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ABSTRACT We present Polite Teacher, a simple yet effective method for the task of semi-supervised
instance segmentation. The proposed architecture relies on the Teacher-Student mutual learning framework.
To filter out noisy pseudo-labels, we use confidence thresholding for bounding boxes and mask scoring
for masks. The approach has been tested with CenterMask, a single-stage anchor-free detector. Tested on
the COCO 2017 val dataset, our architecture significantly (approx. +8 pp. in mask AP) outperforms the
baseline at different supervision regimes. To the best of our knowledge, this is one of the first works tackling
the problem of semi-supervised instance segmentation and the first one devoted to an anchor-free detector.
The code is available: github.com/AI-Clearing/PoliteTeacher.

INDEX TERMS Semi-supervised instance segmentation, anchor-free detection, instance segmentation,
semi-supervised learning.

I. INTRODUCTION
The advent of deep learning transformed computer vision
pipelines both in academia and industry. However, progress
is often hindered, since deep learning models are expensive
to train for several reasons. Leaving the hardware and
computational expenses aside, the vast share of costs
often comes from providing the right amount of samples
to learn from. For a number of supervised problems in
computer vision, it is relatively easy to obtain data. However,
labelling them is often the real source of expenses. Creating
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pixel-wise annotations is a tedious and time-consuming
process compared to image-level annotations.While this does
not mean that the problem scales proportionally with the
image size (methods facilitating labelling is a separate subject
of research), in practice, it often makes it slower by at least
one order of magnitude. The requirement of meticulous data
inspections hampers applying machine learning in domains
with high-resolution images. Moreover, a number of domains
(such as some aerial or medical data) require very specific
domain knowledge from labellers, which makes it impossible
to easily speed up the process by hiring more labellers.
Therefore, an intense effort has been observed in the area
of label-efficient machine learning. Semi-supervised learning
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methods are tailored to deal with the situation in which there
are enough data samples, but access to the labels is severely
limited.

Semantic segmentation (sometimes called dense classi-
fication) is a classical computer vision task of assigning
each pixel a category. This enables clustering images into
semantically coherent parts. Object detection is concerned
with the location and identification of semantic objects
on images. Instance segmentation combines these two –
it is concerned with locating and identifying entities with
pixel-wise accuracy. While an intense research activity
can be observed in the areas of semi-supervised semantic
segmentation [1], [2] and object detection [3], [4], very
little attention has been devoted to semi-supervised instance
segmentation methods in the computer vision community.

We propose Polite Teacher, a simple yet effective method
for the task of semi-supervised instance segmentation. The
architecture is built on the Teacher-Student framework. Its
politeness in the name is an acronym for pseudo-label
thresholding, which is concerned with filtering noisy pseudo-
labels in detection and mask heads. Our contributions can be
summarised as follows:

• We present Polite Teacher – one of the first works
devoted to semi-supervised instance segmentation and
the first one devoted to modern anchor-free detectors.
Our approach usesmask scoring [5] for the pseudo-mask
thresholding.

• The presented method significantly (approx. +8 pp.
in mask AP) improves baseline performance with
different supervision regimes on COCO 2017 and sets
the new baseline for further comparison, becoming de
facto the new state-of-the-art for this dataset.

• To the best of our knowledge, we are also the first to
predict centre-ness in a fashion similar to Mask-scoring
R-CNN in order to provide thresholding for bounding
boxes.

• As there were no standard benchmarks for semi-
supervised semantic segmentation, we also proposed to
adopt specific and reproducible regimes and data splits
on MS COCO from Unbiased Teacher [3], which was
also followed by more recent research [6].

The paper is organised as follows. Section II contains a
comprehensive survey of related research. In Section III,
we present the details of our method – Polite Teacher. The
results of the evaluation are discussed in Section IV, along
with the detailed analysis and ablation studies. The paper is
concluded with a short summary in Section V.

II. RELATED RESEARCH
This section presents a comprehensive survey of areas
adjacent to our work. We present recent research in the area
of instance segmentation. Then, we summarise the recent
progress in semi-supervised learning. Finally, we combine
these two areas and briefly discuss the body of knowledge
for semi-supervised instance segmentation.

