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Mathematical models within the Ross–Macdonald framework increasingly
play a role in our understanding of vector-borne disease dynamics and as
tools for assessing scenarios to respond to emerging threats. These threats
are typically characterized by a high degree of heterogeneity, introducing a
range of possible complexities in models and challenges to maintain the link
with empirical evidence. We systematically identified and analysed a total of
77 published papers presenting compartmental West Nile virus (WNV)
models that use parameter values derived from empirical studies. Using a
set of 15 criteria, we measured the dissimilarity compared with the Ross–
Macdonald framework. We also retrieved the purpose and type of models
and traced the empirical sources of their parameters. Our review highlights
the increasing refinements in WNV models. Models for prediction included
the highest number of refinements. We found uneven distributions of
refinements and of evidence for parameter values. We identified several chal-
lenges in parametrizing such increasingly complex models. For parameters
common to most models, we also synthesize the empirical evidence for their
values and ranges. The study highlights the potential to improve the quality
of WNV models and their applicability for policy by establishing closer
collaboration between mathematical modelling and empirical work.
1. Introduction
West Nile virus (WNV) is a mosquito-borne pathogen that has caused
outbreaks worldwide. While the virus originated from the African continent,
human cases have occurred all across the globe. In the past few decades,
large outbreaks have mostly been detected in Europe and North America
[1]. The virus is transmitted between mosquitoes and birds, but the pathogen
can spill over to humans and horses. Although most human cases are
asymptomatic, it can cause a variety of symptoms ranging from fever to
encephalitis in the most severe cases [2]. There is currently no available
vaccine or specific treatment against WNV infections in humans [2].
Thus, current prevention measures mostly consist of mosquito control
campaigns [3].

WNV can be transmitted to a wide range of species [4], making its dynamics
complex. WNV is primarily transmitted through the bites of infected mosqui-
toes, with birds serving as the main reservoir host [5]. Culex species are the
main vector that amplifies WNV as it feeds preferably on competent bird
species [6]. This maintenance process in mosquito and bird populations is
characterized by a high degree of heterogeneity. Within a single Culex species,
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there can be variations in biting behaviour and transmission efficiency based on factors such as age, sex, time of the year and infec-
tion status [7,8]. Occasionally, there is spillover to dead-end species like humans and horses, which are incapable of further
transmitting it [9].

Mathematical models aim to capture the diversity of species and processes involved in WNV transmission dynamics. These
models capture dynamical processes involved in WNV transmission and thereby contribute to our knowledge of WNV and
help to predict the course of future outbreaks. Mathematical models can help understand the transmission and establishment
of WNV, as well as which factors contribute to this, by estimating metrics such as the basic reproduction number R0, the force
of infection, or human infection risk [10]. Models are also used to inform policy, for example by estimating the current levels of
WNV transmission based on surveillance data, by determining the risk of future outbreaks or by estimating the effect of control
interventions. This can be done on both short- and long-term scales and coarse and fine spatial scales and could specifically
include predictions under change scenarios. Two recent reviews focusing on the United States have studied the use of WNV
models for guiding interventions and made recommendations on how to make models more useful for policy [10]. Both reviews
recommended the development of models on finer spatial scales as that corresponds better to the scale at which vector control
interventions are implemented. Keyel et al. [11] also recommended a closer alignment of model outputs with required information
for decision-making.

The foundation for many modelling efforts to understand WNV dynamics was laid by Ronald Ross’ work on malaria,
extended by George Macdonald [12,13]. Although several Ross–Macdonald-type models have been developed, they typically
centre around the concept of a basic reproduction number and include a simplified description of the transmission cycle [14]:
(i) an infectious mosquito passes the pathogen to a host upon a bite, (ii) the pathogen infects the host, multiplies and reaches
high densities in the host bloodstream, (iii) the pathogen is passed to a mosquito upon a bite on the infectious host, and (iv)
the pathogen infects the mosquito and multiplies so that the virus reaches sufficiently high concentrations in the salivary
glands to be transmitted upon a bite. Some common assumptions of these models are: bites are evenly distributed among the
host population, transmission only happens between vectors and hosts, and the incubation period and biting rate are constant
over time, as is the mosquito-to-host ratio. This is implemented in the framework of compartmental models in which the host
and vector populations are divided into classes based on their infection status (for example, the so-called SIR models, where indi-
viduals are assumed to be in one of three epidemiological states: susceptible, infectious or recovered). For a more thorough
explanation of the use of mathematical models in epidemiology, we refer to Heesterbeek et al. [15]. Within this context, models
have been expanded to answer present-day challenges posed by mosquito-borne diseases. Examples of adaptations include temp-
erature dependence, vertical transmission and multiple host species. The Ross–Macdonald framework is used to represent the full
enzootic transmission cycle and is therefore commonly used in mechanistic transmission models. It is important to note that many
other modelling approaches exist that do not follow this framework such as statistical or hybrid models.

