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1 | INTRODUCTION
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Abstract

Conservation of mountain ecosystems can benefit from knowledge of habitats and
their distribution patterns. This benefit is particularly true for diverse ecosystems
with high conservation values such as the “Afromontane” rainforests. We mapped
the vegetation of one such forest: the rugged Bwindi Impenetrable Forest, Uganda—a
World Heritage Site known for its many restricted-range plants and animal taxa in-
cluding several iconic species. Given variation in elevation, terrain and human impacts
across Bwindi, we hypothesized that these factors influence the composition and dis-
tribution of tree species. To test this, detailed surveys were carried out using stratified
random sampling. We established 289 georeferenced sample sites (each with 15 trees
>20cm dbh) ranging from 1320 to 2467 ma.s.l. and measured 4335 trees compris-
ing 89 species that occurred in four or more sample sites. These data were analyzed
against 21 digitally mapped biophysical variables using various analytical techniques
including nonmetric multidimensional scaling (NMDS) and random forests. We identi-
fied six tree species assemblages with distinct compositions. Among the biophysi-
cal variables, elevation had the strongest correlation with the ordination (r2=0.5;
p<0.001). The “out-of-bag” (OOB) estimate of the error rate for the best final model
was 50.7% meaning that nearly half of the variation was accounted for using a limited
set of variables. We demonstrate that it is possible to predict the spatial pattern of
such a forest based on sampling across a highly complex landscape. Such methods

offer accurate mapping of composition that can guide conservation.

KEYWORDS
Bwindi impenetrable Forest, elevation gradient, human disturbance, random forests,
vegetation mapping

of such highlands as refugia when climate varies. Understanding

these systems, their biota and their needs and dependencies is
Mountain ecosystems often possess high conservation value due to challenging (Perrigo et al., 2020; Trew & Maclean, 2021). Mountain
their diverse and often geographically restricted biota. This diver- landscapes create complex interacting environmental gradients
sity and rarity arises both from the sharp habitat gradients and nu- often covering broad ranges in temperature, moisture, illumi-

merous habitats often found within a compact region, and the role nation, nutrients, disturbance processes and histories (Ghazoul
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& Sheil, 2010; Richter, 2008). Many environmental factors vary
with elevation, leading to some characteristic zonation patterns
(Hamilton, 1975; Hedberg, 1951; Schmitt et al., 2010). Plant com-
munities are further structured at a local scale by topography, re-
flecting differences in soil depth, structure, moisture, nutrients,
exposure and aspect contributing to local variations in suitabil-
ity for different plants to establish and persist (Eilu et al., 2004;
Ghazoul & Sheil, 2010; Lovett et al., 2001). Tropical species are
known to be sensitive to disturbance and shifts in environmen-
tal conditions (Sheil, 2016; Ssali et al., 2017). For example, distur-
bance (the availability of open areas where trees can establish)
have been shown to relax the constraints imposed by competi-
tion and extend effective elevation ranges of some species that
are not constrained by short-range dispersal, particularly those in
secondary forest, to warmer and cooler climates (Mufioz Mazén
et al., 2019). Thus, montane vegetation spatial patterns are a re-
sult of complex interactions between the terrain, local conditions
and histories (Hoersch et al., 2002), as well as interactions among
species such as competition (Pfeffer et al., 2003). This makes the
understanding of relationships between physical features of the
environment and vegetation challenging.

Montane forest is the rarest vegetation type on the African
continent (Linder, 2014; White, 1983), and also among the least
studied (Desalegn & Beierkuhnlein, 2010; Sainge et al., 2019). This
biologically rich and unique “Afromontane” ecosystem is increas-
ingly threatened by deforestation, degradation and defaunation
(Cordeiro et al., 2007; Plumptre et al., 2007), while global climate
change has added new threats (Ayebare et al., 2013 and Ayebare
etal., 2018; Wright et al., 2022). Deforestation is threatening the
high aboveground carbon stock of montane forests (Cuni-Sanchez
et al., 2021). This calls for prioritization of conservation actions to
identify and protect vulnerable species and habitats. Mapping of
forest vegetation can help to assess, plan, and guide conservation
management in addressing these challenges by clarifying what taxa
typically occur where and how these distributions are determined
(Brinkmann et al., 2011; Fjeldsa, 2007). For example, variation in
plant species composition along an elevation gradient is highly cor-
related with dietary variability (Elgart, 2010; Ganas et al., 2004) and
variation in the female population genetic structure (Guschanski
et al., 2008) of mountain gorillas (Gorilla beringei beringei).

Predictive vegetation mapping is defined as predicting the vege-
tation composition across a landscape from mapped environmental
variables (Franklin, 1995). It is normally done using a combination of
field data with digital maps of topography, as well as climatic limiting
factors, facilitated by flexible, algorithmic modeling approaches and
is driven by the need to map vegetation over large areas for con-
servation planning (Evans & Cushman, 2009; Hoersch et al., 2002;
Pfeffer et al., 2003). Availability of biophysical predictor variables
like elevation, temperature and precipitation mapped at relevant
spatial scales and advances in species distribution modeling (Elith
& Leathwick, 2009; Franklin, 2010; Hastie et al., 2009), provide op-
portunities to quantitatively analyze, predict and map the flora of
biodiversity hotspots, if based on field data, or at least are validated
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or informed by field data. This increases our understanding of the
vegetation composition and plant community patterns in relation to
environmental factors. Various approaches are available for predic-
tive mapping of species distributions (Elith et al., 2006; Hijmans &
Elith, 2016). We highlight three general approaches ranked accord-
ing to their “function complexity” (Pearce & Ferrier, 2000): first, are
the earliest and simplest methods that include Bioclim, Domain and
Mahalanobis. These methods do not consistently perform well when
compared with other approaches (Elith et al.,, 2006). Second, are
the generalized regression models—the Generalized Linear Models
(GLM; McCullagh & Nelder, 1989) and Generalized Additive Models
(GAM; Hastie & Tibshirani, 1986). Though more complex than the
first group, the generalized regression models provide mixed results
because the nature of the relationships with the predictor variables
may vary across the range of each species (Franklin, 1995; Moore
et al., 1991). Third, are the nonparametric machine learning tech-
niques that can reveal very complex patterns between species and
physical features of the environment and can yield good predictive
models when data are sufficient (Breiman, 2001; Prasad et al., 2006;
Cutler et al., 2007). The earliest approaches were the Artificial
Neural Networks (ANN) and Classification and Regression Trees
(CART; Breiman etal., 1984). Later models include MaxEnt (Maximum
Entropy; Phillips et al., 2006), Random Forests (RF) (Breiman, 2001),
Boosted Regression Trees (Elith et al., 2009), Multivariate Adaptive
Regression Splines (MARS; Friedman, 1991) and Support Vector
Machines (SVM; Guo et al., 2005). Comparisons among such options
found that RF perform best in mapping current and future species
distributions (Prasad et al., 2006).

Many machine-learning based vegetation mapping studies have
focused on temperate forests, but rarely have they been applied
to explore the complex, highly mixed and species-rich rainforests
in the tropics (Lin et al., 2020). Yet, accurate maps of vegetation
can aid management and contribute to various research as well as
identifying restricted and vulnerable communities and habitats to
support priority conservation planning (Brinkmann et al., 2011;
Sainge et al., 2019). While numerous studies have focused on large
geographical areas, fewer studies have identified and mapped veg-
etation communities along environmental gradients in smaller land-
scapes or mountains (Latt & Parker, 2022). However, local studies
contribute to prioritization of areas in need of urgent conservation
action particularly in biodiversity hotspots at high risk of habitat
degradation and loss (Fjeldsa, 2007; Seddon et al., 2020).

Bwindi Impenetrable Forest in SW Uganda (henceforth “Bwindi”)
is well suited, as a challenging case, for evaluating the performance of
predictive mapping. It is one of the few forests in all of Africa where
lowland and montane forests are in a continuum (Hamilton, 1974
and Hamilton 1975). The forest has a richer tree diversity compared
to other forests in the ecoregion, attributed to high rainfall and soil
characteristics (Eilu et al., 2004). The terrain of Bwindi is extremely
rugged with high topographic diversity (Howard, 1991; Leggat &
Osmaston, 1961). This limits conventional vegetation mapping ap-
proaches such as aerial photo interpretation or data derived from
satellite images as their spatial resolution data is often insufficient
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for mapping vegetation in specific areas such as gullies and steep
slopes where topographic shadows mask the vegetation (Pfeffer
et al., 2003).

The forest also lies in an area with one of the highest rural human
population densities in Africa (Cordeiro et al., 2007). Because of
this, little natural forest persists outside the boundaries of the park
(Twongyirwe et al., 2011). Heavy human disturbance of the past
within the forest greatly modified the vegetation structure and ecol-
ogy (Babaasa et al., 2004; Sheil, 2012; Ssali et al., 2017). Before it be-
came a park, the forest was subjected to a broad gradient of human
disturbance with pit-sawing and poaching being the most widely
distributed in the forest (Howard, 1991; McNeilage et al., 1998),
while mining (gold and tungsten) was concentrated in specific lo-
cations (Butynski, 1984; Harcourt, 1981). Human-induced wildfires
and harvesting of non-timber products impacted the forest periph-
ery (Butynski, 1984; Cunningham, 1996), while numerous human
trails and two public roads traversed the forest (Butynski, 1984;
Harcourt, 1981). Human disturbance across the forest varied greatly
in intensity, distribution and time periods (McNeilage et al., 2001).
Ongoingdisturbance processesinclude localized landslides, forest el-
ephants (Loxodonta cyclotis), occasional wildfires following long peri-
ods of drought, harvesting of poles and wire snaring (Babaasa, 2000;
Hickey et al., 2019; Olupot et al., 2009), and a public road cutting
through the narrow forest corridor and high elevation zone (Barr
etal., 2015). This complexity of factors contributes to making Bwindi
a complex site for investigations of plant communities.