A. INSTANCE SEGMENTATION
Instance segmentation is a computer vision problem con-
cerned with pixel-wise delineating instances of semantic
classes. As it can be perceived as a combination of
object detection and semantic segmentation, the advances
in instance segmentation are tightly coupled with the two
aforementioned tasks (especially the former). In recent years,
two kinds of object detectors have been popular: single-
and two-staged. A typical example of the latter category
is Faster R-CNN [7]. It consists of the backbone feature
extractor (eg. ResNet) and two heads: the region proposals
network (RPN) and the second one for final detections
(RoI – the region of interests head). The proposal candidates
are searched on a pre-defined set of anchors using RPN
and they are later refined with the RoI head. He et al. [8]
introduced Mask R-CNN, which added the mask head to
Faster R-CNN to solve segmentation tasks on predicted
bounding boxes. Mask scoring [5] adds another head on
top of that – it regresses the IoU (intersection over union)
score of the predicted masks to improve model robustness.
Single-stage detectors try to achieve the outcomes of the
aforementioned architecture in a single pass. This often
results in higher speed at the expense of precision. Notable
examples of such detectors include the YOLO family [9]
or RetinaNet [10]. More recently, Lee and Park [11]
proposed CenterMask, an anchor-free instance segmentation
framework targeted at real-time applications. It is built on
FCOS [12], which details are discussed in Section III. The
architecture of CenterMask2 introduces spatial attention-
guided masks (SAG-Mask) along with backbone feature
extractors tailored for instance segmentation. Recently, there
has been a surge of research on architectures utilising the
concept of self-attention (also called transformers).

Dosovitskiy et al. [13] introduced the visual transformer
(ViT), which successfully adapted self-attention to computer
vision. This seminal work has sparked research interest
in transformers in the vision community. For instance,
DINO [14] adapts the Teacher-Student paradigm and self-
supervised learning for various vision tasks, such as object
detection. MaskDINO [15] added mask prediction to DINO
and topped several instance segmentation benchmarks. How-
ever, while displaying exceptional performance, solutions
purely based on ViT suffer from quadratic computational
complexity, which hinders their adoption. Fang et al.
proposed EVA [16], a ViT-based foundation model targeted
at vision tasks, which was trained on almost 30M images in
a self-supervised fashion. While the concept of foundation
models is primarily known from the language domain,
this approach turned out to yield competitive results on
downstream vision tasks, including semantic segmentation.
Notably, the finetuned EVA paired with the CMask R-CNN
[17] detector outperformed e.g. MaskDINO on MS COCO
and set new state-of-the-art LVIS datasets. However, it is Co-
DETR [18] which holds the current best result onMS COCO.
DETR [19] leveraged ViTs and framed the detection problem

VOLUME 12, 2024 37745



D. Filipiak et al.: Polite Teacher: Semi-Supervised Instance Segmentation

as a direct set prediction. Co-DETR can be viewed as a variant
of DETR [19] with an optimised training scheme.

B. SEMI-SUPERVISED LEARNING
Semi-supervised learning techniques can be framed as
a middle ground between supervised and unsupervised
learning since data with and without labels participate in
the learning process. It is related to weakly supervised and
self-supervised learning. Some approaches to the problem
of semi-supervised learning such as 0 model [20], 5

model or temporal ensembling [21] use the notion of self-
ensembling. However, more modern ones are focused on
the non-standard architecture during the training phase,
often incorporating multiple subnetworks. Following Peláez-
Vegas et al. [22], one can distinguish several types of modern
semi-supervised semantic segmentation approaches: pseudo-
labelling, consistency regularisation, adversarial methods,
pseudo-labelling, and contrastive learning. While this paper
is concerned with instance segmentation, we will adapt this
taxonomy for the purpose of this section.With that said, many
modern methods often can be classified into several of these
categories.

