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Abstract

Background and aims  Phosphorus (P) availability in
calcareous soils is limited. Acidifying the soil by add-
ing sulfur (S) or enhancing microbial activity by add-
ing carbon (C) can increase P bioavailability. How-
ever, understanding of the impact of the combined
application of P, S and C on P availability in calcare-
ous soils is lacking. In this study, we investigated the
effects of heterogeneous (co-localized) supply of dif-
ferent combinations of P, S and C on the maize (Zea
mays L.) shoot and root growth and soil P availability
in calcareous soil with low available P.
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Methods A rhizo-box experiment with heteroge-
neous supply of P, S and C was conducted to assess
the responses of maize growth, root morphology and
physiology, as well as soil P availability.

Results Heterogeneous low P (P1) with S sup-
ply significantly increased shoot and root biomass,
shoot P content and P-use efficiency (PUE) com-
pared to homogenous or heterogeneous P1 supply
alone. Application of S decreased the rhizosphere
soil pH and stimulated the proliferation of maize
roots. By contrast, heterogeneous P1 and C supply
did not change shoot biomass, P uptake or PUE but
decreased root biomass. The addition of C, how-
ever, enhanced acid phosphatase activity and car-
boxylates concentration in the rhizosphere, and
increased NaHCO;-extractable P, implying enhanced
P availability.

Conclusion Adding S combined with P is an effec-
tive approach to engineer the rhizosphere by increas-
ing maize growth and PUE in calcareous soil,
whereas adding C increased NaHCO;-extractable soil
P but did not influence maize shoot growth.

Keywords P-use efficiency - Rhizosphere

processes - Nutrient patches - Root length - Root
exudation
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Introduction

Phosphorus (P) is one of the essential nutrients that
influence plant growth, crop production and quality.
Over the past decades, excessive and inappropriate
use of P fertilizers has resulted in the waste of P min-
eral resources, environmental pollution, and large soil
accumulation of residual P in many countries (Zou
et al. 2022). Taking China as an example, the amount
of fertilizer P applied annually has increased from 1.0
to 4.5 Tg between 1978 and 2019 (FAO), but only
about 20% is used by the crop in the first growing
season (Zhang et al. 2008).

Calcareous soils are widely distributed in North
China Plain, which is one of the most intensively
farmed agricultural regions in China (Chen et al.
2006). The availability of P in calcareous soils is low
because P can precipitate with Ca (e.g., as dicalcium
phosphate, DCP). Over time, DCP is converted into
more stable and less plant-available forms, such as
octacalcium phosphate and hydroxyapatite (Shen
et al. 2011). As a consequence, increasing the P fer-
tilizer-use efficiency and reducing P fixation in cal-
careous soils remains a great challenge in achieving
sustainable P management in China.

As the diffusion rate of P is low (1072 to
10715 m? s71), uptake of P by plants depends heav-
ily on the morphological and physiological charac-
teristics of roots (Schachtman et al. 1998; Shen et al.
2011). During growth, plant lateral roots showed
greater proliferation to heterogeneous nutrient sup-
ply (whereby nutrients are applied to a soil patch or
a band) than to a homogeneous supply as evidenced
by an increase in length, biomass, and branching of
roots (Drew 1975; Jing et al. 2010). Robinson (1994,
2001) reported that lateral roots proliferated exten-
sively in N- and P-rich soil patches. Through a field
experiment conducted on calcareous soil, Jing et al.
(2010) found that the heterogeneous application of
P and NH,*-N (ammonium nitrogen) significantly
stimulated the proliferation of maize lateral roots,
thereby promoting maize growth and P uptake. In
addition to providing the source for N, NH,*-N also
plays a role in acidifying the rhizosphere environ-
ment, which increases P availability in calcareous
soils (Jing et al. 2010). Similarly, Havlin et al. (2005)
reported increased proliferation of barley root in soil
with heterogeneous P supply due to banding P fer-
tilizer. In addition to the morphological response of
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the root system, the regulation of root physiological
traits is also an important plant strategy to enhance
soil P acquisition. Currently, most research on root
physiological traits is focused on the response and
function of root exudates such as carboxylates (e.g.,
citrate, malate and malonate) that mobilize P from the
sorbed mineral or organic fractions (Lambers et al.
2006; Richardson et al. 2011) and phosphatases that
enhance the mineralization of organic P to increase
plant P availability (Wen et al. 2019).

Amendments that acidify soil have been used
to improve the availability of P in calcareous soils
(Brownrigg et al. 2022). Elemental sulfur (S) applica-
tion has been reported to reduce soil pH and there-
fore increase P availability to plants in calcareous
soils (Deluca et al. 1989; Besharati 2017). The bio-
chemical oxidation of S produces sulfuric acid that
decreases soil pH and reacts with calcium-bound
P minerals, increasing the concentration of soluble
P (Deluca et al. 1989; Lindemann et al. 1991). The
combined application of reactive phosphate rock with
elemental S enhances the dissolution of phosphate
rock by the protons produced by S oxidation, thereby
increasing the soil Olsen-P content as well as plant
biomass (Evans et al. 2006).

