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1  |  INTRODUC TION

Mountain ecosystems often possess high conservation value due to 
their diverse and often geographically restricted biota. This diver-
sity and rarity arises both from the sharp habitat gradients and nu-
merous habitats often found within a compact region, and the role 

of such highlands as refugia when climate varies. Understanding 
these systems, their biota and their needs and dependencies is 
challenging (Perrigo et al., 2020; Trew & Maclean, 2021). Mountain 
landscapes create complex interacting environmental gradients 
often covering broad ranges in temperature, moisture, illumi-
nation, nutrients, disturbance processes and histories (Ghazoul 
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Abstract
Conservation of mountain ecosystems can benefit from knowledge of habitats and 
their distribution patterns. This benefit is particularly true for diverse ecosystems 
with high conservation values such as the “Afromontane” rainforests. We mapped 
the vegetation of one such forest: the rugged Bwindi Impenetrable Forest, Uganda—a 
World Heritage Site known for its many restricted-range plants and animal taxa in-
cluding several iconic species. Given variation in elevation, terrain and human impacts 
across Bwindi, we hypothesized that these factors influence the composition and dis-
tribution of tree species. To test this, detailed surveys were carried out using stratified 
random sampling. We established 289 georeferenced sample sites (each with 15 trees 
≥20 cm dbh) ranging from 1320 to 2467 m a.s.l. and measured 4335 trees compris-
ing 89 species that occurred in four or more sample sites. These data were analyzed 
against 21 digitally mapped biophysical variables using various analytical techniques 
including nonmetric multidimensional scaling (NMDS) and random forests. We identi-
fied six tree species assemblages with distinct compositions. Among the biophysi-
cal variables, elevation had the strongest correlation with the ordination (r2 = 0.5; 
p < 0.001). The “out-of-bag” (OOB) estimate of the error rate for the best final model 
was 50.7% meaning that nearly half of the variation was accounted for using a limited 
set of variables. We demonstrate that it is possible to predict the spatial pattern of 
such a forest based on sampling across a highly complex landscape. Such methods 
offer accurate mapping of composition that can guide conservation.

K E Y W O R D S
Bwindi impenetrable Forest, elevation gradient, human disturbance, random forests, 
vegetation mapping
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& Sheil,  2010; Richter,  2008). Many environmental factors vary 
with elevation, leading to some characteristic zonation patterns 
(Hamilton, 1975; Hedberg, 1951; Schmitt et al., 2010). Plant com-
munities are further structured at a local scale by topography, re-
flecting differences in soil depth, structure, moisture, nutrients, 
exposure and aspect contributing to local variations in suitabil-
ity for different plants to establish and persist (Eilu et al., 2004; 
Ghazoul & Sheil,  2010; Lovett et  al.,  2001). Tropical species are 
known to be sensitive to disturbance and shifts in environmen-
tal conditions (Sheil, 2016; Ssali et al., 2017). For example, distur-
bance (the availability of open areas where trees can establish) 
have been shown to relax the constraints imposed by competi-
tion and extend effective elevation ranges of some species that 
are not constrained by short-range dispersal, particularly those in 
secondary forest, to warmer and cooler climates (Muñoz Mazón 
et al., 2019). Thus, montane vegetation spatial patterns are a re-
sult of complex interactions between the terrain, local conditions 
and histories (Hoersch et al., 2002), as well as interactions among 
species such as competition (Pfeffer et al., 2003). This makes the 
understanding of relationships between physical features of the 
environment and vegetation challenging.

Montane forest is the rarest vegetation type on the African 
continent (Linder,  2014; White,  1983), and also among the least 
studied (Desalegn & Beierkuhnlein, 2010; Sainge et al., 2019). This 
biologically rich and unique “Afromontane” ecosystem is increas-
ingly threatened by deforestation, degradation and defaunation 
(Cordeiro et  al.,  2007; Plumptre et  al.,  2007), while global climate 
change has added new threats (Ayebare et  al.,  2013 and Ayebare 
etal.,  2018; Wright et  al.,  2022). Deforestation is threatening the 
high aboveground carbon stock of montane forests (Cuni-Sanchez 
et al., 2021). This calls for prioritization of conservation actions to 
identify and protect vulnerable species and habitats. Mapping of 
forest vegetation can help to assess, plan, and guide conservation 
management in addressing these challenges by clarifying what taxa 
typically occur where and how these distributions are determined 
(Brinkmann et  al.,  2011; Fjeldsa,  2007). For example, variation in 
plant species composition along an elevation gradient is highly cor-
related with dietary variability (Elgart, 2010; Ganas et al., 2004) and 
variation in the female population genetic structure (Guschanski 
et al., 2008) of mountain gorillas (Gorilla beringei beringei).