Numerous studies have demonstrated variations in rainfor-
est composition with elevation (Eilu et al., 2004; Hamilton, 1975;
Lieberman et al., 1996; Lovett et al., 2001), topography (Werner &
Hormeier, 2015; Jucker et al., 2018) and with human disturbance
(Chapman & Chapman, 1997; Plumptre, 1996; Ssali et al., 2017).
Given the wide variation in elevation, topography and past and cur-
rent human disturbances across Bwindi Forest and evidence from
elsewhere, we hypothesized that elevation, topography, and human
disturbance, either acting in isolation or in combination, would play
major roles in determining the composition and distribution of tree
species and communities. We carried out extensive ground surveys
followed by multivariate statistical techniques to evaluate a variety
of environmental variables as potential predictive attributes to test

this hypothesis.

2 | METHODS
21 | Studyarea

Bwindi Forest is located in SW Uganda (Figure 1), in the Kigezi
Highlands at the eastern edge of the Albertine Rift (latitude 0°53'-
0°8°S and longitude 29°35- 29°50' E). Covering an area of 331 km?,
Bwindi lies at the North West end of the Kigezi Highlands which are
associated with the up-warping and faulting during the formation of
the Albertine Rift and are underlain by Precambrian shale, phyllite,
quartz, quartzite, schist and granite of the Karagwe-Ankolean System
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(Leggat & Osmaston, 1961). The Government of Uganda (1967) clas-
sified the soils of Bwindi as belonging to the “non-differentiated
humic ferrallitic” types and having been derived from the forego-
ing geological formation, and they are composed of mainly tropical
red earths with an overlying layer of brown to black spongy humus.
The erosive action of the numerous rivers in their youth stage
within the Highlands has caused the topography of the park to be
extremely rugged with narrow, steep-sided valleys and deep gullies
that run in various directions, bound by emergent hill crests lying
between 1190 m in the northwest and 2607 ma.s.l. in the southeast
(Howard, 1991). The forest has been classified as a ‘moist lower mon-
tane forest’ (Hamilton, 1994), ranging from near the upper boundary
of lowland forest to montane forest (Hamilton, 1975).

Information on Bwindi's vegetation cover is limited. A forest type
map prepared by Cahusac (1961) for managing timber harvesting op-
erations is now outdated given the management history of Bwindi
that include more than four decades (from 1947 to 1991) of in-
tense and forest-wide timber harvesting (Howard, 1991; McNeilage
et al., 1998), and whose long-term impact was the creation of a di-
verse patch mosaic of vegetation types differing in age, hence suc-
cession, and broken canopy cover (Babaasa et al., 2004; Sheil, 2012).
Incessant, heavy human and natural disturbances have prevented
reclosure of the forest canopy (Ssali et al., 2017). Previous descrip-
tions of the tree flora of Bwindi were based on general tree species
inventory and limited to a small area of high elevation in the south-
east (Hamilton, 1969; Howard, 1991; Leggat & Osmaston, 1961) or
low elevation in the north (Eilu et al., 2004). Later work on trees
(Davenport et al., 1996), though covering more representative areas
of the forest, recorded only the species encountered but did not geo-
reference the sample sites, preventing spatial analyses and extrap-
olation. Until now, it had remained unclear how forest-wide floristic

patterns were spatially structured in relation to the environment.

2.2 | Study design

To account for the different environmental conditions, we em-
ployed a stratified random sampling approach. The park was di-
vided into five strata based on geological formations visible on the
Digital Elevation Model (DEM) of Bwindi and the starting points on
the boundary of the DEM in each stratum were selected randomly
with the random point function within ArcGIS (version 10.5; ESRI,
Redlands, CA, USA). Line transects were drawn on the DEM in each
stratum from the random starting points to traverse the topographic
positions of the ridges (Figure 1; Table 1). The number and length of
the transects selected varied with area, accessibility and shape of
the strata. We then superimposed the transect drawings on high-
resolution (0.5m) true color, digital aerial photographs of Bwindi.
The aerial photos were visually interpreted along the transects by
drawing polygons around areas perceived to be of uniform tree
community structure based on differences in tone and texture. This
allowed the sample sites to be placed in what we perceived to be
distinct tree communities.
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Central

FIGURE 1 Location of Bwindi Impenetrable National Park, Uganda, and of tree sampling transects and sample sites (red dots) among the

strata superimposed on a Digital Elevation Model of the study area.

No. of sample points
Transect elevation

TABLE 1 Sampling design for trees
(220cm dbh) for floristic gradient

Stratum range (ma.s.l.) Valley Hillside Ridge
Central 2014-2237 8 31 16
East 2020-2467 1 59 2
South 1479-2342 3 50 11
North 1320-1732 3 48 6
West 1479-2124 2 31 10
All 1320-2467 17 219 45
2.3 | Tree species sampling

We carried a printed copy of the digitized polygons, overlaid
with a coordinate grid, and used a hand-held Global Positioning
System (GPS) device to locate the digitized polygons in the field.
A single random point within each digitized polygon was se-
lected for tree species sampling. At each random sample point,
we used the point-to-tree distance technique or plotless sam-
pling method to sample trees (Hall, 1991; Klein & Vilcko, 2006;
Sheil et al., 2003). This technique involved selecting the nearest
15 trees (220 cm dbh) around the random center-point. The se-
lected trees were identified to species level and we measured
the diameter at breast height (dbh) of each individual. We named
the tree species following nomenclature used in Kalema and

Gully Total modeling in Bwindi Impenetrable National

Park, Uganda.
56

63
66
58
46
289

o W =~ N B -

Hamilton (2020). The distance from the sample site center-point
to the 15th farthest tree was measured and regarded as the
sample site radius. This procedure is suitable for rapid and ro-
bust assessments of vegetation where tree density varies, such
as in patchy and disturbed tropical forest (Klein & Vilcko, 2006;
Sheil et al., 2003). At each center-point, eight environmental at-
tributes were recorded: aspect—as the compass direction fac-
ing down slope; and steepness of the slope using a clinometer.
Untransformed aspect and slope are poor for quantitative analy-
sis, so slope was transformed to a more suitable index by taking
the sine of the slope in degrees; aspect was also transformed
into a suitable index by taking the negative cosine of the angle in
degrees minus 35(McCune & Grace, 2002). Four physiographic
positions of valley, hillside, ridge tops and gully were simply
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recorded as “1” if the sample site was in that physiographical
class and “0” otherwise. The final recorded site characteris-
tics consisted of spatial variables—the Universal Transverse
Mercator (UTM) coordinates of easting and northing (datum
WGS 84) using a hand-held GPS unit, standardized to zero mean
and unit variance. All the data were collected at 289 sample sites

spread across the forest (Figure 1).

2.4 | Biophysical predictor variables

We acquired 20 digitally mapped biophysical variables sum-
marized in Table 2 and detailed in Appendix S1. These were:
the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) Global Digital Elevation Model (GDEM)
30x30m Version 2 (http://gdem.ersdac.jspacesystems.or.jp/
), and nineteen 1-km-scale (30sec) bioclimatic variables, that
include 11 temperature and eight precipitation variables from
WorldClim version 2 (http://worldclim.org/version2.1; 1970-
2000; Fick & Hijmans, 2017). We clipped the ASTER GDEM and
the 19 bioclimatic rasters to a window covering Bwindi Forest
only. Lastly, the human disturbance across the park was based
on the combined relative encounter of human activity signs that
were likely to have an impact on vegetation - wood cutting, bee
hives, old pitsaw sites, disused mineral extraction pits, snares, and
fireplaces (McNeilage et al., 1998). We used the geo-references
of all the 289 sample sites to extract site values from the predic-
tor rasters. We constructed an environmental matrix of extracted
variable values together with site measurements (aspect, slope,
topographic position and x, y point coordinates) and tested for
pairwise collinearity and one of any pair of highly correlated vari-
ables (Pearson r>0.75) discarded (Table S1).

TABLE 2 A summary of potential explanatory variable
names and descriptions for floristic gradient modeling in Bwindi
Impenetrable National Park, Uganda.

Biophysical variable # of
name variables Reference
Temperature 1 Fick and Hijmans (2017)
Precipitation 8 Fick and Hijmans (2017)
30m Digital Elevation 1 NASA & METI (2011)
Model
Human disturbance 1 McNeilage et al., (1998)
Steepness of the slope 1 Field measurement
Aspect 1 Field measurement
Ridge tops 1 Field measurement
Valley 1 Field measurement
Gully 1 Field measurement
Hillside 1 Field measurement
Latitude 1 Field measurement
Longitude 1 Field measurement
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2.5 | Dataanalyses

Based on field data, a sample sites-versus-species matrix (using
basal area values of each tree species relative to the area of the
sample site [m?ha™]) was created. We only considered tree spe-
cies occurring in more than four sample sites, resulting in a 289
sample site by 89 tree species matrix. The data were natural
log-transformed following the generalized procedure (McCune
& Grace, 2002) to minimize the influence of large trees. We sub-
jected the data matrix to various multivariate techniques to iden-
tify associations and spatial patterns among the tree species using
R software (version 4.2.1; R Core Team, 2022). To describe the
different tree species assemblages within our study area, we clus-
tered the sample sites with similar tree species that tend to occur
together using a polythetic, agglomerative hierarchical cluster-
ing (HC) with the flexible beta linkage method (f=-0.25; Lance
& Williams, 1966; Legendre & Legendre, 1998) with the agnes
function and Bray-Curtis as a distance measure. The clustering
results were portrayed by a dendrogram or clustering tree. We
determined the optimal number of clusters using Indicator Species
Analysis (ISA) procedure, described below. Because we had nu-
merous sample sites (n=289), we simplified the presentation using
composite sample sites from the original sample sites by comput-
ing the centroid of each of the cluster as the mean of the basal
area/ha of each tree species per cluster.