Elemental sulfur has to be oxidized to sulfates
for utilization by plant root (Malik et al. 2021). The
oxidation of elemental S is a microbial process and
is thus influenced by the activity of microorganisms
in soil (Zhao et al. 2015). Organic carbon (C) addi-
tion increases the abundance and activity of micro-
organisms (Butterly et al. 2009), thereby promoting
the oxidation of S. In addition, soil microorganisms
also play an important role in the P transformation
by mobilizing organic and inorganic P in the soil via
secretion of protons, carboxylates and phosphatases
(Richardson et al. 2009). The addition of organic C
increases microbial activity (Butterly et al. 2009),
which may increase the secretion of carboxylates
and phosphatases, thereby increasing the availability
of soil P, with associated changes in soil P fractions
(Stutter et al. 2015). However, microorganisms may
also compete with plants for P and rapidly immobi-
lize P in their biomass. The P contained in the micro-
bial biomass in soil typically accounts for 1-10% of
the total soil P (Richardson 2001). In low C:P condi-
tions, microorganisms have a net mobilization effect
on soil P, whereas at high C:P they have a net immo-
bilization effect (Stevenson and Cole 1999; Xu et al.
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2020). It has also been found that organic carbon may
limit irreversible P fixation in soil by blocking P sorp-
tion sites on aluminum (Al) and iron (Fe) oxides, thus
enhancing the readily available P fraction, but this
positive effect of organic matter on soil P availability
is found only at low soil P saturation (Vermeiren et al.
2022).

Manipulation of plant rhizosphere processes
through heterogeneous supply of P, elemental S and
organic C may be an effective approach to reduc-
ing the application rate of P fertilizer and improv-
ing P-use efficiency. Information on the responses of
maize in terms of shoot and root growth and P uptake,
as well as soil P availability, to the combined applica-
tion of P, S and C is limited. Hence, the objectives of
the study were to test (1) whether the heterogeneous
supply of P combined with S and/or organic C would
stimulate plant growth and P uptake through altering
root morphological and physiological characteristics
in maize and (2) how the heterogeneous supply of P
combined with S and/or organic C influences soil P
fractionation and availability. It is hypothesized that
the heterogeneous supply of P combined with S and/
or organic C would alter the root morphological and
physiological traits in maize grown in calcareous
soils, stimulating plant growth and enhancing P avail-
ability, thereby reducing the need for high application
rates of P fertilizers.

Material and methods
Experimental set up

To investigate the effects of the heterogeneous (co-
localized) supply of P, S and/or C on shoot and root
growth, P uptake and soil P availability, a rhizo-box
experiment was conducted in a naturally lit glass-
house at China Agricultural University, Beijing
(40.01°N, 116.16°E). Temperature ranged from a
minimum of 18 °C at night to a maximum of 25 °C
during the day, with 10-11 h day length through-
out the 30-day growing period. Seven treatments
were set up: (1) control (no P, S and C addition); (2)
homogeneous P1 supply (75 mg P kg™'; 90 mg P
per rhizo-box; Hom P1); (3) homogeneous P2 sup-
ply (225 mg P kg™!; 270 mg P per rhizo-box; Hom
P2); (4) heterogeneous P1 supply (225 mg P kg~! in
the middle layer; 90 mg P per rhizo-box; Het P1);

(5) heterogeneous (co-localized) P1 and S supply
(150 mg S kg™'; 60 mg S per rhizo-box; Het P1+S);
(6) heterogeneous (co-localized) P1 and C supply
(480 mg C kg™'; 192 mg C per rhizo-box; Het P1+C)
and (7) heterogeneous (co-localized) P1, S and C sup-
ply (Het P1+S+C) (Fig. 1A). After harvest, meas-
urements were made of: (i) shoot and root biomass,
shoot P content and P-use efficiency, i.e., by measur-
ing the shoot biomass and shoot P concentration, (ii)
one root morphological trait: root length, (iii) two
root physiological traits: the acid phosphatase activity
and concentration of carboxylates in the rhizosphere,
and (iv) soil P fractions: Olsen-P, oxalate-extractable
P and microbial biomass P.

