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Viruses are obligate cellular parasites infecting plant, fungi, animal and bacterial hosts. Viral 
genomes are highly diverse in terms of the type of nucleic acid (DNA/RNA), whether it is
single-stranded (ss) or double stranded (ds), and the gene expression and replication strategy
(Baltimore 1971). There are seven Baltimore Classes (BC I – VII): the ds- and ssDNA virus 
genomes (BC I – II), the positive (+) or negative sense (-) ssRNA and dsRNA virus genomes 
(BC III – V), and the reverse-transcribing viruses of ssRNA genome (BC VI) or DNA (BC VII)
(Baltimore 1971; Koonin, Krupovic, and Agol 2021). The Baltimore classification scheme also 
describes the various modes of replication by DNA polymerase (BC I – II), RNA-dependent 
RNA polymerase (RdRp) (BC III – V), and reverse transcriptase (BC VI -VII) (Koonin, Krupovic, 
and Agol 2021). The diversity of virus genomes extends to the number of genome segments 
and their packaging strategy into virus particles. Viral genomes can be monopartite, being
composed of a single genome segment packaged into a virus particle (Figure 1a). Segmented 
viruses (Figure 1b) have a varied number of genome segments which are collectively
packaged and lastly there are the multipartite viruses; which have individual packaging of each 
genome segment (Figure 1c). 

Figure 1. The virus genomes can be divided into several segments which differ in their 
packaging strategy in virus particles. (a) Monopartite viruses have a single genome 
segment packaged into a virus particle (b) Segmented viruses have several genome segments 
that are co-packaged into one virus particle. (c) Multipartite viruses also have several 
segments. However, each genome segment is individually packaged and transmitted between 
hosts. Segmented and multipartite viruses may have genome segments of different lengths. 
The image presented here is from Chapter 2 of this thesis. Created with Biorender. 

Multicomponent viruses or covirus systems are an overarching term for viral systems which 
require the presence of more than a single virus particle for infection (Van Vloten-Doting and 
Jaspars 1977; Van Vloten-doting, Kruseman, and Jaspars 1968;  Fulton 1980). This includes 
segmented viruses, multipartite viruses, accessory elements such as the selfish replicator-
satellite viruses and defective-interfering particles, virus segments which are can only replicate 
by complementation with one another. The segmented and multipartite viruses require co-
infection of a core of genomic segments for the initiation of viral replication and subsequent 
infection in hosts. Segmented virus co-packaging mechanisms ensure that all genomic 
components are transmitted together as one infectious unit, however, there may be 
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differences in the fidelity of co-packaging that result in virus particles in which an incomplete 
genomic set occurs (Nakatsu et al. 2016). In multipartite viruses, each genomic component is 
individually packaged and transmitted. Thus, the infectious unit is disconnected at each 
between- and within-host transmission event dependent on the translocation of these 
infectious units. Therefore, there is the physical decoupling of viral segments of a genome 
which imposes a potential cost to infection.  

Historical overview and state-of-the art in multipartite virus 
research 
 
There is a long history of research on multipartite viruses, including theoretical propositions 
on their existence and experimental evidence for their occurrence and dynamics within hosts. 
Here, I will briefly provide in chronological order an overview of a few key moments since the 
discovery of multipartite viruses and the contribution to understanding this group of viruses. A 
number of review papers by Michalakis and Blanc (2020), Lucia-Sanz et al. (2018), Lucia-
Sanz and Manrubia (2017), and Sicard et al. (2016) detail progress in this research field since 
multipartite virus discovery. Historically, multipartite viruses were identified due to their 
deviation from the independent action hypothesis (IAH), which states that the dose of a 
parasite is directly related to the number of infectious sites formed (Druett 1952; Bald 1937). 
Prunus necrotic ringspot virus (PNRSV), an RNA plant virus was confirmed as a multipartite 
virus by analysing the dose-response relationship (Fulton 1962). In this work, increasing 
steepness of the dose-response relationship between the amount of the infectious agent and 
the response variable (local lesion formation) was used to infer the number of particles 
required to initiate an infection. Thus, viruses which are composed of more than one segment 
will have dose-response relationships with a steep gradient. (Bruening and Agrawal 1967) 
demonstrated with the bipartite cowpea mosaic virus (CPMV) that complementation between 
genome segments increases virus infectivity, and proposed infections of interacting genome 
segments do not occur in a 1:1 manner but may be composed of an unequal mixture. (Van 
Kammen 1967) identified not only differences in ratios of three genome segments of CPMV 
but also apparent stochastic variation in ratios isolated from local lesion infections in 
Phaseolus vulgaris.  Genome segmentation was also identified for the bipartite tobacco rattle 
virus (TRV), where infections consisting of both short and long segments produced higher 
numbers of local lesions than infections which were enriched for each segment individually 
(Lister 1968). These experiments, therefore, suggested that there is complementation 
between segments. However, the contamination of virus particle purifications by each 
segment with the other makes it difficult to draw definitive conclusions on this work (Lister 
1968). (Sänger 1968) was able to demonstrate that complementation between segments was 
required for successful infection. Later work confirmed that PNSRV has a tripartite genome 
with segments of unequal length (Loesch and Fulton 1975).  
 
In the 1980s and 1990s, different proposals were made to explain the emergence and benefit 
of multipartite genomes for viruses, presenting different potential benefits for this strategy. 
Firstly, this included the notion that dividing the genome into smaller segments increases the 
number of segments without mutations for RNA virus genomes (Pressing and Reanney 1984) 
and leads to a reduction of the mutational load (Chao 1991). Secondly, Nee (1987) proposed 
that for a multipartite virus, the smaller genome segment sizes would allow for faster 
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replication of each segment, if the availability of the replication machinery is not the limiting 
factor. Thirdly, Chao (1988) proposed that segmented and multipartite viruses are able to 
increase genetic diversity in the virus population by the exchange of genome segments (i.e., 
re-assortment). Reassortment could bring together segments that are not affected by 
deleterious mutations, or those carrying beneficial mutations.  Experimental support for the 
proposals of Nee (1987), Pressing and Reanney (1984) and Chao (1991) has to date not been 
demonstrated. Later in this chapter, I discuss and examine the experimental support for the 
hypotheses presented above, as well as newly proposed hypotheses on the benefit of 
multipartition.  
 
An experimental study on foot and mouth disease virus (FMDV) showed the spontaneous 
development of a bipartite form of FMDV from the wild-type monopartite FMDV after serial 
passaging over 260 rounds at a high multiplicity of infection (MOI) (García-Arriaza et al. 2004). 
They were also able to show that the bipartite form of the FMDV had higher virus particle 
stability than FMDV in its’ monopartite form, under the specific conditions used for passaging 
(Ojosnegros et al. 2011).  
 
Results from Sicard et al. (2013) demonstrated that for the octapartite faba bean necrotic stunt 
virus (FBNSV), viral genome segments accumulate to unequal levels during infection in a host-
specific manner, coined the “genome formula” (GF) and that it may reach an equilibrium 
called the “setpoint genome formula” (SGF) (Sicard et al. 2013). Sicard and colleagues 
(2013) put forward the hypothesis that the GF is an adaptive means of regulating viral gene 
expression in different host environments; based on the assumption that changing segment 
copy numbers has a direct effect on gene expression. These findings have led to a 
rejuvenation of experimental reports of unequal virus segment ratios in other systems, 
discussed later in this chapter.  
 
Following the notable findings of Sicard et al. (2013), focus on multipartite viruses also shifted 
to finding other host species which might be infected by multipartite viruses. Keeping in mind 
that multipartite viruses had only been observed infecting plants, there was the confirmation 
of an insect-infecting multipartite virus, the bipartite ssDNA Bombyx mori bidensovirus 
(BmBDV) infecting silkworms (Hu et al. 2013). The virus had been discovered decades earlier 
(Bando et al. 1992; Seki and Iwashita 1983), but its multipartite nature had not been shown.  
Experiments with BmBDV showed that it also displayed the uneven accumulation of virus 
genome segments (Hu et al. 2016), providing support for the view that the GF may be a 
general feature for multipartite and segmented viruses. Additionally, a putative mosquito-
infecting virus has been isolated, the guaico culex virus (GCXV) (Ladner et al. 2016). The 
segmented genome and steep dose-response suggest that his virus is multipartite, but only 
examination of the virus particles can rule out it is not a segmented virus with low fidelity 
packaging (Michalakis and Blanc 2020). Experiments with the tripartite +ssRNA alfalfa mosaic 
virus (AMV) showed that the GF stabilizes to an equilibrium which is associated with increased 
virus accumulation (Wu et al. 2017).   
 
A key concept in segmented and multipartite virus research, is the need for complementation 
between segments within the same cell to initiate infection. Experiments on the localization of 
genome segments of FBNSV in petioles have shown that all segments are not present within 
the same cell (Sicard et al. 2019). Furthermore, the genome segments present in neighboring 
cells are able to complement one another. Tentatively the DNA-R segment encoding the 
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master replication protein (M-Rep) may be able to move from the cell where it is replicated to 
adjacent cells (although the specific mechanism is still unknown). This is a fascinating finding 
as one of the primary proposed costs for multipartition has been the requirement for all 
segments within the same cell, and this cost increases with the number of genome segments 
(Iranzo and Manrubia 2012). The sharing of gene products across cells may be a way to 
minimize the cost of multipartition within a host. 
 
Evidence to support the role of the GF in virus gene expression regulation has also been found 
in FBNSV (Gallet et al. 2022). Briefly, Gallet et al. (2022) observed that GF differences 
between host species may act to buffer transcript levels. With a host-switching experiment, 
they show that the associated GF changes are related to changes in its’ respective mRNA and 
that virus transcript levels between the initial and final host are similar to one another, whilst 
the genomic DNA GFs differ. Di Mattia et al. (Di Mattia et al. 2022) show that in FBNSV host 
plant infections can be initiated when one of the eight genome segments is missing, and that 
re-inoculation of the same plant can supplement the missing segment and the restoration of 
the full genome. Moreover, with an increased time interval between initial infection and re-
inoculation, the likelihood of full genome restoration decreases.  
 
Combined, these findings show that multipartite viruses are composed of genome segments 
which may vary in length. Each segment contains distinct gene functions, and 
complementation between genome segments is required for infection. Thus far, we’ve seen 
that genome segments may differ in their frequency ratio (the GF) during infection, which has 
been measured in multipartite plant viruses and one insect virus. It has been hypothesized 
that the GF may be adaptive, conferring advantages for virus gene expression in different host 
species; however, the evolutionary costs and benefits of the strategy remain unclear, 
especially as the benefits are not evident and the costs appear to be high. Next, I will discuss 
the proposed benefits of a multipartite virus genome and the evidence supporting this 
hypothesis.  

Evolutionary benefits of multipartite virus genomes? 
 
Multipartite viruses have an inherently more costly strategy for virus transmission, as a larger 
viral dose is required compared to monopartite viruses to ensure a full or core genome 
complement is present, enabling a new infection. This spurred research into the evolution of 
genome segmentation and its potential benefits. Several theoretical benefits have been put 
forward for the emergence and benefit of a multipartite virus genome, all of which may be 
beneficial to segmented viruses alike (Sicard et al. 2016). The benefits proposed in the past 
40 years have been summarized in review papers (Sicard et al. (2016), Lucía-Sanz, Aguirre, 
and Manrubia (2018),). These proposals include: (1) faster replication of whole segmented 
genomes when polymerase is abundant  (Nee 1987), (2) genome segmentation reduces the 
effect of error-prone RNA virus replication, as smaller template molecules have a lower error 
burden than longer template molecules (Pressing and Reanney 1984), therefore producing 
segment copies without errors, (3) the smaller template size of individual genome segments 
reduces the mutational load (Chao 1991), (4) viruses with segmented and multipartite 
genomes can rapidly exchange genetic information via reassortment (Chao 1988), a process 
which may bring beneficial mutations together and also remove deleterious mutations, (5) 
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increased virus particle stability due to smaller segment size (Ojosnegros et al. 2011), and (6) 
changing virus segment copy numbers may cause adaptive virus gene expression changes in 
new hosts (Sicard et al. 2013). The benefits (2) – (4) are reassortment benefits presented here 
separately within the context of a historical overview and the support at the time, and not a 
conceptual one as the arguments for (2) – (4) are largely the same, removing deleterious 
mutations increasing genetic diversity.  In the following sections, I further discuss each 
proposed benefit and the supporting evidence.  
 
Nee (1987) proposed that dividing the genome into smaller segments could drive the evolution 
of multipartite viruses. These segments would be incapable of autonomous replication but 
would replicate faster than full-length segments  (for conditions when polymerase is not a 
limiting factor). If they occur readily and there are high levels of coinfection between these 
segments, these “defective” segments could take over the population, even if they have 
reduced spread between hosts. This argument has been recapitulated in much greater clarity 
and detail recently (Leeks et al. 2023). Under this argument, we would not expect to find the 
benefits of multipartition when considering fitness components that reflect higher levels of 
selection. Sakai et al. (1999) showed that in Sendai virus (SeV), the insertion of genes of 
various lengths, which increased overall genome length, were associated with a reduction in 
the replication speed, providing some evidence for faster replication by shorter segments. 
Although the arguments are promising, empirical tests of whether within-host competition 
drives the evolution of multipartition have not been reported. 
 
Proposed benefits (2) – (4) are related to reassortment and address the ability of genome 
segments to remove deleterious mutations or increase genetic diversity of segmented and 
multipartite viruses. (Pressing and Reanney 1984), propose that RNA virus replication errors 
can be reduced (proposed benefit 2) by decreasing the template size, or the segment size for 
multipartite viruses. This would ensure that more progeny segments would be mutation free. 
At the time, known multipartite viruses had RNA genomes which were replicated using the 
RNA-dependent RNA polymerase (RdRP), which is error-prone as it lacks a proof-reading 
domain (Reanney 1982). The introduction of replication-related errors is not only dependent 
on the low fidelity of the RdRp, but it is also influenced by the replication mode: whether 
replication occurs via a single virus template – many copies from single template (stamping 
machine) or whether each progeny is used as a template for replication (geometric growth) 
(Martínez et al. 2011). The stamping machine approach will lead to fewer mutations than the 
geometric growth approach: although the stamping machine requires more replication events 
than geometric growth, any errors introduced are not amplified as new genome copies are not 
used for replication in that bout of replication. 
 
For positive-sense RNA viruses, segments serve as the genome and template for translation 
of viral proteins. Virus replication happens by the RdRp, which causes a higher mutation rate 
than DNA polymerase (Sanjuán et al. 2010). The mutation rate has been measured for several 
virus species and estimated to be in the range of 10-3  - 10-6 mutations per nucleotide per cell 
infection (µs/n/c), whilst in DNA viruses, the range is 10-8  - 10-6 µs/n/c (Sanjuán et al. 2010). 
These high mutation rates have inspired the quasispecies model of RNA virus evolution 
(Lauring and Andino 2010). High mutation rates result in a virus population that is 
characterised by a mutant spectrum (containing a large sample of the possible mutations 
within the mutational neighbourhood of the wild-type virus), and selection acts on the mutant 
population  (Domingo, Sheldon, and Perales 2012). Chao (1991) suggested that reducing the 
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genome to shorter segments would decrease the target size for mutations because at the 
time, known RNA viruses had small genomes. Current knowledge suggests that a reduction 
in total genome size combined with shorter genome segments may reduce the mutational 
load. However, there is no evidence to support the claim that segmentation alone will reduce 
the mutation pressure on a viral genome.  
 
Reassortment and recombination may provide benefits for both segmented and multipartite 
viruses, as a segmented genome increases the opportunity for genetic exchange and may 
increase genetic diversity (Chao 1988). In multipartite and segmented viruses, reassortment 
can occur via the exchange of whole genome segments from the same virus species, called 
“segment shuffling”, or homologous recombination between virus segments within the same 
species or from unrelated virus species (Bujarski 2013; Varsani et al. 2018) . Reassortment 
and recombination occur at similar levels in multipartite viruses (Bujarski and Kaesberg 1986). 
Reassortment in the tripartite cucumber mosaic virus (CMV) is constrained to RNA3 and virus 
subgroups (Fraile et al. 1997), and reassortment and recombination occur at low frequency 
(Bonnet et al. 2005). Furthermore, even when recombinants and reassortants are readily 
available within a population, they are selected against and constrained by within-host virus 
local and systemic infection processes (Fernando Escriu, Fraile, and García-Arenal 2007). 
Reassorted strains of segmented tomato spotted wilt virus (TSWV) are linked to resistance-
breaking (Qiu and Moyer 1999), and bluetongue virus (BTV) reassortment increases virus 
transmission by the insect vector (Sanders et al. 2022). In Influenza A virus (IAV), a mutation 
in the polymerase complex along with reassortment of the polymerase complex subunits have 
increased virus replication and pathogenicity (Mehle et al. 2012). These results indicate that 
the proposed benefit of reassortment between virus genotypes can be a source of genetic 
variation. However, not all segments may be easily exchanged, and there may be biases 
which favour reassortment between specific segments.  
 
A benefit linked to dividing the genome up into smaller segments is increased virus particle 
stability. For plant viruses, this benefit would be manifest during vector-borne transmission, 
were viruses that rely on non-propagative transmission would have increased transmission 
because their virus particles remained intact and infectious for a longer period of time. To my 
knowledge, there is no experimental evidence for this hypothesis in plant viruses. For animal 
viruses, during serial passage of foot and mouth virus (FMDV) in cell culture at high multiplicity 
of infection (MOI), a bipartite version of FMDV spontaneously formed (García-Arriaza et al. 
2004). Further studies on the bipartite FMDV showed that it had increased infectivity at the 
same dose and higher virus particle stability than the monopartite virus form of FMDV 
(Ojosnegros et al. 2011).  
 
In experimental infections of FBNSV onto Vicia faba and Medicago truncatula, Sicard et al. 
(Sicard et al. 2013) demonstrated that the viral genome segments systematically shift to a 
host-specific ratio, which they called the genome formula (GF) (Sicard et al. 2013). The 
change in segment frequencies may be variable during the course of infection and in different 
host tissues, until stabilising at the equilibrium setpoint genome formula (SGF) (Sicard et al. 
2013). Sicard et al. (2013) hypothesize that the change in segment stoichiometry may act as 
a mechanism for regulating virus gene expression,  allowing for the virus to adapt to different 
host environments. They propose that segment copy number changes are directly proportional 
to gene expression-level changes for a given host. Furthermore, this can occur in a mutation-
free manner, whereby changes in segment ratios occur faster than fixing beneficial point 
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mutations for virus gene expression. The GF has been measured in several multipartite plant 
viruses with different numbers of genome segments and nucleic acid types (Wu et al. 2017; 
Yu et al. 2019; Zhao et al. 2019; Boezen et al. 2023) and in a multipartite insect virus (Hu et 
al. 2016). The GF has also been measured for the segmented viruses, bluetongue virus (BTV) 
(ssDNA) (Moreau et al. 2020) and Rift Valley fever virus (RVFV) (Bermúdez-Méndez et al. 
2022). In all of these cases, the different segments were never at the same frequency, and an 
unbalanced GF appeared to be a common phenomenon for multipartite viruses. Preliminary 
evidence for the adaptive role of the GF comes from experiments with FBNSV and AMV, 
where segment copies stabilise to the SGF associated with high virus accumulation (Wu et al. 
2017; Sicard et al. 2013). Recently, Gallet et al. (2022) have shown that in a host-switching 
experiment virus transcript levels are less variable than the GF, suggesting that the GF may 
play a role in maintaining similar viral transcript levels in different host species. Thus, at least 
for an ssDNA virus, the GF may be one of the molecular tools in its’ arsenal to regulate gene 
expression. However, many questions remain unanswered. One of the key observations from 
the studies of Sicard et al. (2013) and Wu et al. (2017)is the variability of the GF for a given 
virus across different host species. How could this genome segment copy number variation 
be beneficial for multipartite viruses? To answer this question, I will first explore copy number 
variation in other systems.  
 

Hypothesis: The genome formula as a type of copy number 
variation in multipartite viruses 
 
Genetic variation may be in the form of copy number variation (CNV), e.g. of genes or 
chromosomes, increasing or decreasing gene dosage and thereby gene expression (Freeman 
et al. 2006; Katju, Bergthorsson, and Chain 2013; Lauer and Gresham 2019).  CNV may be 
adaptive at two time scales: changes in expression of certain genes may be adaptive at short 
time scales e.g. insecticide resistance of the planthopper Nilaparvata lugens to imidacloprid 
(Zimmer et al. 2018), Candida albicans antifungal resistance to fluconazole (Todd and 
Selmecki 2020) and Escherichia coli high temperature tolerance (41.5°C)  (Riehle, Bennett, 
and Long 2001) , whereas changes in mutation supplies associated with CNV may be adaptive 
at longer time scales, e.g. for the evolution of antibiotic resistance (Sandegren and Andersson 
2009),  
 
In viruses, CNV in the form of gene duplications has been best described in the monopartite 
dsDNA vaccinia virus (VACV), a Poxvirus (Bayer, Brennan, and Geballe 2018). During 
infections of human cells, the host immune response activates the anti-viral Protein Kinase R 
(PKR) which is upregulated after detection of viral dsRNA (Weber et al. 2006), and initiates 
phosphorylation of the translation initiation factor elF2α, which limits protein production and 
thereby reduces virus replication (Elde et al. 2012). VACV encodes K3L and E3L genes, which 
inhibit the activity of PKR (Davies et al. 1993). K3L has weak PKR inhibition activity and, using 
experiments with loss-of-function E3L HeLa cell mutants, increases the selection pressure for 
increased activity of K3L (Elde et al. 2012). Serial passage experiments showed an increase 
in virus accumulation over time and sequence analysis revealed amplifications of K3L which 
correlated with increased virus accumulation (Elde et al. 2012). K3L amplifications may have 
15 - 16 K3L copies (Sasani et al. 2018; Elde et al. 2012). The K3L amplification is transient, 
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but also temporary expansions in the K3L gene increase the target size for  beneficial 
mutations (Elde et al. 2012). The H47R amino acid substitution in K3L was observed in 
replicate populations and conferred increased virus replication and thus improved virus fitness 
(Elde et al. 2012). Selection favors genomes harboring H47R and may cause the amplified 
region to collapse back to single copy K3L (Elde et al. 2012; Sasani et al. 2018). Elde et al. 
(2012) describe the dynamic change of gene CNV in VACV as the “genomic accordion model”. 
It describes a multi-step process,: (1) selective amplification of  K3L, followed by (2) increased 
activity of K3L to counteract antiviral PKR, and higher mutation rate and (3) selection for 
genomes which contain the beneficial mutation (4) the fixation of a beneficial mutation which 
replaces the activity of the amplified region and (5) the reduction in the amplified region to 
mutant single copy (Elde et al. 2012). Thus, CNV dynamics in VACV follows a trajectory of 
expansion, fixation of beneficial mutations and contraction  which bears a similarity to the CNV 
innovation-amplification-divergence (IAD) model proposed by (Näsvall et al. 2012) 
 
In the IAD model, the ancestral gene or region of interest is amplified, when enhanced 
expression is beneficial under new environmental conditions, yielding increased functional 
activity and fitness (Näsvall et al. 2012). Thereafter, the amplified region is replaced by an 
allele with a beneficial mutation, which maintains the increased functional activity and benefits 
as a single copy, causing the concomitant collapse of the amplified wild-type sequences and 
fixation of the mutant single copy state (Näsvall et al. 2012). The IAD model follows a similar 
process as the genomic accordian model  (Bayer, Brennan, and Geballe 2018). One question 
I wanted to investigate is whether the GF may allow for CNV-associated benefits of IAD, where 
changes in segment frequency may lead to increased gene dosage and mutation supply, 
possibly followed by decreases in segment frequency upon the occurrence of beneficial 
mutations that alleviate the need for high gene dosage.  
 
Models predict rapid GF change under some conditions and that multipartite viruses can 
outcompete monopartite viruses in environments that demand specific but different levels of 
gene expression (Zwart and Elena 2020). By contrast, Gallet et al. (2022) showed the GF may 
play a role in maintaining similar mRNA levels in different hosts, suggesting that the GF may 
also play a role in stabilizing gene expression. The mechanism of control of the GF remains 
unclear, as it is still unclear how genomic GF changes are regulated and converted into mRNA 
levels which are maintained in different host species. Secondly, why the GF is dynamic in the 
first place remains unresolved, as the genomic accordion and IAD model have not been 
experimentally demonstrated. How general is an unbalanced GF within multipartite viruses? 
Next, I compare where the GF has been reported and discuss the possible role in plants and 
animals.   

The genome formula of multipartite viruses 
 
The proposed benefits and role of GF has been well-described in the model FBNSV (Sicard 
et al. 2013; Gallet et al. 2022) and here I will explore the GF in different classes of plant and 
animal viruses. Multipartite viruses are largely found infecting plant species (Lucía-Sanz and 
Manrubia 2017; Michalakis and Blanc 2020), with only Bombyx mori bidensovirus (BmBdV) 
confirmed infecting insects (Wang et al. 2007).  A second animal multipartite virus has been 
reported infecting Aedes albopictus and Culex quinquefasciatus female mosquitoes, the 
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Guaico culex virus (GCXV) (Ladner et al. 2016). Ladner et al. (2016) used the dose-response 
relationship to infer that the GCXV is a multicomponent virus, however the distribution of 
genome segments over virus particles has not been measured and whether it is a true 
multipartite virus therefore remains open for discussion (Michalakis and Blanc 2020). Since 
the identification of the GF in FBNSV by Sicard and colleagues (2013), there has been an 
uptick in the reporting of GFs in other virus species.  
 
Thus far, based on reported GF, the following trends become clear. Similar to FBNSV, the GF 
is both unbalanced and host-specific (Wu et al. 2017; Yu et al. 2019; Zhao et al. 2019). Several 
studies indicate that unbalanced GFs also occur in both plant and animal segmented viruses, 
as reviewed by Diefenbacher, Sun, and Brooke (2018) and Wichgers Schreur, Kormelink, and 
Kortekaas (2018). The GF has also been measured for a segmented ssDNA animal virus, 
bluetongue virus (BTV) (Moreau et al. 2020) and shown to be unbalanced and host-
dependent. The varying, host-dependent distributions of genome segments over virus 
particles in Rift Valley fever virus (RVFV) also suggest the GF of this virus may be unbalanced 
(Bermúdez-Méndez et al. 2022), although GF values have not been reported yet. All of these 
observations suggest that unbalanced and host-dependent GFs may be a general feature of 
multipartite viruses, as well as some segmented viruses.  
 
The GF has been reported for DNA and RNA viruses alike, indicating that this strategy is not 
limited to a specific nucleic acid type. However, it is likely that the differences in replication 
strategies may impact at which level the GF is active. It has been suggested that the FBNSV 
GF differences may stabilize transcript levels in the hosts V. faba and M. truncatula (Gallet et 
al. 2022). Similar to FBNSV, in BBTV there are also differences in the genomic DNA GF 
compared to viral mRNA transcripts (Yu et al. 2019). However, for BBTV it was found that the 
promoter sequence of each segment plays an important role in regulating transcript levels (Yu 
et al. 2019).  How promotor sequence activity interacts with changes in the genomic GF is still 
unclear, but it highlights that there are likely to be multiple GF interactions involved in gene 
expression regulation. We anticipate that for positive sense RNA viruses, the GF gene dosage 
benefit is directly active upon virus entry and replication, as there is no distinction between 
genomic RNA and active RNA. However, there is no direct evidence to support this, although 
for AMV the packaging of RNAs into virus particles appears to modify the GF (Wu et al. 2017). 
 
The use of high throughput sequencing and metagenomics has led to the discovery of the 
putative multipartite circular Rep-encoding ssDNA (CRESS DNA) viruses, based on 
phylogenetic analysis of the replication-associated protein and isolation of genome segments 
(Male et al. 2016; Kraberger et al. 2019). The putative multipartite viruses are tripartite 
Fusarium gramineareum gemitripvirus 1 (FgGMTV1) ( Li et al. 2020), Pacific flying fox faeces-
associated multicomponent virus-1 (PfffaMCV-1) (Male et al. 2016), blackfly multi-component 
virus 1 (BfMCV-1) and blackfly multi-component virus 2 (BfMCV-2) (Kraberger et al. 2019). 
These results show that whilst most reported multipartite viruses are found in plants, their 
prevalence in fungi and insects has likely been underestimated, and with advances in virus 
detection techniques, their number is expected to rise. 
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Multipartite virus infection in animals 
So far, only a small number of animal multipartite viruses have been discovered, but it is 
probable that additional ones will be recognized in the coming years. Here I will focus on 
BmBDV infecting silkworm (Bombyx mori) (Wang et al. 2007; Hu et al. 2013). 
 
Bidnaviridae is a monophyletic family of bipartite linear ssDNA viruses with the exemplar 
species BmBDV (Adams and Carstens 2012). Virus particles contain either a single copy of 
the respective ssDNA genome segment or the complementary strand, and thus there may be 
four virus particle types (Bando et al. 1992). Segment VD1 encodes for 3 structural proteins 
and a type B DNA polymerase whilst segment VD2 encodes for a structural and non-structural 
protein (Li et al. 2015; Hayakawa et al. 2000). BmBDV infection occurs within the silkworm 
midgut, with accumulation in the posterior and columnar cells of the midgut (Seki and Iwashita 
1983; Ito et al. 2016). Hu et al. 2016 determined the BmBDV GF in B. mori midgut and stool 
samples, as well as from purified occlusion bodies (OBs), where segment VD2 had a higher 
frequency than VD1. These reports are the first clear evidence of an unbalanced GF in an 
insect virus (Table 1). BmBDV replication within the host silkworm requires traversal of insect 
interior barriers, similar to the process of circulative propagative transmission in aphids.  
 
Table 1. Genome formula (GF) of the animal multipartite virus Bombyx mori bidensovirus 
(BmBDV) is unbalanced in Bombyx mori larvae. GF values are reported as relative 
frequencies. 

Source Genome formula Reference 

Virus particles (0.451:0.549)  
 

(Hu et al. 2016) Midgut (0.366:0.634) 

Frass (0.406:0.595) 

 
Occlusion body 

(0.471:0.529) 
(0.395:0.605) 
(0.387:0.613) 

(Gani et al. 2021) 

 
 
Multipartition is a strategy largely found in plant-infecting viruses, suggesting that there may 
be benefits associated with plant hosts. The costs and benefits associated with multipartition 
may differ at the within and between-host levels, as indicated by experimental measures of 
accumulation and segment frequency differences in FBNSV hosts (Sicard et al. 2013), within 
vectors (Di Mattia et al. 2020) and computational approaches show that multipartition may 
have unique benefits for plant-infecting viruses (Valdano et al. 2019). 
 

Factors which affect the genome formula 
Factors which may influence changes in the GF have not been well-studied, but a few studies 
have shown that mixed virus infections and the presence of satellite viruses can perturb the 
GF. Satellite viruses are a class of selfish replicators often found accompanying monopartite, 
segmented and multipartite virus infections (Koonin et al. 2021). They are subviral agents of 
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short DNA or RNA segments which are dependent on a helper virus to complete replication 
(Murant and Mayo 1982). Their presence has been shown to decrease virus accumulation 
(Wrzesińska et al. 2018; Guyot et al. 2022; Saeed et al. 2007; Liao et al. 2007) and alter virus 
virulence (Palukaitis and Roossinck 1996). In the context of multipartite viruses, satellites 
could directly change the GF, modify virus accumulation and alter virus transmissibility.  
 
Various studies have shown a range of different effects of satellites on multipartite viruses, 
and here I will consider some examples for CMV and BBTV. A satRNA co-infection with CMV 
decreased total virus accumulation and altered the GF of CMV in tomato and tobacco (Feng 
et al. 2012; Shen et al. 2015; Liao et al. 2007). CMV necrotic satRNA co-infection decreases 
total virus accumulation, but increases aphid transmission (Escriu, Perry, and García-Arenal 
2000). CMV Y-sat infected plants' yellow phenotype preferentially attracts aphid vectors and 
facilitates virus and satellite transmission (Jayasinghe et al. 2021). BBTV infection with a novel 
alphasatellite alters the GF in plants and aphids and reduces both genomic DNA and mRNA 
transcript accumulation (Guyot et al. 2022). Furthermore, transmission experiments showed 
that BBTV alphasatellite was able to facilitate aphid transmission from monocot to dicot 
species (Guyot et al. 2022). In both these viruses, satellites could affect the GF, infection and 
transmission, although it remains unclear whether the GF changes mediated some of these 
effects. It is highly relevant to consider in more detail the interactions between satellites and 
the GF and their effect on virus and satellite fitness considered on different levels of selection. 
 