We used Multi-Response Permutation Procedures (MRPP) and
a Mantel's test to test for differences in composition between the
clusters. We also utilized ISA, a method that combines frequency
and mean abundance tables, to identify the characteristic tree spe-
cies for each cluster. Statistical significance of the indicator tree spe-
cies was determined by random permutations for each species at
p <.05 significance level. Indicator values vary from O (no indication)
to 1 (perfect indication).

A Kruskal's nonmetric multidimensional scaling (NMDS) based
on Bray-Curtis coefficient was used to evaluate the ecological ten-
dencies reflected in the cluster dendrogram and the relationship
between sample sites, clusters and environmental variables. The
sample sites were ordinated, then overlaid with the cluster centroids
from cluster analysis with surrounding confidence ellipses at +2 SD
from the mean (enclosing approximately 95% of sample sites within
each cluster). Lastly, 12 least correlated site environmental variables
(Table 2) were fitted onto the ordinations using 1000 permutations.

We applied RF techniques to predict and map the spatial distribu-
tion of the clusters (Evans & Cushman, 2009; Lin et al., 2020; Prasad
et al., 2006). RF is a data mining technique that should produce
accurate predictions without overfitting the data (Breiman, 2001;
Breiman & Cutler, 2003). In R software, it is implemented in the
function ‘randomForest’ in a package with same name (Liaw &
Wiener, 2002). In RF, bootstrap samples are drawn to construct
multiple trees; each tree is grown with a randomized subset of pre-
dictors, hence the name ‘random’ forests. A large number of trees
(500 to 2000) are grown, hence a ‘forest’ of trees. The number of
predictors used to find the best split at each node is a random subset
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of the total. The trees are grown to maximum size without pruning,
and aggregation is by averaging the trees. Out-of-bag (OOB) samples
are used to calculate an unbiased error rate and variable importance,
eliminating the need for a test set or cross-validation. Because a
large number of trees are grown, there is limited generalization error
(that is, the true error of the population as opposed to the training
error only), which means that no overfitting is possible, a useful fea-
ture for prediction. By growing each tree to maximum size without
pruning and selecting only the best split among a random subset at
each node, RF maintains some ability for prediction (Breiman, 2001).
Random predictor selection diminishes correlation among unpruned
trees and reduces bias; by taking an ensemble of unpruned trees,
variance is also moderated. RF provides several metrics that aid in
interpretation. The importance of each predictor variable is evalu-
ated based on how much worse the prediction would be if the data
for that predictor were permutated randomly. Since our response
variable, the clusters, was a factor (categorical), we performed a
classification procedure in the analysis. Six least correlated variables
(Pearson's r<0.75) that are digitally mapped for the whole park:
isothermality, temperature seasonality, minimum temperature of
the coldest month, annual precipitation, mean temperature of the
coldest quarter and elevation were tested as predictors for cluster
distribution.

3 | RESULTS

We recorded 4335 individual trees (220cm dbh) comprising 121
species in 51 families from 289 sample sites. The sample sites
spanned an elevation of 1320 to 2467 ma.s.l. broadly representing
Bwindi's elevation range and topographic variation. Just 89 tree spe-
cies from 47 families occurred in four or more sample sites and were
included in the subsequent analyses. The richest two sample sites
included 12 species while the poorest sites were 11 each with four
species. The commonest tree was Strombosia scheffleri that occurred
in 130 (45%) sample sites, while the least common species were
nine (Anthocleista vogellii, Antiaris toxicaria, Casearia battiscombei,
Celtis durandii, Dichaetanthera corymbosa, Ficus sur, Hannoa longipes,
Memecylon myrianthum and Pauridiantha callicarpoides) each occur-
ring in only four (1.4%) sample sites.

The cluster dendrogram (Figure 2) grouped the sample sites into
six clusters. This cluster-stage yielded the lowest average summed p-
values and the highest number of significant indicator species based
on ISA (Figure 3). The six groups were further grouped in three pairs,
with clusters 1 and 5 being most similar in composition, while clus-
ters 2 and 6 were more distinct.

The MRPP test showed that the clusters were significantly dif-
ferent from random association (observed delta=0.79, expected
delta=0.89, p<.001). The Mantel test (r=0.32, p<.001) also indi-
cated that the six clusters differed significantly in composition.

In total, 63 indicator tree species proved significant for the six
clusters (summarized in Table 3 and detailed in Table S2). All the spe-
cies, with the exception of Gambeya albida in cluster 4, had indicator
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FIGURE 2 Polythetic, agglomerative, hierarchical clustering
dendrogram depicting the relationships between the composite
clusters. Numbers correspond to the clusters in Table 3 and 4,
Figure 4; Appendix S2 and S3.

values of less than 50% implying that they also occurred, at lower
abundance and frequency, in other clusters. The clusters had nu-
merous indicator species with clusters 2, 5 and 6 having the larg-
est number (14, 14 and 18, respectively), while clusters 1, 3 and 4
had the fewest (6, 7 and 4, respectively). Twenty-four species were
pioneers (early successional) and mid-successional species (non-
pioneer light demanders, NPLDs), spread across the clusters.

NMDS resulted in a 3-axis optimal solution and a good fit with
a clear positive relationship between observed community dis-
similarity and ordination distances. The NMDS ordination diagram
produced a dense cluster of sample site points and HC analysis
confidence ellipses that greatly overlapped on all the three axes
(Figure S1). The sample site points that were positioned where the
ellipses intersected did not belong exclusively to one cluster but had
compositions indicative of two or more clusters. The overall pat-
terns show a complex range of variables that show consistent and
nonrandom relationships to species composition and distribution
(p<.001). The strongest correlations were observed for elevation
and longitude, but ridge-top, precipitation, temperature and human
disturbance factors also showed a nonrandom role (Figure S2). Since
elevation and longitude arrows were close and pointed in the same
direction, it means they are positively correlated implying that clus-
ters 2, 3, 4 and 6 positioned along the direction of the arrows are
depicted to be at high elevation to the east of the park.

The RF predictive map for the six clusters (Figure 4) and descrip-
tion of the clusters (Table 3 and Table S2), revealed distinct vegeta-
tion geographically arranged along the north-west and south-east
latitudinal and longitudinal axes of Bwindi. Cluster 1 (white) and 5
(light green) were largely in areas north and west of Bwindi, while
cluster 2 (pink) and 6 (dark green) were primarily in the extreme
southeasterly areas. Clusters 3 (yellow orange) and 4 (yellow green)
were in the middle of the forest. However, in some areas, the clus-
ters formed mosaics, with patches of cluster 6 within clusters 2 and
5, while those of cluster 2 were within cluster 5, and those of cluster
1 within clusters 2 and 5. We found no evidence of any of our six
clusters being more or less associated with forest edges or large gaps
located a distance from the forest edges.
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FIGURE 3 Changesinsummed 45
p-values and number of indicator tree
species with p<.05 from randomization
tests across 2-16 clusters.

40

35

30

25

Summed p-value

15

—&— Summed p-value

1 ASSOCIATION FOR 7 of 13
b I OTROPICA ”7;)(* TROPICAL BIOLOGY Wl LEYJ—

AND CONSERVATION

70
\ . 60
\ B so £
2
©
2
o
40 £
IS
©
=
=
30 g
@
-
2
20 2
10
0
6 8 10 12 14 16 18

No. of cluster groups

—&—No. of significant indicators

TABLE 3 Indicator tree species for the clusters in Bwindi Impenetrable National Park, Uganda.

Elevation range; mean elevation (ma.s.l.); and location of # Indicator # Pioneer and
Cluster number # Sample sites cluster tree species NPLD species
1 58 1372-2350; 1956 6 3
Mid-elevation transitional forest in the center and west of
the park
2 35 1778-2407; 2195 14 7
Submontane forest on ridge-tops in the centre-south of the
park
3 45 1479-2217; 2023 7 2
Mid-elevation forest in the center-south of the park
4 33 1773-2311; 2188 4 2
Sub-montane forest in the center-south of the park
5 75 1320-2131; 1696 14 5
Low-elevation forest in the north, forest corridor and west
of the park
6 43 1416-2467; 2203 18 5

High elevation montane forest to the southeast of the park

Estimated importance of the variables in predicting cluster com-
position and spatial distribution estimates revealed that elevation
had the greatest estimated importance in terms of both accuracy
and Gini score (Figure 5). Only two other variables had importance
of nearly similar magnitude for predictive accuracy: precipitation
of driest month and annual precipitation. The OOB estimate of the
error rate was 50.7% (Table 4).