Pseudo-labelling can be perceived as an intuitive and
straightforward approach, in which one model is trained on
the labelled data, and then that model is used to generate
pseudo-labels for another model. Consistency regularisation
methods focus on utilising the smoothness assumption
and different perturbations to the images, features and
networks. For instance, Tarvainen and Valpola [1] introduced
Mean Teacher, which is a popular semi-supervised train-
ing framework utilising pseudo-labelling and consistency
regularisation. It overcomes the limitations of Temporal
Ensembling and 5 models. Instead of using the standard
gradient-based approach, the teacher is updated using the
exponential moving average (EMA). Unbiased Teacher [3]
builds on top of the Mean Teacher framework – it does
add focal loss and confidence thresholding of pseudo labels.
Focal loss borrowed from the work of Lin et al. [10] helps
with the class imbalance, whereas confidence bounding box
thresholding reduces the influence of noisy pseudo-labels.
The recent Unbiased Teacher v2 [4] extends it to anchor-
free detectors and tackles the issue of the pseudo-labelling
on bounding box regression. Besides the Teacher-Student
paradigm, there are also other approaches. Cross pseudo
supervision for semantic segmentation [2] is another example
of a consistency regularisation method. Here, two networks
are trained on the output of each other and are penalised for
discrepancies in predictions.

As for the other methods, generative ones utilise adversar-
ial training introduced by Goodfellow et al. in their seminal
work [23]. While such an approach has been tested and
proven to increase the performance in a fully-supervised
instance segmentation setting (e.g. [24]), they have not been
adapted to a semi-supervised regime yet. Contrastivemethods
constitute another approach to semi-supervised learning,

in which the loss function is shaped to promote placing
similar samples close to each other in the resulting feature
space. For the dissimilar ones, this is reversed – the loss is
penalised if they are close. Regional contrast, abbreviated as
ReCo [25] belongs to this category. While using the Teacher-
Student framework, this model introduces a dedicated loss
function and utilises the semantic relationship between
classes.

C. SEMI-SUPERVISED INSTANCE SEGMENTATION
Contrary to object detection and semantic segmentation,
instance segmentation in the semi-supervised setting received
little attention among scholars so far. Concurrently to our
work, Wang et al. [26] presented Noisy Boundaries (NB).
This framework also uses the Teacher-Student paradigm and
introduces different bounding box thresholds per category,
drawing from the work of Radosavovic et al. [27]. The NB
architecture has also two special features: the noise-tolerant
mask head and boundary-preserving re-weighting. While the
noise-tolerant head works with low-level resolution features
to suppress the noise on mask boundaries, the boundary-
preserving map is focused on highlighting the boundary
region for the segmentation part. At the time of writing
this publication, the problem of semi-supervised instance
segmentation with anchor-free detectors has never been
tackled in the literature. After the submission of this paper,
Berrada et al. [6] proposed tackling the problem with guided
distillation. Their approach resembles Polite Teacherat its
core, albeit several improvements have been introduced.
Notably, a new guided burn-in phase utilising both labelled
and unlabelled samples allowed us to reach new state-of-
the-art in semi-supervised instance segmentation. They also
evaluated their approach not only within the Mask-RCNN
framework but also with more modern Mask2Former [28] on
ViT-based backbones.

III. POLITE TEACHER
This section is devoted to the introduction of Polite Teacher.
First, we formulate the problem we are solving – semi-
supervised instance segmentation. Then, we introduce the
architecture of our solution – used detectors, the Teacher-
Student learning paradigm, and pseudo-label thresholding.
The section concludes with a detailed description of the used
loss function.

A. PROBLEM FORMULATION
We consider the problem of semi-supervised instance seg-
mentation. Instance segmentation is a computer vision task
which combines object detection and semantic segmentation.
Semi-supervised setting means that only part of the data
available during the training phase is labelled. More formally,
we consider training dataset D consisting of a set of Nsup
labelled (Dsup

= {xi, yi}
Nsup
i=1 ) and Nunsup unlabelled

(Dunsup
= {xi}

Nunsup
i=1 ) images. Here, xi and yi stand for

images and their labels (instances categories along with
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their bounding boxes and masks) respectively. Typically,
Nunsup ≫ Nsup. In this work, we assume that Dsup and
Dunsup come from the same distribution.

B. ARCHITECTURE
The architecture of Polite Teacher depends on several com-
ponents. The first one is the detector, which is used twice due
to the Teacher-Student paradigm. We use CenterMask [11].
This is a single-stage anchor-free detector, which has a
relatively simple architecture and therefore is easy to tune.
Two such networks are then framed in the Teacher-Student
paradigm to handle both labelled and unlabelled data. Finally,
two-fold pseudo-label thresholding takes place to remove
noisy ones. The first one uses bounding box uncertainty, and
the second one rejects masks with an estimated low IoU
score.