To study how the Ross–Macdonald approach has changed since its development, Reiner et al. [16] compiled an exhaustive list
of mathematical models for mosquito-transmitted diseases, spanning over 388 models published between 1970 and 2010. Of these,
31 had WNV as the pathogen of study. The authors argue that many models developed over the years still bear a strong resem-
blance to the foundational Ross–Macdonald ideas and suggest that new theory could benefit from including concepts like
heterogeneous mosquito biting, poorly mixed mosquito–host encounters, spatial heterogeneity and temporal variation in the
transmission process.

More than a decade after the Reiner et al. review [16], both the geographical range of WNV has expanded, as has the number
and complexity of models aimed specifically at the WNV system. These developments raise important questions about the avail-
ability and suitability of empirical studies necessary to inform these more complex models and their application in new locations.
Adapting previously developed models to new environmental and ecological contexts is essential, and adding heterogeneity in
models can substantially improve their quality and applicability [17,18]. This can lead to models becoming more parameter
rich, while at the same time, the values for parameters common to the most basic mechanistic descriptions of the system can
differ between regions and contexts where they were previously determined and the new situations where the model will be
applied. With an increasing use of models focused on understanding and predicting outbreaks to direct policy, these developments
can have important consequences for decision-making in new areas or populations.

Building on the study by Reiner et al. [16], we first describe trends in assumptions of compartmental models, with a specific
focus on WNV, extending the analysis with models published between 2010 and 2022. Additionally, we explore the purpose and
type of WNV models, also in relation to their similarity to the basic Ross–Macdonald framework, to identify the conceptual devel-
opments that have been implemented in the last decade. We then provide insight into the evidence base of empirical studies that
are cited to have informed the values of the parameters common to most of these models. Finally, we synthesize the challenges
emerging from this.
2. Methods
(a) Literature search strategy
We searched the peer-reviewed literature for mechanistic models of WNV transmission on a population level (figure 1) that used
parameter values based on data. Specifically, we were interested in compartmental models that modelled population dynamics over
time with differential equations. The database search query combined terms related to ‘WNV’, ‘mathematical’ and ‘model’ (see electronic
supplementary material, S1 for full details). This search was conducted in three databases: PubMed, Scopus and Web of Science.

This study focused on compartmental models of WNV; other pathogens and types of models were therefore excluded. Compartmental
models were of particular interest, because these can use information from empirical studies through the use of biologically relevant



(a) database

search

Web of Science
474

PubMed
497

Scopus
506

records identified through
database searching

1477

excluded based on
title or abstract

842

excluded based on
full text

79

not about West Nile virus   23
no compartmental model   21

no parameters based on data   28
not in English or French   6

not the primary description of the study   1

not about West Nile virus   23
no compartmental model   35

no parameters based on data   10
not in English or French   3

not the primary description of the study   1

full-text articles
assessed for eligibility

146

records screened from
database search

67

studies included from
snowball search

10

full-text articles
assessed for eligibility

82

records after
duplicate removal

86

exclusion based on
title or abstract

4

exclusion based on
full text

72

records identified after
one snowball iteration

157

records selected for
starting set

15

reviewed articles
77

records after
duplicate removal

988

snowballing

search

(b)

Figure 1. Complementing the systematic literature search with one iteration of snowballing search. (a) PRISMA diagram depicting inclusion and exclusion steps of
the database searching. (b) Decision tree of the snowball searching.
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parameter values, contrary to for example statistical models. Agent-based models of WNV were also excluded as they are still small in
number and have been discussed elsewhere [19]. We aimed at characterizing empirical evidence used to parametrize WNV models.
We therefore only considered studies citing other references to parametrize their models, or estimating their parameters based on data.
Additionally, we only considered primary, peer-reviewed publications in English or French. The selection was performed in two
rounds: first based on title/abstract and then based on full text. Both rounds of inclusion/exclusion were performed by two reviewers
independently, and disagreements were discussed until a consensus was reached. A third author was involved in making the final
decision when necessary.