4 | DISCUSSION

Our study shows that the methods we used can be useful for eco-
logical understanding of mountain habitats. We demonstrate that
the RF model, supported by multivariate statistical techniques,
was effective in delineating tree communities and predictively
mapping them in response to complex topographic gradients,

compounded by vegetation that is highly mixed, species-rich with
a heavy and long disturbance history. For the final result to be
optimal, all our data were used in training the model instead of for-
feiting them for an independent validation. Thus, we chose to use
the OOB estimate of the error rate provided in RF. Our OOB error
statistic was moderately high. Brinkmann et al. (2011) and Lin
et al. (2020) attribute inaccuracies of predicted maps to mapped
predictor variables being too coarse to provide exact variable esti-
mates for each sample site, especially, in hilly and topographically
diverse areas or noninclusion of causal factors (Barbet-Massin &
Jetz, 2014; Bedia et al., 2013). But more important could be the
observation of Volkov et al. (2003) that the distribution of plant
abundances in natural communities at local scales is (or can be
considered in effect to be) largely random with species being eco-
logically equivalent, or structured more by dispersal than by differ-
ences in abiotic conditions. Pfeffer et al. (2003) suggest that most
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plant species are tolerant to a wide range of varying conditions,
and therefore, there can never be a perfect species-environment
correlation. Moreover, species data tend to be redundant and noisy
(Kent, 2012; Ter Braak, 1995) making it difficult to completely ex-
plain how a rich community of vegetation is determined by a lim-
ited set of interacting factors (Pfeffer et al., 2003). Nonetheless,
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FIGURE 4 Predictive map of tree species assemblage spatial
patterns in Bwindi Impenetrable National Park, Uganda. Numbers
in the legend correspond to the clusters in Tables 3 and 4, Figure 2;
Appendix S2 and S3.

the most influential variables indicated by the RF model are those
expected to influence large scale patterns of montane vegetation
(Hedberg, 1951; Lieberman et al., 1996; Eilu et al., 2004; Schmitt
et al., 2010; Sainge et al., 2019; Lin et al., 2020). This, together
with the fact that at least half of the tree community variation was
accurately predicted using a limited set of predictor variables, per-
mits us to predictively map the vegetation at unsampled locations
with reasonable confidence.

Our approach to vegetation mapping in mountains provides
an alternative to the sometimes limited approaches provided by
remote sensing (Pfeffer et al., 2003). Remote sensing is poor at
mapping plant communities that merge along elevational gradients
(Singh et al., 2001; Townsend & Walsh, 2001). In addition, remote
detection of specific plant species is most likely to be viable if the
target species possess unique growth forms, phenology or other
readily detectable characteristic (He et al., 2015). Vegetation
types with the same overall physiognomy or plant form like trees,
but with varied in floristic composition are difficult to differen-
tiate using both spectroscopy and remote sensing, resulting in
misinterpretation and misclassification of remote sensing images
(Townsend & Walsh, 2001).

Several other factors that can influence vegetation composi-
tion of communities were not considered in our model. Inclusion
of geology, edaphic conditions, hydrological regime, interspecific

elevation o elevation o
prec_min o prec_ann o
temp_iso o prec_min o
FIGURE 5 Variable importance plot
prec_ann < prec_coq 2 generated by RF algorithm showing
the ranked importance of the model's
prec_coq o temp_seas [e] predictive factors, measured using the
mean decrease accuracy and mean
temp_seas |0 temp_iso o decrease in gini index. The labels indicate:
prec_min=precipitation of the driest
month; prec_ann=annual precipitation;
! ! ! ! I I ! ! I prec_coq=precipitation of the coldest
70 8 90 100 110 0 10 20 30 quarter; temp_iso=isothermality; temp_
MeanDecreaseAccuracy MeanDecreaseGini seas = precipitation seasonality.
TABLE 4 Confusion matrix of OOB
Cluster 1 2 3 4 5 6 Class error % . .
estimate of error rate for the predictive
1 14 6 9 16 5 75.4 tree assemblage spatial distribution
2 3 15 6 4 2 5 571 pattern map of Bwindi Impenetrable
3 5 8 20 6 o sa4 National Park, Uganda. The cluster
’ number corresponds to those in Table 3,
4 3 8 5 16 0 51.5 Figures 2 and 4.
5 10 1 5 2 50 4 30.5
6 2 4 1 2 8 24 41.5
OOB estimate of error rate 50.7
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interactions, dispersal ability, and biotic or abiotic interactions
(Godsoe & Harmon, 2012) might enable more accurate description
of the vegetation pattern if suitable data were available.

A combined HC analysis and ISA identified six tree communi-
ties across Bwindi each with their own indicator species. The nu-
merous indicator species for each tree community, without a single
species being dominant, is indicative of a large proportion of the
forest being secondary vegetation communities. In many tropical
forests, single-species dominance is a characteristic of mature
(climax) communities (Eggeling, 1947; Connell & Lowman, 1989;
Sheil & Burslem, 2003). Furthermore, close to 40% of the indica-
tor species, spread across the tree communities, were pioneers
such as Macaranga barteri at low elevation and Polyscias fulva and
Neoboutonia macrocalyx at high elevation and mid-successional
or non-pioneer light demanders (NPLDs) such as Gambeya albida,
Newtonia buchananii, and Entandrophragma excelsum. This is further
evidence that considerable areas of the forest are in early succes-
sion stages. Human disturbances of the past, particularly pitsaw-
ing, were spread throughout the forest (Howard, 1991; McNeilage
et al., 1998). However, the disturbances varied in intensity and
were concentrated in different areas at different time periods
(McNeilage et al., 2001). This led the forest vegetation to be struc-
turally and compositionally complex, with a mosaic of patches of
disturbed and regenerating forest, differing in size and succession
stage, being superimposed on differences caused by topography
and possibly soil characteristics. It could be a very long time be-
fore the forest regenerates to the primary (climax) stage. Aside
from the past disturbances, there are additional reasons why much
of Bwindi's vegetation remains in early successional stages. Ssali
et al, (2017) found that forest regrowth in the many gaps dom-
inated by bracken fern scattered across the forest is impeded in
multiple ways including repeated damage and high seed predation.
The prevalence of pioneer species and NPLDs we found across the
forest likely reflect similar influences (Chapman & Chapman, 1997).
The observed species have longer seed dormancy, greater growth
potential and are less constrained by dispersal and seed predation
(Mufioz Mazoén et al., 2019; Sheil, 2016). Late successional species
may take long periods to reestablish due to of the scarcity of re-
maining seed sources and limited dispersal (Ssali et al., 2017).

Ordination analysis demonstrated that the tree communities
were mainly arranged along two collinear gradients—elevation
and sample site's position in the forest landscape (i.e., longitude).
Bwindi is elongated from north-west to south-east, exhibiting a
gradual rise in mean elevation in this direction. Although eleva-
tion had the strongest relationship with tree composition, ad-
ditional variability was explained by topographic position and
climate (temperature and precipitation). Topography has multi-
ple potential mechanisms through which to impact vegetation:
for example, the soils of slopes and lower valleys are generally
moister, better structured, and richer in plant nutrients than the
more drought-prone and better illuminated ridge tops (Ghazoul &
Sheil, 2010; Jucker et al., 2018). For example, before it was sought
out and harvested in accessible areas, the slow-growing and
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shade-tolerant Podocarpus latifolius was common on Bwindi's hill-
ridges >2000ma.s.l. (Hamilton, 1994). Our results, as expected,
show that temperature tends to decline as elevation increases
(Lieberman et al., 1996) with tolerance of low-temperatures often
offset by lower competitive ability under warmer conditions
(Sheil, 2016; Slik et al., 2009). Our RF model indicated that annual
precipitation and precipitation of driest month also contribute to
differences in tree composition. While many variables are clearly
related to tree community patterns these are often correlated and
cannot be unambiguously assigned to distinct mechanisms so their
individual contributions could not be analytically separated.

Whilst the influence of elevation on tree community composi-
tion and distribution was systematically identified and statistically
demonstrated, the tree communities in Bwindi do not form distinct
zones along the elevation gradient. This accords with results from
other montane forests such as Udzungwe Mountains National
Park, Tanzania (Lovett et al., 2006). There are multiple possible
reasons for lack of elevation zoning. We highlight two: Bwindi is
one of the few forests in Africa where lowland and highland for-
ests are in a continuum (Hamilton, 1974 and Hamilton 1975). In
a rather limited area, there is intermingling of lowland tree spe-
cies that reach their upper boundary and highland tree species at
their lower boundary. Our results showed an overlap of the cluster
confidence ellipses on all the 3-dimensions of the ordination di-
agram and numerous sample sites and species positioned where
the ellipses intersect indicating that they can reasonably belong to
more than one community (Kent, 2012; Townsend & Walsh, 2001).
In addition, lack of perfect indicator species (having indicator
value <0.5) implies that numerous tree species are spread widely
but are most frequent and abundant within the tree community
they indicate, presumably representing their ecological optimum
(Austin, 2013; Mueller-Dombois & Ellenberg, 2002). The contin-
uous nature of change of plant species in moist forest communi-
ties is related to a continuous change in environmental variables
(i.e., precipitation and temperature) along the elevation gradi-
ent (Lovett & Lindberg, 1993). Secondly, the intense forest-wide
human disturbance of the past that involved mainly large-scale
species-selective cutting and removal of large hardwoods could
have relaxed the constraints imposed by competition, making it
possible for some tree species to colonize the disturbed areas
resulting in extension of their elevation range limits (Sheil, 2016;
Mufioz Mazon et al., 2019). In addition to natural disturbances
such as drought and occasional landslides, human disturbances
such as clearing, timber cutting, fires and many others have oc-
curred at different times in different parts of the forest, leading to
spatial patterns that obscure what would be expected in a system
lacking human impacts (Chapman & Chapman, 2004).