There is mounting evidence that an unbalanced GF is common in multipartite viruses, as to 
date there are no reports of balanced GFs where it has been measured. Till now, studies have 
focused on ssDNA multipartite viruses with a large number of genome segments (>6); 
however, the overwhelming majority of multipartite viruses have ssRNA genomes with 2 – 5 
genome segments and infect plants. This knowledge gap means that GF measurements and 
how they relate to viral fitness in RNA viruses cannot be easily interpreted, as the majority of 
multipartite viruses have compact genomes where each segment encodes one or two genes 
with essential functions for replication or transmission. We also note that in the situations 
where the GF has been measured, there is high GF variability between individual infected 
plants belonging to the same cultivar. The source of this variation is not understood: We also 
do not understand the roles of stochastic and deterministic forces that might act on the GF 
and how they cause both high GF variability between individuals and species-dependent GF 
equilibria. The GF has been experimentally measured for segmented viruses, highlighting that 
segment copy number changes can occur via mechanisms related to segment co-packaging 
or differences in packaging efficiency. To fill the identified gaps, I use the tripartite +ssRNA 
cucumber mosaic virus (CMV) as a model system. Below I provide a description of the CMV 
genome organisation, virus replication and its’ suitability for investigating the GF.  

Cucumber mosaic virus: A model for multipartite virus genome 
formula variability and evolution 
 
CMV is a globally distributed virus reported to infect more than 1000 plant species  (Roossinck 
2001; Yoon, Palukaitis, and Choi 2019). CMV causes cucumber mosaic disease, first 
described in 1916 (Doolittle 1916). Symptoms include leaf yellowing, mosaic, leaf curling, 
stunting and necrotic lesions (Zitter and Murphy 2009). CMV is a +ssRNA virus with a tripartite 
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genome belonging to the genus Cucumovirus and the Bromoviridae family (Jacquemond 
2012). The genome segments are designated RNA 1 – 3 with decreasing segment size, with 
the largest being RNA1 at 3.3kb, followed by RNA2 size of 3kb and the smallest, RNA3, with 
a segment size of 2.2kb (Jacquemond 2012) (Figure 2). RNA1 encodes for the 1a protein 
which contains methyltransferase and helicase motifs (Habili and Symons 1989; Gorbalenya 
et al. 1989; Rozanov, Koonin, and Gorbalenya 1992).  RNA2 encodes for the 2a protein, 
RdRp, and the 2b protein, the viral suppressor of host RNAi which is expressed via sgRNA4A  
(Ding et al. 1994; Diaz-Pendon et al. 2007). Furthermore, the 2b protein has the primary 
function as the viral suppressor of host RNAi during infection and is important for determining 
cell and tissue type localisation and accumulation of CMV (Soards et al. 2002). RNA3 encodes 
the 3a movement protein (MP) and the 3b coat protein (CP), located downstream of the 3a 
ORF and expressed from sgRNA4 (Jacquemond 2012). RNA2 and RNA3 are bicistronic and 
express part of their genome segment by subgenomic RNA (sgRNA) from the minus strand of 
genomic RNA (Jacquemond 2012). 
 
CMV infection starts upon virus entry into the host cell and by uncoating genomic RNA 
segments and initiates replication via a replication complex. The replication complex contains 
CMV proteins 1a (methyltransferase and helicase domains) and 2a (RNA-dependent RNA 
polymerase) which localise onto the tonoplast membrane of the vacuole (Cillo, Roberts, and 
Palukaitis 2002). Replication is an asymmetrical process whereby either the positive or 
negative-strand RNA is synthesized, a process mediated by the specific associations of 1a to 
the tonoplast and 2a to positive-strand synthesis (Seo et al. 2009). Replication begins with the 
complex of the viral 1a and 2a proteins (to form the replicase) and host factors for negative-
strand synthesis (Seo et al. 2009). Phosphorylation of 2a leads to a reduction in the negative-
strand synthesis and the switch of replicase activity to positive-strand synthesis, whilst 1a 
protein completes the capping of RNA (Seo et al. 2009).   
 
During local movement the viral 3a movement protein (MP) is required for virus movement 
through plasmodesmata to adjacent cells. Briefly, MP increases the plasmodesmal size 
exclusion limits, allowing for the movement of viral ribonucleoprotein complexes locally (Wolf 
et al. 1989), by disrupting microtuble F-actin fibers (Ding et al. 1995; Su et al. 2010). The CP 
interacts with the MP to facilitate cell-cell and systemic movement (Nagano et al. 2001; 
Llamas, Moreno, and García-Arenal 2006).  In the transition from local to systemic virus 
infection, viral RNA may be encapsidated or remain as a ribonucleoprotein complex and 
loaded in the phloem sieve elements (Blackman et al. 1998). For CMV, systemic infection 
occurs by movement along the photoassimilate pathway, via photosynthetic source and sink 
tissues (Leisner and Turgeon 1993).  
 
Cucumber mosaic virus may be divided into three subgroups, IA, IB and II based on sequence 
alignments of RNA 1 – 3 from different virus isolates  (Roossinck 2002; Roossinck, Zhang, 
and Hellwald 1999; Ohshima et al. 2016).  Ohshima et al (2016) identify that for CMV within-
subgroup reassortments of subgroup IA and IB are more common than between subgroup 
reassortments, although reassortment of subgroup II and IA do occur (Ohshima et al. 2016).  
CMV is a model system for studying plant virus evolution at the within-host and between-host 
levels (Roossinck 2001). The role of recombination and reassortment in CMV evolution has 
been the subject of several studies; reassortment and recombination are uncommon in natural 
populations of CMV in Spain (Fraile et al. 1997). (Bonnet et al. 2005) found that the majority 
of field isolates belonged to subgroup IA and IB with a low occurrence of reassortants and 
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recombinants in natural populations and that these had lower fitness than parent genotypes
(Bonnet et al. 2005). CMV infection in Arabidopsis thaliana is associated with delayed onset 
of flowering and a developmental switch to seed production (Pagán, Alonso-Blanco, and 
García-Arenal 2008). During multi-host species infections, some host species may act as 
reservoirs for genetic exchange via recombination (Ouedraogo et al. 2019). The mutation 
frequency of CMV has been experimentally estimated in different host species and is in the 
range 0.60 – 25.0 mutations per 104 nucleotides (Ouedraogo and Roossinck 2019). 

Figure 2. Cucumber mosaic virus has a genome composed of three +ssRNAs, RNA 1 –
3, with decreasing segment size. It has two subgenomic (sg) RNAs, derived from RNA2 and 
RNA3, expressing the 2b protein viral suppressor of RNAi (VSR) and the coat protein (CP). 
There is 5’ cap on each genome segment (c) and at the 3’end of all segments have a tRNA-
like structure. Created with BioRender.com. 

Overview of thesis chapters

In this thesis, I explore the GF in a multipartite plant virus by investigating its role in short-term 
adaptation after a single infection cycle, how the GF changes over longer timescales in 
different hosts and the GF as a property in multipartite and segmented viruses. 

In Chapter 2, we assess the state-of-the-art concerning the costs and proposed benefits of a 
multipartite virus genome organisation, reviewing key developments and using quantitative 
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approaches to address some key unanswered questions. We present an approach for 
estimating the cost of transmission for multipartite viruses. Also using computational 
modelling, we explore under which conditions the proposed benefit of virus gene product 
sharing across cells can minimise the within-host cost. We analyse how virus genome 
segmentation can increase host range and critically discuss the within and between-host 
benefits of the GF.  
 
In Chapter 3, an approach for quantitatively analysing GF variation in multipartite and 
segmented viruses is developed. We introduce a new metric for analysing GF variability, the 
GF distance. We show how this metric can be used to compare GF observations, both for 
comparison between empirical observations and to theoretical predictions. We re-analyse 
published GF data to illustrate these approaches and, in so doing, uncover evidence that the 
GF is a transmissible property. 
 
Chapter 4 presents a combined experimental and modelling approach to test GF variation 
during mechanical infection of Chenopodium quinoa, a local lesion host for CMV. Our data 
show that the GF is highly variable in local lesions and is influenced by the inoculum GF. The 
GF converges to two plateaus, associated with higher and lower virus titres. We discuss how 
stochastic population bottlenecks and directional GF change interact to affect GF variation 
and GF drift during infections.  
 
Chapter 5 examines rapid adaptation of the GF and long-term evolutionary stability of the GF 
in Arabidopsis thaliana, N. benthamiana and N. tabacum. preliminary data indicates there may 
be a virus genotype GF for CMV.  Serial passage experiments of CMV infection in the three 
hosts, A. thaliana, N. benthamiana and N. tabacum, show that for A. thaliana, there is a host-
specific GF, whilst N. benthamiana and N. tabacum have similar GFs. The GF remains stable 
after the initial passage and at the final passage there is an increase in GF variation in N. 
tabacum. We observe a number of virus extinctions which are associated with low virus titre.  
Sequence analysis identified a repeated non-synonymous mutation in the RNA-dependent 
RNA polymerase which was associated with the accumulation of intermediate and low-
frequency mutations in the populations where it was present.  
 
In Chapter 6, I develop a computational model to quantitatively determine the cost of 
transmission for mono-, multipartite and segmented viruses. We extend this to include different 
classes of segmented viruses based on selective and non-selective packaging strategies.  
 
In Chapter 7, I discuss the main findings from chapter 2 – 6 and discuss this within a broader 
context. I discuss the cost of transmission for monopartite, segmented and multipartite viruses 
and present a conceptual overview of genome packaging and the cost of transmission. I 
present and discuss the GF fitness landscape of CMV in four host species: A. thaliana, C. 
quinoa, N. benthamiana and N. tabacum. I find that CMV infections in C. quinoa have a broad 
plateau characterised by high virus titre, that A. thaliana has narrow peak associated with 
higher virus titre and that there is no relationship between GF variation and virus titre in N. 
benthamiana and N. tabacum. 
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Abstract 
 
Multipartite viruses individually package the multiple segments that comprise their genome. 
Hence, their between-host transmission is dependent on spread and infection by multiple virus 
particles. This dependence implies a cost in the form of reduced transmission compared to 
viruses with only a single segment or those that package all constituent genome segments 
into a single virus particle (i.e. some segmented viruses). The notion of this cost to 
transmission has spurred a search for the possible benefits associated with a multipartite 
organisation. However, the exact costs of a multipartite organisation remain elusive, as only a 
few studies have considered the proposed mechanisms quantitatively. To evaluate the costs 
and benefits of multipartition we developed three quantitative modelling approaches. First, we 
present a stringent approach for measuring the cost to transmission and show its quantitative 
dependence on number of genome segments and dosage. Second, it was recently shown that 
a multipartite virus can share its gene products between cells, which could alleviate the cost 
to within-host spread. We show that this mechanism itself appears to be generally costly and 
confers benefits only under conditions that are incompatible with the putative benefits of 
multipartite viruses. Finally, we consider a possible benefit of multipartition, i.e. that rapid 
changes in gene expression through changes in the copy number of genome segments may 
help viruses adapt to their host environment. Since this may extend their host range, we 
compare the host range of monopartite, segmented and multipartite plant viruses using a 
genomics metadata approach that is less biased than traditional approaches. In support of 
this hypothesis, we show that multipartite and segmented viruses appear to have larger host 
ranges than monopartite viruses. Our synthesis highlights key outstanding questions about 
the evolutionary significance of multipartite viruses and the need to address these questions 
with quantitative approaches.  
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Introduction

Virus DNA or RNA genomes may be discretely organised into single or multiple segments 
which differ in their packaging into virus particles (Michalakis and Blanc 2020). Viruses with a 
single genome segment are termed monopartite viruses, whereas viruses that co-package all 
their genome segments into single viral particles or ribonucleoprotein complexes are termed 
segmented viruses. Alternatively, multipartite viruses have several genome segments that are 
each individually packaged into virus particles (Figure 1). The segmented and multipartite 
viruses require co-infection of multiple genome segments containing core viral functions for 
the initiation of viral replication and subsequent propagation in hosts. There is an inherent cost 
to transmission with multipartite viruses, as all segments are required to initiate an infection, 
there is a lower probability that all segments are sampled from an infection and reinoculated 
together in a new host upon transmission. This change in infection probability has been 
estimated by using dose-response assays and observing the change in the slope to identify 
the number of genome segments and the reduction in the number of primary infection sites 
(Lauffer and Price 1945; Fulton 1962). Michalakis and Blanc (2020) review support for the 
various costs of segment transmission at both within and between host level, such as (1) the 
co-occurrence of genomic segments with proteins or mRNA from other segment types within 
cells (Sicard et al. 2019), (2) possible avenues for sorted transmission by ribonucleoprotein 
complexes during cell-cell and long-distance movement, and (3) infections with essential virus 
segments, can be complemented with absent segments to reconstitute the full virus genome, 
as demonstrated with data from faba bean necrotic stunt virus (FBNSV) (Di Mattia et al. 2022). 
Furthermore, it was demonstrated that co-transmitted groups of the core FBNSV segments 
could acquire other FBNSV segments (Di Mattia et al.2022). These mechanisms are active 
during different stages of the transmission cycle and likely interdependently minimise the 
overall transmission cost of multipartition. Quantitative estimates for the cost to transmission 
and evidence for mechanisms which minimise cost acting in concert are scarce. 

Figure 1. Conceptual overview of virus genome organisation. Viral genomes may be 
organised into single or multiple genome segments which are packaged into capsids. 
Illustrated here: (a) monopartite viruses package their single segment into one particle, whilst 
(b) segmented viruses package their multiple segments into one particle and (c) multipartite 
viruses package their multiple segments individually. (b) and (c) may also be referred to as 
multicomponent systems. Created with Biorender
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Multipartite viruses represent ~30 - 40% of plant virus genera (Lucía-Sanz and Manrubia 2017; 
Michalakis and Blanc 2020), suggesting adaptive benefits that compensate for any hurdles to 
transmission imposed by their multipartite organisation. Sicard et al. (2016) provide a historical 
overview of the field and highlight that many of the proposed benefits associated with a 
multipartite genome organisation also would pertain to segmented viruses. For example, faster 
replication of short genome segments and reassortment between segments would also pertain 
to segmented viruses. There is one hypothesised benefit of genome segmentation which 
uniquely benefits multipartite viruses: the “genome formula” concept, where the frequency of 
multipartite genome segments can change rapidly in a host- and tissue-specific manner 
(Sicard et al. 2013; Wu et al. 2017). These changes could provide a means to rapidly adapt to 
a new host by altering gene expression (Sicard et al. 2013), suggesting that the genome 
formula increases the host range. Different genome formulae have been estimated for several 
plant virus species such as FBNSV (Sicard et al. 2013), alfalfa mosaic virus (AMV) (Wu et al. 
2017), banana bunchy top virus (BBTV) (Yu et al. 2019), cucumber mosaic virus (CMV) 
(Boezen et al. 2023) and for a segmented animal-infecting virus; bluetongue virus (BTV) 
(Moreau et al. 2020). Measured genome formulae in different host species show an unequal 
stoichiometric ratio of segments,  further providing support for its role in regulating gene 
expression (Sicard et al. 2013).  The widespread nature of multipartite viruses infecting plants 
and the genome formula suggests that it may be a mechanism for increasing the host range 
of multipartite viruses.   
 
In this study, our goal is to give an overview of recent theoretical and experimental work that 
has been done on the evolutionary costs and benefits of multipartite viruses. Where possible, 
we employ a quantitative perspective that allows testing theoretical predictions and considers 
the implications of the proposed mechanisms that underlie empirical observations. We will 
focus on whether there is evidence for a cost of multipartition when the sharing of viral gene 
products between cells (Sicard et al. 2019) is beneficial, and whether there is evidence that 
multipartite viruses have a broader host range than the host ranges of monopartite and 
segmented viruses.     
 

The transmission cost of multipartition 
Early research (Lauffer and Price 1945; Fulton 1962)  not only suggested the existence of 
multipartite viruses but also noted that multipartition has a cost of reduced transmission. These 
studies considered the relationship between virus dose and host infection to make inferences 
on viral infection kinetics. The key experiments testing these predictions could be performed 
by exploiting the fact that in some hosts, plant viruses induced local lesions, i.e. readily visible 
necrotic responses on the inoculated leaves which can be quantified (Bald 1937; McKinney 
1927). By preparing doses of virus inoculum in a dilution series and measuring the number of 
lesions formed, it is possible to infer the relationship between the number of virus particles 
needed to initiate infection (Parker 1938). Single-hit kinetics describe a direct relationship 
between the dose of an infectious unit and the number of plaques or lesions that form (Druett 
1952).  In multi-hit kinetics, there is a steeper gradient in the relationship between the dose of 
infectious units and the number of plaques or lesions formed due to the requirement for 
complementation (Fulton 1962; Lauffer and Price 1945).  Certain viruses had responses which 
were inconsistent with predictions of single-hit kinetics and instead showed steep responses 
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characteristic of multi-hit kinetics (Lauffer and Price 1945) indicating the involvement of 
multiple infectious units. More definitive results were obtained by Fulton (1962), who 
considered the dose-response of the tri-segmented multipartite prunus necrotic ringspot virus 
(PNRSV) in detail and found direct evidence for complementation between virus particles. 
Fulton (1962) showed that partially UV-inactivated PNRSV particles increased the infectivity 
of the inoculum disproportionately, and from these strong synergistic interactions between the 
viral genetic component, he inferred that: “Two or more virus particles at one site might provide 
a complete complement of genetic units [...]” (Fulton 1962). Fulton (1962) demonstrated 
synergism between virus particles, but the implication of these observations is also that – all 
other things being equal – a multipartite virus has impaired transmission compared to a 
monopartite virus, an effect that is strongly dose-dependent. 

Although these classic inferences of genome segmentation are based on very simple models 
of infection kinetics, dose-response is generally considered a reliable indicator of 
multipartition. Classic work with plant viruses considered local lesions as a response (Lauffer 
and Price 1945; Fulton 1962). In other studies, the response has been quantified by 
considering the proportion of infected hosts (Zwart, Daròs, and Elena 2011; Sánchez-Navarro, 
Zwart, and Elena 2013). When the empirical dose-response is considered across all different 
monopartite virus systems, these relationships invariably are compatible with predictions for 
monopartite viruses (van der Werf et al. 2011; Zwart and Elena 2015; Gutiérrez and Zwart 
2018). In contrast, Ladner et al. (2016) found evidence that guaico culex virus (GCXV) might 
be a multipartite virus by analysing plaque formation in mosquito cell lines. From the steep 
dose responses observed, they predicted multiple virus particles are required for infection, 
which is congruent with the 3–5 segments detected using high throughput sequencing. It is 
important to stress that dose-response kinetics are not an infallible indicator of multipartite 
systems. First, Michalakis and Blanc (2020)  remark that Ladner et al. (2016) do not 
conclusively show that GCXV is a multipartite virus, as the steep dose-response observed is 
also consonant with a segmented virus with low-fidelity packaging. A steep dose-response 
relation, therefore, can only suggest a multicomponent system and not confirm multipartition. 
Second, there are many reasons why a dose-response relation may differ from theoretical 
predictions. For example, differences in host susceptibility are predicted to lead to a more 
gradual response as the dose is increased (Regoes et al. 2003), and therefore, it is possible 
that a multipartite virus shows the predicted monopartite response in a host population with 
variable susceptibility (Zwart and Elena 2015). A historical footnote illustrates this point, as 
Fulton (1962) reported a single-hit dose response for the tri-segmented, multipartite CMV for 
reasons that remain unclear to us. Dose-response kinetics are a useful indicator of genome 
organisation, but the results need to be confirmed by the analysis of both the genome and 
virus particles.  

All previous studies have focused on the steepness or shape of the dose-response relation. 
However, simple models make two clear predictions of the infection kinetics of multipartite 
viruses: as the number of genome segments increases, not only does the dose-response 
become steeper, but its position also shifts to the right, as it becomes less likely that the virus 
will successfully infect (Fig. 2a) (Gutiérrez and Zwart 2018). To date, the shifts in the position 
of the dose-response curve have not been included in analyses of virus infections. The 
combined effect of the shifted dose response and its altered shape ultimately determine the 
cost of multipartition to transmission. Therefore, dose-response analyses to date evaluate 
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whether the experimental results are compatible with a given number of segments, but they 
do not evaluate whether the cost of multipartition is in agreement with model predictions. 

Comparing only the integral of dose-response of natural monopartite and multipartite viruses 
quantifying the transmission cost will be confounded by different segment numbers, genetic 
diversity and infectivity. A more satisfactory approach is to engineer a panel of hosts with 
different requirements for infection, for example by expressing viral genome segments so that 
they are no longer needed for infection. The same inoculum could then be used to challenge 
the different hosts, and the combined difference between the shift in the dose-response curve 
and dose-response integrals could be determined to estimate the cost of multipartition. In 
previous work, the dose-response was measured for tobacco plants constitutively expressing 
one or two genome segments of the tripartite alfalfa mosaic virus (AMV) (Taschner et al. 1991), 
but the authors only considered the shape of the dose-response (Sánchez-Navarro, Zwart, 
and Elena 2013). Here we have re-analysed these data, to consider both the shape and 
position of the response (Text Box 1). We found (Figure 2b-c, and Supplementary SI) that the 
cost of multipartition was larger than predicted by the null model of infection (Figure 2b), as 
the position of the dose-response shifted a greater distance than predicted. Alternative models 
that incorporated experimental variation in the infectivity of virus particles and differences in 
the susceptibility of host plants due to the expression of viral genome segments could better 
account for the experimental data (Fig. 2c). However, both of these models had similar levels 
of empirical support (Table S2), and our analysis, therefore, cannot identify which of these two 
mechanisms might underlie this larger-than-expected cost. Our analysis does provide further 
support for the idea that multipartition has a cost to transmission, confirming expectations 
based on the shape of the dose-response. This re-analysis of data confirms the cost of 
multipartition to transmission exists, and may even be larger than predicted by simple models 
of infection. 
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Text Box 1: Testing predictions for the between-host cost of 
multipartition 

Sanchez-Navarro et al. (2013) performed dose-response experiments with a wild-type AMV 
inoculum in three tobacco plants: wild-type plants (Wt), plants expressing AMV RNA2 (P2) 
and plants expressing both AMV RNA1 and RNA2 (P12). A simple model of infection that 
assumes (1) independent action of the three RNA segments during viral invasion and (2) that 
all three segments need to be present for a productive infection was used to generate 
predictions (see supplementary text S1). We considered a tripartite virus with a balanced 
genome formula and tested a set of four models in which the probability of infection per virus 
particle type (i.e., containing a particular genome segment) was fixed (Model 1), or 
alternatively, it was dependent on the genome segment (Model 2), the host plant type (Model 
3), or both on genome segment and host plant (Model 4). We fitted these models with a 
maximum likelihood approach (Table S1) and performed model selection with the Akaike 
information criterion (AIC; Table S2). 

We found the highest support for Models 2 and 3, which had Akaike weights of 0.328 and 
0.632. The Akaike weight indicates the relative likelihood of a model, and the sum of all weights 
for the set of all models included is one (Johnson and Omland 2004). Although Models 2 and 
3 have considerably more support than Models 1 (Akaike weight = 0.000) and 4 (Akaike weight 
= 0.040), we cannot make a meaningful distinction between the best-supported models 
because they both have considerable empirical support. Although it incorporates both 
mechanisms introduced in Models 2 and 3, Model 4 is not supported because there is not an 
appreciable increase in fit over Models 2 or 3. The model selection results, therefore, suggest 
that there are differences in infectivity between virus particles, but we cannot say whether 
these depend on the virus particle type, host plant or both. When we plot the predicted dose-
response, it is clear that Model 1 predicts the dose responses will be closer together than 
observed for the data (Figure 2b). Models 2–4 better fit the data and predict larger differences 
in the dose responses over the different types of host plants (Figure 2c). The analysis, 
therefore, suggests that the cost of multipartition is real and might be larger than predicted by 
simple models of infection kinetics. For a complete description of the results obtained and 
complete plots of all models, see supplementary materials (Supplementary S1). 
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Figure 2. An overview of predictions and data for the cost of multipartition. Lines indicate 
model predictions and points indicate empirical data. (a) Theoretical dose-response curves 
are shown for viruses with a different number of genome segments and balanced GF. As the 
number of segments increases, the dose-response becomes steeper and shifts to the right, 
as emphasised by the green arrow. (b) Fitted Model 1 and experimental data from Sanchez-
Navarro et al (2013) are shown, where virus segments were made redundant by their 
constitutive expression in the host plant. For example, in the “monopartite” case, AMV RNA1 
and RNA2 are expressed by the host plant and only RNA3 is required for infection. The dose-
response predictions for the bipartite and tripartite viruses are different than in panel 1, both 
in terms of shape and position, because the AMV genome formula is not balanced. The model 
predicts that the dose-response for the different numbers of segments required for infection 
are closer together than observed. (c) Fitted model 3 and the same experimental data shown 
in (b) are shown. Models 2, 3, and 4 provide very similar predictions of dose-response, 
although Models 2 and 3 are better supported than 4 due to their lower complexity. We, 
therefore, only show the best-supported Model 3 here to illustrate all of these models do fit the 
data better.  
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Mechanisms to minimise the cost to transmission 
of multipartite viruses  
To remedy costs associated with a multipartite organisation, several mechanisms have been 
proposed that may help reduce these costs: (1) virus aggregation; the packaging of multiple 
virus particles in a single occlusion body, as seen for the alphabaculoviruses (Rohrmann 
2019), by collective transmission of virus particles in the form of virus particle aggregates 
(Andreu-Moreno and Sanjuán 2018; Sanjuán and Thoulouze 2019), the between-host 
transmission of virus particles which adhere to another as a core genome (Gallet, Michalakis, 
and Blanc 2018), (2) as supramolecular viral RNA structures during within-host transmission 
(Gilmer, Ratti, and Michel 2018) and (3) the ability to share gene products across adjacent 
host cells, making replication possible despite the absence of a segment (Sicard et al. 2019). 
At present, there is little evidence showing that mechanisms of (1) – (2) pertain to multipartite 
viruses. However, there is evidence of gene product sharing in a multipartite virus (Sicard et 
al. 2019), and we thus focus on this proposed benefit.  

The ability to share gene products across cells and tissues circumvents the requirement for 
all segments to be present within the same cell at the initial stages of infection. This 
mechanism has been demonstrated for FBNSV infection, in which gene products involved in 
key viral functions – replication, movement and coat protein synthesis – were found to 
accumulate in cells wherein the genome segments encoding these functions were absent 
(Sicard et al. 2019). This would lower the within-host costs associated with local and systemic 
movement and facilitate faster systemic spread, alleviating the costs of multipartition to within-
host spread by relaxing the requirement for genome integrity.  In the broadest terms, we expect 
a virus that does not share its gene products may infect fewer cells, whilst the replication of a 
virus that does share its products may be affected by changes in the presence of viral gene 
products or the lack of segments to replicate. However, there will also be costs associated 
with the sharing of gene products for the virus in the donor cell: some resources in an infected 
cell will need to be directed to the expression of gene products in recipient cells, at the expense 
of replication or virus particle production in the donor cell. This cost to the donor cell will 
depend on (1) the mechanism of gene product sharing between donor and recipient cells, as 
producing viral proteins will come at a higher cost than producing only messenger RNA, and 
(2) the intensity of product sharing. Both are currently unknown, and it is therefore unclear 
under what conditions viral gene product sharing is beneficial.  

To explore when the sharing of viral gene products with other cells is beneficial, we extended 
a model of a bipartite virus incorporating variation in the genome formula (Zwart and Elena 
2020) (Figure 3). In the original model, the intra-cellular genome formula and virus particle 
yield per cell are linked by the probability density function of the normal distribution, with mean 
µ and variance σ2. Parameter σ2, therefore, determines the magnitude of the decrease in virus 
particle yield as the genome formula departs from its optimal value µ, meaning that σ2 
determines how sensitive virus particle yield is to changes in the genome formula. In the 
original study, it was shown that multipartite viruses can outcompete their monopartite 
cognates when virus replication is sensitive to changes in gene expression (I.e., when σ2 ≤ 
0.1). In our model here, we extended this model to include the production of both virus gene 
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products and virus particles in cells. A detailed description of the model is available in 
supplement S2.   

Figure 3. Overview of the virus gene-product sharing model. Two virus segments are blue 
and green, as are the gene products they encode. The parameter ρ determines what 
proportion of the virus resources in each cell is dedicated to producing gene products that will 
be shared uniformly with all other cells. The model is agnostic about the mechanism of gene-
product sharing, as this could occur through the movement of mRNA or trafficking of proteins. 
In both panels (a) and (b), we illustrate situations in which the production of virus resources is 
sensitive to changes in the proportion of gene products 1 and 2 (𝜎𝜎𝜎𝜎2 >  1), and in the first round 
of infection (T = 1) a single cell is infected by virus particles in a 1:1 ratio for segments 1 and 
2. We do not illustrate the gene products formed in a cell but not shared, but these are 
equivalent to the expression from a single genome segment present in a cell which supports 
replication. (a) Illustrates a scenario in the absence of gene-product sharing (ρ = 0). All viral 
resources are committed to virus particles, and hence infection does not proceed in those cells 
missing one of the two segments at T = 2. When the ratio of virus gene products deviates from 
1:1 in a cell, the production of virus particles becomes lower. (b) A scenario when 50% of viral 
resources in each cell are committed to gene-product sharing (ρ = 0.5). Our model assumes 
gene products are shared equally with all cells that can be exposed to the virus in the next 
round of infection, allowing some level of segment replication in each cell in which a virus 
particle introduces a genome segment. However, when the ratio of gene products deviates 
from 1:1 in a cell, the total virus resources generated are again lower. When only one segment 
is present in a cell, only that segment can be replicated, and hence, all virus particles or gene 
products generated will be of a single type.      
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From our model results, we can draw three main conclusions (Figure 4). First, for a large part 
of the parameter space we considered, our model predicts that viral gene product sharing is 
neutral or costly. As the fraction of gene products shared (ρ) becomes larger, the fitness cost 
becomes higher. However, at very low multiplicities of cellular infection (MOI), the cost 
disappears as the multipartite virus always performs very poorly. In our model, the gene 
products are not targeted to cells that are likely to be exposed to virus particles, which might 
explain its high cost. Second, there was a small parameter space in which virus gene product 
sharing was beneficial: for moderate levels of sharing (ρ < 0.5), when MOI was relatively low 
(MOI: ~ 3 ~ 100.5), and when the virus is insensitive to the genome formula (σ2 = 10). It is 
intuitive that there are benefits associated with gene product sharing under these conditions. 
Moderate levels of sharing reduce the opportunity cost to replication in the donor cell, and at 
low MOI, gene product sharing will be more beneficial because only a single segment will be 
present in many cells. Furthermore, low sensitivity to the genome formula allows virus 
replication in cells in which only a small amount of a missing segment has been shared. Third, 
the benefits of gene product sharing occur in a different parameter space than the benefits 
associated with adaptive changes in the genome formula. Genome formula variation is 
suggested to benefit virus gene expression regulation in novel environments (Sicard et al. 
2013) and has been linked to transcriptional regulation in a multipartite DNA virus (Gallet et 
al. 2022). The benefits of changes in the genome formula (Sicard et al. 2013; Wu et al. 2017) 
are predicted to be greatest and outweigh the cost of multipartition when virus particle 
production is sensitive to changes in the genome formula (σ2 ≤ 0.1) (Zwart and Elena 2020). 
By contrast, we find that the benefits associated with gene product sharing only outweigh the 
costs when virus particle production is insensitive to the genome formula (σ2 = 10). The model 
predicts that the genome formula and gene product-sharing mechanisms require different 
conditions to be beneficial, making it unlikely that a virus can exploit both of them concurrently. 