Each treatment was established with four repli-
cates. The treatments were arranged in a randomized
complete block design and were re-randomized
weekly during the experiment. The rhizo-boxes
(20x1.5%35 cm) were filled with 1.2 kg air-dried
soil. The soil was collected from Shangzhuang
experimental station in Beijing, China (40.14°N,
116.19°E), air-dried and passed through a 2 mm
sieve. Soil properties were: Olsen-P 3.1 mg kg~!,
organic C 0.4 g kg~!, available N 8.5 mg kg~!
(NO,~ and NH,"), available K 32 mg kg~!, CaCO,
27 g kg! and pH 8.2 (the ratio of soil to CaCl, solu-
tion was 1:2.5). Olsen-P was determined after extrac-
tion with 0.5 mol L™ NaHCO; (pH 8.5). Soil avail-
able N was determined by a continuous flow analyser
(TRACS 2000 system, Branand Luebbe, Norderstedt,
Germany) after extracting with 0.01 mol L™ CaCl,.
Soil available K was determined by a flame photom-
eter (Model 410, Sherwood Scientific Ltd., UK) after
extraction with 1 mol L™' NH,OAc (pH=7). Soil
organic C was determined using a total organic car-
bon analyser (TOC-5000A, Shimadzu, Japan). The
amount of CaCO; was measured by the acid neu-
tralization method (Rowell 1994). Soil pH was deter-
mined by a pH meter (Mettler Toledo, FE20, Swit-
zerland) in 0.01 mol L™! CaCl, with a ratio of 1:2.5
(soil: solution).

To ensure that the nutrient supply was adequate for
plant growth, all essential nutrients other than P were
added to each pot as solutions, providing (in mg kg™!
on a dry soil basis): 200 N as Ca(NO;),-4H,0, 150 K
as K,SO,, 45 Ca as CaCl,, 4.27 Mg as MgSO,-7H,0,
1.65 Mn as MnSO,-4H,0, 0.12 B as H;BO;, 0.51 Cu
as CuSO4-5H,0, 2.26 Zn as ZnSO,-7TH,0, 0.14 Mo as
(NH )¢Mo0,0,,-4H,0, and 0.77 Fe as EDTA-FeNa.
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Fig. 1 Diagram of the experimental set-up (A). Shoot and root
growth under different treatments before harvest (B; 30-day-
old plants). Control: no P addition, Hom P1: homogeneous
P1 (75 mg P kg~') supply, Hom P2: homogeneous P2 supply
(225 mg P kg™!); Het P1: heterogeneous P1 supply; Het P1+S:
heterogeneous (co-localized) P1 and S (150 mg S kg™") supply;

Phosphorus was supplied as KH,PO, in a homogeneous
or heterogeneous pattern. Sulfur was supplied as ele-
mental S, and C was supplied as glucose (C¢H;,0¢) in
the relevant treatments. In the homogeneous treatments,
P was uniformly applied throughout the rhizo-box. For
the heterogeneous treatments, a 11 cm layer fertilized
with P, S and/or C (400 g soil) was placed at the center
of the rhizo-box; the upper and lower layers soil received
the same nutrients as the control treatment. (see Fig. 1
for details of the treatments).

Seeds of maize (Zea mays L. cv. Zhengdan 958)
were surface-sterilized in 30% v/v H,0O, for 30 min,
rinsed with deionized water, soaked in saturated
CaSO, solution for 12 h, and then germinated in Petri
dishes covered with wet filter papers at 22 °C for 1-2
d. Four seeds were planted per rhizo-box, and were
thinned to two per rhizo-box 7 days after planting.
The plants were watered with deionized water by
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Hom P2 Het P1

upper layer
middle layer
lower layer

Het P1+C Het P1+S+C

Het P1+S

Het P1+C: heterogeneous (co-localized) P1 and C (480 mg C
kg™!) supply; Het P1+S+C: heterogeneous (co-localized) P1,
S and C supply. The colour coding of P supply corresponds to
the concentration of P applied to the corresponding zone of
rhizo-box

weighing every 2 days to maintain soil moisture at
70% of actual field water capacity (200 g kg™").

Harvest and measurements

All plants were harvested 30 days after planting and
separated into shoots and roots. The soil in thizo-box was
cut into three layers (0-11, 11-22, 22-33 cm), and roots
were carefully lifted out of the soil and gently shaken to
remove the bulk soil (the soil tightly adhering to the roots
was considered as rhizosphere soil) (Wen et al. 2019).
The roots with rhizosphere soil attached were then trans-
ferred to a beaker containing 50 mL of 0.2 mmol L™
CaCl,, gently dunked for 60 s until as much of the rhizos-
phere soil was dislodged as possible. The beaker was left
to stand for 2 min, and the soil suspension from the top
layer was sampled for various analyses:
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(1) For measurement of rhizosphere pH, 8 mL of
soil suspension was transferred into a 15 mL cen-
trifuge tube. Then a pH meter (Mettler Toledo,
FE20, Switzerland) was used to assay the rhizo-
sphere soil pH. The amount of collected rhizo-
sphere soil differed among the treatments. To
eliminates effect of different soil: CaCl, ratios
on pH determination, a modified pH (soil: CaCl,
ratio adjusted to 1:2.5) was calculated from the
measured original pH according to the experi-
mental method of Li et al. (2010). The follow-
ing equation was derived from the experiment:
y=-0.024In(x)+1.07, R?=0.90, P<0.001,
where y is the ratio of modified pH to original pH
and x is the dry weight of the rhizosphere soil.