5 | CONCLUSIONS

Prediction of vegetation across an extensive mountain landscape

using mapped environmental variables offers a potential in addition
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to remote sensing. Remote sensing is challenging in species rich
mountainous regions like Bwindi with considerable topographic
complexity and a multifaceted history of natural and human impacts.
Efforts should be geared towards accessing and refining predictor
variables at the appropriate scales so as to further improve such
mapping.

We see that Bwindi is a mosaic of patches of different suc-
cessional stages resulting from a complex history. Recovery to
late successional forest is slow, likely due to seed limitation and
continued disturbances. Small island forests such as Bwindi, sur-
rounded by dense human populations, are under immense pres-
sure and their long-term viability and survival remain in doubt.
Mapping tree species composition and patterns helps understand
the extent, variation and ecological impacts of past and ongoing
disturbance and other factors. Such information can assist pro-
tected area management to direct conservation efforts so as to
avoid or reverse further degradation of the fragile ecosystem and
monitor restoration programmes. Also, the information can be
used to model wildlife abundance and distribution, estimation of
forest on-ground carbon stocks and to examine the consequences
of various climate change scenarios. Predicting changes in compo-
sition is instrumental to inform adaptive management strategies

and conserving biodiversity.

AUTHOR CONTRIBUTIONS

DB conceived the idea, designed the study and collected field data;
DB, JF, and CS collaborated on the data analyses and manuscript
writing; TK and DS reviewed and edited the manuscript; all authors
discussed and approved the manuscript.

ACKNOWLEGMENTS

This study was supported by the Institute of Tropical Forest
of Mbarara University of Science and Technology, Wildlife
Conservation Society, the International Foundation for Science,
the Mohammed bin Zayed Species Conservation Fund, the British
Ecological Society, and the University of Massachusetts, Amherst.
We thank two anonymous reviewers for their useful comments on
a previous version of this manuscript, and the Subject Editor Laura
Schneider for the insightful suggestions which allowed us to improve

the present paper.

CONFLICT OF INTEREST STATEMENT
The authors have no relevant financial or non-financial interests to

disclose.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly avail-
able in the Dryad Digital Repository: https://doi.org/10.5061/dryad.
rv15dv4fp (Babaasa et al., 2024).

ORCID
Dennis Babaasa
Charles M. Schweik

https://orcid.org/0000-0002-4855-4534
https://orcid.org/0000-0002-0199-3740

BABAASA ET AL.

Todd K. Fuller
Douglas Sheil

https://orcid.org/0000-0002-4805-5460
https://orcid.org/0000-0002-1166-6591

REFERENCES

Austin, M. P. (2013). Vegetation and environment: Discontinuities and
continuities. In E. van der Maarel & J. Franklin (Eds.), Vegetation
ecology (2nd ed., pp. 71-106). Wiley-Blackwell.

Ayebare, S., Plumptre, A. J., Kujirakwinja, D., & Segan, D. (2018).
Conservation of the endemic species of the Albertine rift under fu-
ture climate change. Biological Conservation, 220, 67-75. https://doi.
org/10.1016/j.biocon.2018.02.001

Ayebare, S., Ponce-Reyes, R., Segan, D. B., Watson, J. E. M., Possingham,
H.P., Seimon, A, & Plumptre, A. J. (2013). Identifying climate resilient
corridors for conservation in the Albertine rift. Unpublished report by
the Wildlife Conservation Society to MacArthur Foundation.

Babaasa, D. (2000). Habitat selection by elephants in Bwindi impenetra-
ble National Park, Uganda. African Journal of Ecology, 38, 116-122.
http://ir.must.ac.ug/xmlui/handle/123456789/1683

Babaasa, D., Eilu, G., Kasangaki, A., Bitariho, R., & McNeilage, A. (2004).
Gap characteristics and regeneration in Bwindi impenetrable
National Park, Uganda. African Journal of Ecology, 42, 217-224.
https://doi.org/10.1111/j.1365-2028.2004.00519.x

Babaasa, D., Finn, J. T., Schweik, C. M., Fuller, T. K., & Sheil, D. (2024).
Predictive mapping of tree species assemblages in an African mon-
tane rainforest. Biotropica, 00, 1-13. https://doi.org/10.1111/btp.
13302

Barbet-Massin, M., & Jetz, W. (2014). A 40-year, continent-wide, mul-
tispecies assessment of relevant climate predictors for species
distribution modelling. Diversity and Distributions, 20, 1285-1295.
https://doi.org/10.1111/ddi.12229

Barr, R., Arrea, |.B., Asuma, S., Masozera, A.B., & Gray, M. (2015). Pave the
impenetrable? An economic analysis of potential Ikumba-Ruhija road
alternatives in and around Uganda's Bwindi impenetrable National
Park. Conservation Development Strategy. Conservation Strategy
Fund Technical Series No. 35. Sebastopol, CA.

Bedia, J., Herrera, S., & Gutierrez, J. M. (2013). Dangers of using global
bioclimatic datasets for ecological niche modeling. Limitations for
future climate projections. Global and Planetary Change, 107, 1-12.
https://doi.org/10.1016/j.gloplacha.2013.04.005

Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. https://
doi.org/10.1023/A:1010933404324

Breiman, L., & Cutler, A. (2003). Setting up, using, and understanding
Random Forests. http://www.stat.berkeley.edu/users/breiman/rf.
html

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification
and regression trees. Chapman & Hall/CRC.

Brinkmann, K., Patzelt, A., Schlecht, E., & Buerkert, A. (2011). Use of en-
vironmental predictors for vegetation mapping in semi-arid moun-
tain rangelands and the determination of conservation hotspots.
Applied Vegetation Science, 14, 17-30. https://doi.org/10.1111/j.
1654-109X.2010.01097.x

Butynski, T. M. (1984). Ecological survey of the impenetrable Forest (Bwindi)
forest Uganda, and recommendations for its conservation and manage-
ment. Unpublished report to the Uganda Government.

Cahusac, A. B. (1961). Working Plan for the Impenetrable CFR. In G. J.
Leggat & H. A. Osmaston (Eds.), Impenetrable C.F.R. Forest types
(interpretation report 6). Reference map No. KI/45 appendix G (pp.
1961-1971). Uganda Forest Department.

Chapman, C. A., & Chapman, L. J. (2004). Unfavourable successional
pathways and conservation value of logged tropical forest.
Biodiversity and Conservation, 13, 2089-2105. https://doi.org/10.
1023/B:BIOC.0000040002.54280.41

Chapman, C. J., & Chapman, L. J. (1997). Forest regeneration in
logged and unlogged forests of Kibale National Park, Uganda.

85US017 SUOWILLOD BAIERID B|qedl|dde au Aq peusenob e SopIe YO B8N JO SaINI Joy ARIq1T 8UIIUO 4811 UO (SUORIPUOI-PUR-SWLR}WI0Y A8 1M A e1d) 1 pU1UO//SANL) SUORIPUOD PUE SWLB L 83 885 *[202/70/50] U0 Akiqiauliuo Aoiim ‘Hupeg Jrel|ved yoressay puy AisieAlun usbuiuefem Aq ZOgeT dia/TTTT 0T/I0pAL0D A3 ARIq1eu1|UO//SANY WO} popeoiumod ‘2 'v20g ‘62rLyLT


https://doi.org/10.5061/dryad.rv15dv4fp
https://doi.org/10.5061/dryad.rv15dv4fp
https://orcid.org/0000-0002-4855-4534
https://orcid.org/0000-0002-4855-4534
https://orcid.org/0000-0002-0199-3740
https://orcid.org/0000-0002-0199-3740
https://orcid.org/0000-0002-4805-5460
https://orcid.org/0000-0002-4805-5460
https://orcid.org/0000-0002-1166-6591
https://orcid.org/0000-0002-1166-6591
https://doi.org/10.1016/j.biocon.2018.02.001
https://doi.org/10.1016/j.biocon.2018.02.001
http://ir.must.ac.ug/xmlui/handle/123456789/1683
https://doi.org/10.1111/j.1365-2028.2004.00519.x
https://doi.org/10.1111/btp.13302
https://doi.org/10.1111/btp.13302
https://doi.org/10.1111/ddi.12229
https://doi.org/10.1016/j.gloplacha.2013.04.005
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://www.stat.berkeley.edu/users/breiman/rf.html
http://www.stat.berkeley.edu/users/breiman/rf.html
https://doi.org/10.1111/j.1654-109X.2010.01097.x
https://doi.org/10.1111/j.1654-109X.2010.01097.x
https://doi.org/10.1023/B:BIOC.0000040002.54280.41
https://doi.org/10.1023/B:BIOC.0000040002.54280.41

BABAASA ET AL.

Biotropica, 29, 396-412. https://doi.org/10.1111/).1744-7429.
1997.TB00035.X

Connell, J. H., & Lowman, M. D. (1989). Low-diversity tropical rain for-
ests: Some possible mechanisms for their existence. The American
Naturalist, 134(1), 88-119. https://doi.org/10.1086/284967

Cordeiro, N. J., Burgess, N. D., Dovie, D. B., Kaplin, B. A, Plumptre, A. J.,
& Marrs, R. (2007). Conservation in areas of high population den-
sity in sub-Saharan Africa, editorial. Biological Conservation, 134,
155-163. https://doi.org/10.1016/j.biocon.2006.08.023

Cuni-Sanchez, A, Sullivan, M. J. P, Platts, P. J,, Lewis, S. L., Marchant, R.,
Imani, G., Hubau, W., Abiem, I., Adhikari, H., Albrecht, T., Altman,
J., Amani, C., Aneseyee, A. B., Avitabile, V., Banin, L., Batumike,
R., Bauters, M., Beeckman, H., Begne, S. K., ... Zibera, E. (2021).
High aboveground carbon stock of African tropical montane for-
ests. Nature, 596, 536-542. https://doi.org/10.1038/s41586-021-
03728-4

Cunningham, A. B. (1996). People, park and plant use. Recommendations
for multiple-use zones and development alternatives around Bwindi im-
penetrable National Park, Uganda. People and Plants working paper
4. UNESCO.