We can, therefore, conclude that although gene product sharing has the potential to reduce 
the cost of multipartition at the within-host level, there are many conditions under which it 
imposes an additional cost. Given the specific set of conditions needed, we predict that the 
occurrence of gene product sharing to lower the cost of multipartition may not be common, 
unless (1) this sharing of gene products can be achieved at a very low cost, or (2) there are 
mechanisms that result in virus particles and gene products reaching the same susceptible 
cells. Finally, we note that a high level of infections supported by shared gene products may 
also result in a cost to between-host transmission. When replication without a complete 
genome is enabled by gene product sharing, the total of virus particles produced in these cells 
will represent incomplete genomes. Therefore, these particles can only contribute to the 
between-host transmission when they are complemented by the missing segments during 
virus acquisition or upon concomitant transmission of virus populations. 
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Figure 4. Model showing the effect of gene-product sharing of a single segment on viral 
fitness during local cell-cell movement. The effects of viral-gene-product sharing on viral 
fitness on a bipartite virus. On the x-axis ρ is given, the proportion of viral gene products that 
spread to other cells. On the y-axis the log10 of the cellular multiplicity of infection (MOI) is 
given. The colours indicate viral fitness compared to a virus that does not share its gene 
products, as determined by total virus particle production during a simulation of multiple rounds 
of infection and as compared to a virus that does not share any gene products. When viral 
fitness is higher than the non-sharing reference the area is green, when viral fitness is worse 
the area is purple, and when viral fitness is similar the area is white. Contour lines have been 
included to highlight parameter space with high or low fitness. The value σ2 indicates how 
sensitive virus particle production is to changes in the genome formula, with low values (i.e., 
σ2 = 0.01) indicated high sensitivity and a quick drop in accumulation as the population moves 
away from the optimal value, and high values (i.e., σ2 = 10) indicating low sensitivity. For each 
condition, 104 simulations were run with 5 cells per round of replication and 20 rounds of 
replication. See Supplementary S2 for a complete description of the model and model results 
for a broader range of conditions.



2

Costs and Benefi ts of Multipartite Virus Genomes

43
 
 

Benefits of genome segmentation: evidence for 
extended host range 
 
The discovery of multipartite viruses was linked to the effect of their genome and virus particle 
organisation on infection kinetics, and implied a high cost to virus transmission (Lauffer and 
Price 1945; Fulton 1962). The recognition of this predicted expected cost has fuelled research 
and a debate on whether there are benefits linked to this genome organisation that may 
alleviate these costs (Reanney 1982; Sicard et al. 2016; Lucía-Sanz and Manrubia 2017). 
However, to date the putative benefits of multipartition – if they exist – remain elusive. The 
benefits of a de novo multicomponent animal virus, in terms of higher virus particle stability, 
were convincingly demonstrated by (Ojosnegros et al. 2011). Similar verification for an 
authentic multipartite virus has not been reported to date. 
 
Whereas previous work has suggested there is variation in the frequencies of segments 
(Hajimorad et al. 1991), Sicard and colleagues performed the first systematic study on the 
genome formula using FBNSV showing that the genome formula is unbalanced and converges 
on a host-dependent equilibrium, the so-called setpoint genome formula (Sicard et al. 2013). 
To date, for all multipartite viruses for which it has been measured, the genome formula is 
unbalanced. These viruses have different genome composition, including the positive single-
stranded RNA (+ssRNA) AMV (Wu et al. 2017) and CMV (CMV)(Boezen et al. 2023), the 
negative single-stranded RNA (-ssRNA) rice stripe virus (RSV)(Zhao et al. 2019), the single-
stranded DNA (ssDNA) BBTV (Yu et al. 2019) and the insect virus Bombyx mori bidensovirus 
(BmBdV) (Hu et al. 2016). Sicard et al. (2013) suggested that rapid changes in the genome 
formula could be adaptive, resulting in changes in gene expression in different host 
environments. The different multipartite viruses and their host species in which the genome 
formula has been measured suggest it has a role in facilitating gene expression regulation. 
Gene copy number is known to play a role in rapid evolutionary responses seen in monopartite 
viruses (Elde et al. 2012) and bacteria (Andersson and Hughes 2009). By contrast, later work 
on FBNSV showed that, in fact, the genome formula could also buffer changes in transcription 
rates in different host environments, perhaps contributing to stable gene expression (Gallet et 
al. 2022). Wu et al. (2017) also showed the genome formula is a negative frequency-
dependent stable equilibrium for AMV, and showed the GF equilibrium is associated with 
higher virus accumulation. Moreau et al. (2020) demonstrated that the segmented  BTV 
genome formula is also host-dependent. Finally,  Zwart and Elena (2020) modelled the 
evolution of the genome formula and showed that, under some conditions, multipartite viruses 
can outcompete their monopartite cognates. This model predicts that the key conditions that 
determine how competitive multipartite viruses will be are the sensitivity of virus particle yield 
to the genome formula, whether the environment demands changes in the genome formula 
and the MOI. Taken together, this body of work suggests that the genome formula may play 
a role in the rapid adaptation of multipartite viruses to varied host environments.  
 
If the genome formula facilitates virus adaptation to the host environment, we expect that it 
could extend the host range of viruses. This extension of host range would apply to multipartite 
viruses and selected segmented viruses.  Segmented viruses are known to differ in the 
packaging fidelity of genome segments and can broadly be classified as high or low fidelity 
packagers (Nakatsu et al. 2016). High fidelity packagers ensure that a full genome 
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complement containing all virus segments are co-packaged into ribonucleoprotein complexes 
(Chou et al. 2012). Low fidelity packagers have imperfect segment co-packaging, where not 
all segment types are packaged together; there may be selective preferential co-packaging of 
segment types, disparate segment number and frequencies which influences infectivity 
(Diefenbacher, Sun, and Brooke 2018; Brooke 2014; Brooke et al. 2014).  This packaging 
inefficiency allows low fidelity packagers to display genome-formula variation. Host range 
varies across viruses, with some exhibiting a narrow known host range limited to a single host 
species or even genotypes and variants  within a species (e.g bacteriophages which strain-
specifically infect host species) (de Jonge et al. 2019). Other viruses exhibit a broad host 
range, infecting many host species or taxa from different groups (e.g. Tomato spotted wilt virus 
(Parrella et al. 2003) or West Nile Virus which infects a range of animals from mosquitoes to 
birds to horses) (Marm Kilpatrick et al. 2006; Campbell et al. 2002). As only some segmented 
viruses are expected to be able to benefit from the genome formula, we would predict that the 
host range is the broadest for multipartite viruses, followed by segmented viruses, followed by 
monopartite viruses. Others have already noted that the number of genome segments is a 
predictor of host range; A study that measured host ranges with classical methods suggests 
that viruses with 3–4 genome segments have broadest host ranges (Moury et al. 2017). 
 
Although this hypothesis is straightforward, in practice it is not easy to test. First, susceptibility 
of a host to a virus is not a binary characteristic: it depends on the conditions under which a 
host is exposed to a virus (Morris and Moury 2019), as many variables such as the extent of 
exposure (i.e., dose), host immune state, the presence of other viruses and microorganisms 
will affect whether infection occurs. Second, traditional host range testing will be biassed by 
the number of hosts tested for their susceptibility to a pathogen and any biases may be self-
reinforcing. We therefore are interested in measuring the realised host range for a large 
number of viruses in a manner that is not biassed by the extent of host-range testing. The 
realised host range includes all susceptible host species in which a parasite can complete its  
life cycle  and does not include the probability of encounter and other ecological barriers and 
would always constitute a much broader estimate of host range (Rohde 1994; Hutchinson 
1957). The observed host range describes the proportion of susceptible host species in which 
a parasite completes its life cycle and includes the probability of exposure to the parasite as 
well as the influence of other ecological barriers that affect infection and represents the host 
range which can be appreciably measured (Rohde 1994; Hutchinson 1957).  The observed 
host range will therefore be narrower than the realised host range. We therefore devised a 
less biassed approach for measuring the host range by using submissions from the NCBI 
Virus database which contains high-throughput sequence (HTS) metadata from DNA and RNA 
viruses of different virus genome organisations and notes the host from which it is derived 
(See supplementary S3 for a detailed description of methods). HTS data provides a better 
estimate of the observed host range, as a larger sample of host plants are assessed however 
it is difficult to distinguish if infections undergo the complete virus life cycle, i.e. virus replication 
and transmission, as there is no control on the timing of infection or if they may represent virus 
introductions onto non-hosts.   
 
For each plant virus species, hosts were identified to genus level by combining data from the 
NCBI Virus database  (Hatcher et al. 2017) and ICTV  virus metadata resource 
(https://ictv.global/vmr). The genus Begomovirus contains both monopartite and multipartite 
members, and was therefore classified separately. For each virus species, we identified the 
number of unique host genera in which it had been identified. We performed our analysis on 
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the genus level, because we are interested in hosts that are highly diverging. We also wanted 
to know the number of observations for each virus species for our statistical analysis, so that 
we could weigh the observed host range by the total number of observations. Since each 
segment of a genome is initially counted as an observation, we corrected the number of 
observations for the multipartite and segmented viruses by dividing the number of segments 
observed by the mean number of segments for species that belong to a viral genus.  
 
Our analysis suggests that the host range is significantly narrower for the monopartite viruses 
than for all other groups considered (Table 1), providing support for our hypothesis on 
differences between monopartite and multipartite viruses. There were no significant 
differences between any of the other groups, so there is no evidence that the host range is 
broader for multipartite than segmented viruses. However, despite the difference with 
multipartite viruses being insignificant, the largest host range was estimated for the segmented 
viruses. Our results do support the idea that genome segmentation is associated with a 
broader host range. Segmented viruses with high-fidelity packaging – which are presumably 
the majority of segmented viruses – cannot conserve changes in the genome formula during 
virus spread. Changes in the genome formula cannot therefore be the only reason for the 
differences in inferred host range. 
 

Table 1. Estimate of host range for different groups of viruses 

Group Na NLLb Host rangec  [95% CId] 

Monopartite 869 1387.726 3.03 [2.63-3.23] 

Multipartite 196 484.343 4.17   [3.33-6.25] 

Segmented 67 216.413 6.67 [4.00-12.50] 

Begomovirus 413 748.026 4.17  [3.85-5.00] 
a The number of viruses per group. b Negative log likelihood of the calibrated model, using 105 

permutations. c The estimated host range, given as 1/θ. d Confidence interval, as determined 
by 1000 bootstraps of the virus species included in the model calibration. 
 

Discussion  
 
In this paper we present quantitative approaches for measuring the cost to transmission of 
multipartite viruses, introduce a modelling approach to quantify how a within-host mechanism 
may reduce the cost to transmission and lastly estimate the benefit of genome segmentation 
for increasing the host range of multicomponent viruses. Multipartite viruses are a unique 
group of segmented viruses which package and transmit their genomic segments individually 
in virus particles. A multipartite genome organisation poses an inherent cost to infectivity; 
multiple virus particles are required during transmission between hosts, which limits the 
chances of a successful infection. Here we present a quantitative framework for estimating 
the cost of within- and between-host transmission for multipartite viruses, using both the 
change in position and shape of the dose-response relation. Using empirical data we show 
that the number of virus particle types required for infection affects the position of the dose 
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response curve, next to altering its shape. The change in dose-response position increases 
the estimated cost of transmission to a greater extent than predicted by our null model, 
suggesting that mechanisms which provide incremental reductions in the cost to transmission 
may have a disproportionate impact on increasing infection success.  However, these 
experiments employed transmission by means of mechanical inoculation. Many plant viruses 
can be transmitted mechanically, and indeed in some cases like tobacco mosaic virus (TMV), 
this route of transmission is very effective (Sacristán et al. 2011). However, for most viruses 
vector-borne transmission is more important, with insect, nematode and fungal vectors 
acquiring, transporting and effectively inoculating virus particles (Whitfield, Falk, and 
Rotenberg 2015; Rochon et al. 2004; Bian et al. 2020; Brown, Robertson, and Trudgill 1995). 
For the most relevant route of transmission, the cost of multipartition therefore has not been 
measured. The cost of vector-borne transmission may vary enormously depending on the 
system and the context, and will depend on many factors including vector behaviour, vector-
host interactions, and the time of transit between hosts. These factors conceivably increase 
or decrease the cost to transmission of multipartition. For example, a reduction in the dose of 
virus particles inoculated by the vector would increase the cost to transmission for a 
multipartite virus. By contrast, ecological settings that generate many opportunities for vector-
borne transmission may alleviate this cost (Valdano et al. 2019). Tests of the cost to vector-
borne transmission (Figure 5) would therefore be valuable, but they will need to be performed 
over a variety of conditions and virus-host systems to be truly informative. Interestingly, the 
same experimental approach (Sánchez-Navarro, Zwart, and Elena 2013) using transgenic 
plants (Taschner et al. 1991) could be used to quantify the cost of multipartition for aphid 
transmission. 
 
One proposed mechanism for lowering the cost to transmission of multipartite viruses is by 
gene product sharing during the course of infection (Sicard et al. 2019). We modelled the 
effect of gene product sharing and showed that it can reduce the cost of multipartition. Our 
model predicts this reduction will occur (1) at low MOIs,  (2) when the level of sharing of gene 
products is moderate, and (3) when there is low sensitivity of virus yield to the genome formula. 
Recapitulating these three conditions more intuitively: gene product sharing is likely to be 
helpful (1) when genome segments are missing in many cells, (2) investment is limited 
because only a little sharing is done, and (3) the return on investment is large because it only 
takes a little sharing to achieve moderate levels of infection in other cells.  
 
Another mechanism which could alleviate the costs of multipartition at the early phase of 
infection, is the aggregation of transmission particles collectively containing all genome 
segments.  Gilmer et al. (2018) hypothesise that viral RNA segments could form 
supramolecular complexes, allowing for the co-transmission of genome segments within a 
plant and thereby reducing the cost of multipartition during within-host transmission. Although 
RNA sequences suggest such structures may occur, this striking hypothesis has not been 
tested yet. Gallet et al. (2018) considered the possibility that virus particles might aggregate 
when estimating the size of FBNSV transmission bottlenecks for different genome segments, 
but the data did not allow them to draw conclusions. It is conceivable that gene product sharing 
may be paired with virus particle adhesion of 1 or more segments.  

Zhang et al. (2019) suggested that multipartite viruses might be found mainly in plants, 
because these hosts are sedentary and this will facilitate the eventual transmission of a core 
genome containing segments which are responsible for viral reproduction and transmission. 
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We disagree with this perspective because most multipartite viruses depend on highly mobile 
vectors for their transmission, and hence their effective contact networks are not different to 
those of viruses that infect other organisms (Zwart et al.2021). In their model, Zhang et al. 
(2019) allow genome segments to accumulate over time in susceptible hosts until, eventually, 
a complete genome is present, at which point the host becomes infectious. Non-replicating 
genome segments will be degraded in the host environment, and it is therefore expected that 
their potential to contribute to transmission will be rapidly lost. 

Di Mattia et al. (2022) considered whether non-concomitant transmission of multipartite 
segments is indeed possible, exploiting the fact that FBNSV does not require all genome 
segments for replication and transmission. The authors found that non-concomitant 
transmission of segments is possible, with infections missing single segments DNA-C DNA-N 
or DNA-U4 were subsequently fully complemented following aphid transmission. 
Reconstitution of the complete genome via sequential transmission by the same aphid cohort 
occurred with greater success than via parallel transmission with different aphid cohorts (Di 
Mattia et al. 2022). Vector behaviour samples a subset of genome segments and successive 
or parallel feeding events increase the probability of sampling a more complete infection, 
thereby increasing the transmission probability of complete genomes (Figure 5). However, 
neither of the segments tested by Di Mattia et al. (2022) are required to initiate FBNSV 
infection in planta and reconstitution of the full genome occurs in the presence of an already 
replicating FBNSV population within the host. This exciting work shows that segments that are 
not required for replication and transmission can be re-acquired readily, but on the other hand, 
all available evidence suggests that the core set of segments must be transmitted 
concomitantly. The work does show that there are no strong barriers to the coalescence of 
(groups of) genome segments, an important requirement for the rescue of incomplete sets of 
genomes. The study, therefore, sheds light on how accessory segments can be maintained 
and highlights that one important requirement for the reacquisition of core segments is met.  

By using a less biased approach to estimate the host range of different genome organisations, 
we show that there is a trend of wider host range for segmented and multipartite viruses 
compared to monopartite viruses than expected. These results provide an indication that 
segmentation, either in the form of segmented or multipartite viruses may provide an 
advantage for extending the host range. Previous work has shown that tri-segmented viruses 
possess the largest host range, however this did not take into account the genome 
segmentation organisation (Moury et al. 2017). A suitable example for exploring if 
multipartition may extend the host range are the begomoviruses, which contain both 
monopartite and bipartite species. We show from our analysis that the host range of 
begomoviruses is similar to that of the multipartite viruses group as a whole. In our current 
approach, we have combined both the monopartite and bipartite begomoviruses, however 
analysing these separately may provide insights on how multipartite viruses host ranges can 
expand. They are particularly relevant as it is hypothesised for Begomoviruses that the second 
segment originated from a satellite virus (Briddon et al. 2010), and in a mixed infection of a 
monopartite and satellite begomovirus, the presence of a satellite virus increased virulence 
and vector transmission efficiency (Ouattara et al. 2022). Moury et al. (2017) showed in their 
analysis that virus host range is affected by the nucleic acid type and polarity, vertical 
transmissibility, horizontal transmission, and vector type (Moury et al. 2017).  Our approach 
accounts for the number of virus genome segments and the total number of observations for 
a given host and provides a useful way to measure the host range of plant viruses.   
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Figure 5. Overview of between and within-host costs of multipartition of plant viruses.  
(i) Multipartite viral segments may be distributed over several cells, and therefore, many cells 
remain uninfected.  (ii) Interplay between infectivity of individual segments, segment 
frequency, segment accumulation and total viral abundance during within-host transmission 
(iii) segment accumulation may differ during semi-persistent and persistent vector 
transmission. This suggests that there is a vector-specific GF in addition to a host-specific GF  
(iv) Vector transmission influences via sampling bias and vector GF the inoculum size and 
starting ratio of initial infections. Created with Biorender

It can also be extended to include viruses from other kingdoms and could be integrated with 
data on transmission routes to identify conserved transmission pathways. Valdano et al. 
(2019) demonstrated in a compartmental modelling approach that multipartition can emerge 
when host contact networks are homogenous. A simplification to describe agricultural systems 
in which closely related species are connected not only spatially but also by vector behaviour. 
With this in mind and the approach described we can make the prediction that multipartite 
viruses will have host ranges that are skewed in favour of cultivated species. To test this, 
information from the plant virus transmission database (https://library.wur.nl/WebQuery/virus), 
a repository of virus transmission routes for plant viruses  determined experimentally and the 
Virus-Host DB (https://www.genome.jp/virushostdb/note.html) a curated database for human 
and plant viruses infecting a small set of common cultivated crops can be combined (Mihara 
et al. 2016). 

Our results show that segmented viruses have the broadest host range followed by multipartite 
viruses. Thus far, we have hypothetically attributed the extended host range to regulation of 
gene expression. However, enhanced recombination and reassortment of genome segment 
variants in segmented and multipartite viruses may also contribute to a broader range of host 
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species (Simon-Loriere and Holmes 2011). Reassortment and recombination in segmented 
and multipartite viruses may increase virus genetic diversity (Chao 1988). Both play an 
important role in virus host specificity and infections in novel host species (Subbarao, London, 
and Murphy 1993; Chen, Goldbach, and Prins 2002). For segmented influenza virus, 
reassortment is thought to increase virus host range (Ince et al. 2013; Imai et al. 2012). For 
segmented tomato spotted wilt virus, segment reassortment is associated with host resistance 
breaking (Qiu and Moyer 1999). Long-term analysis of natural multipartite plant virus infections 
has shown that reassortment and recombination are important factors in shaping virus 
evolution, that reassortment and recombination is low and differs between segments (Bonnet 
et al. 2005),  genetic diversity is low (Nouri et al. 2014) and that for CMV, recombination 
between subgroup I and II isolate is generally low (Fraile et al. 1997).  

However, low frequency RNA 3 recombinants are known to increase in frequency in different 
host species for types of subgroup IB and IA  (Fraile et al. 1997), suggesting adaptive benefits 
from recombination.   Ouedraogo et al. (2019) show that recombination and reassortment of 
a multipartite virus can be host-mediated, implying that focal cultivated plant species may act 
as sites for increasing genetic exchange and for emergence of new variants. This suggests 
that there is a complex ecological interaction of permissive and nonpermissive hosts for 
regulating recombination and reassortment rates in multipartite viruses on longer timescales, 
whereas changes in gene expression via the genome formula represents an adaptive 
mechanism at shorter timescale.  Our focus on the genome formula hypothesis explaining the 
broad host range of segmented viruses was motivated by recent observations of genome 
formula dynamics. However, for a comprehensive understanding of genome segmentation in 
viruses, other adaptive consequences  for adaptation and  host range will need to be 
considered. 
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Supplementary S1: Empirical estimates of the 
between-host cost of multipartition 
 
A multipartite genome and virus particle organization is often assumed to be costly. In classical 
studies, the shape of the dose local-lesion relationship was used to identify multipartite 
viruses. However, although multipartite viruses tend to have steep dose local-lesion 
relationships, this does not necessarily mean there is a cost to infection. It is concordant with 
infection model predictions - and the same models also predict a cost to infection – but it does 
not directly establish there is an infection cost. To do so, we would also need information on 
the position of the dose-response, ideally for viruses differing only in their number of genome 
segments. 
 
To address this question of whether there really is a cost of multipartition, here we use an 
existing dataset (Sánchez-Navarro, Zwart, and Elena 2013). In this study, tobacco plants were 
challenged with a wild-type Alfalfa mosaic virus (AMV) strain, a tripartite positive sense RNA 
virus. Wild-type tobacco plants were used, but also transgenic plants constitutively expressing 
AMV RNA2 (P2 plants) or AMV RNA1 and RNA2 (P12 plants) (Taschner et al. 1991). In 
transgenic plants, viral replication is supported even when the plant-expressed AMV RNA is 
not present in the inoculum. Sánchez-Navarro et al. 2013 showed that the dose-response of 
AMV became more gradual in the P2 and P12 plants, corresponding to the predictions of 
simple infection models. However, one point that was not addressed in the previous study was 
whether the cost of infection predicted for multipartite viruses by simple infection models 
corresponds to model predictions, although this dataset can be used for this purpose. 
 
From this study, we here consider only the data for infection in the inoculated leaf, and not for 
systemic infection. Expression of viral RNAs by the host plant appears to have a strong effect 
on movement, and AMV does not always cause systemic infection in wild-type plants, whereas 
it does for transgenic plants (Sánchez-Navarro et al. 2013). Therefore, differences in the rate 
of infection are probably further amplified in systemic tissues. We also used RT-qPCR 
estimates of the AMV setpoint genome formula (SGF), as measured for purified virions from 
infected tobacco plants (Wu et al. 2017), to establish the frequency of genome segments in 
the virus inoculum. 
 
As a starting point for considering the cost of multipartition, we consider the previously 
described infection model for a multipartite virus with j segments: 

𝐼𝐼𝐼𝐼 = � 1
𝑗𝑗𝑗𝑗

𝑖𝑖𝑖𝑖=1

− 𝑒𝑒𝑒𝑒−𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖  

where I is the proportion of infected hosts, ρ is the probability of infection per virus particle, 
and n is the number of virus particles. The number of virus particles for each segment is known 
or assumed (i.e., a balanced SGF). If we then assume ρi  is the same for all segments, the 
model only has a single free parameter. Conversely, if we estimate ρi for each segment the 
model will have j free parameters. For the transgenic plants used in our dataset (P1, P12), the 
expression of an AMV RNA by the plant results in ρ = 1. Therefore, whereas the full model for 
3 virus particle types is needed to describe AMV infection of wild-type plants 𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =
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 (1 − 𝑒𝑒𝑒𝑒−𝜌𝜌𝜌𝜌1𝑛𝑛𝑛𝑛1)(1 − 𝑒𝑒𝑒𝑒−𝜌𝜌𝜌𝜌2𝑛𝑛𝑛𝑛2)(1 − 𝑒𝑒𝑒𝑒−𝜌𝜌𝜌𝜌3𝑛𝑛𝑛𝑛3), for P2 plants: 𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝑃 =  (1 − 𝑒𝑒𝑒𝑒−𝜌𝜌𝜌𝜌1𝑛𝑛𝑛𝑛1)(1 − 𝑒𝑒𝑒𝑒−𝜌𝜌𝜌𝜌3𝑛𝑛𝑛𝑛3)  and for 
P12 plants: 𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 = (1 − 𝑒𝑒𝑒𝑒−𝜌𝜌𝜌𝜌3𝑛𝑛𝑛𝑛3). 
 
Given the different slopes and positions of the responses in the different types of plants 
(Sánchez-Navarro, Zwart, and Elena 2013), it is uninformative to consider simpler models of 
infection. However, we can make different assumptions on whether ρ depends on the virus-
particle type and host plant, leading to four different models with a different number of free 
parameters (Table S1). From first principles, we might expect that the probability of infection 
might be independent of the plant type, since we are modelling only the presence or absence 
of infection in the inoculated leaf. It is probably more difficult to make any predictions about 
whether the probability of infection depends on the virus-particle type, although previous work 
with this dataset suggests this is the case (Sánchez-Navarro, Zwart, and Elena 2013). On the 
one hand, there are differences in the morphology of the virus particles that depend on the 
genome segment encapsidated (Hull, Hills, and Markham 1969). On the other hand, all 
particles have the same capsid protein and similar physicochemical properties. One 
advantage of assuming that ρ is independent of virus-particle and plant types (i.e., Model 1), 
is that we only need values for the SGF to determine the cost of multipartition. In other words, 
the free parameter ρ can then shift the dose response in all three types of plants, but the 
shapes and relative positions of the responses are fixed. We consider Model 1 the null model, 
because of its parsimony (1 free parameter) and its property of fixing the cost of multipartition 
for a given SGF. 
 
We then fitted all four models to the data using a stochastic hill-climbing algorithm to minimise 
the negative log likelihood (NLL). NLL was determined by assuming a binomial error structure 
such that for the kth plant type and lth dose:  

𝐿𝐿𝐿𝐿(𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏) = (𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏 )𝐼𝐼𝐼𝐼𝑘𝑘𝑘𝑘,𝑙𝑙𝑙𝑙
𝑏𝑏𝑏𝑏�1 − 𝐼𝐼𝐼𝐼𝑘𝑘𝑘𝑘,𝑙𝑙𝑙𝑙�

𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏 
The corresponding NLL was then summed over all doses and plant types (i.e., each model 
was fit to all the experimental data). The model fitting was done using a custom script in R 
4.2.1 available at Zenodo (10.5281/zenodo.10652647). We used the Akaike Information 
Criterion (AIC) for model selection.  
 
The experimental data and fitted models are shown in Figure S2, model parameter estimates 
are given in Table S1, and the model selection results are given in Table S2. There was little 
support for Model 1, our null model for the cost of multipartition (Table S2). For this model, the 
relative positions of the dose response curves for the different plant types are fixed. The 
difference between the dose response for the different plant types is larger for the 
experimental data than that predicted by the model (Figure S2). The results therefore suggest 
that the real cost of multipartition is even larger than that predicted by the null model. All the 
alternative models have similar fits, and hence the models with 3 free parameters (Models 2 
and 3) enjoy greater support than the 6 free parameter model (Model 4). Model selection 
therefore cannot identify whether differences in the probability of infection between virus-
particles types, or differences in the probability of infection between plant types better account 
for the experimental data. 
 
The results suggest that the cost of multipartition exists, and that it might be greater than 
predictions by simple infection models. On the other hand, for the set of models we used here, 
we cannot identify a possible underlying mechanism explaining this greater cost, as the 
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support for different, more complex models is similar. The mechanism incorporated by Model 
2 – differences in probability of infection for different virus-particle types – could be a general 
mechanism leading to such discrepancies in real world virus populations. On the other hand, 
plant-type-dependent differences in the probability of infection are likely to be artefacts of the 
expression of viral segments. These differences would then not reflect a true cost of 
multipartition, but only be artefacts of the experimental system. Finally, it is worth noting that 
these conclusions were not reached in the original study (Sánchez-Navarro et al. 2013) 
because of the focus on testing IAH-derived infection models, which focus on the steepness 
of a response rather than its relative position.

Figure S1. Overview of the different models fitted here. FP stands for free parameter, and ρ 
is the probability of infection per virus particle. Note the Model 4 only has 6 parameters (instead 
of 9) because when the transgenic plants express an AMV RNA, ρ is set to 1. Hence, for the 
P2 and P12 plants there are 2 and 1 free parameters, respectively.
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Table S1. Estimated model parameters 

Model Parameter estimates 

1 ρ  = 7.82 × 10-3 

2 ρ 1  = 6.85 × 10-3 , ρ 2  = 1.42 × 10-3 , ρ 3  = 2.32 × 10-2 

3 ρ wt  = 4.00 × 10-3 , ρ P2  = 8.81 × 10-3 , ρ P12  = 2.47 × 10-2 

4 ρ 1,wt  = 1.15 × 10-2 , ρ 2,wt  = 4.75 × 10-3  , ρ 3,wt  = 2.00 × 10-3, ρ 1,P2  = 
1.09 × 10-2 , ρ 3,P2  = 6.71 × 10-3 ,  ρ 3,P12  = 2.47 × 10-2 

 
 
 
Table S2. Model Selection 

Model NLL AIC ΔAIC AW 

1 28.958 59.916 28.068 0.000 

2 13.579 33.158 1.31 0.328 

3 12.924 31.848 - 0.632 

4 12.681 37.362 5.514 0.040 
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Figure S2. Fitted dose response models (lines) and experimental data (symbols). The 
ordinate is the log transformed virus particle dose, and the abscissae is the proportion of 
infected plants. Error bars indicate the binomial 95% confidence interval. Panels a-d
correspond to Models 1–4, respectively. The null model, Model 1, underestimates the 
differences between the responses for the different plants, and therefore underestimates the 
cost of multipartition. The fit for Models 2–4 is very similar, although Model 4 is over-
parameterized and has little support.
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Supplementary S2: Gene product sharing is a 
mechanism to lower the within-host cost 
 
To explore the effects of gene product sharing on virus fitness, and explore the relationship 
between the genome formula and gene product sharing, we adapt  a simulation model of 
multipartite virus genome-formula evolution from Zwart and Elena (Zwart and Elena 2020). 
This model assumes a bipartite virus with genome segments 1 and 2. Each genome segment 
produces a unique gene product that is needed for a successful cellular infection. If both gene 
products are present in a cell, the virus genome segments (1, 2 or both) in that cell will be 
replicated, incorporated into virus particles and can infect new cells in subsequent rounds of 
infection. There is a fixed number of cells (c) in each generation, there are discreet rounds of 
cellular replication with this fixed number of cells, and there is no spatial structure or 
differences in susceptibility between cells. To this model, we add the possibility of a donor cell 
in passage t sharing a proportion of the gene products it generates across all cells in passage 
t + 1. A key parameter in this model is σ2, a parameter which determines how changes in the 
ratio of the two viral gene products affect the virus’s ability to exploit a cell, either by producing 
virus particles or assembling gene products that can be shared with other cells. Finally, this 
model is not concerned with direct competition between virus variants, and hence all model 
equations are simplified to describe a bipartite virus in isolation. We have considered the 
fitness of a single virus for simplicity, and because gene-product sharing is very vulnerable to 
exploitation by non-sharing strains, potentially leading to complex co-infection dynamics.. 
Below we provide a detailed description of the model. 
 
At the start of each round of infection, cells are exposed to virus particles and gene products 
produced in the previous round of infection. In the original study, we fixed the cellular 
multiplicity of infection (λ), the total number of virus particles entering each cell. Here, we set 
a value for λ, but this number represents the maximum mean number of virus particles that 
infects a cell, and the realised mean can decrease due to a number of factors, as explained 
later on. There is a Poisson-distributed realization of the number of virus particles entering 
cells for each type (λ1 and λ2, i.e., virus particles containing genome segments 1 and 2, where 
λ1 + λ2 = λ). 
 
Gene products are shared with units (β1 and β2) that are equivalent to the potential gene 
expression from an invading virus particle. However, we assume that these gene products are 
homogeneously distributed over all cells in each round of replication, such that the amount of 
shared gene product in each cell is e.g., ℎ1 = 𝛽𝛽𝛽𝛽1

𝑐𝑐𝑐𝑐
. Therefore, virus gene product sharing is not 

subject to stochastic variation, as seen for the spread of virus particles. 
 

The frequency of each genome segment in each cell then proceeds as before, e.g. 𝑓𝑓𝑓𝑓1 = 𝑘𝑘𝑘𝑘1
(𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2), 

where f is the within-cell frequency of a genome segment. We assume there is no within-cell 
competition between genome segments, and therefore f1 determines the relative frequency of 
the virus particle types produced by a cell. The ratio r of the virus gene products g for the two 
segments within a cell will determine the total virus resources of that cell: 𝑟𝑟𝑟𝑟 = 𝑔𝑔𝑔𝑔1

𝑔𝑔𝑔𝑔2
= (𝑘𝑘𝑘𝑘1+ℎ1)

(𝑘𝑘𝑘𝑘2+ℎ2). 

