductoisomerase (DXR), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase
(HDR) [66]. Light regulation of the downstream MEP pathway is critical for the biosynthesis of
terpenoids required for chloroplast differentiation [67], photosynthetic and photoprotective pig-
ments (chlorophyll and carotenoids), membrane strengthening, and oxidative protection in
photosynthesis-related components such as plastoquinone, and antioxidants (isoprenoids,
monoterpenoids, diterpenoids, zeaxanthin, β-carotene, tocopherol, and plastoquinone) [66,68].
The biosynthesis of artemisinin, as for all terpenoids, is divided into an upstream section (production
of farnesyl pyrophosphate, FPP) and a downstream section (production of artemisinin and
derivatives). The overexpression of key biosynthetic enzyme genes (DXS, DXR, HDR, and farnesyl
diphosphate synthase, FPS) involved in the upstream section can result in increased levels of
artemisinin, and the expression of these genes is promoted byW or B light [64]. Furthermore, the as-
sembly of artemisinin that occurs in the downstream section is strongly dependent on the enzymes
amorpha-4,11-diene synthase (ADS) and cytochrome P450 mono-oxygenase (CYP71AV1), and
their gene expression is promoted by B or W light, and B, W, or R light, respectively (Figure 2) [64].
The aforementioned findings were partially confirmed by observing that B light significantly promotes
the expression of ADS, but not of CYP71AV1, which correlates with significant increases in the
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production of artemisinin [62]. OverexpressingA. annua L. cryptochrome1 (AaCRY1) photoreceptors
in four transgenic artemisia plants led to 43–62% increases in the artemisinin content compared with
wild type [69]. As in tomato, B light activates AaCRYs leading to enhanced interaction with AaCOP1,
and this interaction prevents the degradation of AaHY5 regulating the action of A. annua glandular
trichome-specific AaGSW1, resulting in enhanced expression of AaORA, AaADS, and AaCY71AV1
(Figure 2) [70]. Hence, blue light must be considered as an essential spectrum in the light composition
used for the enhancement of the quality of artemisia.

Ocimum basilicum L. is a culinary and medicinal herb highly valued for its flavor/aroma and health
benefits derived from monoterpenoids, sesquiterpenoids, and tetraterpenoids (carotenoids)
(Figure 1) [71,72]. R:B ratios ranging from 0.5 to 3 could be used to drive the production of volatile
terpenoids in basil plants. A R:B ratio of 0.5 resulted in higher content of α-/β-pinene, α-/β-
phellandrene, terpinolene, D-limonene, and α-bergamotene, when compared with higher R:B ra-
tios. By contrast, a R:B ratio >1 compared with 0.5 resulted in higher content of β-cubebene and
γ-muurolene, linalool, andmyrcene and β-farnesene [73]. The production of monoterpenoids and
sesquiterpenoids can also be affected by R and B light supplemented by different spectra (G, Y,
FR, and UV light). Basil seedlings exposed for 3 weeks to a background R:B (1:1, 100 μmol/m2/s
12 h/day) with the addition of G or Y light (50 μmol/m2/s) induced the accumulation of
monoterpenoids, while the addition of FR light (50 μmol/m2/s) induced only the production of
sesquiterpenoids [74]. Complementarily, basil plants grown under R/B/G/FR (120 μmol/m2/s,
16 h/day) with the addition of UV-A (3.8 μmol/m2/s) or UV-B (0.2 μmol/m2/s) led to 2- and 2.5-
fold increases in the amount of the monoterpenoid linalool, while UV-C (0.2 μmol/m2/s) resulted
in a 70% reduction of linalool [75]. Furthermore, supplemental FR light (180 μmol/m2/s) provided
to basil plants grown under R/B/G/FR (R/B/G: 150 μmol/m2/s and FR: 2 μmol/m2/s, 18 h/day) for
either 1 or 3 weeks before harvest had no effect on the content of eugenol, eucalyptol, and linalool
[76]. Moreover, increasing R light intensity negatively influenced the accumulation of the
tetraterpenoids lutein and β-carotene [77]. Increased accumulation of terpenoids (linalool,
germacrene-D, and, cadinol), and emission rates of volatile terpenoids (linalool, 1-8-cineole, α-
bergamotene, α-guaiene, germacrene-D, (E)-β-ocimene, myrcene, and limonene) occurred
under a light spectral composition of R (40–47%), B (18–20%), G–Y (40–47%), FR (8–11%),
and UV-A (0.1–0.2%), compared with a light spectrum composed by R (55%), B (15%), G–Y
(16%), FR (14%), and UV-A (0.1%) [78]. By contrast, the latter light spectral composition signifi-
cantly reduced the concentrations of the monoterpenoid linalool (42–60%), and the
sesquiterpenoids germacrene-D (35–40%) and cadinol (45–48%). Hence, a substantial increase
in monoterpenoids and sesquiterpenoids is associated with an increase in the G light fraction,
while it is not fully clear whether large fractions of R light (>50%) may also be associated with de-
creases in terpenoid levels [78]. G light has been described to reverse cryptochrome-mediated
responses to B light in A. thaliana, but also a co-action phenomenon has been proposed be-
tween R, B, FR, and most likely G, based on the fact that CRYs and PHYs physically and func-
tionally interact for the regulation of plant physiology and metabolism [79]. Further studies are
needed to discern the effect of G light, and its potential co-action with other wavelengths and
their role in the modulation of terpenoid biosynthesis.