(2) For carboxylate analysis, 8 mL of rhizosphere
soil suspension was placed in a 15 mL centrifuge
tube, and two drops of microbial inhibitor Micro-
pur (Sicheres Trinkwasser, Munich, Germany)
(0.01 g L™") and two drops of concentrated phos-
phoric acid were added, followed by storing it
at —20 °C. The concentrations of carboxylates
in the rhizosphere soil were analyzed using a
reversed phase high performance liquid chroma-
tography (HPLC) system following the method of
Zhang et al. (2016).

(3) For measurement of acid phosphatase activity, two
0.5 mL aliquots of soil suspension were transferred
into separate 2 mL centrifuge tubes containing
0.4 mL of sodium acetate buffer (pH 5.2) and 0.1 mL
of 0.15 mol L™! p-nitrophenyl phosphate (PNP) sub-
strate. After incubation at 30 °C for 30 min, addition
of 0.5 mL of 0.5 mol L™! NaOH terminated the reac-
tion. The absorption of supernatants was measured at
405 nm (Synergy H1 MD, USA) (Neumann 2006).

Shoots were oven-dried at 105 °C for 30 min and
then at 75 °C for 3 days, and were weighed for dry
biomass determination. Then, dry shoots were ground
into powder. To determine shoot P concentrations,
the powdered shoot sample was digested in a mixture
of 5 mL of concentrated sulfuric acid and 8 mL of
30% v/v H,0,. Shoot P concentration was assayed by
the molybdovanadophosphate method at 440 nm by
spectrophotometry (Synergy H1 MD) (Johnson and
Ulrich 1959).

Roots were washed in deionized water and then
scanned with an EPSON root scanner at 157 dots-per-
cm resolution (400 dpi; Epson Expression 1600 pro,

Model EU-35, Tokyo, Japan). The total root length was
analysed with software Win-RHIZO (Regent Instru-
ments Inc., Quebec, QC, Canada).

NaHCOj;-extractable P (available P) in bulk soil
was extracted in 0.5 mol L™! NaHCO; (pH 8.5) and
determined colorimetrically. The oxalate-extractable
P (moderately labile P) in bulk soil was determined
after the extraction with solution containing oxalic acid
(0.1 mol L™!) and ammonium oxalate (0.175 mol L")
at pH 3.0 (McKeague and Day 1966). The extracts were
analysed for oxalate-extractable P by inductively cou-
pled plasma atomic emission spectroscopy (ICP-AES)
(Norris and Titshall 2012). Microbial biomass P (MBP)
was calculated as the difference between the amounts
of inorganic P (Pi) extracted by 0.5 mol L™' NaHCO,
(pH 8.5) from fresh soil fumigated with CHCl, for 24 h
and from unfumigated soil (Brookes et al. 1982).

Statistics

All statistical analyses were performed in R version
4.0.3 (R Development Core Team 2020, Vienna, Aus-
tria). The effects of different treatments (reducing P
fertilizer input and adding S and C) on shoot and root
biomass, shoot P content, P-use efficiency, root length,
acid phosphatase activity, and concentrations of car-
boxylates, Olsen-P, oxalate-extractable P and microbial
biomass P were subjected to one-way analysis of vari-
ance (ANOVA). Significant difference among means
was based on Tukey’s test (P <0.05).
The P-use efficiency was calculated as follows:

P —use efficiency (%) = (U, — U,)/P,ggea X 100,

where Up is the amount of shoot P uptake by maize in
P addition treatment (mg), U, is the amount of shoot
P uptake by maize in control treatment without P
addition (mg), and P,,4.4 is the amount of P applied in
soil in P addition treatment (mg).

Results

Plant growth and P uptake

The homogeneous P2 (Hom P2) and the heterogene-
ous P1 and S (Het P1+S) supplies resulted in sig-

nificantly higher shoot biomass compared to the other
treatments (Fig. 2A). Similarly, the Hom P2 treatment
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resulted in higher shoot P concentration and P con-
tent compared with all the other treatments (Fig. 2B,
C). However, there was no difference in shoot P con-
centration between the homogeneous P1 treatment
and heterogeneous P1, P1+C and P1+S+C sup-
ply (Fig. 2A, B). However, the shoot P content was
higher in the Het P1+S treatment than in the other

4
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2 31 a
= T a
a |y [P b
< b
8 2- I =5 b
R s - [t
'Q -
g
m o

0 1 L] ] ] L] 1 1
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(©)