Predictive vegetation mapping is defined as predicting the vege-
tation composition across a landscape from mapped environmental 
variables (Franklin, 1995). It is normally done using a combination of 
field data with digital maps of topography, as well as climatic limiting 
factors, facilitated by flexible, algorithmic modeling approaches and 
is driven by the need to map vegetation over large areas for con-
servation planning (Evans & Cushman, 2009; Hoersch et al., 2002; 
Pfeffer et  al.,  2003). Availability of biophysical predictor variables 
like elevation, temperature and precipitation mapped at relevant 
spatial scales and advances in species distribution modeling (Elith 
& Leathwick, 2009; Franklin, 2010; Hastie et al., 2009), provide op-
portunities to quantitatively analyze, predict and map the flora of 
biodiversity hotspots, if based on field data, or at least are validated 

or informed by field data. This increases our understanding of the 
vegetation composition and plant community patterns in relation to 
environmental factors. Various approaches are available for predic-
tive mapping of species distributions (Elith et al., 2006; Hijmans & 
Elith, 2016). We highlight three general approaches ranked accord-
ing to their “function complexity” (Pearce & Ferrier, 2000): first, are 
the earliest and simplest methods that include Bioclim, Domain and 
Mahalanobis. These methods do not consistently perform well when 
compared with other approaches (Elith et  al.,  2006). Second, are 
the generalized regression models—the Generalized Linear Models 
(GLM; McCullagh & Nelder, 1989) and Generalized Additive Models 
(GAM; Hastie & Tibshirani, 1986). Though more complex than the 
first group, the generalized regression models provide mixed results 
because the nature of the relationships with the predictor variables 
may vary across the range of each species (Franklin, 1995; Moore 
et  al.,  1991). Third, are the nonparametric machine learning tech-
niques that can reveal very complex patterns between species and 
physical features of the environment and can yield good predictive 
models when data are sufficient (Breiman, 2001; Prasad et al., 2006; 
Cutler et  al.,  2007). The earliest approaches were the Artificial 
Neural Networks (ANN) and Classification and Regression Trees 
(CART; Breiman et al., 1984). Later models include MaxEnt (Maximum 
Entropy; Phillips et al., 2006), Random Forests (RF) (Breiman, 2001), 
Boosted Regression Trees (Elith et al., 2009), Multivariate Adaptive 
Regression Splines (MARS; Friedman,  1991) and Support Vector 
Machines (SVM; Guo et al., 2005). Comparisons among such options 
found that RF perform best in mapping current and future species 
distributions (Prasad et al., 2006).

Many machine-learning based vegetation mapping studies have 
focused on temperate forests, but rarely have they been applied 
to explore the complex, highly mixed and species-rich rainforests 
in the tropics (Lin et  al.,  2020). Yet, accurate maps of vegetation 
can aid management and contribute to various research as well as 
identifying restricted and vulnerable communities and habitats to 
support priority conservation planning (Brinkmann et  al.,  2011; 
Sainge et al., 2019). While numerous studies have focused on large 
geographical areas, fewer studies have identified and mapped veg-
etation communities along environmental gradients in smaller land-
scapes or mountains (Latt & Parker, 2022). However, local studies 
contribute to prioritization of areas in need of urgent conservation 
action particularly in biodiversity hotspots at high risk of habitat 
degradation and loss (Fjeldsa, 2007; Seddon et al., 2020).

Bwindi Impenetrable Forest in SW Uganda (henceforth “Bwindi”) 
is well suited, as a challenging case, for evaluating the performance of 
predictive mapping. It is one of the few forests in all of Africa where 
lowland and montane forests are in a continuum (Hamilton,  1974 
and Hamilton 1975). The forest has a richer tree diversity compared 
to other forests in the ecoregion, attributed to high rainfall and soil 
characteristics (Eilu et al., 2004). The terrain of Bwindi is extremely 
rugged with high topographic diversity (Howard,  1991; Leggat & 
Osmaston, 1961). This limits conventional vegetation mapping ap-
proaches such as aerial photo interpretation or data derived from 
satellite images as their spatial resolution data is often insufficient 
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for mapping vegetation in specific areas such as gullies and steep 
slopes where topographic shadows mask the vegetation (Pfeffer 
et al., 2003).

The forest also lies in an area with one of the highest rural human 
population densities in Africa (Cordeiro et  al.,  2007). Because of 
this, little natural forest persists outside the boundaries of the park 
(Twongyirwe et  al.,  2011). Heavy human disturbance of the past 
within the forest greatly modified the vegetation structure and ecol-
ogy (Babaasa et al., 2004; Sheil, 2012; Ssali et al., 2017). Before it be-
came a park, the forest was subjected to a broad gradient of human 
disturbance with pit-sawing and poaching being the most widely 
distributed in the forest (Howard,  1991; McNeilage et  al.,  1998), 
while mining (gold and tungsten) was concentrated in specific lo-
cations (Butynski, 1984; Harcourt, 1981). Human-induced wildfires 
and harvesting of non-timber products impacted the forest periph-
ery (Butynski,  1984; Cunningham,  1996), while numerous human 
trails and two public roads traversed the forest (Butynski,  1984; 
Harcourt, 1981). Human disturbance across the forest varied greatly 
in intensity, distribution and time periods (McNeilage et al., 2001). 
Ongoing disturbance processes include localized landslides, forest el-
ephants (Loxodonta cyclotis), occasional wildfires following long peri-
ods of drought, harvesting of poles and wire snaring (Babaasa, 2000; 
Hickey et al., 2019; Olupot et al., 2009), and a public road cutting 
through the narrow forest corridor and high elevation zone (Barr 
et al., 2015). This complexity of factors contributes to making Bwindi 
a complex site for investigations of plant communities.