The R:B ratio is a relevant factor when interpreting the effect of light spectra on carotenoid pro-
duction. Three R:B light treatments (95:5, 91:9, and 83:17) all at 100 μmol/m2/s, significantly
increased the content of carotenoids by 37%, 42%, and 46%, respectively, compared with
monochromatic R [80]. By contrast, no significant differences in carotenoid content were ob-
served between three R:B light treatments (67:33, 50:50, and 33:67) all at 120 μmol/m2/s [81].
However, decreased levels of the tetraterpenoid β-carotenes were observed under monochro-
matic R light (638 or 665 nm) and R-enriched (638 nm) R/B/FR light compared with R-enriched
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(665 nm) R/B/FR light [77]. It is interesting to note that negative effects on carotenoid accumulation
were observed when R light corresponded to >92% of the light spectral composition. However,
comparing and concluding anything from the aforementioned studies is rather challenging due to
clear differences that constrain a straightforward interpretation: light intensity of each spectrum,
the R:B ratios, and the presence of FR light that differ simultaneously. Supplemental B and R
light can impact terpenoid production, which can be related to spectrum but also to an increased
DLI. Overall, adding R and B light seems better to significantly increase the quantity of
monoterpenoids than solely using HPS lamps or natural light [72]. It is important to highlight that
HPS lamps tend to increase plant temperature compared with light-emitting diode (LED) fixtures
[82]. It has been suggested that high temperatures can lead to passive volatilization, as well as de-
pletion of respiratory substrates needed for the biosynthesis of terpenoids, therefore affectingmea-
sured concentrations [83]. However, the authors ruled out the likelihood of a temperature effect on
the biosynthesis and passive volatilization because in their study leaf temperature was hardly af-
fected by light treatment [72]. A R:B ratio of 60:40 was optimal for accumulation of crucial
monoterpenoids influencing basil flavor (limonene, pinene, eucalyptol, and linalool) [72]. Also, grow-
ing cycles in seasons of the year, with different light intensities and photoperiods and a natural
DLI <8.62 mol/m2/d increased the production of (S)-(–)-limonene [72]. By contrast, (R)-(+)-limo-
nene, α-/β-pinene, linalool, and eucalyptol were increased in growing cycles where the natural
DLI was >8.62 mol/m2/d [72]. In accordance, increasing DLI from 5 to 35 mol/m2/d linearly in-
creased the concentrations of linalool and 1,8 cineole by fourfold [84]. The DLI correlates with sub-
strate availability, a limiting factor in monoterpenoid biosynthesis under low light, which is linked to
daily assimilation and total produced biomass [84]. Hence, increasing radiation intensity is likely en-
larging the substrate pool which can be used by different terpenoid enzymes, consequently in-
creasing (mono)terpenoid production [84]. However, high light intensities may lead to high leaf/plant
temperatures, which could be counterproductive as it has been proposed that under high tempera-
tures this substrate pool is used for growth instead of terpenoid biosynthesis [83]. The interaction be-
tween light intensity and temperature and its implications on terpenoid biosynthesis is a phenomenon
that remains elusive and speculative, therefore a knowledge gap that requires further exploration.
Moreover, it is important to note that more does not always mean better. In the aforementioned
study, consumer preferencewas correlatedwith basil grown at 12mol/m2/dwith the penultimate low-
est concentration of monoterpenoids [84]. These results suggest that the provision of light as R:B
ratios is a considerable player in light signaling influencing terpenoid production in basil.