C. DETECTOR
To properly present CenterMask, FCOS should be discussed
first. Tian et al. [12] introduced Fully Convolutional One-
Stage Object Detector (abbreviated as FCOS), an anchor-free
object detector. In general, one-stage detectors due to the
lack of the proposal generation phase have fewer hyper-
parameters to tune and therefore they are easier to train. Being
anchor-free means eliminating pre-defined anchors, which
diminishes the computational burden related to calculating
IoU scores. FCOS frames detection as a per-pixel predic-
tion task, which resembles semantic segmentation. Three
loss components are subject to optimisation: classification,
regression, and centre-ness. While classification works
similarly to other detectors, the regression targets are quite
different. Instead of predicting bounding box corners (like
in e.g. Faster R-CNN), the four regressed values are l (the
distance from the centre of a bounding box to its left border),
t (top), r (right), b (bottom). Finally, the centre-ness denotes
the centre of a given bounding box. Ground-truth centre-ness
for (l∗, t∗, r∗, b∗) is defined as follows:

centreness∗ =

√
min(l∗, r∗)
max(l∗, r∗)

×
min(t∗, b∗)
max(t∗, b∗)

. (1)

Intuitively, this approach promotes bounding boxes which are
located at the centre of a given object.

Lee and Park [11] introduced CenterMask, which extends
FCOS for the task of instance segmentation. This is done
similarly to how Faster R-CNN [7] is extended by Mask
R-CNN [8]. However, there are some differences. For
instance, the RoI assignment function is redefined due to the
different levels of the feature pyramid (FPN) which are used.
Instead of the mask head from Mask R-CNN, CenterMask
utilises the spatial attention-guided mask (abbreviated as
SAG-Mask). For x, which here mean features extracted from
RoI align, the attention-guided feature map is calculated as
follows:

xsag = σ
(
conv3×3

(
concat

(
Pmax,Pavg

)))
⊙ x, (2)

where σ denotes sigmoid function, conv3×3 is convolutional
layer with 3 × 3 filter, Pmax and Pavg are the results
of max and average pooling, and concat stands for the
concatenation.

D. TEACHER-STUDENT LEARNING
We adopt a 2-step training procedure. In the first step, the
model is trained using only labelled data (Dsup), which makes
this part a standard supervised instance segmentation. Instead
of using a fixed number of batches for this step – as burn-in
stage in Unbiased Teacher [3] – we rather train it as long as
it converges in terms of mask AP and take the best model θ

to ensure the highest results. Naturally, this step is expected
to take longer with a higher number of supervised examples.
In the second step, mutual Teacher-Student learning with
pseudo-labels takes part. The best model from the first step
is used and copied to be used as student and teacher models
(θs← θ , θt ← θ). The model can be trained with the burn-in
stage as well.

Teacher and student models receive the same input data –
they are augmented differently, though. The teacher receives
moderately augmented images (weak augmentations – we
use random flipping), whereas the student consumes visibly
perturbed images (strong augmentations – same as weak, plus
colour jitter, random grayscale, gaussian blur, and random
patch erasing). During the training, the predictions from
the teacher model serve as pseudo-labels (bounding boxes
with their classes and masks) for the student network. The
teacher is updated using the exponential moving average – see
equations 6 and 7 in the next subsection. Figure 1 illustrates
the process.

E. PSEUDO-LABEL THRESHOLDING
As the teacher is used to generate pseudo-labels ŷ in the
semi-supervision regime, they can be noisy – especially
with a high share of unsupervised data. Therefore, Polite
Teacher uses two-step pseudo-label thresholding: one is con-
cerned with bounding boxes, whereas the second one refines
the masks. Similarly to STAC [29] and Unbiased Teacher [3],
we introduce a bounding box confidence threshold – τcls.
Bounding boxes with a classification score smaller than τcls
are discarded and not used further in the training. The sigmoid
output of the classification is treated here as confidence.
Inspired by the work of Huang et al. [5], we also use a
mask-scoring mechanism. It regresses the IoU values of the
generated masks and improves instance segmentation perfor-
mance due to the prioritisation ofmore accuratemasks.While
not directly designed for the task of semi-supervised learning,
the output of this block can be used for straightforwardly
filtering noisy pseudo-masks. That is, only masks satisfying
ŷIoU > τIoU are used in the unsupervised learning stage.
The other ones are considered uncertain and receive zero
gradients.
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FIGURE 1. Architecture and data flow of Polite Teacher with regard to the supervised and unsupervised data handling.
Augs and Augw represent strong and weak augmentations respectively.