Numerous studies have demonstrated variations in rainfor-
est composition with elevation (Eilu et  al.,  2004; Hamilton,  1975; 
Lieberman et al., 1996; Lovett et al., 2001), topography (Werner & 
Hormeier, 2015; Jucker et  al.,  2018) and with human disturbance 
(Chapman & Chapman,  1997; Plumptre,  1996; Ssali et  al.,  2017). 
Given the wide variation in elevation, topography and past and cur-
rent human disturbances across Bwindi Forest and evidence from 
elsewhere, we hypothesized that elevation, topography, and human 
disturbance, either acting in isolation or in combination, would play 
major roles in determining the composition and distribution of tree 
species and communities. We carried out extensive ground surveys 
followed by multivariate statistical techniques to evaluate a variety 
of environmental variables as potential predictive attributes to test 
this hypothesis.

2  |  METHODS

2.1  |  Study area

Bwindi Forest is located in SW Uganda (Figure  1), in the Kigezi 
Highlands at the eastern edge of the Albertine Rift (latitude 0°53′- 
0°8´S and longitude 29°35′- 29°50′ E). Covering an area of 331 km2, 
Bwindi lies at the North West end of the Kigezi Highlands which are 
associated with the up-warping and faulting during the formation of 
the Albertine Rift and are underlain by Precambrian shale, phyllite, 
quartz, quartzite, schist and granite of the Karagwe-Ankolean System 

(Leggat & Osmaston, 1961). The Government of Uganda (1967) clas-
sified the soils of Bwindi as belonging to the “non-differentiated 
humic ferrallitic” types and having been derived from the forego-
ing geological formation, and they are composed of mainly tropical 
red earths with an overlying layer of brown to black spongy humus. 
The erosive action of the numerous rivers in their youth stage 
within the Highlands has caused the topography of the park to be 
extremely rugged with narrow, steep-sided valleys and deep gullies 
that run in various directions, bound by emergent hill crests lying 
between 1190 m in the northwest and 2607 m a.s.l. in the southeast 
(Howard, 1991). The forest has been classified as a ‘moist lower mon-
tane forest’ (Hamilton, 1994), ranging from near the upper boundary 
of lowland forest to montane forest (Hamilton, 1975).

Information on Bwindi's vegetation cover is limited. A forest type 
map prepared by Cahusac (1961) for managing timber harvesting op-
erations is now outdated given the management history of Bwindi 
that include more than four decades (from 1947 to 1991) of in-
tense and forest-wide timber harvesting (Howard, 1991; McNeilage 
et al., 1998), and whose long-term impact was the creation of a di-
verse patch mosaic of vegetation types differing in age, hence suc-
cession, and broken canopy cover (Babaasa et al., 2004; Sheil, 2012). 
Incessant, heavy human and natural disturbances have prevented 
reclosure of the forest canopy (Ssali et al., 2017). Previous descrip-
tions of the tree flora of Bwindi were based on general tree species 
inventory and limited to a small area of high elevation in the south-
east (Hamilton, 1969; Howard, 1991; Leggat & Osmaston, 1961) or 
low elevation in the north (Eilu et  al.,  2004). Later work on trees 
(Davenport et al., 1996), though covering more representative areas 
of the forest, recorded only the species encountered but did not geo-
reference the sample sites, preventing spatial analyses and extrap-
olation. Until now, it had remained unclear how forest-wide floristic 
patterns were spatially structured in relation to the environment.

2.2  |  Study design

To account for the different environmental conditions, we em-
ployed a stratified random sampling approach. The park was di-
vided into five strata based on geological formations visible on the 
Digital Elevation Model (DEM) of Bwindi and the starting points on 
the boundary of the DEM in each stratum were selected randomly 
with the random point function within ArcGIS (version 10.5; ESRI, 
Redlands, CA, USA). Line transects were drawn on the DEM in each 
stratum from the random starting points to traverse the topographic 
positions of the ridges (Figure 1; Table 1). The number and length of 
the transects selected varied with area, accessibility and shape of 
the strata. We then superimposed the transect drawings on high-
resolution (0.5 m) true color, digital aerial photographs of Bwindi. 
The aerial photos were visually interpreted along the transects by 
drawing polygons around areas perceived to be of uniform tree 
community structure based on differences in tone and texture. This 
allowed the sample sites to be placed in what we perceived to be 
distinct tree communities.
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2.3  |  Tree species sampling

We carried a printed copy of the digitized polygons, overlaid 
with a coordinate grid, and used a hand-held Global Positioning 
System (GPS) device to locate the digitized polygons in the field. 
A single random point within each digitized polygon was se-
lected for tree species sampling. At each random sample point, 
we used the point-to-tree distance technique or plotless sam-
pling method to sample trees (Hall, 1991; Klein & Vilcko, 2006; 
Sheil et al., 2003). This technique involved selecting the nearest 
15 trees (≥20 cm dbh) around the random center-point. The se-
lected trees were identified to species level and we measured 
the diameter at breast height (dbh) of each individual. We named 
the tree species following nomenclature used in Kalema and 