Flowers
C. sativa L. is a medicinal plant with an important repertoire of PSMs where terpenoids, including
cannabinoids, are at the top of the list providing a wide range of medicinal properties (Figure 1).
Most photobiology studies in cannabis have focused on exploring the influence of light intensity
and spectrum on specialized metabolites. Subcanopy lighting with R/G/B or R/B light spectra
(95 μmol/m2/s for 48 days) significantly increased the concentration of terpenoids in flower buds
in the upper and lower canopy, while increases in cannabinoids were observed only in flower
buds in the lower canopy [85]. Monoterpenoid abundances were primarily affected by the R/B/G
spectrum provided by subcanopy lighting, while sesquiterpenoid abundances were primarily af-
fected the intensity provided by R/G/B and R/B subcanopy lighting [85]. Moreover, there was
also an intensity effect on cannabinoids abundances. Δ9-Tetrahydrocannabinol (Δ9-THC) and its
precursor Δ9-tetrahydrocannabinolic acid (THCA) were significantly increased in flower buds in
the lower canopy, resulting in 4% increase of total Δ9-THC under 20% higher R/G/B or R/B light
compared with no subcanopy lighting [85]. Also, subcanopy lighting with R/G/B significantly in-
creased the concentration of cannabigerolic acid (CBGA) in the top canopy flowers compared
with no subcanopy lighting [85]. Additionally, a R:B ratio (4:1) top light treatment increased the con-
centration of CBGA, as well as cannabidiolic acid (CBDA), THCA, and cannabichromenic acid
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(CBCA) comparedwith HPS lamps [86]. By contrast, no effect on THC and cannabidiol (CBD) con-
centrations was observed under an increasing B light fraction in light treatments [87]. An increasing
R:FR ratio (2.83–4.04–13.49) resulted in higher levels of CBDA, β-myrcene, ocimene, and linalool,
while the opposite was observed for α-pinene [88]. In A. thaliana R light represses PIF activity to
further allow HY5 to upregulate the expression of MEP-related genes, resulting in increased
monoterpenoids [89]. It has been suggested that the same happens in cannabis plants, explaining
the increased levels of the aforementioned monoterpenoids. However, this does not apply to α-
pinene, which could be attributed to the effect of other wavelengths in the UV-A, G, and B spec-
trum [88]. The latter was partially confirmed by a study reporting a decrease in the concentration
of α-pinene, and β-caryophyllene under supplemental UV-A light [90]. By contrast, cannabis plants
exposed to more UV-A radiation at high altitudes (1200 m above sea level) have been reported to
produce higher total concentrations of terpenoids (β-caryophyllene, β-myrcene, and α-humulene)
and cannabinoids (CBGA and CBCA) [91]. Supplemental UV-A in protected cultivation can in-
crease the production of Δ9-THC in the flower by about 4%, compared with light without supple-
mental UV [90], albeit in other cases UV-A or UV-B, and their combination, can be negligible or
detrimental to the concentration of cannabinoids and terpenoids [92–95]. Such inconsistencies
may be attributed to differences in UV doses, genotypes, moment, and duration of application,
and the background light intensity/spectrum. In addition, similar contrasting effects of G light on
Δ9-THC have been reported, and G light seems to have an inductive effect on the accumulation
of CBGA and monoterpenoids (limonene, linalool, and myrcene) [96,97].