F. OPTIMISATION
The overall batch-wise lossL for supervised {(xi, yi)}

Bsup
i=1 and

unsupervised
{(
xj, ŷj

)}Bunsup
j=1 examples in a batch is computed

as follows:

L =
Bsup∑
i

Lsup (xi, yi)+ λ

Bunsup∑
j

Lunsup (
xj, ŷj

)
, (3)

where Lsup is the loss of the supervised part, and Lunsup is the
loss of the unsupervised part. The unsupervised part is scaled
by λ. The supervised component is calculated as follows:

Lsup (x, y) = Lsup
cls (x, y)+ Lsup

centre (x, y)

+ Lsup
box (x, y)+ Lsup

mask (x, y)

+ Lsup
IoU (x, y) , (4)

where Lsup
cls is the supervised classification loss, Lsup

centre is the
supervised centreness loss, Lsup

box represents the supervised
bounding box regression loss, and Lsup

mask is the super-
vised segmentationmask loss, andLsup

mask_IoU is the supervised
segmentation mask scoring loss. Regarding the pseudo-
labelling loss, we use the following definition:

Lunsup (
x, ŷ

)
= 1ŷcls>τclsL

unsup
cls

(
x, ŷ

)
+ 1ŷIoU>τIoUL

unsup
mask

(
x, ŷ

)
+ Lunsup

IoU

(
x, ŷ

)
, (5)

where Lunsup
cls is the unsupervised classification loss, Lunsup

mask is
the unsupervised segmentation mask loss, and Lunsup

IoU is the
unsupervised segmentation mask scoring loss. Regarding the
particular loss functions implementation, we follow FCOS
and CenterMask: Lsup

cls is focal loss [10], Lsup
box is UnitBox

IoU loss [30], Lsup
centre is binary cross-entropy loss, Lsup

mask is

average binary cross-entropy loss [8], andLsup
IoU is L2 loss. The

same losses are used for unsupervised components (where
applicable).

The student is trained using a standard stochastic gradient
descent, whereas the teacher can be perceived as an ensemble
of the students:

θs← θs − γ
∂ (Lsup

+ λLunsup)

∂θs
, (6)

θt ← αθt + (1− α)θs. (7)

Here θt and θs represent the teacher and student model
parameters respectively and α is the EMA coefficient (a
hyperparameter). Following Liu et al. [3], the teacher network
trained in such a way is more robust to the sudden changes
of decision boundaries caused by the minority classes
in batches – especially in the presence of pseudo-labels.
An important practical implication of this is the fact that there
is no need to store gradients for the teacher model, which
reduces GPU memory usage (compared to simply training
two models).

G. TIME AND MEMORY COMPLEXITY
Complexity-wise, the presented method displays perfor-
mance similar to other Teacher-Student methods. Batch-
wise complexity behaves differently in the fast-forward and
backpropagation phases. Additionally, we need to distinguish
the burn-in and the main phase. For the sake of simplicity,
we omit e.g. augmentations and pseudo-label filtering.
An image in a single batch can be categorised as unlabelled
(u) and labelled (l) data, and – subsequently – as weakly (w)
and strongly (s) augmented. In other words, a batch should
contain n = nu,w + nu,s + nl,w + nl,w images. For the
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feed-forward burn-in phase, the complexity is simply O(nf ),
where f is the cost of running the batch through the network
and nu,w = nu,s = 0. After the burn-in, the time complexity
can be modelled asO

(
nu,wf + (nl,w + nl,w)f + nu,sf

)
. Since

student and teacher share their architecture, their cost is equal.
All that can be simplified to O (nf ).

The cost of calculating the gradient is sublinear in n.
Notice that in the backpropagation phase, the gradients
aren’t calculated for nu,w samples, as the teacher is updated
periodically with EMA. Additionally, not all images are
always used, since some of them do not have any label which
satisfies the conditions (ŷcls ≤ τcls and ŷIoU ≤ τIoU). In terms
of memory complexity, the dominating factor stems from
following the Student-Teacher framework, which boils down
to storing two networks in the memory. Since they are not
needed at the same time, one can consider keeping only one
in the memory at the same time, but this will come at the
expense of swapping the model every iteration.