Under this model, a cell is infected and will produce virus resources if three conditions are 
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met: 𝑘𝑘𝑘𝑘1 + 𝑘𝑘𝑘𝑘2 > 0, 𝑔𝑔𝑔𝑔1 > 0 and 𝑔𝑔𝑔𝑔2 > 0. I.e., At least one genome segment must be present, 
whereas both gene products must be present, regardless of their origin (virus particles or 
gene-product sharing). The probability density function of the normal distribution is used to 

link viral proteins to virus resources generated, such that 𝜑𝜑𝜑𝜑(𝑟𝑟𝑟𝑟) = 1
√2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋2

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �−(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔10𝑟𝑟𝑟𝑟−µ)2

2𝜋𝜋𝜋𝜋2
� . 

Here µ is the mean of the distribution, which is the value of r that results in the highest virus 
resources being generated, and σ2 is its variance, the parameter which determines how 
quickly virus resources drop as r moves away from the optimum µ.  

 
In a previous model, the function 𝜑𝜑𝜑𝜑(𝑟𝑟𝑟𝑟) determine virus particle yield, but here we equate this 
with virus resources, because these resources generated can be dedicated to producing virus 
particles, producing viral gene products that are shared with cells in the next round of infection, 
or both. The proportion of these resources committed to sharing is ρ, with a range between 0 
(only virus particles produced, no resources committed to gene-product sharing) to 1 (no virus 
particles produced, all resources committed to sharing). Moreover, the amount of virus 
particles produced is scaled to the maximum possible yield that would result in λ particles 
infecting cells in the next round of infection (i.e., 𝜑𝜑𝜑𝜑(1)), such that the contribution of each cell 
to virus particle production (vp) for segment 1 is 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒1 = (1−𝜌𝜌𝜌𝜌)𝑓𝑓𝑓𝑓1𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆(𝑟𝑟𝑟𝑟)

𝜆𝜆𝜆𝜆(1) , the contribution of each 

cell to gene product (gp) sharing for segment 1 is  𝑔𝑔𝑔𝑔𝑒𝑒𝑒𝑒1 = (𝜌𝜌𝜌𝜌)𝑓𝑓𝑓𝑓1𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆(𝑟𝑟𝑟𝑟)
𝜆𝜆𝜆𝜆(1) . Unlike the previous model 

where MOI was fixed over rounds of passaging, suboptimal virus particle production over all 
cells will there lead to a reduction in MOI and possibly extinction of the virus. Note that the 
relative levels of production of the two gene products (gp1 and gp2) depends on the frequency 
of the two virus genome segments that entered the cell, analogous to virus particle production. 
We mean over all cells in this round of infection, where for cells that are uninfected per 
definition 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒1 = 𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒2 = 0 and 𝑔𝑔𝑔𝑔𝑒𝑒𝑒𝑒1 = 𝑔𝑔𝑔𝑔𝑒𝑒𝑒𝑒2 = 0.  
 
We performed 104 simulations per condition, as the individual simulations can give highly 
diverging results (e.g., due to the small number of cells c and low MOI λ). To measure the 
fitness of viruses in isolation, we calculated the aggregated virus accumulation over all cells 
in the simulation (c*tfinal), normalised by aggregated accumulation for a virus that does not 
share its gene products (⍴ = 0), all other conditions being equal and using the mean values 
over all simulations. To explore model behaviour in a range of conditions, we varied model 
parameters λ, σ2, c and ѱ, which determines the decimal log transformed range in which μ 
can be sampled from a uniform distribution. I.e., when ѱ = 0, μ is 1 and even gene expression 
always results in optimal exploitation of cells. When ѱ = 2, μ is varied randomly resulting in 
values between 0.01 and 100. An overview of model parameters is given in Table S3. 
 
Model code is available at Zenodo (10.5281/zenodo.10652647) 
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Table S3. For the model of the effects of gene product sharing on multipartite virus infection, 
for each model parameter we give the range of values used in the simulations, a brief 
explanation of the parameter, and miscellaneous comments for clarification. 

Parameter Value Explanation and comments 

λ 10^{0, 0.1, … 2} Cellular multiplicity of infection; maximum value that can 
decrease under suboptimal conditions. 

c 5, 100 Number of cells per round of infection; note that unlike 
the previous model, c is not adjust to maintain the same 
number of effectively infected cells per round of 
infection. 

σ2 0.01, 0.1, 1, 10 Variance of the normal probability function used to link 
virus gene products to the total production of viral 
resources 

tfinal 20 Number of rounds of infection 

ρ {0, 0.05, 0.1 … 
1} 

Proportion of virus resources dedicated to gene product 
sharing, the remaining fraction is used for virus particles. 

ѱ 0, 2 Determines the range of values from which values of 𝜇𝜇𝜇𝜇 
can be drawn from a uniform distribution, from 0 −ѱ to 
0 + ѱ. When ѱ =  0, 𝜇𝜇𝜇𝜇 is always 0. 
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Figure S3. The effects of viral-gene-product sharing on performance. On the x-axis ρ is 
given, the proportion of viral gene products that is exported to other cells. On the y-axis the 
log10 of the cellular multiplicity of infection (MOI) is given. The heat indicates viral performance, 
as compared to a virus that does not share any gene products. The performance metric 
θi=log10(α_(ρ=i)∕α_(ρ=0) ), where α is the sum of virus particles produced over all cells in the 
simulation. When viral performance is better than the non-sharing reference (θi>0) the area is 
green, when viral performance is worse (θi<0) the area is purple, and when viral performance 
is similar (θi~0) the area is white. Contour lines have been included at the θi levels -0.6, -0.2, 
0.2 and 0.6 to highlight parameter space with high or low performance. The value σ2 indicates 
how sensitive virus particle production is to changes in the genome formula, with low values 
(i.e., σ2 = 0.01) indicated high sensitivity and a quick drop in accumulation as the population 
moves away from the optimal value, and high values (i.e., σ2 = 10) indicating low sensitivity. 
10,000 independent simulations were run.

In this case, in each generation the virus is passaged in a small number of cells (n = 5) and 
under high variation in the optimal GF between passages (ψ = 2). When virus accumulation is 
not sensitive to changes in the GF (σ2 ≥ 1), MOI is at intermediate values (3~log100.5), and 
gene-product sharing is low to moderate (≤ 0.6), gene product sharing is predicted to offer an 
advantage.
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Figure S4. The effects of viral-gene-product sharing on performance. On the x-axis ρ is 
given, the proportion of viral gene products that is exported to other cells. On the y-axis the 
log10 of the cellular multiplicity of infection (MOI) is given. The heat indicates viral performance, 
as compared to a virus that does not share any gene products. The performance metric θi = 
log10(α_(ρ=i)∕α_(ρ=0) ), where α is the sum of virus particles produced over all cells in the 
simulation. When viral performance is better than the non-sharing reference (θi>0) the area is 
green, when viral performance is worse (θi<0) the area is purple, and when viral performance 
is similar (θi~0) the area is white. Contour lines have been included at the θi levels -0.6, -0.2, 
0.2 and 0.6 to highlight parameter space with high or low performance. The value σ2 indicates 
how sensitive virus particle production is to changes in the genome formula, with low values 
(i.e., σ2 = 0.01) indicated high sensitivity and a quick drop in accumulation as the population 
moves away from the optimal value, and high values (i.e., σ2 = 10) indicating low sensitivity. 
1,000 independent simulations were run.

In this case, in each generation the virus is passaged in a large number of cells (n = 100) and 
under no variation in the optimal GF between passages (ψ = 0). When virus accumulation is 
not sensitive to changes in the GF (σ2 = 10), MOI is at intermediate values (3~log100.5), and 
gene-product sharing is low to moderate (≤ 0.6), gene product sharing is predicted to offer an 
advantage, in a larger parameter space than when passaging in a smaller number of cells.



Chapter 2

60

Figure S5: The effects of viral-gene-product sharing on performance. On the x-axis ρ is 
given, the proportion of viral gene products that is exported to other cells. On the y-axis the 
log10 of the cellular multiplicity of infection (MOI) is given. The heat indicates viral performance, 
as compared to a virus that does not share any gene products. The performance metric 
θi=log10(α_(ρ=i)∕α_(ρ=0) ), where α is the sum of virus particles produced over all cells in the 
simulation. When viral performance is better than the non-sharing reference (θi>0) the area is 
green, when viral performance is worse (θi<0) the area is purple, and when viral performance 
is similar (θi~0) the area is white. Contour lines have been included at the θi levels -0.6, -0.2, 
0.2 and 0.6 to highlight parameter space with high or low performance. The value σ2 indicates 
how sensitive virus particle production is to changes in the genome formula, with low values 
(i.e., σ2 = 0.01) indicated high sensitivity and a quick drop in accumulation as the population 
moves away from the optimal value, and high values (i.e., σ2 = 10) indicating low sensitivity. 
1,000 independent simulations were run.

In this case, in each generation the virus is passaged in a large number of cells (n = 100) and 
under high variation in the optimal GF between passages (ψ = 2). When virus accumulation is 
not sensitive to changes in the GF (σ2 = 10), MOI is at intermediate values (3~log100.5), and 
gene-product sharing is low to moderate (≤ 0.6), gene product sharing is predicted to offer an 
advantage, in a larger parameter space than when passaging in a smaller number of cells.
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Supplementary S3: Global virus host range analysis

To test whether there are systematic differences in host range depending on genome 
organisation, we performed a metaanalysis to determine host ranges across plant viruses with 
monopartite, segmented, and multipartite genomes. We investigated the viral host range using 
virus sequence metadata from the NCBI Virus portal database 
(https://www.ncbi.nlm.nih.gov/labs/virus/vssi/, Accessed 17th April 2023). The NCBI virus 
portal database provides an overview of the metadata associated with high throughput 
sequencing derived viral (meta)genomes. The NCBI Virus portal (Hatcher et al. 2017) was 
downloaded as a dataset consisting of metadata of whole and partial virus genome segments 
(n = 11,031,767). The metadata included host species, viral genus, viral species and viral 
family. We used the ICTV Virus Metadata Resource (VMR; https://ictv.global/vmr) (Version 
MSL37 released 2nd December 2022) to add information on the Baltimore classification of 
virus species (Baltimore 1971) and information on which kingdom is infected by each virus 
species. These two datasets were merged in R using tidyverse package dplyr (R Core Team, 
n.d.; Wickham et al. 2019). We then selected only observations for which the viral genus was 
considered plant-infecting based on the ICTV VMR ‘host source’ associated with specific viral 
genera (i.e. host source == ‘Plants’). We used only plant viruses for the host range analyses 
to ensure a fair comparison, given that most multipartite viruses infect plants. For the plant-
infecting subset of virus-host observations, we assigned genome organisation to each 
observation by manual curation. The number of unique host genera detected per virus species 
were then tallied to give an estimate of the host range. The total number of observations per 
virus species were tallied, and corrected for the number of segments. These numbers were 
then used in a model to test for differences in host range between the three different modes 
of genome organisation: monopartite, multipartite and segmented.

Figure S6. Schematic overview of virus host range analysis.

We developed a simple model to predict the genus-level host range (henceforth “host range”)
conditional upon the number of observations of that virus. The observed host range is the 
number of unique host genera observed per virus species. Our model makes two main 
assumptions. First, the effective host range within a group (i.e., monopartite, multipartite or 
segmented viruses) follows a zero-truncated geometric distribution over viruses, with a single 
free-parameter θ and a mean host range 1/θ. Effective host range is the number of hosts which 
the virus can infect under the real-world conditions for which the data were collected. We 
choose a geometric distribution based on the intuition that most viruses will infect one or few 
host genera, but a small fraction of viruses will infect a large number of hosts. Second, we 
assume that the virus is evenly distributed over all host species, to keep the model as simple 
as possible. 
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We can then generate a prediction for the observed host range conditional upon the number 
of observations of a virus based on an iterative approach. For each unique value u of the total 
number of observations of a virus, we first draw a value v of the host range from a geometric 
distribution with the rgeom function. Next we randomly sample u integers with replacement 
from the set {1, 2, … v} with the sample function, and then determine the number of unique 
values w, which is the realised host range for this iteration. For each value of u we perform z 

iterations, and use the Laplace’s law of succession to estimate the pseudo-likelihood of an 
observed host range of x genera: 
 

𝐿𝐿𝐿𝐿(𝑒𝑒𝑒𝑒|𝑢𝑢𝑢𝑢) = −1+𝑤𝑤𝑤𝑤
2+𝑧𝑧𝑧𝑧

. 

Laplace’s law of succession is used to avoid likelihood values of 0 during the model fitting 
procedure, while this means that the pseudo-likelihood values depend on z. To estimate θ for 
a set of observations, we used a grid search to find the value of θ that minimises the cumulative 
negative log likelihood (NLL). We bootstrapped virus species to estimate the 95% confidence 
intervals of θ. We first generated expectations of 𝐿𝐿𝐿𝐿(𝑒𝑒𝑒𝑒|𝑢𝑢𝑢𝑢) for each value of x, u and θ in the 
dataset, and then used these expectations for model parameter estimation. 
 
An overview of the model fitting settings and results is given in Table S4. Although we varied 
the range for free parameter θ, the step size was always set to 0.01. The number of 
permutations used to generate the model predictions of realised host range was varied over 
runs, but the number of bootstraps to determine the confidence interval was always set to 
1000. After an initial run over the full range of θ with a low number of permutations, we 
restricted the range of θ but at the same time increased the number of permutations for more 
precise model parameter estimates. As we are working with pseudo-likelihoods and adjust 
predictions by Laplace’s law of succession, the number of permutations affects both the model 
parameter estimation and the lowest NLL. Therefore, although we are optimising the model 
and obtaining more precise estimates of θ, in practice the NLL increases as the range of θ is 
restricted as more permutations are used in successive runs. One reason these effects occur 
can be that the very small or zero predicted  likelihoods will affect the model parameter 
estimation more strongly, as with a larger number of iterations we gain more confidence that 
these values are indeed very small using this approach. 
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Table S4: Model fitting settings and parameter θ estimates 

Group Speciesa Permutations Range θb Estimated 
θ 

95% CIc NLLd 

Monopartite 869 103 0.01 - 0.99 0.42 0.34 - 0.45 1287.012 

104 0.24 - 0.55 0.34 0.34 - 0.41 1350.753 

105 0.28 - 0.50 0.33 0.31 - 0.38 1387.726 

Segmented 196 103 0.01 - 0.99 0.19 0.13 - 0.43 175.981 

104 0.03 - 0.53 0.18 0.11 - 0.29 196.808 

105 0.05 - 0.40 0.15 0.08 - 0.28 216.413 

Multipartite 67 103 0.01 - 0.99 0.32 0.22 - 0.35 400.789 

104 0.12 - 0.45 0.25 0.20 - 0.33 446.624 

105 0.12 - 0.40 0.24 0.16 - 0.30 484.343 

Mixede 413 103 0.01 - 0.99 0.27 0.24 - 0.35 673.485 

104 0.14 - 0.45 0.24 0.19 - 0.29 718.048 

105 0.14 - 0.40 0.24 0.20 - 0.26 748.026 

 
a The number of virus species included in the analysis. b The free model parameter to be estimated. c 

CI = Confidence interval d Negative log likelihood e Virus genera which included both monopartite and 
multipartite species are included here, while all species included due belong to the genus Begomovirus 
e This group includes the entire dataset, including viroids and satellites. 
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Abstract 
 
When viruses have segmented genomes, the set of frequencies describing the abundance of 
segments is called the genome formula. The genome formula is often unbalanced and highly 
variable for both segmented and multipartite viruses. A growing number of studies are 
quantifying the genome formula to measure its effects on infection and to consider its 
ecological and evolutionary implications. Different approaches have been reported for 
analyzing genome formula data, including qualitative description, applying standard statistical 
tests such as ANOVA, and customized analyses. However, these approaches have different 
shortcomings, and test assumptions are often unmet, potentially leading to erroneous 
conclusions. Here, we address these challenges, leading to a threefold contribution. First, we 
propose a simple metric for analyzing genome formula variation: the genome formula distance. 
We describe the properties of this metric and provide a framework for understanding metric 
values. Second, we explain how this metric can be applied for different purposes, including 
testing for genome-formula differences and comparing observations to a reference genome 
formula value. Third, we re-analyze published data to illustrate the applications and weigh the 
evidence for previous conclusions. Our re-analysis of published datasets confirms many 
previous results but also provides evidence that the genome formula can be carried over from 
the inoculum to the virus population in a host. The simple procedures we propose contribute 
to the robust and accessible analysis of genome-formula data. 
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Introduction 
 
Many viruses have segmented genomes: their complete hereditary material consists of 
multiple nucleic acid molecules. Packaging these genome segments into virus particles can 
result in various distributions of genome segments over virus particles (Sicard et al. 2016; 
Michalakis and Blanc 2020) (Figure 1). Segmented viruses package one copy of each genome 
segment into each virus particle (Figure 1b). This arrangement is thought to ensure genome 
integrity and maximize opportunities for virus transmission. By contrast, multipartite viruses 
package each genome segment into a separate virus particle (Figure 1c). This arrangement 
results in a dependence on multiple virus particles for successful virus transmission, and it is 
thought to make transmission less efficient and, thereby, impose a substantial cost to virus 
spread (Sánchez-Navarro, Zwart, and Elena 2013; Fulton 1962). Interestingly, some viruses 
blur the distinction between segmented and multipartite viruses. These viruses do not always 
package a full complement of genome segments into each virus particle (Wichgers Schreur 
and Kortekaas 2016; Yvon et al. 2023), resulting in transmission that depends partly on 
incomplete particles (Jacobs et al. 2019; Diefenbacher, Sun, and Brooke 2018; Bermúdez-
Méndez et al. 2022) (Figure 1d). Whereas segmented viruses are most common among 
animal viruses, multipartite viruses abound among plant viruses (Michalakis and Blanc 2020; 
Lucía-Sanz and Manrubia 2017). However, there are many examples of segmented plant 
viruses (Lucía-Sanz and Manrubia 2017; Michalakis and Blanc 2020). At least one multipartite 
animal virus has been identified (Hu et al. 2016), and there are likely more cases (Michalakis 
and Blanc 2020; Ladner et al. 2016). 
 
For some multipartite and segmented viruses, variation in the frequency of genome segments 
has been observed (Diefenbacher, Sun, and Brooke 2018; Sicard et al. 2013; Wu et al. 2017; 
Boezen, Vermeulen, et al. 2023; Moreau et al. 2020). The genome formula is the abundance 
of all virus genome segments, and it is typically described in one of two ways. If we take a bi-
segmented virus with segments at equal abundance as an example, the genome formula can 
be expressed as a ratio 1:1 (segment1:segment2) or as a set of relative frequencies {0.5, 0.5} 
{segment1, segment2}. We use the latter convention throughout this paper. Current interest in 
the genome formula was sparked by the seminal work of Sicard and coworkers on faba bean 
necrotic stunt virus (FBNSV), a multipartite DNA virus with eight genome segments (Sicard et 
al. 2013). These authors showed that the genome formula converges on an unbalanced 
equilibrium when disrupted, and this equilibrium is host-species-dependent. Notably, the 
authors also observed considerable variation within and between plants in the genome 
formula, highlighting its stochastic nature. Later work confirmed similar findings for alfalfa 
mosaic virus (AMV), a multipartite plant RNA virus with three genome segments (Wu et al. 
2017). From a historical perspective, it is interesting to note that previous observations already 
showed the variable nature of the genome formula for multipartite (Hajimorad et al. 1991) and 
segmented (Kormelink et al. 1992; Wichgers Schreur, Kormelink, and Kortekaas 2018) 
viruses, even if the implications may not have been acknowledged then. In the meantime, 
genome formula variation has also been shown for segmented animal viruses (Moreau et al. 
2020; Diefenbacher, Sun, and Brooke 2018). Although studies on the genome formula have 
focused on full-length virus genome segments (Sicard et al. 2013; Wu et al. 2017; Boezen, 
Johnson, et al. 2023), other genetic elements are also relevant. For example, many RNA 
viruses produce sub-genomic RNAs, and for some viruses, these RNAs can be packaged into 
virus particles (Roossinck 2001). Parasitic genetic elements such as satellites are also known 
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to affect the genome formula (Mansourpour et al. 2021; Obrępalska-Stęplowska et al. 2015), 
and a full understanding will, therefore, require considering these elements. Given that 
genome formula variation appears to be a feature of many virus–host systems, what are the 
causes and consequences of this variation?

Figure 1. We provide a schematic illustration of the variation in the distribution of 
genome segments (nucleic acid molecules) over virus particles. A legend is given on the 
far right. In each case shown, we assume the virus genome consists of the two identical coding 
genome regions, identified by blue and red fills, forming one or two segments. (a) Monopartite 
viruses have a single genome segment. Note that the two genome regions form a single 
molecule in the illustration. (b) Segmented viruses have multiple genome segments: two 
genome segments in this example. These viruses package a full complement of genome 
segments into each virus particle. (c) A multipartite virus with two genome segments is shown. 
Each segment is packaged individually into a virus particle. Infection will depend on the 
transmission of multiple virus particles, as both a blue and a red segment are needed. (d) A 
segmented virus with non-selective packaging is shown. The illustration is a hypothetical 
distribution based only on the observation that for some segmented viruses, many virus 
particles have an incomplete set of genome segments (Wichgers Schreur and Kortekaas 
2016; Wichgers Schreur, Kormelink, and Kortekaas 2018). This organization is included to 
highlight that many distributions of genome segments over virus particles are possible, and 
that the genome formula of segmented viruses does not have to be balanced (i.e., not 1:1 
ratio of genome segments).

Both random and directional forces are likely to shape variation in the genome formula. 
Population bottlenecks are likely to result in stochastic variation in the genome formula. When 
the total number of segments entering a cell is small, the frequencies of the different segment 
types are likely to vary, a process known as genome formula drift (Gutiérrez and Zwart 2018). 
Sicard et al. (2013) suggested that variation in the genome formula is similar to copy number 
variation (CNV), possibly affecting gene expression and, thereby, enabling a rapid tuning of 
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gene expression (Sicard et al. 2013). Under this hypothesis, selection for a beneficial genome 
formula would also be a directional force (Zwart and Elena 2020). Other directional forces may 
include differences in the rates of replication or encapsidation for different segments (Sicard 
et al. 2016; Wu et al. 2017). 
 
Many plant viruses that cause disease and economic losses in cultivated plants are 
multipartite or segmented viruses, including viruses with very broad host ranges (Rybicki 
2015). For example, the multipartite viruses cucumber mosaic virus (CMV) and AMV have 
broad host ranges, as does the segmented tomato spotted wilt virus (TSWV) (Lamy-Besnier 
et al. 2021). Having three or four genome segments has been identified as a predictor for a 
large host range in plant viruses (Moury et al. 2017). As genome formula changes may enable 
these broad host ranges (Sicard et al. 2016), the genome formula may also have relevance 
for understanding virus emergence and disease outbreaks. There are no reports of genome 
formula variation in real-world virus populations; still, we speculate that the genome formula 
might have value as a tool for the monitoring of virus populations in crops and predicting 
disease outcomes. Finally, theory suggests that agro-ecosystems may also be conducive to 
the propagation of multipartite viruses due to many opportunities for transmission in dense 
monocultures (Valdano et al. 2019). For these reasons, studying the infection dynamics and 
genome formula variation of multipartite viruses in experiments and in agricultural ecosystems 
is a relevant topic within plant virus epidemiology. 
 
Most studies quantify the genome formula with the same molecular method. For DNA viruses, 
quantitative polymerase chain reaction (qPCR) is used, whereas RNA viruses require reverse 
transcription—qPCR (RT-qPCR). In these assays, specific primers are used to amplify distinct 
template sequences on the different genome segments, and SYBR-Green-induced 
fluorescence is used to quantify amplicon copy numbers. For those viruses that generate 
subgenomic RNAs, primers are designed to amplify templates that only occur in the full-length 
RNA (Boezen, Johnson, et al. 2023). One study compared three other methods to RT-qPCR 
for the quantification of the CMV genome formula: RT—digital droplet PCR (RT-dPCR), 
Illumina short-read sequencing, and Oxford Nanopore Technologies (ONT) long-read 
sequencing. This study found that the methods give roughly similar results, although there are 
systematic differences (Boezen, Johnson, et al. 2023). Another study on FBNSV showed that 
rolling circle amplification (RCA), a common amplification step before sequencing for circular 
DNA viruses, may lead to discrepancies in the quantification of the genome formula compared 
to qPCR (Gallet et al. 2017). 
 
Once the genome formula has been quantified, there are several different approaches for 
analyzing these data, driven in part by different research questions. For many studies, a key 
question is how to make rigorous genome formula comparisons for two or more groups. To 
show the breadth of approaches used to address this question, we provide a non-exhaustive 
overview (Table 1). When we consider the strengths and weaknesses of these approaches, 
we see that most approaches used have some crucial shortcomings (Table 1). In many cases, 
model assumptions are not met, or the procedure can only be applied to a bipartite virus or 
one specific genome segment. Ideally, we want a single method for comparing the complete 
genome formula with a limited set of model assumptions that can be met in practice. 
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While there are compelling hypotheses about the genome formula, exploring the causes and 
consequences of genome formula variation will require robust approaches. To date, studies 
have used a plethora of different approaches, ranging from simple qualitative comparisons to  
 
Table 1. Approaches to comparing genome formula values for two or more groups. 
Approach Strengths Weaknesses Ref. 

Analysis of variance 
(ANOVA) on the relative 
frequencies of individual 
genome segments  

(i) Parsimony of the 
analysis 

(i) Limited to the analysis 
of individual segments 
(ii) Model assumptions 1 

(Sicard et 
al. 2013)  

Multivariate analysis of 
variance (MANOVA) on the 
relative frequency of all 
genome segments 

(i) Single analysis of all 
segments  
(ii) Technical error 
included in the analysis 

(i) Dependence between 
relative frequencies 
(ii) Model assumptions 1,2 

(Wu et al. 
2017)  

Model selection based on 
the ΔGF metric 3 for all 
genome segments 

(i) Single analysis of all 
segments 

(i) Assumptions for 
estimating the likelihoods 
and weighing of model 
parameters for model 
selection 4 

(Boezen, 
Johnson, et 
al. 2023)  

T-tests on ratio of the log-
tranformed RNA1:RNA2 

(i) Parsimony 
(ii) Model assumptions 
met 

(i) Only applicable to 
bipartite viruses  
(ii) Consider effects of a 
single factor 

(Kennedy 
et al. 2023)  

PERMANOVA on the 
genome formula distance 
metric 5 

(i) Parsimony 
(ii) Single analysis of all 
segments 
(iii) Model assumptions 
met 

(i) If there are differences 
in spread, differences in 
centroid cannot be 
assessed 

(Boezen, 
Vermeulen, 
et al. 2023)  

1 Normality of the residuals and equality of variance assumptions may not be met. For the 
comparison of single segments with ANOVA, the assumption of independence of observations 
is met. For comparison of multiple segments, the assumption is violated. 2 In addition to 
ANOVA assumptions, MANOVA assumes no multivariate outliers. 3 The cumulative distance 
between genome formula observations and a reference value (Sicard et al. 2013), which, in 
this case, is the mean value for the group under consideration. 4 To calculate the negative log 
likelihood for these data, residuals are assumed to be normally distributed. In addition, each 
group mean is weighed as a free parameter for model selection, whereas it follows directly 
from the data. 6 This metric is described in detail in  in the results section Applications of the 
Genome Formula Distance Metric. 
 
 
employing sophisticated statistical methods. This study is focused on these analysis methods 
and their effect on outcomes. Based on our previous experience with developing approaches 
for analyzing genome formula data, our hypothesis is that the method used can have a critical 
effect on study outcome. The result we work towards is having a robust, well-documented 
approach to analyzing genome formula data, which has been applied to various datasets, 
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illustrating its applications and demonstrating its relevance. Here, we propose a simple and 
robust approach to genome formula analysis that relies on the genome formula distance metric 
(Boezen, Vermeulen, et al. 2023). We document this method in detail as a resource for the 
analysis of genome-formula data. We provide a framework for interpreting our metric’s values 
and explore how this approach can be applied to different problems. Finally, we re-analyze 
some previously published datasets to illustrate the benefits of this approach and as a 
validation of previous analyses. 

Methods 
 
All analyses were performed with R version 4.3.1 software for statistical computing (R 
Foundation for Statistical Computing 2023). Calculations of the genome formula distance were 
performed with the vegdist function, PERMANOVA was performed with the adonis2 function, 
and PERMDISP2 was performed with the betadisper and permutest functions, which all 
pertain to the vegan Community Ecology Package version 2.6-4 (Oksanen et al. 2022). 
 
All code for analysis and the data formatted for analysis are available as R markdown files at 
Zenodo (10.5281/zenodo.10355273). Access to the submission is currently restricted to avoid 
any confusion prior to the availability of the paper; please follow this link to gain access. 
 

Results 
 

The Genome Formula Distance Metric 
 

Given the shortcomings of many methods for analyzing genome formula variation, we recently 
developed another approach, based on the genome formula distance metric (Boezen, 
Vermeulen, et al. 2023), in combination with permutation-based statistical approaches 
(Anderson 2017, 2001). Here, we build on this previous work by describing this metric in detail 
and considering some of its attributes, such as the range of values and its interpretation. 
 

The Genome Formula Distance Metric 
 
We consider the genome formula (G) as the set of relative frequencies for all virus genome 
segments. For a viral genome with k segments: 
 

𝐺𝐺𝐺𝐺 = {𝑓𝑓𝑓𝑓1, 𝑓𝑓𝑓𝑓2, [… ]𝑓𝑓𝑓𝑓𝑘𝑘𝑘𝑘} (1) 
  

Here, f is the relative mean frequency of a segment, such that for the jth segment: 
 

𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗 = 𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗 �𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖

𝑘𝑘𝑘𝑘

𝑖𝑖𝑖𝑖=1

�  (2) 
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Here, c is a measurement of accumulation for a specific segment, such as quantitative 
polymerase chain reaction (qPCR) measurements. Per definition, the sum of all f values is 1. 
When any measurement of segment accumulation c changes, it will affect the relative 
frequency of all other segments. 
 
To compare two values of the genome formula, in a previous study, we proposed to consider 
the Euclidean distance between them (Boezen, Vermeulen, et al. 2023). We refer to this metric 
as the genome formula distance (D), such that for two genome formula observations a and b, 
the distance between them is as follows: 
 

𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 = ���𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎,𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏,𝑖𝑖𝑖𝑖�
2

𝑘𝑘𝑘𝑘

𝑖𝑖𝑖𝑖𝑖𝑖

  (3) 

 
Intuitively, D is simply the length of the straight line connecting two points in an n-dimensional 
space (Figure 2). The multivariate genome formula data are, therefore, reduced to a single 
distance value, simplifying analysis and removing the dependence between measurements 
expressed as relative frequencies. Although we previously described this metric and applied 
it for comparing groups of genome formula observations, we did not consider the properties 
of this metric in detail. Therefore, before considering here how this metric can be applied to 
data for several different goals, we describe some properties of this metric and generate 
expectations based on first principles in detail. 
 