To our knowledge, rather few studies have analyzed the light regulatory mechanism on the bio-
synthesis of cannabis terpenoids and cannabinoids. A proteomic analysis revealed that 40%
and 66% of differentially expressed proteins in cannabis were upregulated by R and B light, re-
spectively [98]. Moreover, a Kyoto Encyclopedia of Genes and Genomes (KEGG) functional an-
notation and enrichment analysis of these differentially expressed proteins unveiled that under
R light, 25 proteins attributed to the metabolic pathways of limonene and pinene degradation
and sesquiterpenoids and triterpenoids biosynthesis were significantly enriched [98]. As for B
light, the enrichment analyses indicated that nine proteins were enriched in the carotenoids,
sesquiterpenoids, and triterpenoids biosynthesis pathways [98]. In mint (M. piperita and Mentha
aquatica) plants B and UV light have an effect on the transcription levels of DXS, isopentenyl-
diphosphate delta-isomerase (IPPi), and geranyl diphosphate synthase (GPPS) [99,100], and
these genes are well conserved in all plants, as well as in the upstream biosynthesis of cannabis
terpenoids and cannabinoids [96]. The upstream section of cannabinoids synthesis depends on
the MEP and polyketide pathways [96]. Compared with the MEP pathway, light regulation of the
polyketide pathway is rather obscure, although it has been demonstrated that UV and B light in-
duced mRNA accumulation of type III polyketide synthases [101]. The synthesis of CBGA is a re-
sult of the reaction between olivetolic acid (OA) and geranyl pyrophosphate (GPP), and the
formation of OA depends on the action of olivetolic acid cyclase (OAC) which belongs to the
type III polyketide synthases [96]. UV and B light may also have an inductive effect on OAC; how-
ever, this requires further investigation to better understand light regulation of the polyketide up-
stream section of cannabinoids synthesis. The biosynthesis of THCA is regulated by three
trichome-specific transcription factors that modulate the expression of the THCA synthases
gene (tetrahydrocannabinol synthase, THCAS), namely CsMYB1, CsAP2L1, and CsWRKY1
(Figure 2) [102]. CsAP2L1 positively regulates the transcription of THCAS, while the opposite ef-
fect is exerted by CsMYB1 and CsWRKY1 [102]. CsAP2L1 and CsWRKY1 are transcription fac-
tors belonging to the APETALA2/ethylene-response factor (AP2/ERF) and WRKY1 families,
respectively [70,102]. Many of these transcription factors are B and R light regulated via HY5
[52,70]; hence, it is imperative to determine whether HY5 plays a role on the transcriptional reg-
ulation of CsAP2L1 and CsWKR1 under B or R light, determining the biosynthesis of terpenoids
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and cannabinoids in cannabis trichomes (Figure 2). Furthermore, UV light may also have an intrin-
sic role in the regulation of terpenoid biosynthesis in cannabis via UVR8 and HY5. UV light
activates UVR8which can interact with MYB transcription factors regulating growth and develop-
ment [103]. UVR8 potentially interacts with CsMYB1, thus regulating the biosynthesis of canna-
binoids (Figure 2). Similarly, UVR8 signaling can upregulate the transcriptional induction of
HY5 promoting the function of CsAP2L1 and CsWRKY1, hence forming a potential regulatory
mechanism in the production of cannabinoids (Figure 2) [103]. However, how these interactive
mechanisms act specifically in cannabis has yet to be established.