Shoot P content (mg pot™)

ControlHom Hom Het Het Het Het
\ v NS O <
g Q Q Q\‘X Q,\X X%X
Q\

Fig. 2 Maize shoot biomass (A), shoot P concentration (B),
shoot P content (C) and P-use efficiency (D) after 30 days of
growth under different treatments. Data are means + standard
errors (n=4). Different lowercase letters denote significant dif-
ference (P <0.05). Control: no P addition, Hom P1: homoge-
neous P1 (75 mg P kg™!) supply, Hom P2: homogeneous P2
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treatments with heterogeneous P1 supply, except the
Het P1+S +C treatment (Fig. 2C). Compared to Het
P1 treatment, the shoot biomass and shoot P content
in the Het P1+S treatment increased by 26% and
49%, respectively (Fig. 2A, C). Similarly, the addi-
tion of S increased the use efficiency of P fertilizer,
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supply (225 mg P kg™!); Het P1: heterogeneous P1 supply; Het
P1+S: heterogeneous (co-localized) P1 and S (150 mg S kg‘l)
supply; Het P1+4C: heterogeneous (co-localized) P1 and C
(480 mg C kg~') supply; Het P14+S+C: heterogeneous (co-
localized) P1, S and C supply
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making it significantly higher than in any other treat-
ment (Fig. 2D).

Root growth and distribution

Compared to homogeneous P1 (Hom P1) supply, the
root biomass and total root length were significantly
stimulated by heterogeneous P1 (Het P1) supply,
increasing by 22% and 21%, respectively. Under con-
ditions of heterogeneous P1 (Het P1) supply, both the
root biomass and total root length reached the same
level as in the Hom P2 treatment. Compared to Het
P1 treatment, the addition of S to the heterogeneous
P environment increased the root biomass and total
root length, whereas the addition of C had the oppo-
site effect. In comparison with the Het P1 treatment,
root biomass and total root length in the Het P1+S
treatment increased by, respectively, 11% and 13%,
but decreased by 18% and 25%, respectively, in the
Het P1 +C treatment (Fig. 3A, B).

In the upper soil layer, the homogeneous P2 (Hom
P2) supply resulted in significantly higher root length
compared to the other treatments (Fig. 4A). The het-
erogeneous supply of nutrients increased the root

1.0
(A)

g‘ﬁ 08' a
b= == b
8. 3 2
‘Z’D 06' C C
g —E— —
g
= 0.4
S d
0.2

0.0 T | ] L I 1 1
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Ny QY S O
Y Q¥ R Q\X Q\’X X%XG
Q\

Fig. 3 Maize root biomass (A) and total root length (B) after
30 days of growth under different treatments. Data are means
+ standard errors (n=4). Different lowercase letters denote
significant difference (P <0.05). Control: no P addition, Hom
P1: homogeneous P1 supply (75 mg P kg™!), Hom P2: homo-

length in the middle soil layer, except in the Het
P1+C treatment. The heterogeneous P1 and S (Het
P1+S) supply resulted in higher root length com-
pared with all the other treatments (Fig. 4B). Simi-
larly, the highest proportion of the total root length
located in the middle layer appeared in the Het P1,
Het P1+S and Het P1+S+C treatments (Fig. 4D).
In comparison to Hom P2 treatment, the root lengths
in the middle layer in the Het P1, Het P1 +S and Het
P1+S+C treatments increased by 59%, 80% and
51%, respectively (Fig. 4B).

Acid phosphatase activity and carboxylates
concentration in different soil layers

Compared to the Hom P2 treatment, the Hom Pl
treatment showed a decrease in acid phosphatase
activity in every soil layer (Fig. 5A, B, C). In com-
parison with the Het P1 treatment, the heterogene-
ous P1, S and C supply (Het P1+S+C) increased
the acid phosphatase activity in the upper, middle
and lower soil layers (Fig. 5A, B, C). In the middle
soil layer, there was no significant difference in acid
phosphatase activity between the Hom P2, Het P1

120 5
L a
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= 604
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e
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S 30
0 1 ] 1 ] | 1 1
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N Qe LLL
> Q¥ R Q\X Q\X \X%x
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geneous P2 supply (225 mg P kg™'); Het P1: heterogeneous
P1 supply; Het P1+S: heterogeneous (co-localized) P1 and S
(150 mg S kg™!) supply; Het P1+C: heterogeneous (co-local-
ized) P1 and C (480 mg C kg™") supply; Het P1+S+C: het-
erogeneous (co-localized) P1, S and C supply
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Fig. 4 Maize root length in upper (A), middle (B) and lower
(C) soil layers after 30 days of growth under different treat-
ments. Root length in each soil layer as a proportion of total
root length under different treatments (D). In A-C, data are
means =+ standard errors (n=4). Different lowercase letters
denote significant difference among treatments (P <0.05).
Control: no P addition, Hom PI1: homogeneous P1 supply

and Het P1+S treatments (Fig. 5B). The Het P1+C
and Het P14+ S+ C treatments resulted in higher acid
phosphatase activity in middle layer soil compared to
other treatments (Fig. 5B).