Cutler, D.R., Edwards, T.C., Jr., Beard, K. H., Cutler, A., Hess, K. T., Gibson,
J., & Lawler, J. (2007). Random forests for classification in ecology.
Ecology, 88, 2783-2792. https://doi.org/10.1890/07-0539.1

Davenport, T., Howard, P., & Matthews, R. (1996). Bwindi impenetrable
national park biodiversity report. Forest Department.

Desalegn, W., & Beierkuhnlein, C. (2010). Plant species and growth forms
richness along altitudinal gradients in the southwest Ethiopian
highlands. Journal of Vegetation Science, 21, 617-626. https://doi.
org/10.1111/j.1654-1103.2010.01177.x

Eggeling, W. J. (1947). Observations on the ecology of the Budongo rain
forest, Uganda. Journal of Ecology, 34, 20-87. https://doi.org/10.
2307/2256760

Eilu, G., Hafashimana, D. L., & Kasenene, J. M. (2004). Density and spe-
cies diversity of trees in four tropical forests of the Albertine rift,
western Uganda. Diversity and Distributions, 10, 303-312. https://
doi.org/10.1111/j.1366-9516.2004.00089.x

Elgart, A. A.(2010). Are the gorillas in Bwindi impenetrable National Park
“true” mountain gorillas? American Journal of Physical Anthropology,
141, 561-570. https://doi.org/10.1002/ajpa.21172

Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan,
A., Hijmans, R. J., Huettmann, F., Leathwick, J., Lehmann, A., Li,
J., Lohmann, L. G,, Loiselle, B., Manion, G., Moritz, C., Nakamura,
M., Nakazawa, Y., Overton, J., Peterson, A. T., ... Zimmerman, N.
(2006). Novel methods improve prediction of species' distributions
from occurrence data. Ecography, 29, 129-151. https://doi.org/10.
1111/j.2006.0906-7590.04596.x

Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological
explanation and prediction across space and time. Annual Review of
Ecology, Evolution, and Systematics, 40, 677-697. https://doi.org/10.
1146/annurev.ecolsys.110308.120159

Elith, J., Leathwick, J. R., & Hastie, T. (2009). A working guide to boosted
regression trees. Journal of Animal Ecology, 77, 802-881. https://
doi.org/10.1111/j.1365-2656.2008.01390.x

Evans, J. S., & Cushman, S. A. (2009). Gradient modeling of conifer spe-
cies using random forests. Landscape Ecology, 24, 673-683. https://
doi.org/10.1007/s10980-009-9341-0

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial
resolution climate surfaces for global land areas. International
Journal of Climatology, 37, 4302-4315. https://doi.org/10.1002/
joe.5086

Fjeldsa, J. (2007). How broad-scale studies of patterns and processes
can serve to guide conservation planning in Africa. Conservation
Biology, 21, 659-667. https://doi.org/10.1111/j.1523-1739.2007.
00706.x

Franklin, J. (1995). Predictive vegetation mapping: Geographic model-
ling of biospatial patterns in relation to environmental gradients.

1 ASSOCIATION FOR 11 0of 13
b I O TROP I CA :;f(“ TROPICAL BIOLOGY Wl LEYJ—

AND CONSERVATION

Progress in Physical Geography: Earth and Environment, 19, 474-499.
https://doi.org/10.1177/030913339501900403

Franklin, J. (2010). Mapping species distributions: Spatial inference and pre-
diction. Cambridge.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The
Annals of Statistics, 19, 1-141. https://doi.org/10.1214/a0s/11763
47963

Ganas, J., Robbins, M. M., Nkurunungi, J. B., Kaplin, B. A., & McNeilage,
A. (2004). Dietary variability of mountain gorillas in Bwindi impen-
etrable National Park, Uganda. International Journal of Primatology,
25(5), 1043-1072.

Ghazoul, J., & Sheil, D. (2010). Tropical rain forest ecology, diversity and
conservation. Oxford University Press.

Godsoe, W., & Harmon, L. J. (2012). How do species interactions affect
species distribution models? Ecography, 35, 811-820. https://doi.
org/10.1111/j.1600-0587.2011.07103.x

Government of Uganda. (1967). Atlas of Uganda (2nd ed.). Lands and
Survey Department.

Guo, Q., Kelly, M., & Graham, C. (2005). Support vector machines for
predicting distribution of sudden oak death in California. Ecological
Modeling, 182, 75-90. https://doi.org/10.1016/j.ecolmodel.2004.
07.012

Guschanski, K., Caillaud, D., Robbins, M., & Vigilant, L. (2008). Females
shape the genetic structure of a gorilla population. Current
Biology, 18(22), 809-1814. https://doi.org/10.1016/j.cub.2008.
10.031

Hall, J. (1991). Multiple-nearest-tree sampling in an ecological survey of
Afromontane catchments forests. Forest Ecology and Management,
42, 245-266. https://doi.org/10.1016/0378-1127(91)90028-T

Hamilton, A. C. (1969). The vegetation of south-west Kigezi. Uganda
Journal, 33, 175-199.

Hamilton, A. C. (1974). Distribution patterns of forest trees in Uganda
and their historical significance. Vegetatio, 29, 29-32. https://www.
jstor.org/stable/20036795

Hamilton, A. C. (1975). A quantitative analysis of altitudinal zonation in
Uganda forests. Vegetatio, 30, 99-106. https://doi.org/10.1007/
BF02389611

Hamilton, A. C. (1994). Tropical rain forest ecosystems. In H. Leith & M. J.
Werger (Eds.), Ecosystems of the world, 14B (pp. 155-182). Elsevier.

Harcourt, A.(1981). Can Uganda's gorillas survive? A survey of the Bwindi
Forest reserve. Biological Conservation, 19, 269-282. https://doi.
org/10.1016/0006-3207(81)90003-3

Hastie, T., & Tibshirani, R. (1986). Generalized additive models. Statistical
Science, 1(3), 297-318.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical
learning: Data mining, inference, and prediction (2nd ed.). Springer.

He, K. S., Bethany, A., Cord, A. F., Rocchini, D., Tuanmu, M., Schmidtlein,
S., Turner, W., Wegmann, M., & Pettorelli, N. (2015). Will remote
sensing shape the next generation of species distribution models?
Remote Sensing in Ecology and Conservation, 1, 4-18. https://doi.org/
10.1002/rse2.7

Hedberg, O. (1951). Vegetation belts of the east African mountains.
Svensk Botanisk Tidskrift, 45, 140-202.

Hickey, J. R., Uzabaho, E., Akantorana, M., Arinaitwe, J., Bakebwa, .,
Bitariho, R., Eckardt, W., Gilardi, K. V., Katutu, J., Kayijamahe, C.,
Kierepka, E. M., Mugabukomeye, B., Musema, A., Mutabaazi, H.,
Robbins, M. M., Sacks, B. N., & Zikusoka, G. K. (2019). Bwindi
Sarambwe 2018. Surveys: Monitoring mountain gorillas, other select
mammals, and human activities. GVTC.

Hijmans, R., & Elith, J. (2016). Species distribution modelling with R.
https://rspatial.org/raster/sdm

Hoersch, B., Braun, G., & Schmidt, U. (2002). Relation between landform
and vegetation in alpine regions of Wallis, Switzerland: A multi-
scale remote sensing and GIS approach. Computers, Environment
and Urban Systems, 26, 113-139. https://doi.org/10.1016/50198
-9715(01)00039-4

85US017 SUOWILLOD BAIERID B|qedl|dde au Aq peusenob e SopIe YO B8N JO SaINI Joy ARIq1T 8UIIUO 4811 UO (SUORIPUOI-PUR-SWLR}WI0Y A8 1M A e1d) 1 pU1UO//SANL) SUORIPUOD PUE SWLB L 83 885 *[202/70/50] U0 Akiqiauliuo Aoiim ‘Hupeg Jrel|ved yoressay puy AisieAlun usbuiuefem Aq ZOgeT dia/TTTT 0T/I0pAL0D A3 ARIq1eu1|UO//SANY WO} popeoiumod ‘2 'v20g ‘62rLyLT