Light intensity may also influence terpenoid yield as a consequence of greater flower yields.
Increasing light intensity from 200 to 1800 μmol/m2/s linearly increased flower yield, which led to
an increase in the total cannabinoid yield (g/m2), total terpenoids, myrcene, and limonene content
(mg/g1 of flower), respectively [92]. Similarly, cannabis plants grown under three light intensities
(600, 800, and 1000 μmol/m2/s) showed increased flower, cannabinoids, and terpenoids yields
[104]. Also, photoperiod can influence the production of cannabinoids in cannabis. In one
genotype a dynamic photoperiod extended from 12 h to 14 h or shortened from 14 h to 12 h
and 10 h increased CBD yield compared with a static 12 h photoperiod, while in another genotype
shortening it from 14 h to 12 h increased Δ9-THC yield [105]. In industrial hemp, a photoperiod ex-
ceeding 13 h and 40 min during the growing season resulted in the highest leaf and floral yields
[106]. When the photoperiod is extended, flower biomass and cannabinoid content are positively
influenced, while when it is shortened, only the flower biomass was affected [105]. In Glycine
max L., extending the photoperiod delayed reproductive development, and increased cumulative
intercepted radiation and biomass production, resulting in more assimilates partitioned to repro-
ductive organs [107]. In cannabis, delayed reproductive development could potentially give more
time for radiation interception, benefiting flower biomass production thus increasing the production
and accumulation of specialized metabolites in the flower, but such assumptions can still not be
easily demonstrated. Speculations on carbohydrate dynamics suggest that under extended pho-
toperiod conditions the extra light provided to the plant may lead to starch storage in roots and
stems, which could be remobilized to glandular trichomes for the biosynthesis of terpenoids
[105]. It is known that increases in the partition of the assimilates towards starch accumulation is
strongly dependent on photoperiod and not so much on light intensity [108]. Also, under long-
term abiotic stress, mint plants can remobilize starch to favor the production of monoterpenoids
for the protection of plant tissue [108]. Any extra provision of light may represent a source of
photo-oxidative stress via production of reactive oxygen species (ROS) which affect cellular and
photosynthetic components in the plant [109]. To mitigate ROS damage, plants produce endoge-
nous isoprenoids, monoterpenoids, and sesquiterpenoids acting as antioxidants, hence posing
one explanation for the increased terpenoid yields under extended photoperiods [110]. Cannabis
has been described to be particularly different from other crops because of its ability to cope
with considerably high light intensities (≈1800 μmol/m2/s) [92]. Under excessive amounts of light,
carotenoids can protect the photosyntheticmachinery fromphoto-oxidative damage, and caroten-
oids are also connected to chloroplast development [111]. Furthermore, in N. benthamiana and
A. thaliana plants, isoprene emission was positively associated with chlorophyll (a and b), caroten-
oid, and xanthophyll content, which has been associated with feedback regulation of gene expres-
sion from the MEP pathway [112]. Also, under high and fluctuating light stress, isoprene
upregulated the expression of genes involved in chloroplast development and chlorophyll synthe-
sis, photoprotection and stabilization of photosystems I and II, and production of unsaturated fatty
acids and thylakoid membrane proteins [112]. In consequence, isoprene can improve photochem-
ical efficiency, membrane stability, and minimize chloroplast damage [112]. The synthesis of iso-
prene depends on the production of pyruvate and glyceraldehyde 3-phosphate which are
derived from the Calvin cycle; therefore, the production of isoprene is directly dependent on
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photosynthesis and light is a driver in these processes. Altogether this suggests that the production
of one terpenoid, and perhaps others, may be critical for plants to cope with abiotic stress such as
high light intensity. Analysis of the biogenic volatile organic compounds shows that cannabis plants
produce isoprene [113]; however, no studies have evaluated whether isoprene aids in coping with
high light intensities. To the best of our knowledge, there are various undetermined phenomena re-
garding cannabis assimilates dynamics, oxidative stress and its implications in the photosynthetic
machinery, PSM profiles and contents, and their regulatory mechanisms. Therefore, we need to
understand the means by which cannabis plants cope with excess photon energy, as well as
the dynamics between fixated carbon into structural and non-structural carbohydrates, and
PSMs (aiding in photoprotection and electron scavenging) to better explain trichome and terpenoid
biosynthesis productivity under specific light conditions in cannabis and other plants.

Conflicting results on the unclear trends regarding the effect of light on terpenoids in cannabis,
and other medicinal plants, call for a deeper analysis of the underlying mechanism regulated by
light. Prospective studies should focus on correlating gene expression of specific terpenoids
and cannabinoids biosynthetic enzymes, corresponding enzymatic activity, and final concentra-
tion under comparable experimental light conditions. Special attention should be given to en-
zymes known to be light-influenced, and those belonging to the downstream section of the
biosynthesis of terpenoids and cannabinoids.