Hamilton (2020). The distance from the sample site center-point 
to the 15th farthest tree was measured and regarded as the 
sample site radius. This procedure is suitable for rapid and ro-
bust assessments of vegetation where tree density varies, such 
as in patchy and disturbed tropical forest (Klein & Vilcko, 2006; 
Sheil et al., 2003). At each center-point, eight environmental at-
tributes were recorded: aspect—as the compass direction fac-
ing down slope; and steepness of the slope using a clinometer. 
Untransformed aspect and slope are poor for quantitative analy-
sis, so slope was transformed to a more suitable index by taking 
the sine of the slope in degrees; aspect was also transformed 
into a suitable index by taking the negative cosine of the angle in 
degrees minus 35 (McCune & Grace, 2002). Four physiographic 
positions of valley, hillside, ridge tops and gully were simply 

F I G U R E  1 Location of Bwindi Impenetrable National Park, Uganda, and of tree sampling transects and sample sites (red dots) among the 
strata superimposed on a Digital Elevation Model of the study area.

Stratum
Transect elevation 
range (m a.s.l.)

No. of sample points

Valley Hillside Ridge Gully Total

Central 2014–2237 8 31 16 1 56

East 2020–2467 1 59 2 1 63

South 1479–2342 3 50 11 2 66

North 1320–1732 3 48 6 1 58

West 1479–2124 2 31 10 3 46

All 1320–2467 17 219 45 8 289

TA B L E  1 Sampling design for trees 
(≥20 cm dbh) for floristic gradient 
modeling in Bwindi Impenetrable National 
Park, Uganda.
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recorded as “1” if the sample site was in that physiographical 
class and “0” otherwise. The final recorded site characteris-
tics consisted of spatial variables—the Universal Transverse 
Mercator (UTM) coordinates of easting and northing (datum 
WGS 84) using a hand-held GPS unit, standardized to zero mean 
and unit variance. All the data were collected at 289 sample sites 
spread across the forest (Figure 1).

2.4  |  Biophysical predictor variables

We acquired 20 digitally mapped biophysical variables sum-
marized in Table  2 and detailed in Appendix  S1. These were: 
the Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) Global Digital Elevation Model (GDEM) 
30 × 30 m Version 2 (http://​gdem.​ersdac.​jspac​esyst​ems.​or.​jp/​
), and nineteen 1-km-scale (30 sec) bioclimatic variables, that 
include 11 temperature and eight precipitation variables from 
WorldClim version 2 (http://​world​clim.​org/​versi​on2.​1; 1970–
2000; Fick & Hijmans, 2017). We clipped the ASTER GDEM and 
the 19 bioclimatic rasters to a window covering Bwindi Forest 
only. Lastly, the human disturbance across the park was based 
on the combined relative encounter of human activity signs that 
were likely to have an impact on vegetation – wood cutting, bee 
hives, old pitsaw sites, disused mineral extraction pits, snares, and 
fireplaces (McNeilage et  al.,  1998). We used the geo-references 
of all the 289 sample sites to extract site values from the predic-
tor rasters. We constructed an environmental matrix of extracted 
variable values together with site measurements (aspect, slope, 
topographic position and x, y point coordinates) and tested for 
pairwise collinearity and one of any pair of highly correlated vari-
ables (Pearson r ≥ 0.75) discarded (Table S1).

2.5  |  Data analyses

Based on field data, a sample sites-versus-species matrix (using 
basal area values of each tree species relative to the area of the 
sample site [m2 ha−1]) was created. We only considered tree spe-
cies occurring in more than four sample sites, resulting in a 289 
sample site by 89 tree species matrix. The data were natural 
log-transformed following the generalized procedure (McCune 
& Grace, 2002) to minimize the influence of large trees. We sub-
jected the data matrix to various multivariate techniques to iden-
tify associations and spatial patterns among the tree species using 
R software (version 4.2.1; R Core Team,  2022). To describe the 
different tree species assemblages within our study area, we clus-
tered the sample sites with similar tree species that tend to occur 
together using a polythetic, agglomerative hierarchical cluster-
ing (HC) with the flexible beta linkage method (β = −0.25; Lance 
& Williams,  1966; Legendre & Legendre,  1998) with the agnes 
function and Bray-Curtis as a distance measure. The clustering 
results were portrayed by a dendrogram or clustering tree. We 
determined the optimal number of clusters using Indicator Species 
Analysis (ISA) procedure, described below. Because we had nu-
merous sample sites (n = 289), we simplified the presentation using 
composite sample sites from the original sample sites by comput-
ing the centroid of each of the cluster as the mean of the basal 
area/ha of each tree species per cluster.

We used Multi-Response Permutation Procedures (MRPP) and 
a Mantel's test to test for differences in composition between the 
clusters. We also utilized ISA, a method that combines frequency 
and mean abundance tables, to identify the characteristic tree spe-
cies for each cluster. Statistical significance of the indicator tree spe-
cies was determined by random permutations for each species at 
p < .05 significance level. Indicator values vary from 0 (no indication) 
to 1 (perfect indication).