Minimum and Maximum Values of the Genome Formula 
Distance Metric 
 

Various properties of the metric D can be readily established. Its minimum value is 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 = 0, 

which is when two genome formula values coincide. Its maximum value is 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = √2, as can 

be shown by induction (Figure 2). For a bipartite virus, the greatest possible D will be obtained 
when 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎 = {1,0} and 𝐺𝐺𝐺𝐺𝑏𝑏𝑏𝑏 = {0,1}, when 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 = �(1 − 0)2 + (0 − 1)2 = √2. For tripartite and 
tetrapartite, the greatest distance occurs along the edges of the genome formula space. These 
edges represent the line connecting G values composed of the presence of only one segment, 
resulting in 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 = √2 (Figure 2). In real life, we do not expect to see such large values, as we 
do not expect to see replicating virus populations in which only a single segment is present. 
Although it is possible for some multipartite viruses to lose and reacquire a segment (Di Mattia 
et al. 2022), all or a number of core segments are often required for replication (Sánchez-
Navarro, Zwart, and Elena 2013; Zwart et al. 2021). It is, therefore, interesting to consider 
what values of D can be expected under scenarios with a higher biological relevance. 
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Figure 2. Here, we illustrate the genome formula distance metric (top panels, green 
lines) and its maximum possible distance for different numbers of genome segments 
(bottom panels, purple arrows). Figure axes are genome segment frequencies (f) for 2 
(panels a and b), 3 (panels b,c,f, and g), or 4 genome segments (panels d and h). (a) For a 
bipartite virus, we illustrate two possible genome formula values with green points and the 
distance between them with a line. Note that for the bipartite virus, all possible genome formula 
values fall on the dotted line connecting (1,0) and (0,1). (b) For a tripartite virus, we illustrate 
two possible genome formula values in three-dimensional genome formula space. As the sum 
of relative frequencies is 1, all possible genome formula values fall in the triangular plane 
illustrated by the dotted lines and light blue shading. (c) As all values fall in the same plane in 
panel b, genome formula values for a tri-segmented virus are often illustrated in only this 
plane, resulting in a ternary plot. (d) Two genome formula values and their distance are 
illustrated for a tetrapartite virus in a quarternary plot. All values in the tetrahedron represent 
possible genome formula values, as indicated by the light blue shading. (e) The maximum 
possible genome formula distance for a bipartite virus is simply the line connecting the points 
(1,0) and (0,1). (f) For the tripartite virus, the longest possible distance in the genome formula 
space is attained along its borders, resulting in an identical maximum genome formula 
distance to the bipartite virus. The light blue shading indicates the possible space for genome 
formula values. (g) The outcome described in panel f is clearer in the ternary plot of the 
genome formula space. (h) For a tetrapartite virus, there is no distance between two points in 
the genome formula space that is longer than the maximum distance for the bipartite and 
tripartite viruses. This maximum distance occurs at the edges of the genome formula space, 
as indicated by the light blue shading, connecting the vertices, which represent the presence 
of a single segment. To keep the panel clear, we only illustrate this for one edge for a 
tetrapartite virus, although there are six such edges. 
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Distance Metric for Random Genome Formula Variation 
 

To determine a plausible upper limit for the mean distance between two observations of the 
genome formula (𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏), we assume that all genome segments must be present in the virus 
population, but that the level of accumulation is, otherwise, entirely random. For each 
segment, we, therefore, sample a value from a uniform distribution and then determine the 
mean pairwise distance 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟. The values of 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 depend on the number of genome 

segments, with a maximum value of 0.391 for a tri-segmented virus (Table 2). If we find similar 
values for 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 for a real-world virus population, this result would suggest a genome formula 
shaped by random levels of accumulation for the different segments. 
 
Table 2. Expected values of D for random genome formula variation (𝑫𝑫𝑫𝑫�𝒂𝒂𝒂𝒂,𝒃𝒃𝒃𝒃

𝒓𝒓𝒓𝒓𝒂𝒂𝒂𝒂𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓) or the 
maximum genome formula drift introduced by a single bottleneck event (𝑫𝑫𝑫𝑫�𝒂𝒂𝒂𝒂,𝒃𝒃𝒃𝒃

𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅). 

Number of Genome Segments 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 λ 1 

2 0.3855 0.2877 5.37 
3 0.3905 0.2801 7.08 
4 0.3638 0.2629 9.12 
5 0.3367 0.2494 10.47 
6 0.3132 0.2341 12.30 
7 0.2934 0.2189 14.12 
8 0.2767 0.2060 15.85 
9 0.2625 0.1929 18.20 

10 0.2501 0.1847 19.50 
1 The bottleneck value corresponding to the maximum 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 value. 
 
 

Distance Metric for Maximum Genome Formula Drift 
 

Whereas the strength of genetic drift decreases monotonically as effective population size 
increases, the strength of genome formula drift is maximized at an intermediate effective 
population size (Zwart and Elena 2020). Therefore, to determine the maximum level of 
genome formula drift that a single population bottleneck event can induce, we have to consider 
a range of bottleneck sizes. We assume that the total number of virus particles that initiates 
an infection follows a Poisson distribution with a mean value λ and consider the predicted 
genome formula distance over a broad range of λ values for different numbers of genome 
segments (Figure 3). The maximum genome formula distance values, 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, are given in 
Table 2. As expected, these values are lower than those obtained for random genome formula 
variation (𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟), as the assumption of a Poisson-distributed number of founders constrains 
the variation in genome segment frequencies. If a population shows similar values of 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏, this 
suggests that the genome formula variation observed is equivalent to the maximum variation 
that can be generated by a single bottlenecking event. 
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Figure 3. The effects of the number of segments and bottleneck size on the predicted 
genome formula distance are illustrated. The x-axis indicates the number of virus genome 
segments, whereas the y-axis indicates the log-transformed number of infection founders (λ). 
For all combinations of these values, we predicted the mean genome formula distance 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏, a 
value indicated by the heat according to the legend on the far right. We used these simulation 
results to determine the highest value of 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 for each number of genome segments, a value 
we term 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. Note that the highest mean distance values occur at intermediate values of λ, 
as well as being associated with higher values of λ as the number of segments is increased. 
 
 

Applications of the Genome Formula Distance Metric 
 

To illustrate how this metric can be applied to experimental data, we re-analyze datasets from 
several studies on plant multipartite viruses. We do not attempt to reproduce all analyses in 
these original studies here. Rather, we focus on a few cases to illustrate how an approach 
based on the genome formula distance can be used. Note that all the genome formula data 
re-analyzed throughout this study were obtained through qPCR or RT-qPCR. The only 
exception is the methods comparison by Boezen and coworkers (Boezen, Johnson, et al. 
2023). Here, for that study, we also explicitly address the effect of different methods on 
genome formula quantification, as was performed in the original work. 
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Comparison of the Genome Formula to Theoretical Values 
 

We defined clear expectations for the upper limit of the genome formula distance metric for 
the random accumulation of genome segments (𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟) or the maximum amount of genome 
formula drift generated by a single population bottleneck (𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) (Table 2). First, we compare 
these theoretical predictions to observed values of genome formula distance (𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏). We obtain 
these observed values by re-analyzing genome formula data reported in three experimental 
studies in which the genome formula was measured in single leaves or whole plants (Sicard 
et al. 2013; Wu et al. 2017; Boezen, Vermeulen, et al. 2023). For the tripartite RNA viruses 
AMV and CMV, we find that the observed values for the genome formula distance are below 
both of our reference values (Table 3), as expected for systems that appear to converge on 
an equilibrium value. Two out of three measurements for AMV are close to the value measured 
for CMV (~0.20), which is near to prediction for maximum genome formula drift (𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑~ 0.28 
for a tri-segmented virus). For the octapartite DNA virus FBNSV, we see a decrease in 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏, 
indicating a reduction in variability over leaf levels (Table 3) as reported in the original study in 
Figure 3A (Sicard et al. 2013). The decrease in 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 over leaf levels is highly significant 
(Kendall rank correlation: τ = 0.368, N = 77, p < 0.001). When we compare values of 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 to 
model predictions, we find that it is higher than 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 in the inoculated leaf (leaf level 1) but 
falls to and remains at levels below the 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 predictions by leaf level 3 (Table 3). 
 
Overall, these comparisons between model predictions and observed values of 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 
underscore that there is considerable genome formula variation, suggesting that stochastic 
forces play an important role in shaping the genome formula. The differences in variability for 
the AMV estimates might reflect differences between the inoculated and systemic leaves but 
may reflect the relatively low number of replicates for each condition (n = 6). This variability 
stresses the need for high levels of replication for the representative estimates of these 
indexes. For FBNSV, the higher-than-expected genome formula variation in the inoculated 
leaf is striking. However, this phenomenon is probably related to the inoculation with 
Agrobacterium, as once the virus has systemically moved, it no longer surpasses model 
predictions of 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟. 
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Table 3. Observed values for the genome formula distance (𝑫𝑫𝑫𝑫�𝒂𝒂𝒂𝒂,𝒃𝒃𝒃𝒃) for two tripartite 
viruses. 

Genome 
Segments 

Model Predictions 1 Ref 
 Experiment n 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 ± SD 

𝑫𝑫𝑫𝑫�𝒂𝒂𝒂𝒂,𝒃𝒃𝒃𝒃
𝒓𝒓𝒓𝒓𝒂𝒂𝒂𝒂𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝑫𝑫𝑫𝑫�𝒂𝒂𝒂𝒂,𝒃𝒃𝒃𝒃

𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 

3 0.391 0.280 

(Wu et al. 2017)  

AMV in N. 
benthamiana, 
inoculated 

6 0.077 ± 0.015 

   
AMV in N. 
benthamiana, lower 
leaf 

6 0.195 ± 0.029 

   
AMV in N. 
benthamiana, upper 
leaf 

6 0.197 ± 0.124 

   
(Boezen, 
Vermeulen, et al. 
2023)  

CMV in N. 
tabacum, whole 
plant 

9 0.207 ± 0.069 

8 0.277 0.206 

(Sicard et al. 
2013)  

FBNSV in V. faba, 
leaf level 1 9 0.352 ± 0.097 

   FBNSV in V. faba, 
leaf level 2 8 0.275 ± 0.062 

   FBNSV in V. faba, 
leaf level 3 13 0.198 ± 0.045 

   FBNSV in V. faba, 
leaf level 4 15 0.175 ± 0.050 

   FBNSV in V. faba, 
leaf level 5 16 0.198 ± 0.063 

   FBNSV in V. faba, 
leaf level 6 16 0.178 ± 0.031 

1 Predictions of the mean genome formula distance under random accumulation (𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟) and 

the maximum genome formula drift introduced by a single bottleneck event (𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) are given, 

depending on the number of genome segments, as given in Table 2. 
 
 

Comparison of the Genome Formula for Different Groups 
 
Boezen and coworkers first applied the genome formula distance metric to compare the 
genome formula for different treatments (Boezen, Vermeulen, et al. 2023). In this section, we 
first describe these previous results in detail, as they are important for understanding this 
approach and its limitations. This previous study explored the effects of mixed infection with 
other plant viruses on CMV’s genome formula (Boezen, Vermeulen, et al. 2023). To compare 
the genome formula of CMV in different treatments, the authors calculated the genome 
formula distances and then performed PERMANOVA. PERMANOVA is a permutational 
multivariate analysis of variance, a non-parametric ANOVA widely applied in ecology 
(Anderson 2017, 2001). PERMANOVA is often applied to such analyses because of its 
robustness: the test makes fewer assumptions than parametric procedures. Note that if we 
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apply PERMANOVA to the genome formula distance as suggested here, we are performing a 
univariate analysis, for which PERMANOVA is also suitable. One interesting feature of 
PERMANOVA is that the procedure detects both differences in mean (or centroid for 
multivariate data) and spread. If we detect a significant difference, we must rule out a 
significant difference in spread before we can conclude that there are differences in the mean. 
The PERMDISP2 procedure tests whether there are significant differences in spread 
(Anderson 2017). When Boezen and coworkers applied this procedure, they found a 
significant difference between the PERMANOVA and PERMDISP2 procedures (Boezen, 
Vermeulen, et al. 2023). Therefore, in this case, the authors could only conclude that mixed 
infections had a significant effect on genome formula spread, surprisingly leading to a 
reduction in the spread compared to a CMV-only infection. Now that we have described this 
procedure and its application in previous work in detail, we consider how it can be applied to 
other datasets. 
 
To further illustrate how PERMANOVA on the genome formula distance is useful, we re-
analyzed data from four other experiments (see Appendix A for a detailed description). For the 
first dataset we consider here, the original study measured the genome formula of CMV with 
four different methods in three hosts (Boezen, Johnson, et al. 2023). The study found no effect 
of host species on the genome formula, and although the different methods gave similar 
results, there was a significant effect of method on the measured genome formula (Boezen, 
Johnson, et al. 2023). When we re-analyzed these genome formula data, we found largely 
similar results when comparing our new procedure to the model selection in the original study. 
The PERMANOVA-based procedure is more robust (Table 1) but still manages to identify 
some subtle species effects on the genome formula that were not detected by the original 
analysis (see Appendix A). The second dataset we considered was from a study that showed 
frequency-dependent selection results in an equilibrium for AMV’s genome formula, and it 
showed that the genome formula of this RNA virus is host-species-dependent (Wu et al. 2017). 
A number of datasets are reported in this paper, and we choose to focus on one specific 
question for our re-analysis: are there differences in the genome formula in the inoculated leaf, 
for leaves inoculated with different genome formulae? Here, we did not find a significant effect 
(Appendix A). This result contradicts the result of the statistical test in the original study. 
However, all plant tissues were jointly analyzed in the original paper, whereas here, we 
focused exclusively on the inoculated leaf. From a biological perspective, it makes the most 
sense to look for an effect of the inoculum early in the infection process. In the final section of 
the results (Comparison of the Genome Formula to Reference), we explore a different 
approach to analyzing these AMV data that sheds more light on the underlying processes. 
 
Next, we compared the genome formula distance for two sets of experiments on the 
octapartite FBNSV in a seminal study that reignited interest in these viruses (Sicard et al. 
2013). The third dataset we re-analyzed considers the genome formula in different leaf levels 
(Sicard et al. 2013), the same dataset we used to determine the pairwise distance between 
genome formula measurements (Table 3). As we found large differences in genome formula 
variability (Table 3), we expect and indeed find that the PERMDISP2 result is significant 
(Appendix A). The results of the distance measurements and PERMANOVA are in good 
agreement. The original study used ANOVA to analyze the coefficient of variation for the 
genome formula in different leaf levels, also finding significant differences in variation between 
leaf levels (Sicard et al. 2013). Second, we considered the FBNSV genome formula in two 
plant species (Sicard et al. 2013), for which the authors analyzed the abundance of individual 
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segments. In agreement with the original analyses, we find highly significant differences in the 
genome formula distance between the two plant species, while the experiments in the same 
plant species render similar results (Appendix A). 
 
These examples illustrate how readily our proposed approach can be used to analyze genome 
formula data. Our results are largely congruent with previous results in three out of four cases. 
However, there is a discrepancy for the data of Wu et al. on AMV infection (Wu et al. 2017), 
for which we analyzed a subset of the data using a different approach. This discrepancy 
illustrates that the approach and methods used matter for the results obtained. 
 

Comparison of the Genome Formula to Reference 
 

We can also use the genome formula distance metric to compare observations of the genome 
formula to a reference. The reference genome formula used will depend on the question being 
addressed. We provide some examples to illustrate a range of reference values and a purpose 
for the comparison, to show the breadth of potential applications. These possible reference 
values include the following: (i) the mean genome formula for a group of observations (which, 
in effect, also occurs for PERMANOVA); (ii) the genome formula used in the inoculum for an 
experiment, to test whether it is maintained; (iii) a balanced genome formula (i.e., 1:1:1), to 
quantify the imbalance in the genome formula (see examples using another metric (Sicard et 
al. 2013; Moreau et al. 2020); or (iv) theoretical predictions of the genome formula, to fit models 
to data and test these predictions. One example from previous work is worthy of mention 
because the authors used what is effectively the same metric we are proposing: Wu and 
coworkers used the genome formula distance metric to consider whether there was higher 
virus accumulation as virus populations approached the mean genome formula value (Wu et 
al. 2017). A rank correlation was used to test for an association between genome formula 
distance and accumulation, and the results were significant. Now that we have given some 
examples of purposes for which reference values can be used in combination with our metric, 
next we consider one application in detail. 
 
We previously considered whether there were significant differences for the AMV genome 
formula measured in inoculated leaves (Wu et al. 2017) when the inoculum genome formula 
is considered for the treatment (see Comparison of the Genome Formula for Different Groups 
and Appendix A). However, in this instance, one could ask a more specific question: is the 
genome formula measured in the inoculated leaf more similar to the genome formula of the 
inoculum than expected by chance? To address this question, we first calculate the mean 
genome formula distance for each AMV observation to its corresponding inoculum (Wu et al. 
2017). Next, we resampled the data by randomly assigning observations to inocula and 
calculated the mean genome formula distance for a large number of resampled datasets (104). 
We can then compare the observed outcome to the predicted range of genome formula 
distances for the resampled data to determine its likelihood. This analysis clearly shows that 
the observed genome formula distance is less than that predicted for the resampled data, 
showing that there is a clear effect of the inoculum on the genome formula measured in the 
inoculated leaf (Figure 4, Table 4). The genome formula distance is much smaller than the 
predicted value for randomized data, showing that the inoculum has a clear effect on the 
genome formula. 
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Table 4. Re-analysis of the AMV genome formula data  (Wu et al. 2017) with a resampling 
approach. 

Tissue 
 

Genome Formula Distance to Inoculum Ranking 3 
 Observed 1 Predicted 2 

Inoculated leaf 0.400 ± 0.242 0.556 [0.434–0.652] 5 
Middle leaf 0.484 ± 0.261 0.494 [0.410–0.568] 3683 
Upper leaf 0.530 ± 0.237 0.503 [0.418–0.576] 7919 
Rest of plant 0.445 ± 0.245 0.486 [0.421–0.538] 533 

1 The observed value of the mean genome formula distance to the inoculum in the 
corresponding tissue, with its standard deviation. 2 The predicted value of the mean genome 
formula distance based on randomized datasets, with its 99% confidence interval. 3 The 
number of randomized datasets for which the mean genome formula distance was smaller 
than the observed value, out of 104 resampled datasets in total. Ranks < 250 or > 9750 fall 
outside of the 95% confidence interval, while ranks <50 or >9950 fall outside of the 99% 
confidence interval. 
 
 
 
 

 
Figure 4. Resampling approach to testing for an effect of inoculum on the genome 
formula measured in the inoculated leaf. The blue bars in the histogram indicate the 
frequency of predicted mean genome formula distance for 104 resampled datasets, in which 
observations in the inoculated leaf were randomly assigned to an inoculum. The red line 
indicates the genome formula distance for the actual data. 
 
This result appears to contradict the PERMANOVA test results on the same data, in which 
there was not a significant treatment effect. However, these two procedures address different 
questions and test different null hypotheses. Rather than considering whether there is an effect 
of treatment on the mean, here, we are asking whether means are closer to a reference 
corresponding to each treatment. The resampling test we have used in this section 
incorporates more information from the experimental setup, resulting in a specific null 
hypothesis that can be more readily rejected. 
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Finally, we can perform the same resampling procedure for other tissues analyzed in the same 
experiment, in which case we do not see an effect in any other tissue (Table 4 and Appendix 
B). Therefore, the effect of the inoculum on the genome formula appears to be transient, as 
this effect is absent in systemically infected tissues. In summary, by reanalyzing these data, 
we do find strong evidence for an effect of the inoculum: in the inoculated leaf alone, the 
genome formula is closer to the inoculum genome formula than would be expected by chance. 
 

Discussion 
 
In the past decade, there has been considerable interest in the genome formula of both 
multipartite and segmented viruses (Sicard et al. 2016; Michalakis and Blanc 2020; Sicard et 
al. 2013; Diefenbacher, Sun, and Brooke 2018; Wu et al. 2017; Zwart and Elena 2020; Di 
Mattia et al. 2022; Leeks et al. 2023). However, different studies have applied different analysis 
methods, many of which have serious shortcomings. To address this challenge and provide 
examples, here, we present some simple and robust approaches to analyzing genome formula 
data. Our approach is based on the genome formula distance metric, the Euclidean distance 
between two genome formula values. We demonstrated the properties of this metric and 
showed how it can be applied to different analyses. By reanalyzing previously published 
datasets, we showed that in some cases, the approach used matters for the outcome, in 
support of our expectation. The genome formula distance is amenable to formal analysis by 
simple and robust approaches such as PERMANOVA, using existing software packages such 
as the vegan package for community ecology in R (Oksanen et al. 2022). 
 
We argue that permutational analyses based on the genome formula distance are superior to 
other approaches used to analyze genome formulae, primarily because the assumptions of 
the statistical test are met with this procedure. Many of the procedures used previously by 
others and ourselves do not meet these assumptions, with one common violation being the 
assumption of independence when relative frequencies are analyzed as independent 
measurements. The procedures we propose here avoid this problem by reducing relative 
frequencies to a single distance measurement. Ultimately, the main benefit of the procedures 
we are proposing is greater robustness and, consequently, validity, irrespective of test 
performance. Nevertheless, in two cases, this procedure found differences where other 
procedures did not find any, suggesting that the statistical power of these procedures is not 
lower. 
 
Most of our reanalysis yielded similar results to the original study. For the work of Wu and 
coworkers (Wu et al. 2017), our initial re-analysis of the inoculated leaf contradicts the study’s 
results, whereas our subsequent re-sampling analysis determined a clear effect of the 
inoculum on the genome formula in the inoculated leaf. By inference, there are, therefore, 
some differences between plants due to the inoculum, in agreement with the studies’ 
conclusions. The different test results for the PERMANOVA and re-sampling based 
approaches are logically compatible given the different null hypotheses being evaluated, and 
they illustrate the importance of carefully considering which hypothesis to test. Ultimately, the 
results convincingly show a clear legacy of the inoculum genome formula in the inoculated 
leaf. What could explain this outcome? It cannot be categorically ruled out that the in vitro 
synthesized inoculum has an effect, although this is highly unlikely given the instability of RNA 
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under ambient conditions. The most likely explanation is, therefore, that insufficient 
generations of virus replication occurred for a frequency-dependent selection to alter the 
genome formula. Major changes in the genome formula might also be more likely to occur 
upon systemic movements of multipartite viruses, especially if these are associated with low 
multiplicities of cellular infection (MOI) that are predicted to facilitate rapid changes when using 
a theoretical model (Zwart and Elena 2020). What is exciting about this new result is that it 
shows that the genome formula can be transmissible, as this is an essential ingredient for its 
hypothesized role in virus adaptation to changing host environments (Sicard et al. 2016, 2013; 
Zwart and Elena 2020). 
 

Alternative Metrics for Analyzing Genome Formula Data 
 

In their landmark study on the FBNSV genome formula, Sicard et al. and coworkers (Sicard 
et al. 2013) proposed ΔGF as a metric, which is expressed in general terms as follows: 
 

𝛥𝛥𝛥𝛥𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 = ��𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎,𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏,𝑖𝑖𝑖𝑖�
𝑘𝑘𝑘𝑘

𝑖𝑖𝑖𝑖=1

2�  (4) 

 
This metric has been used for quantifying the imbalance in the genome formula (e.g., 
comparing empirical values to a balanced genome formula) (Sicard et al. 2013; Moreau et al. 
2020). Given that we advocate reducing multivariate data to a single distance measurement 
and then using permutational statistics, ΔGF also could be used instead of the genome 
formula distance D and often yield similar results. We chose the genome formula distance 
metric mainly because it provides the simplest and most intuitive representation of the distance 
between two data points in an n-dimensional space, i.e., a straight line. Another advantage 
may be that squaring differences will more heavily weigh larger distances. Ultimately, both 
approaches are reasonable, and the effect on the results of analysis may often be small. To 
facilitate the interpretation of analyses based on the ΔGF metric, we also calculated expected 
values of genome formula variation for a random accumulation of segments and under 
maximum genome formula drift (Appendix C). 
 

Caveats 
 

The approaches we propose have some important benefits, but it is important to keep in mind 
some limitations. First, when samples have significant differences in genome formula spread 
(i.e., as indicated by the PERMDISP2 procedure), no firm conclusions can be reached on 
differences in mean using PERMANOVA. Significant differences in spread between 
treatments can also be interesting in their own right. For example, Boezen and co-workers 
used this procedure to show that mixed infections restricted genome formula variation 
(Boezen, Vermeulen, et al. 2023). However, if there is not a framework to interpret whether 
differences in spread are relevant, this outcome may not be very informative. Second, in some 
cases multipartite viruses can lose or gain genome segments that are not essential for 
replication (Di Mattia et al. 2022). The approaches we propose can handle such data, as 
segments can have a relative frequency of zero. However, when segments are missing 
altogether, we suggest considering other approaches for analysis. For example, essential 
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FBNSV segments (e.g., R and S) are typically present at low frequencies (𝑓𝑓𝑓𝑓 < 0.05). Their 
complete absence would have a minimal effect on the hypothetical GF distance, but result in 
virus populations incapable of replication. Third, methods used for the quantification of the 
genome formula can have an effect on the results, as shown previously (Boezen, Johnson, et 
al. 2023) and confirmed by our re-analysis here (Appendix A). The analysis of results obtained 
with different methods clearly should be avoided. However, as the genome formula 
quantification method could induce different amounts of technical variation, a comparison of 
indexes like genome formula distance (𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏) obtained with different methods should also be 
avoided. 
 

Concluding Remarks 
 
Genome formula data can have a large number of dimensions, complicating their visualization, 
analysis, and, ultimately, the interpretation of results. The visualization of these data can be 
aided with the use of ternary plots or radar charts, whereas, here, we explore new approaches 
to the analysis. We show that the genome formula distance metric can be used for a number 
of different purposes, ranging from comparisons between experimental treatments to 
comparing data and theoretical expectations. One major advantage of these approaches is 
their simplicity and reliance on well-established statistical tests, such as PERMANOVA. 
However, other developments suggest future directions for analyzing these kinds of datasets. 
First, ecological communities, such as microbiomes, often have high species richness. 
Advanced approaches for analyzing the relative frequency of taxonomic units (Warton et al. 
2015) could serve as inspiration for how to refine methods for genome formula analysis. 
Second, machine learning and deep learning algorithms (Pichler and Hartig 2023) may prove 
to be valuable for analyzing genome formula data, as these tools may identify trends that are 
difficult to visualize and may not be identified by testing hypotheses specified a priori. 
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Appendix A: Results for the Comparison of the 
Genome Formula for Different Groups 
 
In this appendix, we describe in detail the results summarized in the results section, 
Comparison of the genome formula for different groups. To illustrate how this procedure can 
be used to address different questions, here, we consider some examples of comparisons of 
the genome formula for different groups. 
 
First, we consider our previous work, which measured the genome formula with four different 
methods in three hosts (Boezen, Johnson, et al. 2023). Model selection suggested that only 
the method used had a significant effect on the genome formula. To re-analyze these data, we 
ran a PERMANOVA on the genome formula distance, including host and method as factors. 
We found significant effects for the method (F1,44 = 12.174, p < 0.0001) and host species (F1,44 
= 9.746, p = 0.001) on the genome formula. The PERMDISP2 procedure does not show 
significant effects (F11,36 = 2.073, p = 0.051). This reanalysis, therefore, confirms a clear effect 
of quantification method on the genome formula. However, there was also an effect of host in 
the new analysis, and differences in spread (PERMDISP2) were nearly significant. 
 
We, therefore, looked in more detail at the results by performing one-way PERMANOVA for 
each host and method separately, as well as the corresponding PERMDISP2 tests (Table A1). 
These analyses revealed a significant effect of method on the mean in C. quinoa only, 
suggesting the effects of quantification method are strongest in this host. By contrast, a 
significant effect of the host was found only for one method (RT-dPCR), showing the methods 
do not agree on a host-species effect. Overall, this new analysis, therefore, confirms that there 
are biases in genome-formula quantification methods, while suggesting these effects manifest 
in one host species. As the methods do not agree on a host-species effect on the genome 
formula, we cannot draw clear conclusions on this effect. However, three out of four methods 
suggest that there is not a clear effect, suggesting that for this panel of host species, CMV 
does not show differences in the genome formula. Results from the original (Boezen, Johnson, 
et al. 2023) and new analysis are, therefore, congruent. 
 
Second, we re-analyzed data from another study that measured the AMV genome formula 
(Wu et al. 2017). This study showed striking effects of host species on the genome formula 
while arguing that the genome formula converges on a host-species dependent equilibrium. 
Here, we considered the data showing convergence on an equilibrium in more detail. In the 
original study, the ratio of AMV RNAs was varied in the inoculum, and the genome formula 
was then measured in different tissues in inoculated plants. Here, we compared the genome 
formula in inoculated leaves. This simplifies the analysis and allowed us to consider the 
condition in which the genome formula is most likely to have carried over from the inoculum. 
The genome formula will most likely carry over to the inoculated leaf as the virus has not 
moved systematically, incurring additional bottleneck events and opportunities for directional 
forces to act on the genome formula (i.e., selection). We found an insignificant effect of the 
inoculum on the genome formula distance with PERMANOVA (F1,17 = 0.991, p = 0.344) and 
PERMDISP2 (F6,12 = 0.520, p = 0.812). Both the mean and spread of the genome formula, 
therefore, appear to be similar across plants treated with a different inoculum genome formula. 
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Next, we reanalyzed data from work on FBNSV by Sicard and coworkers (Sicard et al. 2013). 
There are two datasets of interest in this work. The genome formula was measured in different 
leaf levels, showing a drop in genome formula variability with leaf level as described in Figure 
3a in the original study (Sicard et al. 2013), and as confirmed by our re-analysis here (see 
Results section Comparison of the Genome Formula to Theoretical Values and Table 3). When 
we reanalyzed these data to look for differences in the genome formula distance between leaf 
levels, we obtained a significant result for both PERMANOVA (F1,75 = 4.472, p = 0.002) and 
PERMDISP2 (F5,71 = 3.241, p = 0.010). These results confirm the differences in genome 
formula variation, while we cannot draw conclusions on whether the mean genome formula 
changes over leaf levels. 
 
Finally, we compared a second dataset presented by Sicard and coworkers (Sicard et al. 
2013). Here, the authors compared FBNSV genome formula measurements in different hosts, 
as shown in Figure 2b in the original study (Sicard et al. 2013). For simplicity, we restricted 
our analysis to plants inoculated with viruliferous aphids and excluded the (aggregated) data 
from agro-inoculated plants. First, we analyzed each experiment as a separate treatment to 
look for overall effects and found a highly significant result for PERMANOVA (F1,71 = 40.946, 
p < 0.0001) and an insignificant result for PERMDISP2 (F4,68 = 2.082, p = 0.088). Therefore, 
as there are no significant differences in spread as indicated by the PERMDISP2 results, we 
can conclude there is a significant difference in the mean. Next, we performed pairwise 
comparisons between experiments to establish which differ significantly (Table A2). Here, we 
found no significant differences for the PERMDISP2 procedure, whilst all the results from the 
two different hosts were significantly different for PERMANOVA. This result demonstrates that 
differences between experiments are due to a host species’ effect on the genome formula. 
 
Table A1. PERMANOVA and PERMDISP2 test results for genome formula observations 
in three hosts using four quantification methods, analyzed separately per host and 
method. 

Data Included in Analysis 
PERMANOVA PERMDISP2 
F (d.f.) P F (d.f.) P 

C. quinoa, all methods 9.523 (1,14) 0.007 ** 2.293 (3,12) 0.069 

N. tabacum, all methods 3.105 (1,14) 0.072 2.144 (3,12) 0.148 

N. benthamiana, all methods 2.342 (1,14) 0.126 0.622 (3,12) 0.598 

RT-qPCR, all host species 1.723 (1,10) 0.208 1.900 (2,9) 0.205 

RT-dPCR, all host species 7.187 (1,10) 0.007 ** 0.671 (2,9) 0.538 

Illumina, all host species 3.242 (1,10) 0.101 12.65 (2,9) <0.001 *** 

Nanopore, all host species 3.632 (1,10) 0.072 2.988 (2,9) 0.105 

** Significant at p < 0.01, *** Significant at p < 0.001. 
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Table A2. PERMANOVA and PERMDISP2 test results for the pairwise comparison of the 
FBNSV genome formula distance for five experiments in two host species (Vicia faba 
and Medicago truncatula). Cells below the diagonal give the PERMANOVA result, while cells 
above the diagnonal give the PERMDISP2 results. A Holm-Bonferroni correction was made to 
the threshold for significance, and all statistically significant results are marked (*). All 
statistically significant results were below a threshold value of 0.001, after Holm-Bonferroni 
correction. 