Rhizomes
Light regulation of terpenoid biosynthesis also occurs in underground organs. Light is intercepted
mostly, if not entirely, by leaves, while also influencing underground organs. Curcuma spp. is a
plant belonging to the family Zingiberaceae; its rhizome contains a vast repertoire of both medicinal
and nutritional compounds, including terpenoids (Figure 1) [47]. Exposing curcuma plants to elevated
UV-B light (ambient ± 9.6 kJ m/2d) promoted the production and diversity of sesquiterpenoids and
the reduction of most monoterpenoids, except for 1,8-cineole, in the rhizome [114]. The terpenoids
γ-amorphene, β-caryophyllene, furanodiene, β-progesterone, pulegone oxide, retroprogesterone,
and verrucarol were detected only under elevated UV-B [114]. Furthermore, elevated UV-B promoted
the production of the anticancerous sesquiterpenoids α-terpinolene, β-caryophyllene, β-
sesquiphellandrene, and curzerene, which were significantly increased by 61%, 60%, 32%, and
10%, respectively, compared with no elevated UV-B [47,114]. Ginger (Zinger officinale) is another rhi-
zomatous plant from the family Zingiberaceae with nutritional and medicinal properties derived from
terpenoids and other compounds [115]. Green-enriched sunlight increased the content of eight
monoterpenoids by 16–40%,while sesquiterpenoidswere both positively (3–92% increase) and neg-
atively (2–9%decrease) affected comparedwith unenriched sunlight [115]. UV-Bmay also be used to
regulate the production of the oleanane-type triterpenoid saponin glycyrrhizin (anticancerous and an-
tiviral) inGlycyrrhiza uralensis rhizoids (Figure 1). Exposure of 3-month-old plants for 15 and 3 days to
low and high UV-B intensity (0.43 and 1.13 W/m2) significantly increased the concentration of
glycyrrhizin by 25% and 16%, respectively [115]. Light spectrum can influence the exudates, includ-
ing terpenoid-derived compounds, of belowground organs such as rhizomes; however, it is not fully
known how light spectra perceived by leaves affect belowground organs [116]. CRYs, PHYs, and
UVR8 are also present in underground organs to directly sense light, a situation that occurs only
when the roots are within the first 10 mm of the soil/substrate or in vitro studies [117]. The presence
of photoreceptors in the roots may play a regulatory role connected to light signaling components
coming from aboveground. HY5 is a mobile molecule involved in light signaling from shoot to root,
and is therefore a key integrator of light regulation of PSM biosynthesis in underground organs
[118]. Under UV-B exposure HY5 transcriptional induction can occur via UVR8 signaling, conse-
quently regulating the transcription of other genes involved in terpenoid biosynthesis (Figure 2)
[103]. Little is known about terpenoid-related light transcriptional regulation in underground organs;
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Outstanding questions
What is the role of different R:B ratios in
determining the interaction between
CRYs and PHYs, and how does such
interaction affect light regulation of
terpenoids?

To be or not to be proper. What is the
proper and comparable experimental
design to study the effect of R and B
light? For instance, if we change the
fraction of R light, by default other
light spectra will change as well, and if
we add more R light then light intensity
will increase.

Does every nanometer count? Are
UVR8, CRY, and PHY responses the
same for every single wavelength within
the UV, B, and R spectra, respectively?

Is there any crosstalk between UVR8
and CRYs determining light regulation
of terpenoids? Is this crosstalk similar
among species and their organs?

Is the effect of light intensity, photoperiod,
and DLI on terpenoids a plant response
to mitigate photo-oxidative stress and
photo-inhibition, therefore influencing
terpenoid biosynthesis? Does this effect
apply to both above- and belowground
organs?

How much of the photon energy is
transduced into structural and non-
structural carbohydrates, and terpenoid
biosynthesis? And what proportion of
the non-structural carbohydrates is
used for terpenoid biosynthesis?