Compared to the Hom P2 treatment, rhizosphere
carboxylate concentrations decreased significantly
in the Hom P1 treatment in every layer (Fig. 5D,
E, F) and in the Het P1 and Het P1+S treatments
in the upper and lower soil layers (Fig. 5D, F). The
rhizosphere carboxylate concentrations in upper and
lower soil layers were higher in the Het P1+C and
Het P1+4+S+C treatments than in other treatments
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kg™!) supply; Het P1+S+C: heterogeneous (co-localized) P1,
S and C supply

(Fig. 5D, F). Compared to the Het P1 treatment, the
addition of S and C (Het P1+S, Het P1+C, Het
P1+S+C) significantly increased the rhizosphere
concentration of carboxylates in the middle soil layer
(Fig. 5E).

Soil P fractions and rhizosphere soil pH in different
soil layers

In the upper and lower soil layers, the homogeneous P2
(Hom P2) supply resulted in significantly higher P avail-
ability compared to the other treatments (Fig. 6A, C). In
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Fig. 5 Acid phosphatase activity (APase; A-C) and the con-
centration of carboxylates (D-F) in the rhizosphere soil of
upper, middle and lower soil layers after 30 days of maize
growth under different treatments. Data are means + standard
errors (n=4). Different lowercase letters denote significant dif-
ference (P <0.05). Control: no P addition, Hom P1: homoge-

the middle soil layer, the available P was significantly lower
in the Het P1 and Het P1+S treatments than in the Hom
P2, Het P14+C and Het P1+S+C treatments (Fig. 6B).
Similarly, the Hom P2 treatment resulted in higher concen-
tration of moderately labile P in the upper and lower soil
layers compared with all the other treatments (Fig. 6D, F).
Compared to Het P1, the moderately labile P in the Het
P1+S+C treatment decreased by 31%, 32% and 27%
in the upper, middle and lower soil layers, respectively
(Fig. 6D, E, F). The heterogeneous P1+C and P1+S+C
supply resulted in significantly higher microbial biomass P
compared to the other treatments (Fig. 6G, H, I).

There was no difference in the rhizosphere soil pH
of the upper and lower layers among the treatments
(Fig. 7A, C). Application of S (Het P1+S) significantly
(by one pH unit) decreased the rhizosphere soil pH of
the middle layer compared to the treatment without S
application (Het P1) (Fig. 7B).
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neous P1 supply (75 mg P kg™!), Hom P2: homogeneous P2
supply (225 mg P kg™!); Het P1: heterogeneous P1 supply; Het
P14+ S: heterogeneous (co-localized) P1 and S (150 mg S kg_l)
supply; Het P1+C: heterogeneous (co-localized) P1 and C
(480 mg C kg™") supply; Het P1+S+C: heterogeneous (co-
localized) P1, S and C supply

Discussion

Maize growth and P availability responses to the
heterogeneous supply of P combined with S and/or C

To adapt to their environment, plant roots exhibit high
developmental plasticity (Karlova et al. 2021). Such
plasticity is crucial for plant P acquisition in soils with
low P availability (Kumar et al. 2019). The response of
roots to P-rich patches, manifested as an increase in lat-
eral root number and lateral root length, has improved
plant growth and P use efficiency (Drew 1975; Jing
et al. 2010). In the present study, shoot biomass and
P uptake did not differ among homogeneous (Hom
P1) and heterogeneous P (Het P1) supplies (Fig. 2),
whereas root growth exhibited differences among the
two contrasting P supplies (Fig. 3). Two factors could
explain this observation. Firstly, the availability of P is
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Fig. 6 NaHCO;-extractable P (available P) (A-C), oxalate-
extractable P (moderately labile P) (D-F) and microbial bio-
mass P (G-I) of upper, middle and lower layers of bulk soil
after maize grew for 30 days under different treatments. Data
are means + standard errors (n=4). Different lowercase let-
ters denote significant difference among treatments (P <0.05).
Control: no P addition, Hom P1: homogeneous P1 supply

low in calcareous soils (Shen et al. 2011), and hetero-
geneous P supply may result in excessive root growth
of some plant species, which may be less favorable for
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(75 mg P kg~!), Hom P2: homogeneous P2 supply (225 mg
P kg~'); Het PI: heterogeneous P1 supply; Het P1+S: het-
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Het P14 C: heterogeneous (co-localized) P1 and C (480 mg C
kg™") supply; Het P1+S+C: heterogeneous (co-localized) P1,
S and C supply