https://doi.org/10.1111/J.1744-7429.1997.TB00035.X
https://doi.org/10.1111/J.1744-7429.1997.TB00035.X
https://doi.org/10.1086/284967
https://doi.org/10.1016/j.biocon.2006.08.023
https://doi.org/10.1038/s41586-021-03728-4
https://doi.org/10.1038/s41586-021-03728-4
https://doi.org/10.1890/07-0539.1
https://doi.org/10.1111/j.1654-1103.2010.01177.x
https://doi.org/10.1111/j.1654-1103.2010.01177.x
https://doi.org/10.2307/2256760
https://doi.org/10.2307/2256760
https://doi.org/10.1111/j.1366-9516.2004.00089.x
https://doi.org/10.1111/j.1366-9516.2004.00089.x
https://doi.org/10.1002/ajpa.21172
https://doi.org/10.1111/j.2006.0906-7590.04596.x
https://doi.org/10.1111/j.2006.0906-7590.04596.x
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1007/s10980-009-9341-0
https://doi.org/10.1007/s10980-009-9341-0
https://doi.org/10.1002/joe.5086
https://doi.org/10.1002/joe.5086
https://doi.org/10.1111/j.1523-1739.2007.00706.x
https://doi.org/10.1111/j.1523-1739.2007.00706.x
https://doi.org/10.1177/030913339501900403
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1111/j.1600-0587.2011.07103.x
https://doi.org/10.1111/j.1600-0587.2011.07103.x
https://doi.org/10.1016/j.ecolmodel.2004.07.012
https://doi.org/10.1016/j.ecolmodel.2004.07.012
https://doi.org/10.1016/j.cub.2008.10.031
https://doi.org/10.1016/j.cub.2008.10.031
https://doi.org/10.1016/0378-1127(91)90028-T
https://www.jstor.org/stable/20036795
https://www.jstor.org/stable/20036795
https://doi.org/10.1007/BF02389611
https://doi.org/10.1007/BF02389611
https://doi.org/10.1016/0006-3207(81)90003-3
https://doi.org/10.1016/0006-3207(81)90003-3
https://doi.org/10.1002/rse2.7
https://doi.org/10.1002/rse2.7
https://rspatial.org/raster/sdm
https://doi.org/10.1016/S0198-9715(01)00039-4
https://doi.org/10.1016/S0198-9715(01)00039-4

120f13 1 ASSOCIATION FOR
4|_WI LEY b I O TRO pl CA ”:f‘ TROPICAL BIOLOGY

AND CONSERVATION

Howard, P. C. (1991). Nature conservation in Uganda's tropical forest re-
serves. [UCN.

Jucker, T., Bongalov, B., Burslem, D. F. R. P,, Nilus, R., Dalponte, M., Lewis,
S. M., Phillips, O. L., Qie, L., & Coomes, D. A. (2018). Topography
shapes the structure, composition and function of tropical for-
est landscapes. Ecology Letters, 21, 989-1000. https://doi.org/10.
1111/ele. 12964

Kalema, J., & Hamilton, A. (2020). Field guide to the forest trees of Uganda.
CABI Oxfordshire.

Kent, M. (2012). Vegetation description and data analysis: A practical ap-
proach (2nd ed.). Wiley-Blackwell.

Klein, C., & Vilcko, F. (2006). A new empirical approach for estimation
in k-tree sampling. Forest Ecology and Management, 237, 522-533.
https://doi.org/10.1016/j.foreco.2006.09.072

Lance, G. N., & Williams, W. T. (1966). A generalised sorting strategy for
computer classification. Nature, 211, 218. https://doi.org/10.1038/
212218a0

Latt, M. M., & Parker, B. B. (2022). Tree species composition and for-
est community types along environmental gradients in Htamanthi
wildlife Santuary, Myanmar: Implications for action prioritization in
conservation. Plants, 11, 2180. https://doi.org/10.3390/plants1116
2180

Legendre, P., & Legendre, L. (1998). Numerical Ecology (2nd ed.). Elsevier
Sciences BV. Amsterdam.

Leggat, G. J., & Osmaston, H. A. (1961). Working plan for the impenetra-
ble central Forest reserve, Kigezi District, western Uganda, 1961-71.
Uganda Forest Department.

Liaw, A., & Wiener, M. (2002). Classification and regression by random
forests. R News, 2(3), 18-22.

Lieberman, D., Lieberman, M., Peralta, R., & Hartshorn, G. S. (1996).
Tropical forest structure and composition on a large-scale altitudi-
nal gradient in Costa Rica. Journal of Ecology, 84, 137-152. https://
doi.org/10.2307/2261350

Lin, H.-Y., Li, C.-F,, Chen, T.-Y., Hsiek, C.-F., Wang, G., Wang, T., & Hu,
J.-M. (2020). Climate-based approach for modeling the distribution
of montane forest vegetation in Taiwan. Applied Vegetation Science,
23, 239-253. https://doi.org/10.1111/avsc.12485

Linder, H. P. (2014). The evolution of African plant diversity. Frontiers in
Ecology and Evolution, 2, 1-14. https://doi.org/10.3389/fevo.2014.
00038

Lovett, G. M., & Lindberg, S. E. (1993). Atmospheric deposition and
canopy interactions of nitrogen in forests. Canadian Journal
of Forest Research, 23, 1603-1616. https://doi.org/10.1139/
x93-200

Lovett, J. C., Clarke, G. P., Moore, R., & Morrey, G. H. (2001). Elevational
distribution of restricted range forest tree taxa in eastern Tanzania.
Biodiversity and Conservation, 10, 541-550. https://doi.org/10.
1023/A:1016610526242

Lovett, J. C., Marshall, A. R., & Carr, J. (2006). Changes in tropical for-
est vegetation along an altitudinal gradient in the Udzungwa
Mountains National Park, Tanzania. African Journal of Ecology, 44,
478-490. https://doi.org/10.1111/j.1365-2028.2006.00660.x

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.).
Chapman &.

McCune, B., & Grace, J. B. (2002). Analysis of ecological communities. MjM
Software Design.

McNeilage, A., Plumptre, A., Brock-Doyle, A., & Vedder, A. (1998). Bwindi
impenetrable National Park, Uganda gorilla and large mammal cen-
sus. In WCS working paper No. 14, Wildlife Conservation Society.
Wildlife Conservation Society.

McNeilage, A., Plumptre, A. J., Brock-Doyle, A., & Vedder, A. (2001). Bwindi
impenetrable National Park, Uganda: Gorilla census, 1997. Oryx, 35,
39-47. https://doi.org/10.1046/j.1365-3008.2001.00154.x

Moore,D.E.,Lees,B.G.,&Davey,S.M.(1991). Anew method for predicting
vegetation distribution using decision tree analysis in a geographic

BABAASA ET AL.

information system. Journal of Environmental Management, 15, 59-
71. https://doi.org/10.1007/BF02393838

Mueller-Dombois, D., & Ellenberg, H. (2002). Aims and methods of vegeta-
tion ecology. The Blackburn Press.

Mufoz Mazén, M., Klanderud, K., Finegan, B., Veintimilla, D., Bermeo,
D., Murrieta, E., Delgado, D., & Sheil, D. (2019). Disturbance and
the elevation ranges of woody plant species in the mountains of
Costa Rica. Ecology and Evolution, 9, 14330-14340. https://doi.org/
10.1002/ece3.5870

NASA & METI. (2011). ASTER global digital elevation model (GDEM). http://
gdem.ersdac.jspacesystems.or.jp/

Olupot, W., Barigyira, R., & Chapman, C. A. (2009). The status of anthro-
pogenic threat at the people-park interface of Bwindi impenetra-
ble National Park, Uganda. Environmental Conservation, 36, 41-50.
https://doi.org/10.1017/50376892909005347

Pearce, A., & Ferrier, S. (2000). Evaluating the predicitive performance
of habitat models developed using logistic regression. Ecological
Modelling, 133, 225-245. https://doi.org/10.1016/5S0304-3800(00)
00322-7

Perrigo, A., Hoorn, C., & Antonelli, A. (2020). Why mountains matter for
biodiversity. Journal of Biogeography, 47(2), 315-325.

Pfeffer, K., Pebesma, E. J., & Burrough, P. A. (2003). Mapping alpine
vegetation observations and topographic attributes. Landscape
Ecology, 18, 759-776. https://doi.org/10.1023/B:LAND.00000
14471.78787.d0

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy
modeling of species geographic distributions. Ecological Modelling,
190, 231-259.

Plumptre, A. J. (1996). Changes following sixty years of selective timber
harvesting in the Budongo Forest reserve, Uganda. Forest Ecology
and Management, 89, 101-113. https://doi.org/10.1016/S0378-
127(96)03854-6

Plumptre, A. J., Davenport, T. R. B., Behangana, M., Kityo, R., Eilu, G.,
Ssegawa, P., Ewango, C., Meirte, D., Kahindo, C., Herremans, M.,
Peterhans, J. K., Pilgrim, J. D., Wilson, M., Languy, M., & Moyer, D.
(2007). The biodiversity of the Albertine rift. Biological Conservation,
134, 178-194. https://doi.org/10.1016/j.biocon.2006.08.021

Prasad, A. M, Iverson, L. R., & Liaw, A. (2006). Newer classification and
regression tree techniques: Bagging and random forests for eco-
logical prediction. Ecosystems, 9, 181-199. https://doi.org/10.1007/
s10021-005-0054-1

R Core Team. (2022). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing URL https://www.
R-project.org/

Richter, M. (2008). Tropical mountain forests: Distribution and general
features. Biodiversity and Ecology Series, 2, 7-24.

Sainge, M. N., Lyonga, N. M., Mbatchou, G. P. T., Kenfack, D., Nchu,
F., & Peterson, A. T. (2019). Vegetation, floristic composition and
structure of a tropical montane forest in Cameroon. Bothalia, 49(1),
2270. https://doi.org/10.4102/abc.v49i1.2270

Schmitt, C. B., Denich, M., Demissew, S., Friis, |., & Boechmer, H. J.
(2010). Floristic diversity in fragmented Afromontane rainfor-
ests: Altitudinal variation and conservation importance. Applied
Vegetation Science, 13, 291-304. https://doi.org/10.1111/j.1654-
109X.2009.01067.x

Seddon, N., Chausson, A., Berry, P, Girardin, C. A., Smith, A., & Turner,
B. (2020). Understanding the value and limits of nature-based solu-
tions to climate change and other global challenges. Philosophical
Transactions of the Royal Society B, 375, 20190120. https://doi.org/
10.1098/rstb.2019.0120

Sheil, D. (2012). The impenetrable challenge of an overwhelming under-
storey. Bulletin of British Ecological Society, 43, 45-47.