  
Experiment 

V. faba 1 V. faba 2 V. faba 3 M. truncatula 
1 

M. truncatula 
2 

Experiment 

V. faba 1  F1,14 = 0.593 
p = 0.483 

F1,40 = 3.525 
p = 0.062 

F1,21 = 0.185 
p = 0.679 

F1,X = 0.260 
p = 0.712 

V. faba 2 
F1,14 = 
4.397 
p = 0.011 

 F1,36 = 1.124 
p = 0.297 

F1,16 = 2.130 
p = 0.170 

F1,17 < 0.001 
p = 0.985 

V. faba 3 
F1,40 = 
1.659 
p = 0.164 

F1,36 = 3.735 
p = 0.013  F1,42 = 5.631 

p = 0.021 
F1,43 = 1.558 
p = 0.227 

M. 
truncatula 
1 

F1,21 = 
73.68 
p < 0.0001 
* 

F1,16 = 52.959 
p < 0.0001 * 

F1,42 = 44.458 
p < 0.0001 *  F1,24 = 0.679 

p = 0.518 

M. 
truncatula 
2 

F1,X = 
40.926 
p < 0.0001 
* 

F1,17 = 28.968 
p = 0.0001 * 

F1,43 = 35.289 
p < 0.0001 * 

F1,24 = 2.006 
p = 0.116  
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Appendix B: Results for the Comparison of the 
Genome Formula to A Reference 
 
Figure A1 provides the results for the resampling of genome formula distance values, as 
compared to the inoculum value, for other tissues in plants infected with AMV as described in 
results section Comparison of the Genome Formula to reference (see also Figure 4 and Table 
4). 
 

 
Figure A1. Resampling approach for testing for an effect of inoculum on the AMV 
genome formula measured in different tissues. The blue bars in the histogram indicate the 
frequency of predicted mean genome formula distance for 104 resampled datasets, in which 
observations in the inoculated leaf were randomly assigned to an inoculum. The red line 
indicates the genome formula distance for the actual data, which in all cases falls well within 
the 99% confidence interval of the distribution predicted by resampling (see Table 4). (a) 
Results for the middle leaf of the plant are shown. (b) Results for the upper leaf are shown. 
(c) Results for the rest of the plant tissues are shown. 
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Appendix C: Predicted Properties of the ΔGF 
Metric 
 
For the genome formula distance (𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏), we predicted the variation under random 
accumulation of segments (𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟, Results section Distance metric for Random Genome 
Formula Variation) and the maximum variation under genome formula drift by a single 
bottleneck event (𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, Results section Distance metric for Maximum Genome Formula 
Drift). These same predictions can be made for the ΔGF metric (Table A3), to help provide 
some context for observed values of the mean pairwise ΔGF (ΔGFa,b). Compared to 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏, there 
are differences in the absolute values and for random accumulation. The trend is also different, 
as it increases with the number of segments whereas 𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 decreases. 
 
Table A3. Expected values of ΔGFa,b for random genome formula variation (𝚫𝚫𝚫𝚫𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮������𝒂𝒂𝒂𝒂,𝒃𝒃𝒃𝒃

𝒓𝒓𝒓𝒓𝒂𝒂𝒂𝒂𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓) or 
the maximum genome formula drift introduced by a single bottleneck event (𝚫𝚫𝚫𝚫𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮������

𝒂𝒂𝒂𝒂,𝒃𝒃𝒃𝒃
𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅). 

Number of Genome Segments Δ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺������𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟 Δ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺������

𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 λ 1 

2 0.2726 0.2034 5.37 
3 0.3046 0.1981 7.08 
4 0.3157 0.1850 9.33 
5 0.3211 0.1742 10.96 
6 0.3241 0.1585 13.49 

7 0.3260 0.1493 15.14 
8 0.3274 0.1411 16.98 
9 0.3285 0.1324 19.05 

10 0.3291 0.1236 21.88 
1 The bottleneck value corresponding to the maximum Δ𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺������

𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 value. 
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Abstract 
 
Multipartite viruses have segmented genomes that are individually packaged and transmitted. 
This transmission of individual segments permits considerable variation in the genome formula 
(GF), i.e. the relative frequencies of virus genome segments. However, the amount of GF 
variation and its biological significance have not been studied in detail. In this study, we 
investigate GF variation in local lesions, i.e. infections of a limited number of adjacent plant 
cells. Using the tripartite RNA cucumber mosaic virus (CMV), we quantify the GF in individual 
local lesions occurring in Chenopodium quinoa, leading to three main insights. First, the GF is 
highly variable between local lesions, and the observed variation was similar to model 
predictions in which stochastic processes drive GF variation. Second, the GF in local lesions 
depends on the inoculum GF, highlighting that despite its variability, it is a transmissible 
property. Third, the measured GF values were multimodal, and we identified a cluster of GF 
values associated with lower virus accumulation. Our results demonstrate the importance of 
stochastic forces in shaping the CMV GF, while also showing that GF variation is related to 
differences in virus fitness in C. quinoa. While the GF may be beneficial for rapidly tuning viral 
gene expression, our results also highlight the risks associated with GF variation.  
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Introduction 
Multipartite viruses have segmented genomes, packaging and transmitting each segment 
independently (Sicard et al. 2016). The number of segments can range from two to nine 
segments per species  (Lucía-Sanz, Aguirre, and Manrubia 2018). Each segment is mono- or 
bicistronic, encoding viral components including the replication machinery, coat protein, 
movement protein and suppressors of RNA interference. The requirement for transmission by 
multiple virus particles will often be associated with a cost, as genome integrity can be 
compromised (Sicard et al. 2016, Sanchez-Navarro et al. 2013). In contrast, the independent 
transmission of segments increases opportunities for genetic exchange via segment 
reassortment (Varsani et al. 2018), although in practice, reassortment is rare in the few studies 
that consider it (Ohshima et al. 2016; Fraile et al. 1997). Another proposed benefit associated 
with multipartition stems from the unbalanced accumulation of genome segments typically 
seen during infection. The frequencies of all genome segments are termed the genome 
formula (GF) (Sicard et al. 2013). The GF converges to a host-specific equilibrium termed the 
setpoint genome formula (SGF) in all multipartite viruses for which this property has been 
studied (Michalakis and Blanc 2020),  due to frequency-dependent selection (Sicard et al. 
2013; Wu et al. 2017). If virus gene copy number affects viral fitness, the GF may affect the 
stoichiometry of virus gene products and virus replication (Sicard et al. 2013, 2016). It has 
also been suggested that for faba bean necrotic stunt virus (FBNSV), differences in the GF 
may stabilise gene expression, as transcript levels are more stable than genome segments 
(Gallet et al. 2022). However, despite its rapid convergence on the SGF, the GF shows 
considerable variation between individual plants (Sicard et al. 2013; Wu et al. 2017). The GF 
may confer benefits to multipartite viruses due to its propensity for rapid change, but its 
variability could also be disadvantageous for multipartite viruses.    
 
Both stochastic and directional forces are likely to act on the GF. The main driver of stochastic 
changes in the GF is likely to be narrow population bottlenecks, which occur for viruses as 
they spread between cells, organs and hosts (Miyashita et al. 2015; Betancourt et al. 2008). 
These population bottlenecks will result in genetic drift: stochastic changes in allele 
frequencies. If genome segments spread independently, for multipartite viruses there will also 
be genome formula drift, which is a stochastic variation in the frequencies of the different 
segments (Gutiérrez and Zwart 2018). Whereas genetic drift increases as the bottleneck 
narrows, GF drift is predicted to be strongest at intermediate-size bottlenecks due to the 
requirement for a complete set of genome segments (Zwart and Elena 2020). The main driver 
of directional change in the GF will likely be selection for efficient replication and within-host 
spread, as the GF might affect viral gene expression. Selection could act on the GF, pulling it 
towards advantageous values for a given environment. The relative strengths of these 
stochastic and directional forces will shape the observed GF variation between replicate 
populations. 
 
One way to change the strength of stochastic forces acting on a virus population is to change 
the size of the host cell population in which the virus is replicating. Infections in a small number 
of host cells may (1) follow from the initial infection of a single cell, providing a narrow 
population bottleneck, and (2) provide a limited number of virus generations in which selection 
can act to change the GF. Due to virus-host interactions and the resulting patterns of within-
host spread, for plant viruses the number of infected cells can be minimal under some 
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conditions, affording opportunities to study the GF under conditions that lead to high levels of 
variation between different infection loci. Spread of plant viruses within hosts follows two main 
routes: (1) local cell-to-cell movement, in which the virus moves to adjacent cells, often 
followed by (2) long-range movement leading to systemic infection, where the virus spreads 
through the vasculature. In some instances, strong host defences restrict infection to a limited 
number of cells, resulting in the formation of local lesions. In these cases, plant defence is 
characterised by the onset of the generalised pathogen defence, the hypersensitive response 
(HR) (Lam, Kato, and Lawton 2001). The HR is characterized by localized programmed cell 
death (PCD), a host-mediated response to infection in which cells at or near the initial infection 
site undergo apoptosis and form visible necrotic spots (i.e., local lesions) to limit virus 
movement (Coll, Epple, and Dangl 2011). The activation of salicylic and jasmonate pathways 
and the presence of reactive oxygen species of these cascades initiates PCD (Soosaar, 
Burch-Smith, and Dinesh-Kumar 2005; Coll, Epple, and Dangl 2011). Opportunities for cell-
to-cell movement via plasmodesmata are severely limited, impeding the virus from reaching 
the vascular tissue and often preventing systemic infection (Ross 1961; Jacob, Hige, and 
Dangl 2023).  In some cases, virus spread can occur outside the HR necrotic zone, as 
observed for tobacco mosaic virus (TMV) (Wright et al. 2000) and Potato virus X (Lukan et al. 
2018). Local lesions caused by plant virus infection were first described for TMV in several 
Nicotiana species and recognized as the sites of primary infection and necrosis (Holmes 
1929). Chenopodium quinoa is a local lesion host for many plant viruses (Cooper 2001). As 
local lesions are readily visible, they have been exploited to isolate single virus genotypes by 
removing and propagating the virus from an individual lesion. Therefore, local lesions could 
also be used to study GF variation during virus replication in a small number of cells, preceded 
by a population bottleneck.  
 
To investigate GF variability in a multipartite virus, we studied CMV local lesions in C. quinoa. 
We measured the GF in local lesions ten days post inoculation (dpi) in three experiments. We 
quantified GF variation by analysing differences in the mean and spread of observed GF 
values, quantified the influence of inoculum on the observed GFs and compared empirical GF 
measurements to model predictions for GF variation.  Our results illustrate the high variability 
of the GF while also highlighting that this variation has implications for virus fitness. 

Methods and Materials 

Infection of CMV in C. quinoa 
 
C. quinoa plants were germinated and grown in gamma sterilised potting soil till three weeks 
old in growth chamber conditions (21°C, 16/8hrs light/dark cycle) and after that transferred to 
a climate-controlled greenhouse (22/20°C, 16/8hrs light/dark cycle). Plants were inoculated 
with CMV subgroup I isolate, CMV-i17f (Jacquemond and Lot 1981) obtained from the plant 
virus collection at Wageningen Plant Research (www.primediagnostics.com). Three dose-
response experiments were conducted with varying doses of CMV-i17f from infected N. 
tabacum and N. benthamiana as source inoculum (Table 1). Inoculum stocks were prepared 
by weighing frozen leaf tissue and homogenised with a pestle and mortar in phosphate 
inoculation buffer (Roenhorst 2014) to a concentration of 0.25g.ml-1 and after that diluted. 
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Serial dilutions from stocks were prepared, spanning the range 1:5 - 1:1600 (Table 1) over all 
three experiments. 50ul of inoculum per dilution was applied per leaf onto each of 3 - 6 
carborundum-dusted leaves per plant (Table 1), mock plants were inoculated with a phosphate 
inoculation buffer and after that plants were rinsed with demineralised water. Plants were 
phenotyped every 2 - 3 days till ten days post infection (dpi) when local lesions were formed. 
Whole leaves were scanned with an EPSON XPS scanner (800 dpi resolution), lesions were 
counted manually, and individual lesions were isolated as an Eppendorf disc and immediately 
placed in liquid nitrogen and stored at -80°C till further analysis.  
 
Table 1. Local lesions were isolated from three dose-response experiments from 
infections of CMV-i17f derived from frozen N. tabacum, and N. benthamiana tissue 
prepared as stocks of 0.25 g.ml-1. 

Experiment  Inoculum  Number of inoculated C. 
quinoa plants 

Dilution series 

 

1 

Mock 2  

Stock, 1:25, 1:50. 1:100, 
1:400, 1:1600  N. benthamiana 9 

N. tabacum 9 

 
2 

Mock 1  
Stock, 1:2, 1:4, 1:8, 1:16 

N. tabacum 18 

 
3 

Mock 1  
Stock, 1:2, 1:4, 1:8, 1:16 

N. benthamiana 8 

 

Estimating the GF and virus accumulation in local lesions 

RNA extraction and CMV detection  
 
Inocula and C. quinoa local lesions were used in RNA extractions (Qiagen RNeasy Plant Mini-
Kit) according to manufacturer's instructions and treated with on-column DNASE I (Qiagen). 
The concentration and quality of RNA were measured on NanoDrop One (ThermoFisher 
Scientific).  250ng of RNA was converted to cDNA using random hexamers in the iScript cDNA 
synthesis kit (BioRad) according to the manufacturer's instructions.  All C. quinoa lesions were 
tested for CMV infection by RT-PCR targeting RNA1 and RNA3 (Table 2). Reactions were 
carried out in 25ul volume containing GoTaq G2 DNA polymerase (5U/ul), 5x GoTaq Buffer 
Green, 10mM dNTP, 25mM MgCl2, 10uM of forward and reverse primers and 2ul of 100x 
diluted cDNA and nuclease free H2O. Cycling conditions were as follows:  94°C for 5 min; 



Chapter 4

104

 

 
 

94°C for 30 sec, 47°C (RNA1) and 51°C (RNA3) for 30 sec, 72°C for 1 min (33 cycles); 72°C 
extension for 7 min; followed by 12°C hold. Amplicons were analysed on a 2% agarose gel. 
 
Table 2. RT-PCR to determine the presence of CMV in C. quinoa local lesions. 

Target Primer ID Primer  
sequence 

Amplicon 
length 

Annealing 
temperature 

(°C) 

Position Ref 

CMV 
RNA1 
(1a) 

 
cmv_rna1a 

 
CYCTGTAAAAYW 
ACCCTTTG 

 

410 

 

47 

38 - 57 This 
paper 

CMV 
RNA1 
(1a) 

 
cmv_rna1as 

 
RTGTGTGACSCA 
ACTTCC 

434 - 
451 

CMV 
RNA3 
(CP) 

 
cmv_2f 

 
GCATTCTAGATGG 
ACAAATCTGAATC 

 

650 

 

51 

1248 - 
1273  

(Vishn
oi, 
Kumar
, and 
Raj 
2013) 

CMV 
RNA3 
(CP) 

 
cmv_2r 

 
GCATGGTACCTCA 
AACTGGGAGCAC 

1899 -
1923  

 

RT-qPCR to determine the GF of CMV in local lesions.  
 
To quantify RNA segments, a qPCR was performed with primers targeting RNA1, RNA2 and 
RNA3 of CMV-i17f (Table 3). A SYBR green (iQ SYBR green, BioRad) qPCR assay was 
designed to target the three viral RNAs in simplex, with three technical replicates per target.  
A reaction mix of 8ul consisting of 2x iQ SYBR Green (BioRad) mastermix, 10uM forward and 
reverse primers, 3ul of template cDNA and nuclease-free H2O. Cycling conditions were 95°C 
(3min), 40 cycles: 95°C for 10s, 60°C for 3s and a melt curve at 5°C increments from 65 - 
95°C. The 2-ΔΔCt method (Rao et al. 2013) was used to determine the GF relative to RNA1. 
The GF is calculated as the mean value of the RNA segment relative to the sum of all RNA 
segments, RNA1 + RNA2 + RNA3 = 1 
 

Virus accumulation was analysed as the mean RT-qPCR cycle quantification (Cq) value of the 
three genomic CMV RNAs. Cq values are inversely related to template concentration, and 
these lower Cq values correspond to higher template concentrations and, thus, higher total 
virus accumulation. Thus, we do not estimate absolute virus accumulation but can robustly 
infer relative differences in virus accumulation.   
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Table 3. RT-qPCR for the quantification of GF of CMV in local infections, CMV primers 
are relative to the reference isolate CMV-Fny accessions (NC_002034; NC_002035; 
NC_001440). 

Target Primer ID Primer  
sequence 

Amplicon 
length 

Annealing 
temperature 

(°C) 

Position Ref 

 
 
 
CMV 
RNA1 
(1a) 
 

 
 
cmvrna1a_1f 

GCACAACCCGTG 
AGTGAGG 

 
 
 

83 

 
 
 

60°C 
 

1706 - 
1724 

(Boezen, 
Johnson, 
et al. 
2023) 

 
cmvrna1a_1r TCCCTTCCACAA

ACATCAGCAG 

1767 - 
1788 

 
 
 
CMV 
RNA2 
(2a) 
 

 
 
cmvrna2a_1f 

GGTGTTGTTGAT
AATGCGACTCTG 

 
 
 

94 

 
 
 

60°C 

789 - 
812 

 
 
cmvrna2a_1r 

CGATGGTTGGCG
TTGGACAT 

863 - 
882 

 
 
 
CMV 
RNA3 
(CP) 
 

 
 
cmvrna3a_1f 

 
 
ACCATGATCTTC 
CCGCTTTGG 

 
 
 

91 
 

 
 
 

60°C 
 
 

511 - 
531 

 
 
cmvrna3a_1r 

ACGACAGCAAAA 
CACCGCTT 

582 - 
601 

 

Statistical analysis and modelling 
 
All statistical analysis and modelling were performed in R 4.3.1 (R Core Team 2001). GFs are 
visualised in ternary plots using the ggtern package version 3.4.2 (Hamilton and Ferry 2018). 

Genome formula distance (D) 
 
For quantitative analysis, we consider the GF as the set of relative frequencies (f) for the 
complete set of genome segments in the virus genome {f1,f2, f3 …, fj}, where for CMV j = 3. To 
analyse genome formula data, we used the genome formula distance (D) as previously 
described (Boezen, Vermeulen, et al. 2023). This metric is based on the Euclidean distance 
between two genome formula values, a and b, such that: 
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2
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𝑖𝑖𝑖𝑖𝑗𝑖

 

 
Note that this metric is used for different purposes throughout the analysis. It can be used to 
determine the pairwise distance between observations (e.g. for PERMANOVA, see (Anderson 
2017), to determine the distance to a mean value, or to determine the distance to another 
value of interest (i.e., the inoculum GF). A detailed description of the genome formula distance 
metric and many of the test procedures we use here is described in Chapter 3 of this thesis.  
 

Comparison of the GF for experimental treatments 
  
We estimate the pairwise Euclidean distance (D) between GF observations using the vegdist 
function from the VEGAN package version 2.6.4 (Oksanen et al. 2022). A permutational 
analysis of variance (PERMANOVA) (Anderson 2017) was then performed for these univariate 
D values using the adonis2 function (Oksanen et al. 2022). In addition, the PERMDISP2 test 
was performed to test for differences in spread, using the betadisper() function. For pairwise 
comparisons between groups with PERMANOVA and PERMDISP2, a Holm-Bonferroni 
correction for multiple comparisons was made (Holm 1979). 
 

Test for effect of inoculum on the GF in local lesions 

To test for an effect of the inoculum GF on that observed in local lesions, we used a resampling 
approach as described in Chapter 2 of this thesis. We first determined the mean Euclidean 
distance between the local lesion GFs and the corresponding inoculum GF. We then randomly 
assigned each local lesion to an inoculum and recalculated the mean GF distance. The 
number of local lesions randomly assigned to each inoculum was the same as for the empirical 
dataset. We repeated this process 104 times to obtain the predicted distribution of GF 
distances for the randomised data. Finally, we could compare the observed GF distance value 
to the ranked predicted values, and thereby determine the likelihood of the null hypothesis that 
the inoculum GF did not have an effect on the GF observed in lesions. 

Test for multimodality of the GF and determining GF clusters 

We used the folding test of unimodality to test whether empirical GF data are multimodal (Siffer 
et al. 2018). This nonparametric test identifies whether multivariate data have multiple modes 
by folding the data along a pivot point and testing whether the reductions in variance are 
significant. The folding ratio is estimated by the difference in variance at the fold point relative 
to the initial variance.  The outputs are the folding statistic (Φ), where Φ ≥ 1 indicates a 
unimodal distribution and Φ ≤ 1 indicates a multimodal distribution, and a p-value. Contrary to 
our other analyses, the complete multivariate GF data (i.e., set of relative frequencies for all 
genome segments) were analysed, as we cannot work with D here. Rfolding package version 
1.0 was used.   
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When the folding test established that GF data were multimodal, we wanted to assign 
individual local lesions to clusters of similar GF values. For parsimony and based on a visual 
inspection of the GF data, we assumed there were 2 clusters for this procedure. We 
established a range of GF values, from which we would determine the two sets of mean GF 
values and assign individual experimental GF measurements to each. First, we calculated the 
GF distance D to each experimental data point for all these test GF values to be evaluated. 
Then, for each possible combination of two sets of test GF values, for each GF observation, 
we considered which test GF value resulted in the lower D and assigned the observation to 
this cluster. Finally, we identified the two test GF values that minimise the sum of D for all GF 
observations, effectively performing a grid search. We then know the two mean GF values 
and the assignment to clusters of each GF observation. To limit the computational resources 
needed, we initially performed the grid searches using large (ΔGF = 0.05) step sizes over all 
possible GF values (i.e., a frequency of 0 to 1 for each of three segments, but only those 
combinations of frequencies that sum to 1). Based on the results obtained, we then narrowed 
the range of GF values to be evaluated and ran a grid size with smaller step sizes (ΔGF = 
0.01) to obtain a more precise solution. 

Results and Discussion 

Local lesion genome formulae are diverse and widely distributed 
 
Pilot dose-response experiments of CMV in C. quinoa showed that the number of local lesions 
formed is highly variable within a single experiment. This variation was used as an indicator 
for the amount of infected tissue to be used as inoculum, without saturating the leaf, so that 
individual local lesions could be isolated. Previous studies on FBNSV (Sicard et al. 2013) and 
AMV (Wu et al. 2017) have used infectious clones to alter segment ratios in the inoculum. 
However, we chose to work with a natural virus isolate and investigate if the natural variation 
in GF, induced by host species or between-plant variation, had an effect on GF variation in 
local lesions. The virus isolate we used for these experiments was deep sequenced and 
shown to contain minimal genetic variation (see Chapter 5), and hence our starting material 
can be considered largely isogenic. We performed separate three experiments infecting C. 
quinoa with CMV from either frozen 14 days post-infection (dpi) infected N. benthamiana or 
N. tabacum leaf tissue (Table 1).  Individual local lesions were visually identified, excised and 
the GF in each lesion was determined (Figure 1, Table 4).  We did not observe local lesions 
upon inoculation with higher dilutions of the virus stock. For experiment 1, a single lesion was 
observed after inoculation with N. benthamiana inoculum and was not included in later 
analyses. Overall, we assayed 69 lesions from the three experiments. 
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Table 4. Local lesions assayed in the three experiments. *For experiment 1 N. 
benthamiana inoculum and lesion were excluded from the analysis. Inoculum stock was 
prepared from 14 dpi CMV-i17F infected N. tabacum and N. benthamiana plant material and 
prepared in dilutions from 1:2 – 1:1600. Local lesions were formed for all three experiments 
on C. quinoa leaves infected with 0.25 g.ml-1 (stock) and lesions formed for experiment three 
inoculations from 0.125 g.ml-1 and 0.0625 g.ml-1. 

Experiment Inoculum Host Inoculum concentration (g.ml-1) Number of lesions 
formed 

1 N. tabacum 0.25 (Stock)  52 

2 N. tabacum 0.25 (Stock)  4 

 

3 

 

N. benthamiana 

0.25 (Stock)  5 

0.125 (1:2)  6 

0.0625 (1:4)  1 

 
 

 
Figure 1. Local lesions on leaves of C. quinoa plant. Mock-inoculated and leaves 
inoculated with 0.25 g ml-1 of CMV-i17f from N. tabacum: leaves b, d, f. Local lesions are sites 
of immune hypersensitive response characterised by cell necrosis and the formation of lesions 
at the sites of primary infection.  
 
We quantified the GF in the inocula and local lesions from these three experiments (Figure 3). 
GF values for the inocula used in the three experiments were appreciably different (Table S1): 
relative frequencies of CMV RNA2 were quite similar, whereas they were more variable for 
RNA1 and RNA3 (Figure 3). These observations are congruent with previous reports on the 
CMV-I17F GF in N. tabacum and N. benthamiana, in which the main variation occurs in RNAs 
1 and 3 (Boezen, Johnson, et al. 2023). The inocula of experiments 1 and 3 fall at the two 
extremes of the range of GF values we have typically observed (Boezen, Johnson, et al. 2023; 
Boezen, Vermeulen, et al. 2023); Johnson et al. Unpublished data) 
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We found considerable variation in the GF in local lesions in C. quinoa, both within and 
between the experiments (Figure 3). Two trends in the data are remarkable. First, there is a 
high level of GF variation across lesions within experiments. For experiment 1, it appears as 
if there may be two clusters of GF observations, one close to the inoculum GF and a second 
closer to the GF values observed in experiments 2 and 3 as reported here, and in other studies  
(Boezen, Johnson, et al. 2023). Second, despite the variation within experiments, there appear 
to be differences between the experiments. The mean GF was calculated for each experiment 
(Table S2), and we observe that experiment 1 has higher RNA1 and balanced RNA2 and 
RNA3, similar to what is observed for the inoculum. In experiments 2 and 3, there are higher 
levels of RNA3, and this also appears similar to the GFs of the respective inocula (Figure 2, 
Table S1). Taken together, these results suggest that the observed local lesion GFs reflect 
their respective inoculum GF. As noted, this effect appears weakest in Experiment 1, where 
only one of two apparent GF clusters is near the inoculum GF.  
 
Based on previous reports (Sicard et al. 2013), we had not expected to see an effect from 
inoculum GF and our experimental design is not well-suited to analyse these effects because 
each inoculum was used in a single experiment, making it difficult to distinguish between 
treatment (i.e., inoculum) vs. block (i.e., experiment) effects.  However, given that we observe 
GF variation within and between experiments, analysing the experimental data may give us 
preliminary insights into inoculum-driven GF variation.  In the following two sections, we 
explore whether statistical support exists for the trends we have noted. 

Inoculum influences local lesion genome formula variation 
 
We used PERMANOVA to test formally if there is an effect of the experiment on the local 
lesion GF. We find that there are significant differences in the GF between experiments 
(PERMANOVA: F2,65 = 5.6128, P = 0.0018). A significant PERMANOVA result can indicate 
differences in mean, spread or both (Anderson 2001), so we tested whether there were 
significant differences in spread (Anderson 2006, 2017). The spread between experiments 
was not significantly different (PERMDISP2 test: F2,65 = 1.8026, P = 0.1793). As this result 
confirms the GF means between experiments are different, we computed pairwise 
comparisons to identify which experiments differ significantly. GF means for experiments 1 
and 3 are significantly different:  F1,62 = 10.484, P = 0.0018, whilst comparisons of experiments 
1-2 and 2-3 are not significantly different (F1,54 = 3.7801, P = 0.07099 and F1,14 = 0.903, P = 
0.386, respectively). Although the local lesion GFs from experiment 2 are situated roughly 
between those of experiments 1 and 3 (Figure 3), the small number of lesions will also lower 
statistical power in these comparisons. Combined, these results show that there are significant 
differences in local lesion GFs between experiments, suggesting that the local lesion GFs may 
be influenced by the inoculum. However, each inoculum was tested in a separate experiment, 
and consequently, we do not consider significant differences between experiments as 
conclusive evidence. 
 
 To consider if the inoculum GF influences the GF in the local lesions, we therefore used a 
different procedure. We tested whether local lesion GFs were more similar to their respective 
inoculum GFs than expected by chance in a combined analysis on data from all three 
experiments that employs a resampling approach (see Methods Section and Chapter 3). We 
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randomly assigned each local lesion GF observation to an inoculum and measured the GF 
distance (D) between the inoculum GF and respective local lesion GFs (Figure S1). Using 
10,000 resampled datasets, we determined that the predicted GF distance had a mean of 
0.301, with a 99% confidence interval of 0.268 to 0.334. When comparing the experimental 
results to the resampled data, we note that only 2 of 10,000 resampled datasets had a lower 
predicted GF distance value than the observed GF distance of 0.255. These results indicate 
a strong effect of the inoculum GF on the observed GF in local lesions, because the GF 
observations in each experiment were closer to the inoculum GF than expected by chance. 
Therefore, this result suggests that the inoculum GF is an important factor driving the 
differences between experiments, irrespective of whether there may also be other variation 
between experiments.  
 
The current results are unexpected as previous reports using infectious clones of FBNSV and 
AMV focused on frequency-dependent selection towards an equilibrium GF where the 
inoculum GF is not maintained during systemic infection (Sicard et al. 2013, Wu et al. 2017). 
However, for AMV there does appear to be an inoculum effect on the GF in the inoculated 
leaf, based on a re-analysis (Chapter 3 of this thesis) of the original data (Wu et al. 2017). 
Taken together these results suggest that although GF drift will affect multipartite virus 
populations subjected to bottlenecks, the GF is transmissible. This conclusion is important 
because a degree of transmissibility will facilitate adaptive change in the GF (Sicard et al. 
2016, Zwart and Elena, 2020).  
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Local lesions segregate into two GF clusters with differential 
virus accumulation. 
 
The large, discontinuous GF spread observed across three experiments prompted us to 
investigate if the GF data are multimodal. We used the folding test for unimodality (Siffer et al. 
2018), a nonparametric test which determines if multivariate data points belong to single (i.e., 
a unimodal distribution, the null hypothesis) or multiple groups (i.e., a multimodal distribution, 
the alternative hypothesis). If the data are determined to be multimodel, the the number or 
identity of groups is not determined. The output is a folding statistic (Ф) which describes the 
unimodality score (Φ≥1 reflects  an unimodal distribution and Φ≤1 a multimodal distribution) 
and p-value for the significance of the test. We excluded experiment 2 in this analysis due to 
the small sample size. We find that the data from experiment 1 is multimodal with high 
statistical significance (Folding test: Φ = 0.034, P = 0.0001), whereas the data from experiment 
3 is multimodal but only with marginal statistical significance (Φ = 0.018, P = 0.034). Thus, 
there is clear evidence for multimodality in experiment 1 and possibly for experiment 3.  
 
We identify the GF clusters by calculating the GF distance (D) to the mean and assigning 
observations to groups to minimise the sum of D for all values (see methods section and 
Chapter 3 for full description of the GF distance metric). Here, we define clusters as a post 
hoc, statistically supported grouping of GF data points. In experiment 1, cluster 1 (n = 30) is 
characterised by a more balanced GF than cluster 2 (n = 22), which has higher RNA1 and 
lower RNA3 levels. We also see that the inoculum GF appears closer to observations from 
cluster 2 (Figure 4). This pattern suggests that the GF remains close to the inoculum in some 
local lesion viral populations while transitioning to a more balanced GF in others. In experiment 
3, we identified two less well-supported clusters than those identified in experiment 1.  Eight 
of 12 lesions from experiment 3 are found in cluster 1, characterised by higher RNA3 and 
RNA2, whilst the smaller cluster 2 (n = 4) has higher RNA1 and low RNA2 levels. Given the 
results of the folding test of unimodality and the visualisation of the predicted clusters, we think 
there is strong evidence for clustering in experiment 1 and weak evidence in experiment 3.    
 
Given the different GF clusters in experiment 1 and possibly in experiment 3, we tested 
whether these clusters may be linked to differences in virus accumulation. As we do not have 
absolute estimates of virus accumulation, we calculated the mean RT-qPCR cycle 
quantification (Cq) value over the three viral RNAs and used this as a proxy of virus 
accumulation. Cq values are inversely related to virus accumulation, thus lower CQ values 
indicate higher virus accumulation.   As we used a validated ΔΔCq-based method (Rao et al. 
2013), our inferences on relative accumulation from these data are robust. There are 
significant differences in mean Cq and thus virus accumulation between clusters in experiment 
1 (Mann-Whitney U test: W = 57, P = 4.479 x 10-7), but not between clusters in experiment 3 
(W = 8, P = 0.2027). In experiment 1, cluster 1 has a higher virus accumulation than cluster 2, 
as these clusters have lower mean Cq values and there is an inverse relationship between 
RT-qPCR and Cq value. Although the differences in accumulation are not statistically 
significant, there is a similar pattern in experiment 3. For one of the the inocula used here 
(experiment 1), which is characterized by low levels of RNA3, a considerable number of 
populations are “trapped” in the low accumulation GF space. 