A Kruskal's nonmetric multidimensional scaling (NMDS) based 
on Bray-Curtis coefficient was used to evaluate the ecological ten-
dencies reflected in the cluster dendrogram and the relationship 
between sample sites, clusters and environmental variables. The 
sample sites were ordinated, then overlaid with the cluster centroids 
from cluster analysis with surrounding confidence ellipses at ±2 SD 
from the mean (enclosing approximately 95% of sample sites within 
each cluster). Lastly, 12 least correlated site environmental variables 
(Table 2) were fitted onto the ordinations using 1000 permutations.

We applied RF techniques to predict and map the spatial distribu-
tion of the clusters (Evans & Cushman, 2009; Lin et al., 2020; Prasad 
et  al.,  2006). RF is a data mining technique that should produce 
accurate predictions without overfitting the data (Breiman,  2001; 
Breiman & Cutler,  2003). In R software, it is implemented in the 
function ‘randomForest’ in a package with same name (Liaw & 
Wiener,  2002). In RF, bootstrap samples are drawn to construct 
multiple trees; each tree is grown with a randomized subset of pre-
dictors, hence the name ‘random’ forests. A large number of trees 
(500 to 2000) are grown, hence a ‘forest’ of trees. The number of 
predictors used to find the best split at each node is a random subset 

TA B L E  2 A summary of potential explanatory variable 
names and descriptions for floristic gradient modeling in Bwindi 
Impenetrable National Park, Uganda.

Biophysical variable 
name

# of 
variables Reference

Temperature 1 Fick and Hijmans (2017)

Precipitation 8 Fick and Hijmans (2017)

30 m Digital Elevation 
Model

1 NASA & METI (2011)

Human disturbance 1 McNeilage et al., (1998)

Steepness of the slope 1 Field measurement

Aspect 1 Field measurement

Ridge tops 1 Field measurement

Valley 1 Field measurement

Gully 1 Field measurement

Hillside 1 Field measurement

Latitude 1 Field measurement

Longitude 1 Field measurement
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of the total. The trees are grown to maximum size without pruning, 
and aggregation is by averaging the trees. Out-of-bag (OOB) samples 
are used to calculate an unbiased error rate and variable importance, 
eliminating the need for a test set or cross-validation. Because a 
large number of trees are grown, there is limited generalization error 
(that is, the true error of the population as opposed to the training 
error only), which means that no overfitting is possible, a useful fea-
ture for prediction. By growing each tree to maximum size without 
pruning and selecting only the best split among a random subset at 
each node, RF maintains some ability for prediction (Breiman, 2001). 
Random predictor selection diminishes correlation among unpruned 
trees and reduces bias; by taking an ensemble of unpruned trees, 
variance is also moderated. RF provides several metrics that aid in 
interpretation. The importance of each predictor variable is evalu-
ated based on how much worse the prediction would be if the data 
for that predictor were permutated randomly. Since our response 
variable, the clusters, was a factor (categorical), we performed a 
classification procedure in the analysis. Six least correlated variables 
(Pearson's r < 0.75) that are digitally mapped for the whole park: 
isothermality, temperature seasonality, minimum temperature of 
the coldest month, annual precipitation, mean temperature of the 
coldest quarter and elevation were tested as predictors for cluster 
distribution.

3  |  RESULTS

We recorded 4335 individual trees (≥20 cm dbh) comprising 121 
species in 51 families from 289 sample sites. The sample sites 
spanned an elevation of 1320 to 2467 m a.s.l. broadly representing 
Bwindi's elevation range and topographic variation. Just 89 tree spe-
cies from 47 families occurred in four or more sample sites and were 
included in the subsequent analyses. The richest two sample sites 
included 12 species while the poorest sites were 11 each with four 
species. The commonest tree was Strombosia scheffleri that occurred 
in 130 (45%) sample sites, while the least common species were 
nine (Anthocleista vogellii, Antiaris toxicaria, Casearia battiscombei, 
Celtis durandii, Dichaetanthera corymbosa, Ficus sur, Hannoa longipes, 
Memecylon myrianthum and Pauridiantha callicarpoides) each occur-
ring in only four (1.4%) sample sites.

The cluster dendrogram (Figure 2) grouped the sample sites into 
six clusters. This cluster-stage yielded the lowest average summed p-
values and the highest number of significant indicator species based 
on ISA (Figure 3). The six groups were further grouped in three pairs, 
with clusters 1 and 5 being most similar in composition, while clus-
ters 2 and 6 were more distinct.

The MRPP test showed that the clusters were significantly dif-
ferent from random association (observed delta = 0.79, expected 
delta = 0.89, p < .001). The Mantel test (r = 0.32, p < .001) also indi-
cated that the six clusters differed significantly in composition.