To minimize the risk of missing relevant papers, we then used a forward snowballing approach [20], where we used the 15 most cited
studies identified through the database search to add the papers that cited these. The same inclusion and exclusion process was applied in
the systematic database search and in the snowball round. The final search was completed on 14 December 2023. No date restrictions were
used. The full list of identified papers, selection steps and final list of included papers is presented in electronic supplementary material, S2.
(b) Model classification
For each publication, we retrieved the purpose and type of the model and classified the refinements compared with the basic
Ross–Macdonald assumptions. We defined three categories for the purpose of models: understand, predict and control, as defined in
Cecilia et al. [21]. Models were classified as ‘understand’ if they aimed at exploring the impact of various mechanisms on the transmission
dynamics, as ‘predict’ if they were forecasting the evolution of WNV transmission in time and as ‘control’ if they were exploring the
impact of intervention strategies. Additionally, we used the categories defined in Cecilia et al. [21] to classify the types of models: applied,
theoretical and grey. Applied models describe a specific area and use data to calibrate or validate the model, theoretical models are generic
models and do not use any data, and grey refers to models that do not fit into these categories.

We classified the refinements by calculating a dissimilarity index as proposed in Reiner et al. [16] to quantify the divergence of the
models from the basic Ross–Macdonald (RM) assumptions. Even though this RM index is not specific to WNV, it has been investigated
in other studies and thus provides a comparable measure of the number of refinements used in a model. For each publication, the model
was classified based on 15 criteria (table 1). For each criterion, the model scored one if it is refined compared with the assumption of the
basic Ross–Macdonald model and zero otherwise. The resulting sum of the scores for all criteria is a dissimilarity index, between 0 and 15,
for each publication. When several models were described in a publication, we used the one having the most refinements. Each publication
was read and classified by two authors. Disagreements were discussed until a consensus was reached, and a third author was involved in
making the final decision when necessary.
(c) Empirical evidence for parameter values
To study the use of available evidence from empirical studies in model parametrization, we extracted references cited for parameter values
in all our included studies and traced the empirical sources of these values. We focused on values for the six most common virus-specific
parameters: extrinsic incubation period (EIP; the time the virus takes to incubate within the vector), intrinsic incubation period (the time
the virus takes to incubate within the host), recovery rate (i.e. duration of infectious period), disease-induced mortality rate, transmission
probability from vector to host and from host to vector. We extracted references provided for these parameter values from all studies and
traced back to empirical studies underlying these values (e.g. in the case where the cited reference was not an empirical study but a mod-
elling paper or a review). For each of the empirical studies, we counted the number of times it was used as underlying source for
parameter values by studies included in this review. We distinguished two ways in which empirical studies were used as a source:
direct citation (i.e. model paper cited the empirical source) and indirect citation (i.e. model paper cited another paper which cited the
empirical source). Parameter extraction and identification of underlying empirical evidence was done by two authors independently
for each study.



Table 1. Details on the dissimilarity index criteria.

index criterion Ross–Macdonald assumption
deviation from Ross–Macdonald
assumption

1 aquatic stages of mosquito

populations

not modelled explicitly modelled, with at least one state

variable

2 number of spatial locations one without immigration one with immigration, or more than one

3 number of mosquito taxa,

genotypes or phenotypes

one more than one

4 number of pathogen taxa,

genotypes or phenotypes

one more than one

5 number of vertebrate taxa,

genotypes or phenotypes

one more than one (including non-competent hosts)

6 mosquito mortality in the absence

of control

constant per capita mortality rate any refinement (temperature-dependent,

humidity-dependent, etc.)

7 mosquito blood-feeding rate in the

absence of control

constant per capita blood-feeding rate any refinement (temperature dependent,

dependent on host availability, etc.)