IV. EVALUATION
This section describes the evaluation of Polite Teacher.
We start with discussing the training setup, implementation
details, and dataset. Then, we present the result of our main
experiment, which is followed by the detailed analysis and
ablation studies of particular components of Polite Teacher.

A. SETUP
All the experiments were performed either on a2-
highgpu-4g instances on Google Cloud Platform
(4xA100, 40 GB RAM each) or various machines
with 8 GPUs (up to 16 GB RAM each) on the proprietary
cluster (each of which contained Titan V, RTX 2080 Ti,
or Titan X GPUs). Polite Teacher was developed on
CenterMask2 and Unbiased Teacher codebase – both built
on the Detectron2 framework [31].

We evaluate Polite Teacher on theMS-COCO 2017 dataset
[32] using different supervision regimes (1%, 2%, 5% and
10% supervised). The supervised-unsupervised split is taken
from the Unbiased Teacher [3] – while it was originally meant
to be used for evaluation of semi-supervised object detection,
it can be used with our method as well. We report evaluation
results on val subset, as the test one is not publicly available.
The reported metric used in this study is mask mAP (mean
average precision, simply called AP later on), which is
calculated as an average of AP with IoU thresholds set from
0.5 to 0.95 (with 0.05 intervals). Bounding box AP is also
reported for selected experiments.

As base hyperparameters, we used the ones set in
CenterMask2. The EMA coefficient α for Teacher learning
is set to 0.9996. The models were trained for up to 270,000
batches with stochastic gradient descent. We used batch
size 32 (16 supervised and 16 unsupervised samples) with
a learning rate γ = 0.006, weight decay of 0.0001 and
momentum of 0.9. Similarly to the CenterMask2, the learning
rate has been decreased by a factor of 10 on steps 210,000
and 250,000. However, such a long training was often not

necessary, as models overfitted on much earlier stages. These
experiments have been early stopped. Regarding the pseudo-
label threshodling, we used τcls = 0.6 and τIoU = 0.9. The
unsupervised weight has been set to λ = 2. More details on
the last three values are in Section IV-C. We use ResNet-50
backbone [33] for all the experiments.

B. RESULTS
Table 1 shows results for the main experiment con-
ducted on the MS-COCO 2017 validation dataset. Polite
Teacher reached 18.33/22.28/26.46/30.08 mask AP on
1%/2%/5%/10% respectively, which stands for
+8.26/+8.82/+8.42/+8.00 pp. change in this metric over
the baseline CenterMask2 respectively. Figure 2 presents
qualitative results from different models created in this
experiment at different levels of supervision.

For the vast majority of our experiments, we thought that
our method would be the first one devoted to semi-supervised
instance segmentation. The recent Noisy Boundaries (NB)
approach [26], a concurrent work to Polite Teacher, is also
concerned with this problem and has been evaluated on a
similar percentage of supervision on COCO 2017. How-
ever, these are different splits. We did not perform direct
comparisons, as we were not aware of this work for the
majority of our research –we report these results for scientific
integrity, though. In general, Noisy Boundaries reported
a smaller increase in the mask AP (especially with low
supervision), although for fair comparison such claims should
be made after running the models on exactly the same
supervised/unsupervised data splits. It is also unclear how
much of this difference can be attributed to the different
detectors (a two-staged Mask R-CNN has been used).
FollowingWang et al. [26], we also report the results for Data
Distillation (DD) method [27], which was evaluated jointly
with NB. It was developed for the task of omni-supervised
(known also as webly-supervised) learning, a special case of
semi-supervised learning in which unlabelled data from the
Internet are considered during the training. At the heart of this
approach lies the pipeline of different data transformations.
The results are later ensembled to provide pseudo-labels.

C. DETAILED ANALYSIS AND ABLATION STUDIES
In this section, a detailed analysis of the influence of
hyperparameters and ablation studies is presented. Unless
otherwise specified, all the configuration is the same as in
Section IV-A. All experiments have been performed with the
5% supervision regime.