4

Genome Formula Variation in Local Infections

113

 

 
 

 

 
Figure 3. Genome formulae of CMV from local lesions cluster into distinct groups 
associated with differential virus accumulation. In experiment 1, there is significant 
support for two GF clusters (p < 0.001): a central balanced GF cluster 1 (n = 30, indicated in 
red) and a high RNA1 and low RNA3 cluster 2 (n = 22, indicated in blue). Experiment 3 has 
weak clustering (p > 0.05), with a majority cluster 1 (n = 8) with high RNA3 and low RNA2 
levels (indicated in red). Cluster 2 (n = 4) has higher RNA3 levels and balanced RNA2 and 
RNA1 levels (indicated in blue). Mean virus accumulation for RNAs 1-3 per local lesion is 
plotted in the lower graph. On the y-axis is the mean RT-qPCR cycle quantification (Cq) for 
RNA1-3 per local lesion and on the x-axis are GF clusters identified for experiments 1 and 3. 
We use Cq values as a proxy for virus accumulation; lower Cq values indicate higher virus 
accumulation.  

Comparison of the observed genome formula variation to model 
predictions 
 
We generated predictions of the GF distance D under different theoretical scenarios, to have 
some reference from comparison with our GF observations. We describe our approach and 
predictions in detail in Chapter 3 of this thesis, and briefly summarise them here. The range 
of D is between zero and √2.  However, in practice we will not reach the maximum value of D 
because it requires virus populations consisting of a single but distinct segment (e.g., GF 
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values {f1,f1, f3} of {1, 0, 0} vs {0,1,0}). First, a more relevant upper value is  𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟��������, the mean 

pairwise distance between populations when accumulation of each segment is non-zero but 
otherwise random. For a tri-segmented multipartite virus, this renders a prediction  𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟��������  ~ 
0.3905 (Chapter 3 of this thesis).  Second, we want to know how much GF variation is 
generated by a single population bottleneck, e.g., the bottleneck which occurs at the start of 
infection in each local lesion. This prediction is more complex because GF variation will be 
maximised for an intermediate bottleneck size, as the requirement for a complete genome 
filters out much of the GF variation when the population bottleneck is narrow (Zwart & Elena, 

2020).Therefore, 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��������  is the mean pairwise distance between populations experiencing 

maximal GF drift   For a tri-segmented multipartite virus, a bottleneck size of ~7 virus particles 

renders the maximum predicted value  𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�������� ~ 0.2801 (Chapter 3 of this thesis). We can 

compare these two model predictions of GF variation to the observed value of D for our 
experimental data (Table 5). We determined the GF variation in local lesions of experiments 
1 and 3 only, as the number of data points in experiment 2 was too small to be representative. 
We find that for both experiments, the GF variation is near the Poisson-based model 
predictions: (𝐷𝐷𝐷𝐷   ±   SD) 0.298±   0.062  for experiment 1, and (𝐷𝐷𝐷𝐷   ±   SD) 0.275±0.073 for 
experiment 3. Therefore, the observed GF variation is similar to the maximum GF drift that 

can be generated by a single bottleneck event, 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��������. This result suggests that the GF 

variation seen in local lesions is appreciable and could be accounted for entirely by the 
expected GF drift caused only by the bottleneck in the initial infection. However, recall that we 
have predicted the distance for maximum GF drift, as many bottleneck sizes are predicted to 
have less drift. Therefore, it is plausible that the GF drift caused by the initial bottleneck was 
less, and subsequent stochastic processes during replication and cell-to-cell spread elevated 
the levels of GF variation. 
 
Table 5. GF variation in local lesion infections in C. quinoa.  The GF distance (D) from 
empirical observations is presented for experiment 1 and experiment 3 with 95% confidence 
interval (CI). Model predictions for GF variation under two conditions: 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟��������  random 

accumulation of segments and 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��������   when variation is at maximum GF drift.  

Model predictions Experimental data 
𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�������� 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�������� Experiment Number of lesions D (95% CI) 

 
0.3905 

 
0.2801 

1 52 0.2981(0.2813 - 0.3149) 

3 12 0.2754 (0.2338 – 0.3170) 

 

Concluding Remarks  
 
We investigated the variation of the GF in local lesions of C. quinoa, showing that the GF is 
variable over individual local lesions and occupies a large GF space (Figure 3). Local lesions 
are the consequence of the interaction between the virus and the host’s hypersensitive 
response (HR), resulting in programmed cell death (PCD). During this phase, virus infection 
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is localised to a small number of cells, and we speculate that the observed variation in the GF 
at this stage of infection may reflect changes in segment frequencies which increase the 
likelihood of the virus to escape cells affected by PCD. The lesions with the lowest levels of 
accumulation also had the lowest levels of RNA3, which encodes for 3a (the movement 
protein, MP) and 3b (the capsid protein, CP). Therefore, we speculate that the GF in these 
populations may have limited the availability of the MP and thereby the capacity for rapid cell-
to-cell movement. Although hypotheses on the adaptive role of the genome formula may 
explain our observations, alternative explanations that reverse causality cannot be discarded. 
For example, reduced cell-to-cell movement introduces random variation in local GF , and the 
GF may revert to a balanced value in populations which undergo more cell-to-cell movement 
even if GF changes have no intrinsic adaptive value. More work will be needed to show GF 
changes are adaptive. 
 
We have observed that there are two clusters in the CMV GF space for local lesions, which 
differ in their virus accumulation. Previous work suggested that as the GF approaches its 
equilibrium value there is higher virus accumulation (Sicard et al. 2013, Wu et al. 2017), but 
all studies reported a GF space with a single equilibrium value, I.e., the setpoint genome 
formula (SGF) (Sicard et al. 2013). Although the SGF may be host dependent (Sicard et al. 
2013, Wu et al. 2017), for a given set of environmental conditions the GF converged on a 
single equilibrium value in these studies. Our results here are the first indication that there 
may be multiple equilibria in GF space, even in one particular host environment. Previous 
research with local lesions has shown a GF skewed to high RNA1 and low RNA2 levels 
(Boezen, Johnson, et al. 2023), for CMV infection of C. quinoa. This position in GF space is 
analogous  to the GF centroid of cluster 1, as identified in this study for experiment 1. In the 
study of Boezen, Johnson, et al. (2023), whole leaves were collected and these GF 
measurements therefore reflect the mean GF over all local lesions in a leaf, weighed by each 
lesion's level of viral accumulation. These results are, therefore, congruent with our results 
here, as they will be representative for those local lesions with high accumulation. We have 
demonstrated considerable variation in the GF. However, when the inoculum GF is close to 
the balanced, high accumulation equilibrium, the resulting populations usually do not end up 
in the GF space associated with low accumulation. Two local lesions from experiment 3 have 
relatively low accumulation and are close to the GF space for cluster 2 in experiment 1, but 
the majority of local lesions in experiments 2 and 3 have a more balanced GF. Therefore, the 
low accumulation GF space appears to be most accessible when the inoculum is in this GF 
space. We can tentatively conclude that the inoculum GF derived from another host with a 
different equilibrium, may lead to unfavourable GFs in a new host. Without the initial GF 
displacement from the inoculum, we do not observe that GF drift displaces populations from 
a high accumulation inoculum GF to the low accumulation GF space. Therefore, a specific set 
of circumstances may be needed to trap populations in a low-accumulation region in GF 
space, including the inoculum GF and limited virus replication and spread. These requirements 
may explain why such observations have not been made before. 
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Supplementary S1: Genome formula variation in 
local lesions 
Table S1. Genome formulae of CMV inocula from three experiments.  (mean ± standard 
deviation*). *Standard deviation is derived from target specific qPCR reactions per RNA (RNA 
1- 3), performed with three technical replicates, n = 1. Inocula are derived from 14 days post-
infection (dpi) systemic infection in N. tabacum and N. benthamiana.   

Experiment Inoculum Host RNA1 RNA2 RNA3 

1 N. tabacum 0.49 ± 0.39* 0.37 ± 0.02* 0.14 ± 0.07* 

2 N. tabacum 0.46 ± 0.02* 0.25 ± 0.03* 0.29 ± 0.03* 

3 N. benthamiana 0.26 ± 0.16* 0.13 ± 0.09* 0.61 ± 0.11* 

 
 
Table S2. Genome formulae of CMV from local lesion infections of C. quinoa in three 
experiments. (mean ± standard deviation), samples at ten days post infection (dpi). Standard 
deviation is from biological replicates of local lesions per experiment. Experiment 1: n = 52 
lesions, Experiment 2: n = 4 lesions, Experiment 3: n = 12 lesions. The GF is calculated as 
the mean value of the RNA segment relative to the sum of all RNA segments, RNA1 + RNA2 
+ RNA3 = 1 

Experiment Local lesion Host RNA1 RNA2 RNA3 

1 C.quinoa 0.46  ± 0.17 0.29 ± 0.09 0.25 ± 0.14 

2 C.quinoa 0.28 ± 0.11  0.32 ± 0.03 0.40 ± 0.09 

3 C.quinoa 0.34 ± 0.14 0.23 ± 0.07 0.43 ± 0.15 
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Figure S1. Effect of the inoculum on the genome formula in local lesions. A resampling 
approach was used to determine whether the observed genome formula (GF) in local lesions 
was closer to the inoculum GF than expected by chance. The bars in the histogram indicate 
the predicted distribution of the GF distance (D) from each lesion to the GF in the inocula of 
the three experiments, whereas the red line indicates the observed GF distance (D).
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Abstract 
Multipartite viruses have segmented genomes and individual segments are separately 
packaged and transmitted. Genome segment copies have differential host-specific 
frequencies, the “genome formula” (GF). The GF undergoes rapid changes, hypothesized to 
play a role in adapting to diverse environments by regulating viral gene expression. In this 
study, we investigate the role of the GF in the local adaptation of a tripartite virus, cucumber 
mosaic virus, to three host species: Nicotiana benthamiana, Nicotiana tabacum and 
Arabidopsis thaliana. We combine serial passaging in planta with next generation sequencing 
to determine the genome formula, assess viral fitness by measuring virus titre,  and elucidate 
the dynamics of GF variation. We find that the GF of cucumber mosaic virus is highly variable, 
in agreement with previous results. Despite this variation, we show that the GF is host-specific, 
as we observed significant GF changes in A. thaliana. For each species, passaging could not 
be completed for some replicate populations, and these populations were considered extinct. 
Although the GF showed considerable random variation over passages, we only saw a 
systematic shift in one species, N. tabacum. Point mutations were observed in multiple 
populations, with the most common loci with mutations being RNA 2a, the viral RNA-
dependent RNA polymerase, and the untranslated regions. Most extinctions were associated 
with these repeated mutations, although some extinctions also appear linked to changes in 
the GF. Our study highlights the stability of the GF after initial host-dependent changes, as 
well as the potential risks associated with random GF variation.  
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Introduction 

Multipartite viruses have segmented genomes in which individual segments are packaged 
within a virus capsid and transmitted (Michalakis and Blanc 2020). In the multipartite faba bean 
necrotic stunt virus (FBNSV), viral segments accumulate to a stable host-specific 
stoichiometric ratio, the “genome formula” (GF) (Sicard et al. 2013). The GF has been 
experimentally measured for the plant viruses alfalfa mosaic virus (AMV) (Wu et al. 2017), 
cucumber mosaic virus (CMV) (Boezen, Johnson, et al. 2023), banana bunchy top virus 
(BBTV) (Yu et al. 2019) and rice stripe virus (RSV) (Zhao et al. 2019). In addition, the GF has 
been measured for the animal multipartite virus Bombyx mori bidensovirus (BmBDV) (Hu et 
al. 2016) and for the segmented bluetongue virus (BTV) (Moreau et al. 2020). FBNSV has a 
genome composed of monocistronic segments, where host-specific GF segment copy 
differences in Vicia faba and Medicago truncatula have been proposed to improve viral fitness 
within these hosts by changing virus gene expression (Sicard et al. 2013). While the segments 
converge reproducibly on a stable host species-dependent equilibrium (Sicard et al. 2013; Wu 
et al. 2017; Moreau et al. 2020; Mware 2016), some studies noted the considerable GF 
variation within and between plants (Sicard et al. 2013; Wu et al. 2017). This variation would 
facilitate rapid invasion in novel hosts and replication within a specific cell or tissue type (Zwart 
and Elena 2020). Sicard et al. (2013) suggested that, viruses selectively regulate copy 
numbers of segments during infection to counter host immune responses and regulate viral 
gene expression during replication and transmission. A large body of research suggests that 
genome segment copy number variation (CNV) is a source of genetic diversity within 
populations and facilitates rapid adaptation. For, example, adaptation by gene CNV is known 
for increasing bacterial antibiotic resistance (Sandegren and Andersson 2009), insecticide 
resistance of the planthopper Nilaparvata lugens to imidacloprid (Zimmer et al. 2018) and 
Eschericia coli tolerance to high temperature (41.5°C) (Riehle, Bennett, and Long 2001). Here 
we explore whether CNV may also play a role in adaptation by multipartite viruses. 

In viral systems, CNV has extensively been studied for the monopartite dsDNA human  
vaccinia virus (VACV) (Elde et al. 2012), a monopartite dsDNA virus that infects mammals, 
including humans. These researchers started with a viral strain missing the host immune 
suppresion gene E3L, resulting in poor replication in human cells. Upon passaging in human 
cells, another host immune suppression gene, K3L, is amplified to comprise many copies in 
the virus genome, increasing K3L protein levels and thereby anti-host phosphorylation activity 
to suppress host-immune effectivity (Elde et al. 2012). K3L gene amplification preceded a 
nonsynonymous mutation within K3L, which provided higher fitness gain than gene duplication 
(Elde et al. 2012). Finally, the many copies of the original gene are lost and only the mutated 
copy of the gene is retained. This amplification, mutation and subsequent collapse of a gene 
to single copy is dubbed the “genomic accordion” response (Elde et al. 2012; Cone et al. 2017; 
Näsvall et al. 2012). These results show that copy number variation can have immediate 
fitness benefits and transiently increases mutation supply, aiding the exploration of sequence 
space and the generation of beneficial innovations which could be exploited to increase viral 
fitness (Bayer, Brennan, and Geballe 2018).  However, the interactions between different 
classes of mutations during evolution can be more complex. A hallmark study, found that 
under some conditions, CNV and adaptive point mutations are mutually exclusive in 
Escherichia coli populations during experimental evolution of bacterial growth on galactose 
substrate (Isabella Tomanek and Guet 2022). The GALK gene encodes galactokinase, which 
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enables E.coli growth for using galactose metabolism (Tomanek et al. 2020). The results from 
this study suggested that the high mutation rates of CNV could prevent the fixation of point 
mutations with a large effect on fitness, thereby limiting adaptation. Combined, these studies 
indicate that different interactions between CNV and point mutations can occur, and that these 
interactions can be shaped by environmental conditions.   

CNV is relevant to rapid evolutionary adaptation in many organisms, including poxviruses. The 
variable GF of multipartite viruses will lead to high levels of CNV, albeit without linkage 
between gene copies. Although a number of studies have considered the effects of the GF on 
infection, its evolutionary implications have not been considered experimentally. Here, we use 
experimental evolution to study the role of the GF during the evolution of a three segmented, 
multipartite RNA virus, cucumber mosaic virus (CMV). CMV is a suitable model system for this 
purpose because it is an RNA virus with a high mutation rate (Ouedraogo and Roossinck 
2019), it has a broad host range and many aspects of its biology have been studied (M. J. 
Roossinck 2001). CMV isolates have been collected across the world and sequences of all 
three RNAs have been analysed to determine the population structure; finding that the virus 
has a diverse genetic background and can be divided into two subgroups, subgroup I (SI) and 
II (SII) based on phylogenetic analysis (Ohshima et al. 2016; Marilyn J. Roossinck 2002). 
Studies on CMV populations in the US (Nouri et al. 2014) and Spain (Fraile et al. 1997) show 
that reassortment and recombination between subgroups is uncommon and may be selected 
against. CMV is a model for studying plant virus evolution with multiple studies exploring virus 
evolution in greenhouse and field settings (M. J. Roossinck 2001). Sacristan et al. (Sacristán 
et al. 2005) investigated host adaptation by experimental evolution of six CMV genotypes 
isolated from Cucumis sativus, Phaseolus vulgaris and Solanum lycopersicum, by comparing 
virus adaptation in the original and heterologous hosts. Virus accumulation in the original host 
was highest for all isolates and did not increase during successive passaging, suggesting that 
CMV may have a limited capacity to adapt to these hosts on the short term. As for other 
multipartite viruses, no studies have considered the role of the GF during the evolution of 
CMV.  

In the current study, we investigate the evolutionary dynamics of the GF using CMV. First, we 
considered whether virus genotype had an effect on the GF. If such effects occur, we could 
expect to find shifts in the GF in evolving virus populations due to the fixation of mutations. 
Second, we studied CMV's evolution in three host species, Nicotiana tabacum, Nicotiana 
benthamiana and Arabidopsis thaliana, over multiple rounds of passaging. We hypothesized 
that GF dynamics may serve a similar purpose as the “genomic accordions” seen in VACV: 
we expect to see rapid changes in the GF in some host species, possibly followed by further 
changes in the GF when beneficial mutations become fixed in evolving populations. To our 
surprise, we found no evidence of adaptation and many virus populations went extinct. 
Instead, we focused on what caused these extinctions, including whether GF changes play a 
role.  
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Methods and Materials  

Plants and inoculation 
 
Nicotiana benthamiana, N. tabacum cv White Burley and A. thaliana col-0  were grown in 
standard greenhouse conditions (22/20°C day/night, 60% RH, 16/8hrs light/dark cycle. Plants 
were mechanically inoculated 3 weeks post germination with a single dose of CMV and grown 
till 14 dpi upon harvesting (Roenhorst 2014). Upper leaves of symptomatic plants were 
collected and stored at -80C.  

CMV isolates and amplification of virus 
 
CMV isolates were obtained from the plant virus collection of Wageningen Plant Research 
(www.primediagnostics.com, Wageningen University and Research), Wageningen, The 
Netherlands. A panel of isolates were selected from the existing collection based on the 
following criteria: (1) Confirmed CMV infection by DAS-ELISA, (2) CMV isolates from both  
subgroup I and II, host species and year of collection (Figure 1, Supplementary 1 Table S1).  
CMV isolates from subgroup I and II (Supplementary 1, Table S1) were amplified in N. 
tabacum.  

Serial passaging of CMV-i17F in three host species 
 
Subgroup I isolate CMV-i17F (Jacquemond and Lot 1981) was serially passaged in three 
hosts: N. tabacum cv White Burley,  N. benthamiana and A. thaliana Col-0 (Figure 3). The 
experiment consisted of six biological replicate lines per host and 3 - 6 technical replicate 
plants per line. When lines went extinct, the inoculations were repeated in a second set of 6 
plants. In each passage a single, positive infected plant was randomly selected and used as 
inoculum for the next passage round, inoculum concentration of 0.0002 g.ml-1.  

RNA extraction 
 
Plant samples were homogenised with a handheld homogeniser (BIOREBA) in liquid nitrogen 
to a fine powder and stored at -80℃. 100mg of plant tissue was used in total RNA extraction 
using the Qiagen RNeasy Plant Mini Kit with on-column DNAse treatment following 
manufacturer’s instructions (Qiagen). RNA concentration was quantified by NanodropOne 
spectrophotometer and stored at  -80℃.  

cDNA synthesis and qPCR of CMV-i17F  
 
Powdered leaf samples were used in an immunochromotography  assay (Agristrip, BIOREBA) 
to confirm infection. Positive samples were used for downstream  analysis. To quantify the GF 
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in replicate lines, a qPCR targeting CMV-i17f RNA1, RNA2 and RNA3 (Table 1) was 
performed essentially as follows.  
 
250ng of RNA was converted to cDNA using the iScript cDNA synthesis kit (Bio-rad) using  
random hexamers according to manufacturer's instructions; the cDNA concentration was 
quantified with NanodropOne spectrophotometer and stored at -20℃.  A qPCR reaction mix 
consisted of 8ul per well with 4ul 2x iQ SYBR Green (BioRad) mastermix, 0.16 ul each of 
10uM forward and reverse primers, 3ul of template cDNA and 0.68ul nuclease-free H2O. 
Cycling conditions were 95°C (3min), 40 cycles: 95°C for 10s, 60°C for 3s and a melt curve at 
5°C increments from 65 - 95°C. The 2-ΔΔCt method (Rao et al. 2013) was used to determine 
the GF relative to RNA1.  
 
Table 1. RT-qPCR for the quantification of GF of CMV in local and systemic infections, CMV 
primers are relative the reference isolate CMV-Fny accessions (NC_002034; NC_002035; 
NC_001440) 

Target Primer ID Primer sequence Amplicon 
length 

Annealing 
temperature 

Position Reference 

 
 
CMV RNA1 (1a) 
 

cmvrna1a_1f 

GCACAACCCGTGAGTGAGG 

 
 

83 

 
60°C 

 

1706 - 
1724 

(Boezen, 
Johnson, et al. 
2023) 

cmvrna1a_1r 

TCCCTTCCACAAACATCAGCAG 

1767 
1788 

 
 
CMV RNA2 (2a) 
 

cmvrna2a_1f 

GGTGTTGTTGATAATGCGACTCTG 

94 60°C 789 - 
812 

cmvrna2a_1r 

CGATGGTTGGCGTTGGACAT 

863 - 
882 

 
 
CMV RNA3 (CP) 
 

cmvrna3a_1f 

ACCATGATCTTCCCGCTTTGG 

 
91 

 

60°C 
 
 

511 - 
531 

cmvrna3a_1r 

ACGACAGCAAAACACCGCTT 

582 - 
601 

Sequencing and bioinformatic analysis  
 
For genomically characterising CMV isolates, total RNA isolated from infected plants was sent 
for library preparation and RNA sequencing using Illumina Miseq by BaseClear B.V. in Leiden, 
The Netherlands. CLC Genomics Workbench v 22.0.1 (Qiagen) was used to analyse 
sequence data. Briefly, reads were quality-trimmed to a limit of 0.05 of quality score, adapter 
trimming and mapped to the subgroup reference sequence for subgroup I CMV-Fny accession 
(RNA1;RNA2;RNA3: NC_002034; NC_002035; NC_001440) or subgroup II CMV-Ls 
accession (RNA1;RNA2;RNA3: AF416899; AF416900; AF127976) to generate the consensus 
sequence per CMV isolate. The mean coverage per position per isolate was exported as tsv 
file and used to generate the genome formula.  
 
CMV samples from the final passage (p5) or last passage of positive infection samples, and 
an ancestral CMV-infected N. tabacum sample were sequenced.  100mg of frozen powdered 
leaf material was used in total RNA extraction using the RNeasy Plant Mini Kit (Qiagen)  with 
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on-column DNase digestion (Qiagen) following manufacturer's instructions. RNA 
concentration was quantified by the NanodropOne spectrophotometer and Qubit. Total RNA 
was ribodepleted before commencing with double-stranded cDNA (ds-cDNA) synthesis  
(Liefting, Waite, and Thompson 2021). The FastSelect -rRNA plant kit (Qiagen) protocol was 
used to remove ribosomal RNA followed by Maxima H Minus Double-Stranded cDNA 
Synthesis kit (ThermoScientific).  ds-cDNA concentration was determined by Qubit and ~2 - 
27 ng of cDNA per sample was sent for Nextera DNA XT Library preparation and sequencing 
on NovaSeq platform for paired-end 100-bp sequencing at the Cologne Centre for Genomics 
(CCG), Cologne, Germany. All sequence data have been deposited with links to BioProject 
accession number PRJNA1076493 in the NCBI BioProject database 
(https://www.ncbi.nlm.nih.gov/bioproject/).  

Statistical analysis of the genome formula  
 
Statistical analysis was performed in R 4.3.1 (R Foundation for Statistical Computing 2023). 
GFs were visualised in ternary plots using the ggtern package version 3.4.2 (Hamilton and 
Ferry 2018).  
 
To quantitatively analyse the GF, we consider the GF as a set of relative frequencies (f) for all 
genome segments of a virus {f1,f2, f3 …, fj}, where for CMV j = 3. We analyse the GF using a 
previously described metric, the genome formula distance (D)  (Boezen, Vermeulen, et al. 
2023). The use and different test for which D can be used are further described in Chapter 3 
of this thesis. D is the Euclidean distance between GF values, a and b such that;  
 

𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏 = ���𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎,𝑗𝑗𝑗𝑗 − 𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗�
2

𝑗𝑗𝑗𝑗𝑗𝑗

𝑖𝑖𝑖𝑖𝑗𝑖

 

 
The single value D is used in analysis to compare GF values at the initial passage (p0), final 
passage (p5 or last passage of positive infection) and to compare the change in GF. We 
estimate the pairwise Euclidean distance between observations using the vegdist function 
from VEGAN package version 2.6.4 (Oksanen et al. 2022). We compare changes in the 
centroid (mean) and variance of the GF using a permutation-based approach, the 
permutational analysis of variance (PERMANOVA) (Anderson 2017). To test for differences 
in the variance (spread) we use the PERMDISP2 betadisper function. For pairwise 
comparisons with PERMANOVA and PERMDISP2, a Holm-Bonferroni correction for multiple 
comparisons was made (Holm 1979). R scripts of all analysis are available at Zenodo 
(10.5281/zenodo.10652647). 

Low frequency variant detection in ancestral and evolved 
populations of CMV-i17F 
 
Sequencing analysis was conducted in CLC genomics workbench v 22.0.1 (Qiagen). Reads 
were trimmed using Phred quality scores within 0.05 limits, with ambiguous nucleotides and 
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adapter trimming. Thereafter, ancestral CMV inoculum was mapped to the subgroup I 
reference isolate CMV-FNY (RNA1;RNA2;RNA3) (NC_002034; NC_002035; NC_001440) 
with standard settings. The consensus sequence was extracted with annotation and used as 
input for read mapping of evolved populations and low-frequency variant detection. For 
evolved populations, read trimming was as described and read mapping was done relative to 
the ancestral CMV inoculum RNA1-3 with standard settings. Variant detection was done using 
the low-frequency detection tool with low-frequency variant detection thresholds set as 15 
reads, reference masking was set to ignore positions with coverage exceeding 100000, 
minimum read length of 20 nt, and to ignore broken pairs and non-specific matches. Coverage 
and count filters were set to a minimum coverage of 10, minimum count of 2 and minimum 
frequency of 1%. Quality filters were maintained as standard settings (minimum central quality: 
20, min neighbourhood quality: 15), and the generated variant table as csv file per population 
was combined and used as input for further analysis.  
 
Low-frequency variant data from ancestral and evolved CMV populations were analysed in R 
version 4.3.0.1 with a custom script available at Zenodo (10.5281/zenodo.10652647). We only 
detected small indels (< 5 bases), multiple nucleotide variation and single nucleotide variation. 
Therefore, the variant data were classified into four functional groups: (1) intergenic, (2) coding 
region: synonymous, (3) coding region: non-synonymous and (4) coding region: frameshift or 
stop codon. Next, we excluded any mutations detected in the ancestral population. We then 
considered three groups of mutations in the evolved populations, which were used to visualise 
the data and subsequent analyses of mutations. The main criterion for identifying these groups 
was mutation frequency (indicated in parenthesis): fixed mutations (frequency > 0.95), 
intermediate mutations (frequency > 0.05),  and low-frequency mutations (frequency > 0.01).  
We used much more stringent criteria when filtering the ancestral population than for the 
evolved populations to exclude potential sequencing artefacts and genetic variation already 
present in the ancestral population. See Table S4 for a complete set of criteria. 

Analysis of substitution rates 
 
We analysed the rates at which mutations occurred to understand better what evolutionary 
forces were acting on sequence evolution. We considered the rate of  non-synonymous 
substitutions (dN) and intergenic substitutions (dI) occurring for single nucleotide variants, both 
normalised by the rate of synonymous substitutions (dS). Both dN/dS and dI/dS indexes were 
calculated for the full genome with the approach and R code described in (Zwart et al. 2019). 
These analyses were performed separately for fixed, intermediate and low-frequency 
mutations. 

Repeatability of mutations in evolved populations 
 
To estimate the repeatability of mutations for evolved populations, we used the H-index,  an 
approach and R code described by (Schenk et al. 2022) and are available at Zenodo 
(10.5281/zenodo.10652647). This measure quantifies the mutual fraction of shared mutations 
of two genotypes, i.e. the positional overlap between mutational events along the genome, 
and can accommodate mutations of all sizes (i.e., from point mutations to structural variation). 
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These analyses were performed separately for fixed, intermediate and low-frequency 
mutations. 

Logistic regression on combined results 
 
We performed logistic regression to identify variables which could explain low levels of virus 
titre, for the final timepoint analysed for each evolved virus population. We chose logistic 
regression because the outcome variable (titre) showed a bimodal distribution and two 
unambiguous groups with high or low titre, included as an indicator variable with values 0 and 
1, respectively. In the model we included the GF distance (D) between the final time point and 
to the mean GF for first passage (p0) (D) as coordinate predictor variable, whether any non-
synonymous mutations had occurred as binary predictive variable (mutation), and an 
interaction term, resulting in the model equation titre ~ mutation * D. The analysis was run 
using the glm() function in R, assuming a binomial error structure and logit link function. Given 
that we were specifically testing whether both predictive variables and the interaction term 
were associated with low titre, we performed one-sided Chi-square tests to determine whether 
the estimated coefficients were positive. R scripts are available at Zenodo 
(10.5281/zenodo.10652647). 

Results and Discussion 

Genome formulae of CMV isolates from subgroups I and II  
 
The GF of multipartite viruses is highly variable, showing both stochastic variation and 
dependence on the host plant species. However, whether the GF is also dependent on the 
virus genotype is unknown. If the GF depends on virus genotype, during evolution the GF 
could change due to genetic changes in the virus. While these changes could occur due to 
selection for a different GF, they could also result from mutations that have been fixed due to 
genetic drift or due to pleiotropy, that is as a side effect of substitutions selected because they 
affect other viral traits. To consider these questions experimentally, we first explored whether 
the genome formula depends on virus genotype. We estimated the genome formula from high-
throughput sequencing data for a number of CMV subgroup I and II isolates in N. tabacum 
(Figure 1).  
 
When comparing CMV GFs for genetically distinct isolates, they appear to occupy different 
regions in GF space (Figure 2a). Some of these isolates contained a satellite virus, short RNAs 
that act as selfish replicators dependent on another virus and known to affect CMV 
accumulation during infection (Betancourt, Fraile, and Garcia-Arenal 2011), and which may 
affect the GF (Feng et al. 2012). When observing the GF of subgroup I and II isolates, there 
is an indication that there may be subgroup-specific differences (Table S3). For both 
subgroups, RNA3 has the highest level of accumulation. For subgroup 1, RNA 1 accumulates 
to a higher level than RNA2, whereas RNA2 accumulation is higher than RNA1 for subgroup 
2 (Table S3). We know that GF variation in single infections of N. tabacum is high, but the 
measurement we report here for subgroup I isolate I17F is similar to previous ones (Figure 
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2b). Under the experimental conditions we used, most subgroup I isolates were in the same 
GF space, with the exception of isolate S4. By contrast, the majority of the subgroup II isolates 
are in a different GF space with higher levels of RNA2, with isolate K8 being the only exception.  
Despite the lack of experimental replication, our data are congruent with the previous 
measurements available and suggest that variation in virus genotype underlies variation in the 
genome formula, as there are differences between subgroups I and II.

Figure 1. Cucumber mosaic virus isolates from phylogenetic subgroup I and II used in 
this study. The name of the isolate and year of collection are given for each isolate, and 
symbols represent the host species according to the legend on the bottom right.  

Host affects the CMV-i17F genome formula 

Previous   research with FBNSV (Sicard et al. 2013), AMV (Wu et al. 2017) and CMV (Boezen, 
Johnson, et al. 2023) showed that the GF depends on host species. Before we study the 
evolutionary stability of the GF, we first need to test whether any of the host  species induce 
rapid changes in the GF. These rapid changes within a single passage probably are not due 
to mutation, but simply result from virus-host interactions and may lead to increased viral 
accumulation. Single virus isolate CMV-i17F (Jacquemond and Lot 1981) was selected for all 
subsequent work in three host plant species: A. thaliana, N. benthamiana and N. tabacum 
(Figure 3). 
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Figure 2. (a) GF of CMV isolates from subgroup I (red) and II (blue) after a single 
infection cycle. The GF may be read on ternary diagrams as the intersection of three axes 
representing the three viral RNAS; x = relative frequency RNA3 (0 -100), y = relative frequency 
RNA1 (0 -100)  z = relative frequency RNA2 (0 -100). GFs of subgroup I (n=5) (indicated in 
red) and subgroup II (n=4) (indicated in blue) isolates from a single infected N. tabacum at 14 
days post infection (dpi). * Contain satellite virus. (b) GF variation of CMV in N. tabacum. The 
dataset is derived from 3 different experiments, of  CMV-i17F infections in N.tabacum. GF 
measurements from 14 days post infection (dpi) infections from whole upper leaves (red dots), 
n=4 (Boezen, Johnson, et al. 2023),  GFs for 14dpi N. tabacum infections from whole upper 
leaves (green dots), n=9 (Boezen, Vermeulen, et al. 2023) and n=14 observations from 
infections of apical leaf tissue from N. tabacum at 14dpi (blue circles)  in (from Johnson,  Grum-
Grzhimaylo et al. Unpublished data).
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Figure 3. Serial passaging of genotype CMV-i17F in three host species. Initial inoculation 
was done with a single dose of CMV-i17F obtained from N. tabacum at passage 0 (p0). Six 
replicate populations per host species were serially passaged, by randomly selecting a single 
plant per round. The GF was measured at the initial (p0) and final passage (p5 or last positive 
sample). 