In total, 63 indicator tree species proved significant for the six 
clusters (summarized in Table 3 and detailed in Table S2). All the spe-
cies, with the exception of Gambeya albida in cluster 4, had indicator 

values of less than 50% implying that they also occurred, at lower 
abundance and frequency, in other clusters. The clusters had nu-
merous indicator species with clusters 2, 5 and 6 having the larg-
est number (14, 14 and 18, respectively), while clusters 1, 3 and 4 
had the fewest (6, 7 and 4, respectively). Twenty-four species were 
pioneers (early successional) and mid-successional species (non-
pioneer light demanders, NPLDs), spread across the clusters.

NMDS resulted in a 3-axis optimal solution and a good fit with 
a clear positive relationship between observed community dis-
similarity and ordination distances. The NMDS ordination diagram 
produced a dense cluster of sample site points and HC analysis 
confidence ellipses that greatly overlapped on all the three axes 
(Figure S1). The sample site points that were positioned where the 
ellipses intersected did not belong exclusively to one cluster but had 
compositions indicative of two or more clusters. The overall pat-
terns show a complex range of variables that show consistent and 
nonrandom relationships to species composition and distribution 
(p < .001). The strongest correlations were observed for elevation 
and longitude, but ridge-top, precipitation, temperature and human 
disturbance factors also showed a nonrandom role (Figure S2). Since 
elevation and longitude arrows were close and pointed in the same 
direction, it means they are positively correlated implying that clus-
ters 2, 3, 4 and 6 positioned along the direction of the arrows are 
depicted to be at high elevation to the east of the park.

The RF predictive map for the six clusters (Figure 4) and descrip-
tion of the clusters (Table 3 and Table S2), revealed distinct vegeta-
tion geographically arranged along the north-west and south-east 
latitudinal and longitudinal axes of Bwindi. Cluster 1 (white) and 5 
(light green) were largely in areas north and west of Bwindi, while 
cluster 2 (pink) and 6 (dark green) were primarily in the extreme 
southeasterly areas. Clusters 3 (yellow orange) and 4 (yellow green) 
were in the middle of the forest. However, in some areas, the clus-
ters formed mosaics, with patches of cluster 6 within clusters 2 and 
5, while those of cluster 2 were within cluster 5, and those of cluster 
1 within clusters 2 and 5. We found no evidence of any of our six 
clusters being more or less associated with forest edges or large gaps 
located a distance from the forest edges.

F I G U R E  2 Polythetic, agglomerative, hierarchical clustering 
dendrogram depicting the relationships between the composite 
clusters. Numbers correspond to the clusters in Table 3 and 4, 
Figure 4; Appendix S2 and S3.
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    |  7 of 13BABAASA et al.

Estimated importance of the variables in predicting cluster com-
position and spatial distribution estimates revealed that elevation 
had the greatest estimated importance in terms of both accuracy 
and Gini score (Figure 5). Only two other variables had importance 
of nearly similar magnitude for predictive accuracy: precipitation 
of driest month and annual precipitation. The OOB estimate of the 
error rate was 50.7% (Table 4).

4  |  DISCUSSION

Our study shows that the methods we used can be useful for eco-
logical understanding of mountain habitats. We demonstrate that 
the RF model, supported by multivariate statistical techniques, 
was effective in delineating tree communities and predictively 
mapping them in response to complex topographic gradients, 

compounded by vegetation that is highly mixed, species-rich with 
a heavy and long disturbance history. For the final result to be 
optimal, all our data were used in training the model instead of for-
feiting them for an independent validation. Thus, we chose to use 
the OOB estimate of the error rate provided in RF. Our OOB error 
statistic was moderately high. Brinkmann et  al.  (2011) and Lin 
et al.  (2020) attribute inaccuracies of predicted maps to mapped 
predictor variables being too coarse to provide exact variable esti-
mates for each sample site, especially, in hilly and topographically 
diverse areas or noninclusion of causal factors (Barbet-Massin & 
Jetz, 2014; Bedia et al., 2013). But more important could be the 
observation of Volkov et al.  (2003) that the distribution of plant 
abundances in natural communities at local scales is (or can be 
considered in effect to be) largely random with species being eco-
logically equivalent, or structured more by dispersal than by differ-
ences in abiotic conditions. Pfeffer et al. (2003) suggest that most 

F I G U R E  3 Changes in summed 
p-values and number of indicator tree 
species with p ≤ .05 from randomization 
tests across 2–16 clusters.

TA B L E  3 Indicator tree species for the clusters in Bwindi Impenetrable National Park, Uganda.

Cluster number # Sample sites
Elevation range; mean elevation (m a.s.l.); and location of 
cluster

# Indicator 
tree species

# Pioneer and 
NPLD species

1 58 1372–2350; 1956
Mid-elevation transitional forest in the center and west of 
the park

6 3

2 35 1778–2407; 2195
Submontane forest on ridge-tops in the centre-south of the 
park

14 7

3 45 1479–2217; 2023
Mid-elevation forest in the center-south of the park

7 2

4 33 1773–2311; 2188
Sub-montane forest in the center-south of the park

4 2

5 75 1320–2131; 1696
Low-elevation forest in the north, forest corridor and west 
of the park

14 5

6 43 1416–2467; 2203
High elevation montane forest to the southeast of the park

18 5

 17447429, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/btp.13302 by W

ageningen U
niversity A

nd R
esearch Facilitair B

edrijf, W
iley O

nline L
ibrary on [05/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 13  |     BABAASA et al.