1) INFLUENCE OF BOUNDING BOX FILTERING THRESHOLD
In this experiment, we investigate the importance of bounding
box filtering thresholds. To separate the influence of sole
bounding box filtering, we did not include mask IoU in the
optimisation – it is the subject of another experiment. That
is, Lsup

IoU (xi, yi) and Lunsup
IoU

(
xj, ŷj

)
has been not taken into

account in equations 4 and 5 respectively. As it turns out, even
this significantly improves mask AP over baselines. Table 2
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TABLE 1. Results with ResNet50 backbone. Oracle results reported by Lee et al. [11]. The results for two-stage detectors are taken from the work of
Wang et al. [26]. Notice that it uses a random split of the dataset – in particular, this is different from the one used by us. Therefore, these results cannot
be directly compared, but we report them in order to trace the comparison with their baselines.

FIGURE 2. Qualitative Polite Teacher results on COCO 2017 val with different supervision regimes.

and Figure 3 (left) present AP values for this experiment. The
bounding box threshold value with the highest bounding box
and mask AP was 0.6. Interestingly, this is a slightly smaller
threshold than in the original Unbiased Teacher paper (0.7).
The difference might stem from the different neural network
architectures (Faster R-CNN vs CenterMask). Note that this
experiment used suboptimal λ = 0.75 from Equation 3 and
hence the results are slightly worse compared to the following

experiments. This is because the experiment to determine the
correct unsupervised loss weight was yet to be carried out at
this point.

2) INFLUENCE OF UNSUPERVISED LOSS WEIGHT
We also examine the influence of the weight of unsupervised
loss, which is denoted as λ in Equation (3). Figure 3 (centre)
and Table 3 present detailed results of this study. Similarly
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TABLE 2. Influence of bounding box filtering threshold (5% supervision).

FIGURE 3. Results for experiments controlled for different hyperparameters values in the 5% supervision regime (see Section IV-C, as well as Table 2, 3,
and 4).

to the previous experiment, we did not include Lsup
IoU (xi, yi)

and Lunsup
IoU

(
xj, ŷj

)
from equations 4 and 5 as the optimisation

components. We used τbbox = 0.6, which is the result of the
previous experiment. The highest mask AP has been obtained
at λ = 2.0. Interestingly, in Unbiased Teacher, which is a
similar architecture, this parameter was set to λ = 4.0.

3) INFLUENCE OF MASK SCORING FILTERING THRESHOLD
In this experiment, we investigate the importance of mask
filtering threshold τIoU. We use τcls = 0.6 and λ =

2.0, as these two values provided the best results in the
previous experiments. Figure 3 (right) and Table 4 present
the detailed results of this experiment. Compared to the
results without mask scoring, the best value (τIoU = 0.9)
yielded insignificant differences in mask AP (+0.03 pp.) and
bounding box AP (−0.03 pp.). Interestingly, the conducted
experiment displayed a convex-like U-shaped relationship
between τcls and mask AP. Passing all pseudo-masks resulted
in the highest bounding box AP, whereas filtering most of
them yielded the highest mask AP.

4) ABLATION ON PSEUDO-BOUNDING BOX
THRESHOLDING
For an ablation study, we compare the baseline CenterMask
model to the Teacher-Student with bounding box threshold-
ing. Essentially, such a model is very similar to Unbiased
Teacher [3], which is proven to greatly improve results for
semi-supervised object detection. While raw CenterMask
achieved 18.04% on 5% supervision, Polite Teacher yielded

26.46% mask AP, which is a+8.42 pp. increase (see tables 1
and 3). This suggests that much of the mask AP gain can
be attributed to the Teacher-Student paradigm with bounding
box thresholding.

5) ABLATION ON PSEUDO-MASK THRESHOLDING
In this ablation, we compare the model with bounding box
thresholding to the model with bounding box and mask
thresholding (that is, Polite Teacher). Judging only by mask
AP, the influence of the pseudo-mask filtering threshold on
the final results can be easily neglected, as shown in Figure 3
(right). However, applying mask scoring resulted in visibly
faster convergence. The model with mask scoring reached
26% mask AP in 40k steps, whereas the model without it
needed 74K steps to reach the same value, which is almost
two times longer. The highest mask AP values have been
reached at 47k (26.39%) and 99k step (26.37%) respectively,
which is also close to two times longer. The detailed figures
for this run are in tables 3 and 4. In order to check the stability
of this behaviour, we repeat these experiments (Figure 4).