8 proportion of blood meals on hosts feeding on other hosts was not included any refinement (feeding on non-competent

hosts, etc.)

9 pathogen latency in mosquitoes not modelled explicitly modelled as a state variable

10 waning immunity not modelled explicitly modelled

11 superinfections and co-infections not modelled explicitly modelled

12 distribution of blood meals among

hosts

homogeneous distribution of blood meals

among vertebrate hosts

heterogeneous distribution of blood meals

among vertebrate hosts

13 mixing well-mixed not well-mixed, modelled using a contact

network or individual-based model

14 transmission from mosquito to host constant any refinement (temperature-dependent, time-

dependent, etc.)

15 transmission from host to mosquito constant any refinement (temperature-dependent, time-

dependent, etc.)
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3. Results
We identified a total of 77 papers that published compartmental WNV models using parameter values based on data [18,22–97].
The oldest paper included was published in 2001, and since then, the number of modelling papers published per year has
increased over time (R = 0.68, p-value = 9.4 × 10−4, figure 2). The majority of studies included in our review were published in
the past decade (66%), with 44% being published in the past 5 years.

(a) Classification
The dissimilarity index, calculated using 15 criteria (table 1), increased slightly over time (R = 0.27, p-value = 0.016), indicating that
WNV compartmental models tended to increasingly deviate from the approaches of Ross and Macdonald (figure 3a). The mean
number of refinements included was 3.1, and varied between 0 [37,52,59,72,77,78] and 9 [46,79,91]. We identified 64% of models
(n = 49) aiming at understanding transmission, 27% (n = 20) aiming at evaluating control strategies and 9% (n = 7) aiming at pre-
dicting case numbers. Models aiming at predicting had a higher dissimilarity index on average (mean = 5.9, p-value = 2.7 × 10−7).
Additionally, 66% of the models (n = 51) were classified as theoretical, 22% (n = 17) as applied and 12% (n = 9) as grey. Applied
models had a higher dissimilarity index on average (mean = 4.6, p-value = 2.2 × 10−7). A variety of data types were used in applied
and grey models, including demographic and environmental data such as mosquito abundance and temperature, as well as
epidemiological data such as incidence in humans, serological data and prevalence in trapped mosquitoes.

The most common refinements of the Ross–Macdonald framework were including multiple spatial locations (or taking
migration into account) (48%), including pathogen latency in mosquitoes (51%) and including multiple host species (44%)
(figure 3b). Half of the models with multiple host species (n = 17, 50% of those with more than one host species) included non-
competent hosts (humans n = 17, equids n = 1). Additional competent hosts were studied in 20 studies (59% of those with more
than one host species studies), including up to eight different bird species. Contrarily, only 8% of models included more than
one mosquito species, of which 83% included multiple Culex species, and one included Aedes albopictus in addition to the most
commonly modelled Culex pipiens. The least common refinements were waning of immunity (3%), number of pathogen taxa
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(1%) and superinfection (0%). We found no study that explicitly modelled more than one WNV circulating strain. Likewise,
the only study considering more than one pathogen included avian malaria in addition to WNV but did not explicitly model
co- or super-infection [38]. All classification results per paper are presented in electronic supplementary material, S3.
(b) Empirical underpinnings of key model parameters
The reviewed body of literature resulted in a collection of infection and transmission parameters. The complete datasets on the
parameters and their details can be found in the electronic supplementary material, S4. Here, we describe the body of evidence
used by the authors of the studies to estimate key virus-specific parameters: the disease-induced death rate, the recovery rate,
the intrinsic incubation period, the latency or extrinsic incubation period, the transmission probability from host to vector and
the transmission probability from vector to host.