plant growth compared to homogeneous supply (Li et al.
2014). Therefore, previous studies in calcareous soils
have employed heterogeneous placement of both NH,-N
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Fig. 7 Rhizosphere soil pH of upper (A), middle (B) and
lower (C) layers after 30 days of maize growth under different
treatments. Data are means + standard errors (n=4). Different
lowercase letters denote significant difference (P <0.05). Con-
trol: no P addition, Hom P1: homogeneous P1 supply (75 mg P

and P, whereby NH,-N had the effect of acidifying the
soil and thus improving soil P availability, significantly
promoting maize growth as well as P uptake (Jing et al.
2010; Wang et al. 2021). Secondly, it cannot be excluded
that roots responded to heterogeneous P supply in pref-
erence to (or faster than) the aboveground plant parts
within the time allocated.

Sulfur is commonly used as an amendment for soil
to decrease pH and increase P availability to crops
(Deluca et al. 1989; Scherer 2001). Jaggi et al. (2005)
reported that applying S to neutral and alkaline soils
can significantly decrease soil pH (by 0.6-0.7 units)
due to biochemical oxidation of S that produces
H,S0,. In calcareous soils, the high concentration of
CaCO; exacerbates P adsorption as well as precipita-
tion reactions forming stable calcium phosphates, so
that P concentrations in soil solution are generally
low (<1% of total soil P) (McLaughlin et al. 2011;
Shen et al. 2011). Soil pH can regulate nutrient avail-
ability. Hopkins and Ellsworth (2005) showed that the
available P is highest in soil with pH 5.0-7.0; hence,
lowering the pH of calcareous soil is a strategy for
increasing the soil P availability. Lower rhizosphere
pH in calcareous soil may stimulate root growth by
regulating root cell proliferation and loosening the
cell wall matrix (Edelmann and Fry 1992; Bloom
et al. 2002). Moreover, a decrease in the pH of cal-
careous soil can dissolve CaCO; and release P bound
to Ca minerals into soil solution, thereby increasing
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kg™!), Hom P2: homogeneous P2 supply (225 mg P kg™!); Het
P1: heterogeneous P1 supply; Het P1+S: heterogeneous (co-
localized) P1 and S (150 mg S kg~!) supply; Het P1+C: heter-
ogeneous (co-localized) P1 and C (480 mg C kg™") supply; Het
P1+ S+ C: heterogeneous (co-localized) P1, S and C supply

P availability (Jaggi et al. 2005; Ye et al. 2010). As
shown in the present study, heterogeneous supply of
P1 and S significantly decreased rhizosphere soil pH
(Fig. 7B), stimulated the growth of maize shoots and
roots as well as P uptake, and improved the P-use effi-
ciency (Figs. 1 and 2). This resulted in lower amounts
of available P in the soil after harvesting in the Het
P1+4S treatment compared to the treatments with
equivalent amount of P addition in the middle soil
layer (Hom P2, Het P1 +C, Het P1+S+C; Fig. 6B).
Soil microorganisms play vital roles in soil P
transformation as well as the oxidation of S to pro-
duce H,SO, (Richardson 2001; Jaggi et al. 2005).
Phosphate-solubilizing microorganisms (PSM) have
been reported to solubilize soil inorganic P that is
not available to plants. Hence, they may promote P
uptake by plants (Jakobsen et al. 2005). The addi-
tion of C increases soil microbial activity (Xu et al.
2020), and we hypothesized that it would enhance S
oxidation, acidification of calcareous soils, and soil P
availability. However, we did not find a positive effect
of C addition on plant growth (Fig. 2), but instead
found a significant decrease in root biomass and root
length (Fig. 3). This is possibly because of the com-
petition for nutrients between microorganisms and
plants (Kuzyakov and Xu 2013). The competitiveness
of microorganisms is affected by carbon availability,
which restricts microbial growth and activity (Demol-
ing et al. 2007; Marschner et al. 2011). However,
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from a long-term perspective, microbial biomass P
can become available and conducive to plant growth
upon microbial biomass turnover.

We found an increase in microbial biomass P in the
C-addition treatment (Fig. 6B). Previous studies have
reported that an increase in soil C can increase transfer
of available P into microbial biomass P (Wu et al. 2007).
Marschner (2007) reported that adding glucose to the
soil stimulated the bacteria to transform available P into
microbial biomass P, suggesting that bacteria competed
with plants for available P. However, in the present study,
contrary to expectations, in the carbon addition treatment
we found an increase in soil available P and a decrease
in moderately labile P (Fig. 6B; E). It could be due to the
conversion of soil moderately labile P into available form
via soil microorganisms (Wang et al. 2016; Soltangheisi
et al. 2021). The other possible interpretation is that with C
depletion, some P got released from the microbial biomass
pool into the soil available P pool (Zhang et al. 2014).