Sheil, D. (2016). Disturbance and distributions: Avoiding exclusion in a
warming world. Ecology and Society, 21(1), 10. https://doi.org/10.
5751/ES-07920

85US017 SUOWILLOD BAIERID B|qedl|dde au Aq peusenob e SopIe YO B8N JO SaINI Joy ARIq1T 8UIIUO 4811 UO (SUORIPUOI-PUR-SWLR}WI0Y A8 1M A e1d) 1 pU1UO//SANL) SUORIPUOD PUE SWLB L 83 885 *[202/70/50] U0 Akiqiauliuo Aoiim ‘Hupeg Jrel|ved yoressay puy AisieAlun usbuiuefem Aq ZOgeT dia/TTTT 0T/I0pAL0D A3 ARIq1eu1|UO//SANY WO} popeoiumod ‘2 'v20g ‘62rLyLT


https://doi.org/10.1111/ele.12964
https://doi.org/10.1111/ele.12964
https://doi.org/10.1016/j.foreco.2006.09.072
https://doi.org/10.1038/212218a0
https://doi.org/10.1038/212218a0
https://doi.org/10.3390/plants11162180
https://doi.org/10.3390/plants11162180
https://doi.org/10.2307/2261350
https://doi.org/10.2307/2261350
https://doi.org/10.1111/avsc.12485
https://doi.org/10.3389/fevo.2014.00038
https://doi.org/10.3389/fevo.2014.00038
https://doi.org/10.1139/x93-200
https://doi.org/10.1139/x93-200
https://doi.org/10.1023/A:1016610526242
https://doi.org/10.1023/A:1016610526242
https://doi.org/10.1111/j.1365-2028.2006.00660.x
https://doi.org/10.1046/j.1365-3008.2001.00154.x
https://doi.org/10.1007/BF02393838
https://doi.org/10.1002/ece3.5870
https://doi.org/10.1002/ece3.5870
http://gdem.ersdac.jspacesystems.or.jp/
http://gdem.ersdac.jspacesystems.or.jp/
https://doi.org/10.1017/S0376892909005347
https://doi.org/10.1016/S0304-3800(00)00322-7
https://doi.org/10.1016/S0304-3800(00)00322-7
https://doi.org/10.1023/B:LAND.0000014471.78787.d0
https://doi.org/10.1023/B:LAND.0000014471.78787.d0
https://doi.org/10.1016/S0378-127(96)03854-6
https://doi.org/10.1016/S0378-127(96)03854-6
https://doi.org/10.1016/j.biocon.2006.08.021
https://doi.org/10.1007/s10021-005-0054-1
https://doi.org/10.1007/s10021-005-0054-1
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.4102/abc.v49i1.2270
https://doi.org/10.1111/j.1654-109X.2009.01067.x
https://doi.org/10.1111/j.1654-109X.2009.01067.x
https://doi.org/10.1098/rstb.2019.0120
https://doi.org/10.1098/rstb.2019.0120
https://doi.org/10.5751/ES-07920
https://doi.org/10.5751/ES-07920

BABAASA ET AL.

Sheil, D., & Burslem, D. F. (2003). Disturbing hypotheses in tropical for-
ests. Trends in Ecology & Evolution, 18(1), 18-26. https://doi.org/10.
1016/50169-5347(02)00005-8

Sheil, D., Ducey, M. J,, Sidiyasa, K., & Samsoedin, |. (2003). A new type of
sample unit for the efficient assessment of diverse tree communi-
ties in complex forest landscapes. Journal of Tropical Forest Science,
15, 117-135. https://www.jstor.org/stable/23616330

Singh, T. P, Singh, S., Roy, P. S., & Rao, B. S. P. (2001). Vegetation mapping
and characterization in west Siang District of Arunachal Pradesh,
India - A satellite remote sensing-based approach. Current Science,
83(10), 1221-1230.

Slik, J. F., Raes, N., Aiba, S. I, Brearley, F. Q., Cannon, C. H., Meijaard, E.,
Nagamasu, H., Nilus, R., Paoli, G., Poulsen, A. D., & Sheil, D. (2009).
Environmental correlates for tropical tree diversity and distribu-
tion patterns in Borneo. Diversity and Distributions, 15, 523-532.
https://doi.org/10.1111/j.1472-4642.2009.00557.x

Ssali, F., Moe, S. R., & Sheil, D. (2017). A first look at the impediments
to forest recovery in bracken-dominated clearings in the African
highlands. Forest Ecology and Management, 402, 166-176. https://
doi.org/10.1016/j.foreco.2017.07.050

ter Braak, C. J. F. (1995). Ordination. In R. H. G. Jongman, C. J. F. ter
Braak, & O. F. R. van Tongeren (Eds.), Data analysis in community and
landscape ecology (pp. 91-173). Cambridge University Press.

Townsend, P., & Walsh, S. (2001). Remote sensing of forested wetlands:
Application of multitemporal and multispectral satellite imag-
ery to determine plant community composition and structure in
southeastern USA. Plant Ecology, 157, 129-149. https://doi.org/10.
1023/A:1013999513172

Trew, B. T., & Maclean, I. M. (2021). Vulnerability of global biodiversity
hotspots to climate change. Global Ecology and Biogeography, 30(4),
768-783. https://doi.org/10.1111/geb.13272

Twongyirwe, R., Majaliwa, J. G. M., Ebanyat, P., Tenywa, M. M., Sheil,
D., Heist, M. V,, Oluka, M., & Kumar, L. (2011). Dynamics of for-
est cover conversion in and around Bwindi impenetrable forest,

1 ASSOCIATION FOR 13 0f 13
b I O TROP I CA :;f(“ TROPICAL BIOLOGY Wl LEYJ—

AND CONSERVATION

southwestern Uganda. Journal of Applied Sciences and Environmental
Management, 15, 189-195. https://doi.org/10.4314/jasem.v15il.
68439

Volkov, |, Banavar, J. R., Hubbell, S. P., & Maritan, A. (2003). Neutral the-
ory and relative species abundance in ecology. Nature, 424, 1035-
1037. https://doi.org/10.1038/nature01883

Werner, F. A., & Homeier, J. (2015). Is tropical montane forest hetero-
geneity promoted by a resource-driven feedback cycle? Evidence
from nutrient relations, herbivory and litter decomposition along
a topographical gradient. Functional Ecology, 29, 430-440. https://
doi.org/10.1111/1365-2435.12351

White, F. (1983). The vegetation of Africa: A descriptive memoir to accom-
pany the Unesco/AETFAT/UNSO vegetation map of Africa. Unesco.

Wright, E., Eckardt, W., Refisch, J., Bitariho, R., Grueter, C. C., Ganas-
Swaray, J., Stoinski, T. S., & Robbins, M. M. (2022). Higher maximum
temperature increases the frequency of water drinking in mountain
gorillas (gorilla beringei beringei). Frontiers of Conservation Science, 3,
738820. https://doi.org/10.3389/fcosc2022.738820

SUPPORTING INFORMATION
Additional supporting information can be found online in the

Supporting Information section at the end of this article.

How to cite this article: Babaasa, D., Finn, J. T., Schweik, C. M.,
Fuller, T. K., & Sheil, D. (2024). Predictive mapping of tree
species assemblages in an African montane rainforest.
Biotropica, 56, €13302. https://doi.org/10.1111/btp.13302

85US017 SUOWILLOD BAIERID B|qedl|dde au Aq peusenob e SopIe YO B8N JO SaINI Joy ARIq1T 8UIIUO 4811 UO (SUORIPUOI-PUR-SWLR}WI0Y A8 1M A e1d) 1 pU1UO//SANL) SUORIPUOD PUE SWLB L 83 885 *[202/70/50] U0 Akiqiauliuo Aoiim ‘Hupeg Jrel|ved yoressay puy AisieAlun usbuiuefem Aq ZOgeT dia/TTTT 0T/I0pAL0D A3 ARIq1eu1|UO//SANY WO} popeoiumod ‘2 'v20g ‘62rLyLT


https://doi.org/10.1016/S0169-5347(02)00005-8
https://doi.org/10.1016/S0169-5347(02)00005-8
https://www.jstor.org/stable/23616330
https://doi.org/10.1111/j.1472-4642.2009.00557.x
https://doi.org/10.1016/j.foreco.2017.07.050
https://doi.org/10.1016/j.foreco.2017.07.050
https://doi.org/10.1023/A:1013999513172
https://doi.org/10.1023/A:1013999513172
https://doi.org/10.1111/geb.13272
https://doi.org/10.4314/jasem.v15i1.68439
https://doi.org/10.4314/jasem.v15i1.68439
https://doi.org/10.1038/nature01883
https://doi.org/10.1111/1365-2435.12351
https://doi.org/10.1111/1365-2435.12351
https://doi.org/10.3389/fcosc2022.738820
https://doi.org/10.1111/btp.13302

	Predictive mapping of tree species assemblages in an African montane rainforest
	Abstract
	1|INTRODUCTION
	2|METHODS
	2.1|Study area
	2.2|Study design
	2.3|Tree species sampling
	2.4|Biophysical predictor variables
	2.5|Data analyses

	3|RESULTS
	4|DISCUSSION
	5|CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