The number of unique empirical studies used as underlying source for parameters varied from 10 for the intrinsic incubation
rate to 28 for the transmission probability from mosquito to host. Some papers cited these empirical studies directly, but most
(62%) used other models or reviews as a reference (i.e. indirect citation, figure 4). A small number of papers were clearly used
more frequently, while 51% of studies were only used once. This trend was especially strong for the recovery rate parameter,
with one paper [98] used as a source in 73% of all citations to empirical studies. A comparison of the parameter values used in
the models for the most cited empirical sources is provided in electronic supplementary material, S6.
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4. Discussion
We identified 77 papers presenting compartmental WNV models that make use of empirical studies to inform their parameter
values. The number of refinements to the Ross–Macdonald framework increased over time. Models aiming at predicting trans-
mission and those including data from a specific area included the highest number of refinements. Compared with Reiner et al.
[16], models included here addressed more refinements on average. We found an uneven distribution in which model refinements
are addressed, with spatial structure and/or migration and pathogen latency in mosquitoes being addressed in about half the
models, while others, such as superinfection, were never addressed. Most papers referred to other modelling papers and/or
reviews rather than the underlying empirical studies for their parameter values. A small number of empirical studies were
highly influential through indirect citations and frequently used as a source of parameter values, whereas half of the empirical
studies used were only referred to once.

Not all refinements of the RM index were addressed to the same extent in the included studies. One of the main recommen-
dations put forward in Reiner et al. [16] related to the incorporation of host heterogeneity, which we encountered in several WNV
models. This was achieved through the inclusion of multiple host species with host-specific infection parameters in 34 models
(44%) (e.g. [25,74]) and/or species-specific biting preferences in 19 models (25%) (e.g. [18,52]) sometimes extended with changes
in biting preferences over time in three models (4%) [33,34,49]. Like Reiner et al., we observed that heterogeneity through imperfect
mixing of hosts and mosquitoes and any spatial heterogeneity was still rarely included. This may be due to lack of available data or
a desire to keep inferences at a higher level of aggregation. For some refinements, it may also matter what the time scale is that is
being considered for the application of the model. For example, if a study is focused on emergence and the very onset of an out-
break, refinements such as waning immunity or strain replacement may not be major influences on that time scale. Additionally,
the RM-index is not specific to WNV and some of the refinements are less relevant for WNV. For instance, waning immunity
(addressed in two studies) may be considered irrelevant given that immunity loss takes a long time relative to the average lifespan
of hosts [99]. Similarly, co-infection with WNV (not addressed in our included studies) has only recently been observed and
studied [100]. The inclusion of specific refinements could also be associated with the chosen modelling approach. The current
work focused exclusively on compartmental models using parameters based on data. Other types of models, such as statistical,
theoretical or agent-based models, might be more suited to address specific research questions and therefore include refinements
that were often not used in compartmental models. For example, agent-based models are particularly useful to study the impact of
host heterogeneity and imperfect mixing.

Another major factor in the inclusion of refinements is the availability of empirical data to underpin parametrization. This is
illustrated by the development of models including multiple host species. The experimental work by Komar et al. [98] enabled
researchers to study the role of multiple host species and the differences between these on WNV dynamics. All papers including
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multiple host species were published after this experimental study. Especially models classified as ‘predictive’ and ‘applied’would
benefit from high-quality empirical studies, as these types of models included most refinements and relied on data for their mod-
elling efforts. It is important to highlight that our search strategy used published modelling papers as a starting point for
identifying empirical studies. It is therefore possible that relevant empirical studies were missed if they were never used in mod-
elling studies. A systematic review aimed at identifying all empirical studies for a specific parameter could explore whether such
‘missed’ studies exist, but this was outside the scope of the current work.
lishing.org/journal/rspb
Proc.R.Soc.B

291:20232432
(a) Challenges in translating parameter values from empirical sources
Based on our results, we observed two trends regarding the use of empirical evidence in modelling efforts. We found that the body
of evidence from empirical studies is not used equally, with many studies rarely being used and a small number of studies being
used frequently mostly because they were cited in other model papers. This could be a consequence of researchers building on
previous work without considering alternatives but could also reflect that some studies are being viewed as more applicable to
the modelled system or methodologically stronger. In papers that cited empirical studies as the source of a parameter value, it
was often not described how the data were translated to a relevant parameter value. Secondly, we noticed that models using par-
ameters based on data (the focus of this review) are limited in what refinements can be studied by the availability of reliable and
relevant data. The inclusion of model refinements often leads to an increase in the number of model parameters, giving rise to
challenges in model parametrization. Based on how empirical studies were used in the model papers, we highlight three chal-
lenges that researchers encounter when parametrizing their models with empirical data: (i) experimental conditions may not
reflect conditions in the modelled system, (ii) not all model parameters can be (easily) estimated in an experimental setting,
and (iii) it is not straightforward how to combine results from multiple studies, especially when different species and pathogen
strains are involved.