plant species are tolerant to a wide range of varying conditions, 
and therefore, there can never be a perfect species-environment 
correlation. Moreover, species data tend to be redundant and noisy 
(Kent, 2012; Ter Braak, 1995) making it difficult to completely ex-
plain how a rich community of vegetation is determined by a lim-
ited set of interacting factors (Pfeffer et al., 2003). Nonetheless, 

the most influential variables indicated by the RF model are those 
expected to influence large scale patterns of montane vegetation 
(Hedberg, 1951; Lieberman et al., 1996; Eilu et al., 2004; Schmitt 
et  al.,  2010; Sainge et  al.,  2019; Lin et  al.,  2020). This, together 
with the fact that at least half of the tree community variation was 
accurately predicted using a limited set of predictor variables, per-
mits us to predictively map the vegetation at unsampled locations 
with reasonable confidence.

Our approach to vegetation mapping in mountains provides 
an alternative to the sometimes limited approaches provided by 
remote sensing (Pfeffer et  al.,  2003). Remote sensing is poor at 
mapping plant communities that merge along elevational gradients 
(Singh et al., 2001; Townsend & Walsh, 2001). In addition, remote 
detection of specific plant species is most likely to be viable if the 
target species possess unique growth forms, phenology or other 
readily detectable characteristic (He et  al.,  2015). Vegetation 
types with the same overall physiognomy or plant form like trees, 
but with varied in floristic composition are difficult to differen-
tiate using both spectroscopy and remote sensing, resulting in 
misinterpretation and misclassification of remote sensing images 
(Townsend & Walsh, 2001).

Several other factors that can influence vegetation composi-
tion of communities were not considered in our model. Inclusion 
of geology, edaphic conditions, hydrological regime, interspecific 

F I G U R E  4 Predictive map of tree species assemblage spatial 
patterns in Bwindi Impenetrable National Park, Uganda. Numbers 
in the legend correspond to the clusters in Tables 3 and 4, Figure 2; 
Appendix S2 and S3.

F I G U R E  5 Variable importance plot 
generated by RF algorithm showing 
the ranked importance of the model's 
predictive factors, measured using the 
mean decrease accuracy and mean 
decrease in gini index. The labels indicate: 
prec_min = precipitation of the driest 
month; prec_ann = annual precipitation; 
prec_coq = precipitation of the coldest 
quarter; temp_iso = isothermality; temp_
seas = precipitation seasonality.

Cluster 1 2 3 4 5 6 Class error %

1 14 6 9 7 16 5 75.4

2 3 15 6 4 2 5 57.1

3 5 8 20 5 6 0 54.4

4 3 8 5 16 1 0 51.5

5 10 1 5 2 50 4 30.5

6 2 4 1 2 8 24 41.5

OOB estimate of error rate 50.7

TA B L E  4 Confusion matrix of OOB 
estimate of error rate for the predictive 
tree assemblage spatial distribution 
pattern map of Bwindi Impenetrable 
National Park, Uganda. The cluster 
number corresponds to those in Table 3, 
Figures 2 and 4.
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    |  9 of 13BABAASA et al.

interactions, dispersal ability, and biotic or abiotic interactions 
(Godsoe & Harmon, 2012) might enable more accurate description 
of the vegetation pattern if suitable data were available.

A combined HC analysis and ISA identified six tree communi-
ties across Bwindi each with their own indicator species. The nu-
merous indicator species for each tree community, without a single 
species being dominant, is indicative of a large proportion of the 
forest being secondary vegetation communities. In many tropical 
forests, single-species dominance is a characteristic of mature 
(climax) communities (Eggeling,  1947; Connell & Lowman,  1989; 
Sheil & Burslem, 2003). Furthermore, close to 40% of the indica-
tor species, spread across the tree communities, were pioneers 
such as Macaranga barteri at low elevation and Polyscias fulva and 
Neoboutonia macrocalyx at high elevation and mid-successional 
or non-pioneer light demanders (NPLDs) such as Gambeya albida, 
Newtonia buchananii, and Entandrophragma excelsum. This is further 
evidence that considerable areas of the forest are in early succes-
sion stages. Human disturbances of the past, particularly pitsaw-
ing, were spread throughout the forest (Howard, 1991; McNeilage 
et  al.,  1998). However, the disturbances varied in intensity and 
were concentrated in different areas at different time periods 
(McNeilage et al., 2001). This led the forest vegetation to be struc-
turally and compositionally complex, with a mosaic of patches of 
disturbed and regenerating forest, differing in size and succession 
stage, being superimposed on differences caused by topography 
and possibly soil characteristics. It could be a very long time be-
fore the forest regenerates to the primary (climax) stage. Aside 
from the past disturbances, there are additional reasons why much 
of Bwindi's vegetation remains in early successional stages. Ssali 
et  al.,  (2017) found that forest regrowth in the many gaps dom-
inated by bracken fern scattered across the forest is impeded in 
multiple ways including repeated damage and high seed predation. 
The prevalence of pioneer species and NPLDs we found across the 
forest likely reflect similar influences (Chapman & Chapman, 1997). 
The observed species have longer seed dormancy, greater growth 
potential and are less constrained by dispersal and seed predation 
(Muñoz Mazón et al., 2019; Sheil, 2016). Late successional species 
may take long periods to reestablish due to of the scarcity of re-
maining seed sources and limited dispersal (Ssali et al., 2017).