Response of root functional traits to the
heterogeneous P supply combined with S and/or C

By comparing the length of roots, the concentration
of carboxylates and the activity of acid phosphatase
responses in each treatment relative to the Hom P2
treatment, we found that heterogeneous P1 and het-
erogeneous P1 plus S application induced changes
in root growth (Figs. 4 and 5). On the other hand,
the addition of C altered the concentration of car-
boxylates and activity of phosphatase in the rhizo-
sphere (Fig. 5). Root exudation of acid phosphatase
and carboxylates is important for P mobilization and
acquisition (Vance et al. 2003; Lambers et al. 2006).

It is generally accepted that carboxylate secretion
and phosphatase activity in the rhizosphere increase
under low-soil P conditions (Pearse et al. 2007; Zhang
et al. 2016; Zhou et al. 2016). However, in this study,
root length was increased significantly in the middle soil
layer (P-rich patch) of the Het P1 treatment compared
to the Hom P2 treatment (Fig. 4B), but the rhizosphere
acid phosphatase activity and carboxylate concentra-
tions were significantly decreased in the upper and
lower layers (Fig. 5). The plasticity of root growth in
response to heterogeneous nutrients is species-specific,
and is greater in graminaceous species, such as maize,
than in leguminous species, such as chickpea (Li et al.
2014; Yang et al. 2022). This might have been associ-
ated with maize being dependent on the changes in root
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morphological traits to enhance phosphorus acquisition
rather than on root exudation (Lyu et al. 2016).

Some studies reported a decrease in the rhizos-
phere concentration of carboxylates and activity of acid
phosphatase under low soil P availability (Corrales
et al. 2007; Liu et al. 2016; Lyu et al. 2016), but oth-
ers reported the opposite results (Gaume et al. 2001;
Yun and Kaeppler 2001). Such variable results might
have been due to different durations and conditions of
plant growth. We found that in the studies that obtained
positive results (i.e., the concentrations of carboxylates
and activity of acid phosphatase increased under low P
supply), maize was grown hydroponically (Gaume et al.
2001; Yun and Kaeppler 2001), which may not accu-
rately reflect the responses that would occur in the rhizo-
sphere soil (Oburger and Schmidt 2016). In addition, the
growth stage and the genotype of maize can also influ-
ence the exudation of carboxylates into the rhizosphere
(Liu et al. 2004; Santangeli et al. 2024).

There was a significant increase in acid phos-
phatase activity and the concentration of carboxylates
in the maize rhizosphere in the Het P14+ C treatment
(Fig. 5). These increases could be attributed to the
increased microbial abundance resulting from the
addition of C. Greater abundance of microorganisms
would mean a greater potential that microorganisms
would exude phosphatase and carboxylates, comple-
menting similar plant exudations (Richardson et al.
2009; Zhang et al. 2016). In addition, carboxylates
are also produced during the degradation of glucose
(Rukshana et al. 2011) that we added as a C source.

The 2-D rhizobox system was adopted in this
study to facilitate in situ observation of root growth
responses to localized supply of nutrients. However,
root growth could be constrained to some extent, by
the size of the rhizobox (Neumann et al. 2009). There-
fore, in this experiment, maize was harvested imme-
diately after it was observed that the roots touched the
sides of the rhizobox, resulting in a growth period of
only 30 days for maize. In addition, this experiment
had well-defined control treatments as well as four
replicates to ensure appropriate statistical analysis
for the certainty of research results as mentioned in
previous studies (Wang et al. 2021; Jing et al. 2022).
Under field conditions, localized application of
phosphorus and ammonium can further improve the
growth of maize seedlings by stimulating root prolif-
eration and rhizosphere acidification (Jing et al. 2010,
2022). To develop practical measures based on this
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study, further field experiments should be considered
to validate the results of this study, due to variations
in light intensity, soil moisture, soil nutrient availabil-
ity and soil biological activity in farmland soil.

Conclusions

In contrast to homogeneous low P (P1) supply, hetero-
geneous P1 supply led to proliferation of maize roots,
but no significant response was found in the maize
shoots. Application of S significantly decreased the
rhizosphere soil pH, thereby enhancing soil P avail-
ability. It stimulated proliferation of maize roots and
promoted maize shoot growth and P content and P-use
efficiency. Addition of C caused divergent impacts on
P availability. On the one hand, there was a significant
increase in acid phosphatase activity and the concen-
tration of carboxylates in the maize rhizosphere and
in soil available P. On the other hand, this study did
not find a growth-promoting effect of C addition on
maize shoots, potentially due to the intensified com-
petition between microorganisms and plants. This was
indicated by increased microbial biomass P and the
significantly inhibited maize root growth. Long-term
field research is needed to gain more insight into the
coupling of P and C cycling processes to maximize
the synergies between microorganisms and plants.
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