6) VARIANCE EXAMINATION
Due to the computational limitations, we are not reporting
results as a series of experiments with their means and
standard deviations. However, to assess the variance of the
proposed method we carried out a separate experiment,
in which we ran Polite Teacher training with 5% supervised
data several times – each time with a different seed value.
Figure 4 presents mean evaluation results per each step
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TABLE 3. Importance of unsupervised loss weight (5% supervision).

TABLE 4. Influence of mask scoring filtering threshold.

FIGURE 4. Mean results for Polite Teacher training with 5% supervised data, with (orange, 4 runs) and without (blue, 3 runs) mask scoring.

(batch), along with the standard deviations. While the
experiment has shown non-homogeneous variance for the
variant with mask scoring, the maximum mask AP values are
similar: 26.39, 26.39, 26.01, 25.85 with a mean of 26.16 (σ =
0.27). The variant without mask scoring achieved 26.03,
25.99, 25.99 max mask API (mean 26.00, σ = 0.02) – that
is, an order of magnitude smaller variance, but at the expense
of slower convergence and lower metrics value. Interestingly,
for the model with the mask scoring head, without the
last run, the mean would be 26.26 (σ = 0.22). While it
seems that the last run missed the local optima and much
of the per-step variance can be attributed to it, we report
all the obtained results for scientific integrity. The high
variance might suggest that another hyperparameter should
be introduced (e.g. mask scoring headweight) or learning rate
should be readjusted.

7) QUALITATIVE ANALYSIS WITH UNEVEN LIGHT
CONDITIONS
Dealing with noisy input is one of the practical challenges
associated with visual models. While the source of noise

can be e.g. poor quality of the camera, natural effects, such
as uneven light conditions can deteriorate the performance
of a good model. Therefore, we performed another series
of qualitative tests on pre-selected images with non-uniform
illuminance. First, we tested some COCO images in the
presence of shadow (Figure 5). In the image with COCO ID
802, almost half of the oven is covered in shadow. However,
all the models handled it very well. Despite different levels
of luminosity, images 1268 and 4135 posed no challenge
to all the models. This might be because the people
class is well represented in MS COCO. In 5992, most
models had the problem of separating instances of the same
sheep class. We also tested some COCO images in the
presence of light reflections, which turned out to be an
interesting and challenging case. In 2592, one can see
that there is a visible reflection in the blade of the knife.
Models failed to notice the knife, the analysis has shown
that some knife regions were detected, but the reflection in
the middle ‘‘broke’’ the continuity of the prediction and it
was eventually suppressed. Similarly, the light reflections on
the image with ID 107087 confused most of the models.
We also provide more qualitative results with uneven light
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FIGURE 5. Qualitative Polite Teacher results with different supervision regimes on uneven light conditions. Images sources: COCO 2017 val.

conditions on the custom images (that is, not from the COCO
dataset). Results from Figure 6 show that – contrary to COCO
examples – shadow can become a challenge (CAT-1), where
the beamer light glare did not influence the mask this time
(CAT-2). Therefore, it is hard to generalise these results to
a concise conclusion and more tests are needed in future
work.

V. SUMMARY
We presented Polite Teacher, a simple and effective architec-
ture for semi-supervised instance segmentation. Tested with
a CenterMask, a single-stage detector, our approach yielded
approx. +8 pp. mask AP on different supervision regimes
with COCO 2017, while it introduces only three hyperpa-
rameters to tune. A certain limitation of this study is the lack
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FIGURE 6. Qualitative Polite Teacher results with different supervision regimes on uneven light conditions, tested on cats of the corresponding author.

of validation on other datasets. Similarly, more single-stage
detectors, as well as two-stage detectors can be taken into
consideration. Formore robust evaluation results, several runs
of the experiments to explore variance on different values
of supervision might be carried out. Therefore, future work
should consider validating methods with more detectors,
backbones and datasets. Providing a direct comparison with
Noisy Boundaries [26] might be considered as well. A natural
next step would consider taking pseudo-bounding boxes and
pseudo-centre-ness regression into account.
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