What is the light cue (spectrum, intensity,
or photoperiod) required by the plant
to initiate carbon reallocation from
the stored carbon to the site where
terpenoids are being produced?
however, an increasing number of uncharacterized MYBs have been described in the roots, which
might play a role in the underground stress response, including exudation of terpenoids, in various
plants [119]. For instance, MYBs are involved in aboveground transcriptional regulation of β-
caryophyllene TPS in the orchid Dendrobium officinale (DoβcarTPS) [120]. βcarTPSs have a
conserved evolutionary association with the production of sesquiterpenoids in different plants [120].
Because MYBs have been described to interact with UVR8 to regulate the expression of terpenoids
[103], it could be suggested that under UV MYB and UVR8 interact to promote the expression of
βcarTPS, consequently impacting the biosynthesis of β-caryophyllene in ginger and curcuma rhi-
zomes (Figure 2). Different TPSs in ginger and curcuma have been described [121], but their regula-
tory mechanism correlating light, gene expression, and terpenoid content have not been established.

Concluding remarks and future perspectives
Spectral composition (the various wavelengths) is the most important light component to exten-
sively modify chemical diversity of terpenoids in leaves, flowers, fruits, and rhizomes, while light in-
tensity and photoperiod pose an opportunity tomainly impact abundance. Little attention has been
given to understanding the effect of light intensity and photoperiod on the molecular mechanisms
determining the occurrence and abundance of plant terpenoids. Both light intensity and photope-
riod are important light features because they represent the amount of energy the plant can get to
fixate carbon that will be directly or indirectly used for growth and biosynthesis of terpenoids and
other specialized metabolites. At the same time, such energy can also represent a source of stress
in the form of ROS, which the plant can counteract by producing specific terpenoids. Based on re-
cent studies in basil and cannabis we can state that increases in terpenoid production caused by
more assimilates allocated towards biomass and specialized metabolism tend to be linearly corre-
lated with increasing light intensity and photoperiod [84,92,105]. However, our understanding of
how assimilates are mobilized or remobilized under specific light environments remains elusive.
Moreover, what happens with the allocation of assimilates under oxidative stress is also insuffi-
ciently understood. Henceforth, special attention should be given to the study of carbohydrate dy-
namics, photoprotection, and the antioxidant activity of terpenoids.

UV triggers a signaling pathway involving key elements such as UVR8, HY5, and COP1, while the
signaling pathway for UV-A is also modulated via CRYs [19]. The detailed picture of UV signaling
remains unclear and underexplored, with implications for our knowledge of terpenoid biosynthe-
sis. UV and B light responses have been proposed to trigger a potential interaction between
UVR8 and CRYs, but the underlying processes on terpenoid regulation are rather obscure. Fur-
ther research is required to elucidate the mechanism behind UV regulation on terpenoids and its
potential interaction with blue light responses.

R and B are mutually dependent spectra, as they both trigger the light signaling that regulates the
biosynthesis of various terpenoids, in which the transcription factor HY5 has a central role. The effect
of R:B ratios cannot be easily compared and interpreted, thus hindering straightforward conclusions.
Factors including DLI, photoperiod, light intensity, supplemental spectra, and differences in R:B ratios
represent unavoidable sources of variation. This variation is likely determining the effect that light may
have on plant terpenoids. Based on the reviewed studies, the presence and fraction of R, B, and G in
the light spectrum matters, highlighting that decreases in tetraterpenoids, and increases in mono-
terpenoid and sesquiterpenoid concentrations, were mostly associated with a R light fraction of
>50% of the instantaneous photon flux. Moreover, an increase in monoterpenoids and sesquiter-
penoids seems to be associated with a G fraction of >40% compared with a lower or no fraction of G.

Another important aspect of steering terpenoid production is to match consumer acceptance
(quality) with plant phenotype (terpenoids). Most studies do not consider any correlation of
14 Trends in Plant Science, Month 2024, Vol. xx, No. xx
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terpenoid abundances and profiles with consumer acceptance. Therefore, prospective research
must also include studies that define, test, and establish the quality of plant produce [84]. Globally
speaking, the aforementioned recent developments show a promising future application modify-
ing the light environment to steer terpenoid production and consequently improve the quality of
plants (Figure 2) (see Outstanding questions).
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