Ordination analysis demonstrated that the tree communities 
were mainly arranged along two collinear gradients—elevation 
and sample site's position in the forest landscape (i.e., longitude). 
Bwindi is elongated from north-west to south-east, exhibiting a 
gradual rise in mean elevation in this direction. Although eleva-
tion had the strongest relationship with tree composition, ad-
ditional variability was explained by topographic position and 
climate (temperature and precipitation). Topography has multi-
ple potential mechanisms through which to impact vegetation: 
for example, the soils of slopes and lower valleys are generally 
moister, better structured, and richer in plant nutrients than the 
more drought-prone and better illuminated ridge tops (Ghazoul & 
Sheil, 2010; Jucker et al., 2018). For example, before it was sought 
out and harvested in accessible areas, the slow-growing and 

shade-tolerant Podocarpus latifolius was common on Bwindi's hill-
ridges >2000 m a.s.l. (Hamilton,  1994). Our results, as expected, 
show that temperature tends to decline as elevation increases 
(Lieberman et al., 1996) with tolerance of low-temperatures often 
offset by lower competitive ability under warmer conditions 
(Sheil, 2016; Slik et al., 2009). Our RF model indicated that annual 
precipitation and precipitation of driest month also contribute to 
differences in tree composition. While many variables are clearly 
related to tree community patterns these are often correlated and 
cannot be unambiguously assigned to distinct mechanisms so their 
individual contributions could not be analytically separated.

Whilst the influence of elevation on tree community composi-
tion and distribution was systematically identified and statistically 
demonstrated, the tree communities in Bwindi do not form distinct 
zones along the elevation gradient. This accords with results from 
other montane forests such as Udzungwe Mountains National 
Park, Tanzania (Lovett et  al.,  2006). There are multiple possible 
reasons for lack of elevation zoning. We highlight two: Bwindi is 
one of the few forests in Africa where lowland and highland for-
ests are in a continuum (Hamilton,  1974 and Hamilton 1975). In 
a rather limited area, there is intermingling of lowland tree spe-
cies that reach their upper boundary and highland tree species at 
their lower boundary. Our results showed an overlap of the cluster 
confidence ellipses on all the 3-dimensions of the ordination di-
agram and numerous sample sites and species positioned where 
the ellipses intersect indicating that they can reasonably belong to 
more than one community (Kent, 2012; Townsend & Walsh, 2001). 
In addition, lack of perfect indicator species (having indicator 
value ≤0.5) implies that numerous tree species are spread widely 
but are most frequent and abundant within the tree community 
they indicate, presumably representing their ecological optimum 
(Austin, 2013; Mueller-Dombois & Ellenberg,  2002). The contin-
uous nature of change of plant species in moist forest communi-
ties is related to a continuous change in environmental variables 
(i.e., precipitation and temperature) along the elevation gradi-
ent (Lovett & Lindberg, 1993). Secondly, the intense forest-wide 
human disturbance of the past that involved mainly large-scale 
species-selective cutting and removal of large hardwoods could 
have relaxed the constraints imposed by competition, making it 
possible for some tree species to colonize the disturbed areas 
resulting in extension of their elevation range limits (Sheil, 2016; 
Muñoz Mazon et  al.,  2019). In addition to natural disturbances 
such as drought and occasional landslides, human disturbances 
such as clearing, timber cutting, fires and many others have oc-
curred at different times in different parts of the forest, leading to 
spatial patterns that obscure what would be expected in a system 
lacking human impacts (Chapman & Chapman, 2004).

5  |  CONCLUSIONS

Prediction of vegetation across an extensive mountain landscape 
using mapped environmental variables offers a potential in addition 
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to remote sensing. Remote sensing is challenging in species rich 
mountainous regions like Bwindi with considerable topographic 
complexity and a multifaceted history of natural and human impacts. 
Efforts should be geared towards accessing and refining predictor 
variables at the appropriate scales so as to further improve such 
mapping.

We see that Bwindi is a mosaic of patches of different suc-
cessional stages resulting from a complex history. Recovery to 
late successional forest is slow, likely due to seed limitation and 
continued disturbances. Small island forests such as Bwindi, sur-
rounded by dense human populations, are under immense pres-
sure and their long-term viability and survival remain in doubt. 
Mapping tree species composition and patterns helps understand 
the extent, variation and ecological impacts of past and ongoing 
disturbance and other factors. Such information can assist pro-
tected area management to direct conservation efforts so as to 
avoid or reverse further degradation of the fragile ecosystem and 
monitor restoration programmes. Also, the information can be 
used to model wildlife abundance and distribution, estimation of 
forest on-ground carbon stocks and to examine the consequences 
of various climate change scenarios. Predicting changes in compo-
sition is instrumental to inform adaptive management strategies 
and conserving biodiversity.
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