One of the major assumptions that must be made is that experimental conditions reflect conditions in the modelled system.
This includes environmental conditions such as temperature and humidity as well as inoculation route and dose. Several steps of
the transmission cycle have been shown to be sensitive to temperature conditions [101]. Only 20 of the 77 models included used
temperature-dependent parameters. However, instead of parameter values changing as a function of temperature, models can also
use temperature-explicit parameters with constant values, which represent a specific temperature scenario, such as in Vogels et al.
[65]. The extrinsic incubation period strongly depends on temperature [102], so when interpreting mosquito infection experiments,
it is important to compare the temperature in the experiment with the temperature of the modelled system to determine if the
results from this experiment are useful. This is, however, complicated by the fact that temperature can be controlled and kept con-
stant in laboratory settings, whereas it is difficult to know what temperatures mosquitoes are exposed to outside an experimental
setting. Although coarse-scale air temperature is often used as a proxy, these estimates can differ significantly from the small-scale
microclimates mosquitoes are exposed to, which can have a substantial impact on transmission potential [103]. Only one of the
cited empirical studies for EIP looked at the impact of varying temperatures on EIP (by using an outside cage) [104]. Also, the
inoculation route and dose have a strong impact on experimental results. In the two most cited papers as a source for the host-
to-mosquito transmission probability, mosquitoes fed on viraemic chickens with two different viraemia levels, showing that the
exposure dose has a large impact on resulting transmission rates [105,106]. After selecting a relevant route that matches the mod-
elled system, choosing which dose to use for the parameter value can be difficult as it is not always known which best reflects
natural infection, especially as viraemia levels change over the course of an infection. Ideally, transmission rates are determined
for animals that were exposed through a natural route. For WNV, this was done through a host–mosquito–host system [107],
and this has also been done using a host–mosquito–host system as well as mosquito–host–mosquito system for Rift Valley
fever virus [108,109]. Another consideration a modeller needs to take into account is to make sure that the parameters used in
a model corresponds to the appropriate WNV strain. Most papers cited Komar [110] and since this study was based on a
North American strain, the inference of studies focusing on transmission in Europe could be affected (e.g. [111,112] for a discussion
on WNV strains and strain replacement).

It is not always possible to directly estimate model parameters in experimental and field studies. Additionally, the quan-
tities estimated in experimental and field studies do not always match the interpretation of model parameters. Experimental
infection studies investigating the extrinsic incubation rate, included in 49% of the included studies, often show viral titres over
time after infection, but interpreting which titre corresponds to a dose sufficiently high to represent infectiousness is not straight-
forward. Infectiousness of both host and mosquitoes is a function of viral load, with a higher viral load corresponding to a higher
transmission probability [111]. Additionally, individuals with low viral titres can also contribute significantly to the transmission
dynamics, depending on their numerical prominence [113,114]. Defining a cut-off value for the extrinsic incubation period is there-
fore a somewhat arbitrary choice. Secondly, heterogeneous biting of the mosquito towards different hosts was accounted for in
24% of the models using feeding preference coefficients. These are typically quantified in field experiments, where captured
blood-fed mosquitoes are analysed to determine what hosts they fed on [18,115]. However, these estimates are limited to the con-
text of host availability in the field settings [116]. Relative host availability is known to influence mosquito feeding behaviour [117],
but mosquito host-seeking behaviour operates on small spatial scales for which host availability is often unknown. Thus, results of
feeding preference experiments cannot be easily translated into a feeding preference coefficient in a model and context with
different host availability. This challenge may limit the integration of heterogeneous biting in models. This limitation hampers,
among others, the understanding of the impact of the ecosystem composition or the change of biodiversity on disease risk
using models.

It is sometimes required to combine multiple empirical studies to parametrize a model. When multiple estimates of a par-
ameter are available, combining studies can increase the accuracy of parameter values or provide a better notion of the variability
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of the parameter. Similarly, when no information is available for a species of interest, multiple studies can be combined to average
parameter values of related species [49]. However, studies can differ in their designs and outcome measures, and each have their
own limitations, such as measurement errors, biases or missing values, which can introduce uncertainty into the parameter esti-
mation process. Additionally, different data sources may provide conflicting or inconsistent information, requiring careful
consideration and potential reconciliation of the discrepancies. For example, the empirical studies used for parametrizing the dis-
ease-induced death rate in included models show considerable variation in mortality rates in crows. Laboratory experiments
reported a 100% mortality rate [110], while field observations indicated an overall mortality of 43% [118], with further variations
being observed in different locations [46,119,120]. While for some species multiple studies are available, authors including less
well-studied species may not be able to find empirical evidence for their species of interest. For example, in Lord & Day [49],
the authors had no available information for their species of interest and so decided to consider a large interval for those par-
ameters based on sources for similar species.

Modellers are often confronted with multiple of the described challenges when developing realistically parametrized models.
In such cases, several approaches exist to ensure that model outcomes reflect the uncertainty in the choice of model parameters. In
the reviewed literature, some authors accounted for parameter uncertainty by using ranges rather than single values for par-
ameters, such as in [49]. When running the model several times, taking samples from this range, the outcome measures can be
presented as an interval rather than a single value. This helps capture the inherent uncertainty and provides a range of possible
model outcomes. Another approach to this is to use probabilistic methods, like Monte Carlo simulations, to sample parameter
values from probability distributions. Alternatively, explicit sensitivity or elasticity analyses can be performed to assess how vari-
ations in parameter values affect model outcomes like the basic reproduction number R0. Examples of this in the reviewed
literature include [25,41]. By systematically varying these parameters within plausible ranges, researchers can gain insights into
the model’s robustness and identify which life-history effects have the most significant influence on WNV transmission. Ulti-
mately, combining these approaches helps produce more reliable predictions, reflective of the uncertainty in parameter values.

There is a growing interest in comparing models and combining insights across different modelling approaches. Several pro-
jects have been undertaken in which public health questions were addressed by combining model-based outcomes in an ensemble
forecast [121–123]. For WNV, a recent ensemble effort is the study of Holcomb et al. [124], which, based on the 2020 Centers for
Disease Control and Prevention (CDC) Challenge data, found that simpler models (i.e. with fewer variables) based on historical
cases often outperformed more complex ones in predicting cases of WNV neuroinvasive disease, suggesting minimal gains from
additional factors. While guidelines for combining empirical studies exist (e.g. Consolidating Standards of Reporting Trials (CON-
SORT) and Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)) and are widely used, such methods
for systematically reviewing, comparing and combining model studies are still being developed [125–127]. As Pollet et al. [125]
highlighted, such guidelines have the potential to improve the quality and usability of model-based prediction for public
health. Approaches to evaluate and synthesize results across model studies need to address high-level questions such as how
to bring together insights from theoretical models with detailed data-driven simulation models and what determines the quality
of a model, as well as more practical questions such as how to synthesize results across different spatial and temporal scales.
Additionally, this could help understand how including specific refinements in a model affects the outcome. Such an endeavour
for WNV holds potential, not only in improving modelling predictions but also in assisting the establishment of policy guidelines
for more efficient control of the disease.
5. Conclusion
In conclusion, transmission models of WNV have recently increasingly deviated from the basic Ross–Macdonald framework,
which allowed for more complex questions to be answered. However, some extensions have received more attention than
others, due to theoretical and biological reasons as well as availability of parameter estimates. Especially applied, predictive
models included a large number of refinements. This implies that these types of models, the ones often used to answer policy-
related questions, are particularly sensitive to the availability and use of empirical studies to inform parametrization. Bridging
the gap between empirical data and mathematical modelling presents its own set of challenges. Translating parameter values
from empirical sources into models can be a complex task, as it requires careful consideration of various factors. It is important
that experimental conditions reflect the conditions in the modelled system as well as possible to ensure meaningful and reliable
results. However, estimating model parameters directly from experimental and field studies is not always feasible due to practical
limitations and constraints. Furthermore, the integration of multiple empirical studies to parametrize a model poses additional
challenges, such as inconsistencies and variations in data sources and methodologies. Overcoming these obstacles requires a
collaborative effort between mathematical modellers and experimentalists, where both are involved in the design of empirical
studies and in the design and parametrization of models. This will create opportunities to advance our understanding of WNV
transmission and enhance its practical applications in decision-making for policy.
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