We first performed a single round of passaging (resulting in passage p0). The GF of the 
ancestral population (i.e., the starting inoculum consisting of infected N. tabacum tissue) and 
of six individual p0 experimental populations consisting of one randomly selected infected 
plant each was determined by qPCR (Figure 4). A PERMANOVA analysis showed that there 
was a significant effect of host species on the GF (F2,15 = 4.4023, P = 0.029). We did not find 
significant differences in the spread of the GF (PERMDISP2 test: F2,15 = 0.4616, P = 0.6578). 
As PERMANOVA can give a significant result due to differences in centroid or spread, this 
result confirms that the centroid is host-species dependent. The inoculum GF is characterised 
by higher RNA3 copies than RNA1 and 2, respectively (Table 2). In all hosts, RNA2 had the 
lowest frequency. RNA1 had the highest frequency in A. thaliana and in N. benthamiana RNA3 
had the highest frequency (Table 2). To confirm which hosts differed in their GF, pairwise 
comparisons of hosts were made with PERMANOVA, using a Holm-Bonferroni correction for 
multiple comparisons (see Methods and Materials). We did not find significant differences 
between N. benthamiana and N. tabacum (F1,10 = 3.7411, P = 0.1449), and between N. 
benthamiana and A. thaliana (F1,10 = 1.7189, P = 0.2173). There as a marginal difference 
between N. tabacum and A. thaliana (F1,10 = 7.8803, P = 0.05129). We, therefore, find that 
the GF of CMV-I17F is host dependent, with A. thaliana having the most distinct GF. 
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Figure 4. CMV-i17F has a host specific GF in A. thaliana, N. benthamiana and N. tabacum at p0. 
GF of the p0 CMV-I17F inoculum (black circle), CMV infected A. thaliana (n=6, salmon triangle), N. 
benthamiana (n=6, green triangle) and N. tabacum (n=6, blue triangle) samples at 14 days post infection 
(dpi) at the initial passage stage (p0). 
 
 
Table 2. GF for CMV-i17F at initial passage (P0) in hosts species A. thaliana, N. benthamiana 
and N. tabacum. Numbers are mean ± standard deviation samples at 14 days post infection (dpi), for 
all hosts n = 6 per species. The GF is calculated as the mean value of the RNA segment relative to the 
sum of all RNA segments, RNA1 + RNA2 + RNA3 = 1. 

Host RNA1 RNA2 RNA3 

Inoculum (N. tabacum) 0.21 0.15 0.63 

A.thaliana 0.53  ± 0.16 0.14 ± 0.02 0.31 ± 0.16 

N. benthamiana 0.44 ± 0.08 0.12 ± 0.06 0.43 ± 0.11 

N. tabacum 0.36 ± 0.07 0.09 ± 0.03 0.54 ± 0.07 

 
 
Whereas host-dependent differences in the GF have been reported for other plant viruses 
including FBNSV (Sicard et al. 2013) and AMV (Wu et al. 2017), Boezen, Johnson et al. 
(Boezen, Johnson, et al. 2023) reported no differences in the GF of CMV-i17F for the hosts 
N. tabacum, N. benthamiana and Chenopodium quinoa. In this study, CMV-I17F GF values in  
N. tabacum and N. benthamiana are similar to those previously described (Boezen, Johnson, 
et al. 2023). We did find a host-specific GF for CMV infection of A. thaliana, and our results 
therefore show that CMV's GF can vary over host species, as is the case for other multipartite 
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viruses. Nevertheless, in three host species CMV's GF is unchanged, and even in A. thaliana, 
the changes in CMV's GF are not as strong as those seen in AMV. For example, in Capsicum 
annuum and Medicago sativa RNA3 predominated, making up more than 80% of the AMV 
population (Wu et al. 2017). 
 
Although more data over a broad range of hosts will be required as confirmation, we speculate 
that CMV may have a relatively stable GF over different host species, contributing to its 
extraordinary host range. Whereas the GF affords flexibility that may contribute to wide host 
ranges for multipartite viruses (Chapter 2), a degree of GF robustness may prevent extreme 
GF values with deleterious properties. Deleterious GF values could occur by short-sighted 
selection acting at one level of selection. For example, within-host selection on the GF could 
maximize rapid within-cell replication or between-cell spread, which are relevant fitness 
components as plant viruses typically display super-infection exclusion at the cellular level 
(Gutiérrez et al. 2015; Folimonova 2012). However, at higher levels of selection such as the 
between-organ and between-host level, these GF values may result in lower fitness because 
they have deleterious effects on fitness components that matter at this level of selection, such 
as virus titre and infectivity, the capacity of virus particles to cause infection. This trade-off 
between the effect of the GF at different levels of selection is plausible because any imbalance 
in the GF will always result in lower infectivity, provided all components are needed for 
infection and all virus particles have the same probability of entering a host cell (Sánchez-
Navarro, Zwart, and Elena 2013) and Chapter 2 of this thesis. Therefore, GF-stabilizing 
mechanisms that prevent short-sighted, extreme GF values from occurring may be beneficial 
for enabling the virus population to expand within a novel host environment.   
 

Experimental evolution of CMV in three hosts: extinctions and 
low virus titres 
 
We investigated GF dynamics during serial passage in the three host species: A. thaliana, N. 
benthamiana and N. tabacum. We had six independent, replicate populations serially 
passaged five times in single infected plants. Per population, three to six plants were 
inoculated for each round of passaging to ensure having at least one infected plant. If for one 
population multiple plants tested positive for CMV infection by immunochromatography at the 
end of each passage, one infected plant was randomly chosen as the inoculum for the next 
round. One striking observation was the variability in the number of infected plants observed 
within and between species (Figure 5). Initial infectivity, the proportion of infected plants per 
passage, at passage 0 was variable across all three hosts. Furthermore, several populations 
went extinct before the final passage, namely 3 populations of A. thaliana, 2 populations of N. 
benthamiana and 1 population of N. tabacum. We considered populations to be extinctions 
after repeated 1 - 3 unsuccessful inoculations of the virus onto successive minimum of 6 host 
plants. A. thaliana was reinoculated without success for populations 1, 3 and 5 at passages 3, 
5, and 4 onto 18, 6 and 23 plants, respectively. N. benthamiana populations 1 and 6 at 
passages 2 and 4 were reinoculated onto 19 and 12 plants, and N. tabacum population 6 at 
passage 2 was inoculated onto 18 plants without success. Two populations, population 4 of 
A. thaliana and population 5 of N. tabacum, proved difficult to passage because of low 
infectivity and were only successful at intermediate passages after several rounds of 
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inoculations of different plant cohorts. At the time of ending the experiment, these populations 
had not reached passage 5 and these populations are therefore considered incomplete but 
not extinct. Comparing the infectivity throughout the experiment, it appears that populations in
A. thaliana and N. tabacum  decline in their infectivity over the course of the experiment (Figure 
6), whilst for N. benthamiana a slight increase can be observed. One key question that 
emerges from the passaging is why these extinctions occurred. Others have reported similar 
results:  observed extinctions during serial passaging over 10 rounds with several CMV 
genotypes over 10 passages. Furthermore, they observed an increase in virus fitness in the 
restrictive plant host Phaseolus vulgaris, but not in the permissive hosts C. sativus and S. 
lycopersicum (Sacristán et al. 2005).

Figure 5. Proportion of positive CMV-i17F infected plants of A. thaliana, N. tabacum and 
N. benthamiana at each passage. Populations which went extinct are marked with 0 to 
indicate at which passage round no positive infections were recorded. Three A. thaliana, two 
N. benthamiana and a single N. tabacum population went extinct during the course of the 
experiment. An asterisk indicates incomplete populations, which do not meet the criteria for 
extinction and did not reach p5.
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Figure 6. Virus titre remains stable from initial to final passage. Virus titre is lower for populations
which went extinct. For initial passage (p0) n=18, for final passage (p5 incl. extinctions) (n=16). At the 
final passage, n=6 populations were extinct. There were n=2 incompletely passaged populations, 
excluded from this analysis. On the y-axis is the mean RT-qPCR cycle quantification (Cq) for RNA1-3 
per host at the initial passage and final passage per host, AT = A. thaliana, NB = N. benthamiana and 
NT = N. tabacum. We use Cq values as a proxy for virus titre; lower Cq values indicate higher virus 
titre.

Next, we compared the virus titre for the initial and final timepoint for each population. Here, 
we consider the initial time point as passage 0. For the completed populations, we consider 
passage 5 as the final timepoint, whereas for the extinct populations, we consider the final 
passage in which CMV infection could be verified. Incomplete populations, i.e. those that we 
cannot consider extinct because insufficient attempts at infection were made, were excluded 
from the analysis. Overall, we find considerable variation in virus titre for both the initial and 
final timepoint, with some populations showing very low titre at either time point (Figure S1). 
We then considered titre at the final timepoint, separating the complete, incomplete and extinct 
populations. We see clear differences between the complete and extinct populations, with the 
extinct populations having significantly lower titre than the completed ones (Mann Whitney U 
Test: W=46, P=0.02942). Overall, extinction of populations was therefore associated with low 
virus titre (see also Table 4). Some of the completed populations do have low titres, but the 
collected tissue from passage 5 may also have very low infectivity as it was directly used for 
the analysis of segment accumulation and sequencing. Therefore, to fairly compare 
populations and to include information from as many populations as possible, we tried to 
account for the level of titre measured in the final passage rather than extinctions. Contrary to 
our expectations, there was no evidence of adaptive changes during the experiment beyond 
an initial host-dependent shift in the GF. Our experimental setup, therefore, does not permit 
us to explore the role of the GF in adaptive evolution. By contrast, we do want to understand 
what has caused low titre and the loss of infectivity, and in particular, whether changes in the 
GF could have been maladaptive. We have four hypotheses for why low titre occurred.
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H0: Stochastic variation in virus titre. Infected plants show variation between plants in the 
levels of virus titre. The variation seen is not associated with changes in the properties of the 
virus we measure: the viral genome or the GF. We assume this stochastic variation arises 
from differences between plants, for example due to development of the immune system and 
plant size. Due to these chance effects, some populations with low titre will have a low 
probability of successful infection in the next round of passaging. Under this hypothesis, we 
expect to see only low virus titre and no further changes in the virus population. 
 
H1: Deleterious GF changes in the absence of GF-affecting mutations. Here we speculate that 
the GF that maximises virus fitness is disrupted over time, in the absence of mutations that 
affect the GF. We see two mechanisms that could alter the GF in the absence of mutations, 
First, as discussed in the previous section, shorted-sighted selection on the GF at the within-
host level could result in a GF that lowers fitness at the between-host level (i.e., infectivity). If 
selection on the GF plays a role, then there will be a degree of repeatability in the GF changes 
seen. Second, random changes in the GF could occur as a result of population bottlenecks, 
and these changes may lower the fitness of the population. We call these random changes 
GF drift. If GF drift cause deleterious GF changes, then we expect the repeatability of the GF 
changes over multiple virus populations to be less repeatable than in the case of the first 
selection-based hypothesis. Therefore, the degree of repeatability of the observed GF 
changes could suggest which of these two mechanisms is applicable. 
 
H2: Deleterious mutations which do not influence the GF. Mutations that lower infectivity may 
increase in frequency in the population. As with the hypothesised GF changes, these 
mutations could become predominant due to genetic drift, mutation bias or as antagonistic 
pleiotropic side-effects of positive selection for traits that are only advantageous within the 
host. If such mutations are observed, it might be possible to identify the evolutionary force 
driving the occurrence of these mutations by considering their repeatability over populations, 
and the predicted type of mutation (i.e., loss-of-function or gain-of-function mutations). Under 
this hypothesis we will see mutations associated with low titre, but no appreciable differences 
in the GF. 
 
H3: Mutations that predicate a deleterious GF shift. Under this hypothesis, de novo mutations 
in a population result in deleterious changes in the GF. As under H2, these mutations may fix 
for a variety of reasons, but the result is a deleterious GF shift. We expect to see high-
frequency or fixed mutations in these populations, as well as a change in the GF. 
 
Given the GF and mutation observations, we do not expect to find direct evidence for H0. 
Rather, given this set of four hypotheses, a lack of evidence for H1, H2 and H3 is considered 
evidence for H0. We acknowledge that the different hypotheses are not strictly mutually 
exclusive. For example, H2 may result in a shift in the GF, but additional GF drift (i.e., H1) may 
be necessary to change the GF such that low titres occur. However, these hypotheses help 
us to consider the different data systematically, and thereby identify possible causes. Different 
explanations could also apply to different populations passaged in the same host, as all four 
hypotheses are based on stochastic processes. We therefore measured the GF for the 
evolved populations and sequenced the evolved genomes, to explore which of these four 
hypotheses has the most support. 
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Evolutionary changes in the GF 
 
We first considered the GF of the evolved populations, at the final time point. PERMANOVA 
comparing the GF in the three host species showed a marginally significant effect of host on 
the GF (PERMANOVA: F2,14 = 3.1707, P = 0.0359). The spread in the GF was not significantly 
different for different host species (PERMDISP2 test: F2,14 =0.6439, P = 0.5367), confirming 
that the differences detected by the PERMANOVA concern the centroid of the GF. There are 
still significant differences in GF between species at the final timepoint. For all three species, 
GFs for the initial (p0) and final (p5) timepoints were roughly similar, both in terms of centroid 
and variance (Table S5; Figure 7). In A. thaliana and N. benthamiana, the GF does not appear 
to shift systematically (Figure 8). In contrast, the virus populations in N. tabacum appear to 
show some evidence of a directional shift in the GF, as the frequency of RNA2 increased in 
all populations (Figure 8).   
 
To summarise the GF data and get an indication of whether GF changes contributed to low 
titre and extinction, we determined the Euclidean distance (D) between the mean GF value at 
p0 for a given host, and the GF for individual populations at p5 (Table 4). This value indicates 
whether the final GF deviates from the mean GF value for that species and is useful for 
identifying populations with a distinctive final GF value. The mean ±SEM of the GF distance 
D over all populations was 0.270 ±0.032, and the highest value in an individual high titre 
population was D = 0.38 (N tabacum population 4). Two low-titre populations had a D value 
higher than those seen in the high titre populations (A. thaliana population 1, D = 0.40; N. 
benthamiana population 2, D = 0.61; see Table 4), suggesting that the GF may have played 
a role in the extinction of these populations. Changes in the GF (H1) may therefore explain 
the low titres observed, but only for 2 out of 8 populations. 
 

Mutations in the CMV genome 
 
Genomics analysis of all the evolved CMV populations identified 53 de novo mutations. All 
mutations were single, or multi-nucleotide polymorphisms, and no large-scale changes were 
observed. We considered fixed (frequency > 95%), intermediate (> 5%) and low-frequency (> 
1%) mutations (see Table S5) for data visualisation and subsequent analysis (Figure 9). For 
the fixed mutations, we identified common mutations present in two hosts. SNVs at position 
2832 T>C were found in A. thaliana and N. tabacum, whilst a SNV located at position 2794 
was only detected in population 3 of N. benthamiana (Figure 9).  A non-synonymous mutation 
was found in the coding sequence of RNA2 in gene 2a: 2017A>T and amino acid change 
T673S (Figure 9). This mutation was present in A. thaliana populations 3 and 5, and N. 
tabacum population 1, all of which went extinct.   
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Figure 7. GF variation of CMV-i17F in host species A. thaliana, N. benthamiana and N. tabacum 
at 14 days post infection (dpi) before and after five successive serial passages. 
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Overall, we see a considerable number of mutations that occur in two or more populations. 
We quantified this repeatability by estimating the H-index ( 𝑥𝑥𝑥𝑥 ± SEM) for the fixed (0.026 
±0.011), intermediate (0.053 ±0.022) and low-frequency mutations (0.034 ±0.016). These 
estimates confirm some parallel evolution occurs, but without similar estimates for other virus 
evolution studies, it is hard to draw conclusions from these measures. We also considered 
normalised substitution rates for non-synonymous (dN/dS) and intergenic (dI/dS) mutations. 
Synonymous mutations only occurred in the intermediate and low-frequency data, so we were 
able to calculate these indices only for these data (Intermediate mutations: dN/dS = 0.878, 
dI/dS = 14.756; low-frequency mutations: dN/dS = 0.512, dI/dS = 6.249). These results 
suggest neutral evolution in coding regions, as dN/dS ~ 1. In contrast, there was an over-
representation of intergenic mutations, as dI/dS > 1. The mutation data are, therefore, 
characterised by modest levels of repeatability at the nucleotide level and at least a temporary  
excess of mutations in intergenic regions. 
 
One striking pattern in the data is the repeated non-synonymous mutation T673S in coding 
region 2a, the RNA-dependent RNA polymerase (RdRp), a mutation which occurs in three 
populations that went extinct. This was the only non-synonymous mutation that fixed (in A. 
thaliana populations 3 and 5) or was at intermediate frequency (in N. benthamiana population 
1). The number of mutations detected per population was low (fixed: 0.28; intermediate 
frequency: 1.22; low frequency: 2.89). In the two populations that fixed T673S, the number of 
intermediate and low-frequency mutations was higher than in any other population 
(intermediate frequency, A. thaliana population 3 = 7, A. thaliana population 5 = 6; low 
frequency, A. thaliana population 3 = 12, A. thaliana population 5 = 25). The average dN/dS 
of all populations was ~ 1 for both intermediate and low-frequency mutations, and the 
estimates were dominated by mutations that occurred in these two populations. Therefore, we 
tentatively propose a trajectory in which there is fixation of a mutation in the RdRp, which may 
be followed by an excess of intermediate and low-frequency mutations that accumulated 
consistent with a neutral expectation. However, as only we have information on mutations at 
a single timepoint we cannot verify this sequence of events. These observations suggest 
genomes carrying T673S have become mutators. N. benthamiana population 1 also carries 
this mutation, but went extinct before this mutation went to fixation (mutation frequency = 
74%), an explanation for the lack of other mutations detected in this population. The fact that 
T673S was present in three populations suggests that this mutation was under indirect positive 
selection, but also may have contributed to extinction of these populations, in support of H2. 
We speculate that the fitness effect of this mutation may be strongly context dependent, 
allowing it to be indirectly selected during within-host spread, while impeding between-host 
spread, perhaps by causing low titre due to an increased deleterious mutation load. 
 
In summary, the genomics data suggest that mutations may play a role in the extinctions that 
occurred during passaging, as summarized in Table 4. The only non-synonymous mutation 
found at intermediate and high frequencies (i.e., 2017A>T in 2a) was only found in extinct 
populations. By contrast, synonymous and intergenic mutations were found in six out of seven 
surviving, high titre populations, suggesting these mutations did not play a role in extinction. 
These data therefore provide support for H2 in some populations, specifically for non-
synonymous mutations. By contrast, there were no low titre populations with both appreciable 
GF changes and mutations, suggesting that there is no evidence for H3. 



Chapter 5

144

Figure 9. Mutations in CMV-i17F from evolved populations in A. thaliana, N. 
benthamiana and N. tabacum. Mutations are shown that met criteria (see Table S5) for being 
fixed (panel A), intermediate frequency (panel B) or low frequency (panel C) are shown 
separately. Mutations are coded onto different CMV RNA segments as a single line along the 
genomic segment, with segment length oriented from starting position left to right. The colours 
of mutations indicate whether they are intergenic (black), synonymous (grey), non-
synonymous (blue), or frameshifts or stop codons (red). Extinct populations are indicated in 
grey fill and the passage of extinction is indicated on the left. 
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Effects of the genome formula and mutations on low titre 
 
Finally, we considered both the GF and mutational data together in a quantitative analysis to 
determine how much support there is for the different hypotheses for extinction we have 
proposed (H0 to H3). We performed a logistic regression to explain low titre and included the 
following explanatory factors: (1) the genome formula distance D to the mean GF at p0, as a 
test of H1, (2) the presence or absence of non-synonymous mutations as binary variable, as 
a test of H2, and (3) the interaction between D and the presence of non-synonymous 
mutations, as a preliminary indication of H3. We found marginally significant effects for both 
non-synonymous mutations (χ2

1,13 = 4.427, P = 0.018) and D (χ2
1,12 = 3,270, P = 0.035), 

whereas their interaction was not significant (χ2
1,11 < 0.001, P ~ 0.5). This analysis therefore 

provides preliminary support for H1 and H2, whilst there is no support for H3. From a qualitative 
perspective, H0 also has support because there are numerous extinct populations in which 
neither mutations nor GF changes occurred. As GF changes were implicated in extinction in 
only two lineages, we cannot ascertain whether these GF changes are repeatable, precluding 
firm conclusions on whether selection on the GF or GF drift cause these changes. However, 
the fact that the GF was stable over passages for most populations suggests that GF drift is 
the more likely explanation.  In sum, we can conclude that stochastic events leading to low 
titres (H0), genome formula changes (H1) and mutation (H2) are likely to have played a role in 
the extinctions we have observed. 

Concluding Remarks 
 
Our results indicate that the CMV GF may depend on virus genotype, as there appear to be 
GF differences between CMV subgroups 1 and 2. In contrast to a previous report (Boezen, 
Johnson, et al. 2023),  we show that the CMV GF does depend on host species. In particular, 
in A. thaliana we see a systematic shift in the GF after 2 weeks of infection, following infection 
with an inoculum from N. tabacum. We then evolved CMV in three host species, to explore 
the evolutionary dynamics of the GF and the interplay with mutations in the viral genome. We 
were surprised to find that serial passage of this virus proved difficult, and we consider 6 out 
of 18 populations to have gone extinct. These extinctions were marked by low virus titres, 
which we also saw in the final passage of 2 out of 9 populations for which five passages were 
completed. We therefore set out to understand why low virus titre and extinctions occurred 
during this experiment, by looking at changes in the GF and mutations in the viral genome. 
We hypothesised that low virus titres could occur due to stochastic demographic processes in 
individual plants (H0), deleterious GF shifts as a consequence of GF drift or within-host 
selection on the GF (H1), deleterious mutations affecting viral infectivity or yield that are 
unrelated to the GF (H2), and mutations that are deleterious because they cause a shift in the 
GF (H3).  
 
We combined all the results obtained and considered what evidence there is for these three 
hypotheses, from a qualitative overview of the data (Table 4) and by logistic regression. The 
first conclusion we can draw is that there are clear differences between populations, as some 
populations provide support for H0 (1 population), H1 (2 populations) and H2 (3 populations). 
We have not provided direct experimental evidence for fitness changes related to the GF or 
mutations, but rather found associations with low titre. Second, the same mutation (T673S in 
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genome segment 2a) was found in three populations that went extinct. This mutation that was 
not detected in the ancestral population and appears to result in a mutator phenotype in the 
two populations in which it was fixed. This was the only non-synonymous mutation that 
occurred at intermediate and high frequencies, and the only mutation clearly associated with 
low titre. Some repeated mutations occurred in untranslated regions (3’ UTR of RNA2), but 
they do not appear to affect titre as they are found in many high-titre populations. Third, 
changes in the genome formula that lead to high levels of CMV RNA3 (RNA3 > 0.6) are 
associated with low titre. Most completed populations with high titres have a more balanced 
final GF (RNA3 < 0.5), although one population did have an RNA3 level of 0.58. Therefore, 
the GF appears to play a role in some of these extinctions, although it appears to have 
remained stable in the majority of populations. 
 
There are many aspects to this study that could be improved in future work. One major caveat 
is that we did not perform fitness assays, but simply measured titre during the serial passages. 
We chose this approach because a fitness assay would have required infecting new plants. 
Infecting these plants would have induced additional GF variation, precluding a direct link 
between the passaged population and fitness. Furthermore, fitness measurements are ideally 
performed by direct competitions with the ancestor (Zwart et al. 2014). In our case, the 
presence of the ancestral virus in a mixed population would further disrupt the GF and likely 
result in re-assorted subpopulations in the infected plants. Setting up fitness assays for 
experimental evolution with multipartite viruses remains challenging. 
 
We set out to look for evidence that the GF may play a role in adaptive evolution of CMV in 
three plant species. However, our results suggest that shifts in the GF could be unrelated to 
adaptation or may even be deleterious and contribute to the extinction of virus populations. 
The cost to infectivity associated with a multipartite organisation has been described before 
(Fulton 1962; Iranzo and Manrubia 2012; Sánchez-Navarro, Zwart, and Elena 2013) and 
Chapter 2 of this thesis, but to our knowledge the deleterious consequences of GF shifts have 
not been described before. Whereas previous studies have highlighted the potential benefits 
of GF variation (Sicard et al. 2016; Zwart and Elena 2020), our results here highlight that GF 
may be costly and lead to the extinction of virus populations.
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Supplementary 1 
Table S1. Cucumber mosaic virus isolates from the virus collection at Wageningen Plant 
Research, (www.primediagnostics.com) Wageningen University and Research, Wageningen, 
The Netherlands 

Subgroup Isolate  Country Host Year Reference 

I B32 Spain Phaseolus vulgaris 1970 (Bos and Maat 
1974) 

Fulton France Cucumis sativus 1992 NA 

i17F France Solanum 
lycopersicum 

1975* (Jacquemond and 
Lot 1981; Quiot et 
al. 1979; Nono-
Womdim, 
Marchoux, and 
Gebre-Selassie 
1991) 

S4 Hungary Cucumis melo 1982 (Tóbiás, Maat, and 
Huttinga 1982) 

T519 Italy Solanum 
lycopersicum 

1998 NA 

II AGO7 The 
Netherlands 

Apium graveolens 1971 (Bos 1973) 
 

CU68 Unknown Capsicum annum NA NA 

E312 The 
Netherlands 

Pisum sativum NA NA 

K8 Hungary Capsicum annum 1982 (Tóbiás, Maat, and 
Huttinga 1982) 

*Isolated from field surveys in the south of France and placed in INRAE collection (Quiot et al. 1979). 
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Table S2. Overview of RAW total number of reads per CMV isolate generated from RNA 
sequencing (Miseq) 

Subgroup CMV 
Isolate 

Total Number 
of reads 

Yield 
(mbp) 

Average quality 
(Phred) 

Mapped reads 

Negative control 13,957,415 4126 36.24 n/a 

SI B32 10,357,597 3071 36.04 1,354,161 

Fulton 36,923,059 10879 35.97 8,648,711 

I17F 27,152,250 7941 36.08 10,679,111 

S4 14,224,810 4147 36.05 11,668,569 

T519 27,982,524 8252 36.06 11,834,974 

SII AGO7 11,471,307 3359 36.02 6,451,289 

CU68 12,135,304 3598 36.05 87,448 

E312 46,815,507 13891 35.91 25,086,989 

K8 13,683,817 4043 36.01 899,825 
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Table S3.GF of individual CMV isolates from subgroup I and II.  

Subgroup Isolate  RNA1 RNA2 RNA3 

I B32 0.34  0.11 0.55 

Fulton 0.24 0.29 0.47 

i17F 0.48 0.22 0.31 

S4 0.26 0.43 0.30 

T519 0.42 0.21 0.37 

II AGO7 0.16 0.43 0.41 

CU68 0.29 0.45 0.26 

E312 0.17 0.45 0.38 

K8 0.18 0.17 0.65 

Mean GF SI* 0.35 ± 0.10 0.25 ± 0.12 0.40 ± 0.10 

Mean GF SII* 0.21 ± 0.06 0.37 ± 0.14 0.42 ± 0.16 
*Mean GF per subgroup (𝑥𝑥𝑥𝑥𝑥  ±   SD), subgroup I, n= 5 and  subgroup II, n=4 (𝑥𝑥𝑥𝑥𝑥  ±   SD) 

 

Table S4. Criteria for filtering mutations: Mutations that pass through the filtering in the 
ancestral population, are excluded from analyses on the evolved populations.  

Group Filtering of ancestral population Filtering of evolved population 

Coverage Reads Frequency Coverage Reads Frequency 

Fixed >50 >5 >1.0% >100 >10 >95.0% 

Intermediate >50 >5 >1.0% >100 >10 >5.0% 

Low >50 >5 >0.2% >100 >10 >1.0% 
Coverage indicates the total coverage on the position of the mutation. Reads indicates the 
number of reads containing the mutation. Frequency indicates the frequency of the mutation, 
expressed as a percentage (i.e., A fixed mutation is 100%). 

 
 
  



Chapter 5

152

   
 

 
 

Table S5. GF of CMV-i17F at final passage in hosts species A. thaliana n = 6, N. benthamiana n 
= 5 and N. tabacum n = 6 at 14 days post infection (dpi). The GF is calculated as the mean value of 
the RNA segment relative to the sum of all RNA segments, 
 RNA1 + RNA2 + RNA3 = 1.  

Host RNA1 RNA2 RNA3 

A. thaliana 0.48  ± 0.19 0.14 ± 0.10 0.36 ± 0.16 

N. benthamiana 0.31 ± 0.19 0.08 ± 0.05 0.61 ± 0.21 

N. tabacum 0.29 ± 0.08 0.27 ± 0.09 0.44 ± 0.10 
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Figure S1. CMV titre variation per population at the initial timepoint (p0) and final 
timepoint (p5). Incomplete lineages n=2 are excluded from this analysis. AT= A.  thaliana, 
NB= N. bethamiana, NT= N. tabacum. On the x-axis are virus populations (numbered 1-6 per 
host) at the initial timepoint (passage 0, p0) and the final timepoint (passage 5, p5), or the last 
passage before extinction. On the y-axis is the mean RT-qPCR cycle quantification (Cq) for RNA1-3 
per virus population at the initial passage and final passage per host. We use Cq values as a proxy for 
virus titre as they are inversely related; lower Cq values indicate higher virus titre. 
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Abstract 
Viruses vary enormously in the large-scale organization of their complete and infectious 
extracellular particles, their virion architecture, which we here designate as types I-VI. 
Monopartite viruses (type I) encapsidate a single genome segment in a single particle. 
Multipartite viruses (type II) package their multiple genome segments individually, whilst 
selectively packaging segmented viruses (type III) package a complete set of their multiple 
genome segments into each virus particle. By contrast, non-selectively packaging segmented 
viruses show variation in the distribution of genome segments over virus particles. Some 
animal and plant viruses are thought to non-selectively package their genome segments, 
although to date the most convincing data have been obtained for animal viruses like Rift 
Valley fever virus (RVFV). For these viruses, the exact distribution of genome segments over 
virus particles is not known, and we, therefore, postulate architectures with variation in the 
identity of segments packaged (type IV), the number of segments packaged (type V), or both 
(type VI). In this study, we use mathematical models to explore the impact of virion architecture 
on virus infectivity and evolution, focusing on segmented viruses (types III-VI). First, we 
compare predicted infectivity of different genome architectures by considering the integral of 
dose-responses. For the non-selectively packaging viruses, types IV and VI had the lowest 
infectivity, suggesting that variation in the identity of the segments packaged has a higher cost 
than variation in the number of segments. Second, we obtain infectivity’s when comparing 
predictions based on empirical data for RVFV. For this virus, the predicted cost to the infectivity 
of types IV and VI sometimes approached that of a multipartite virus (type II), whereas the 
type V had an appreciably lower cost. Finally, we simulate competitions between type III, IV, 
and V architectures, to explore whether benefits associated with changes in the frequency of 
genome segments can outweigh infectivity cost. Such benefits may arise from tuning gene 
expression to differing requirements imposed by the host. Types IV and V could outcompete 
type III under a broad range of conditions, suggesting that despite their lower infectivity non-
selectively packaging viruses could be viable competitors. 
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Introduction 
Viruses are obligate intracellular micro-parasites. To move between cells and hosts, most 
viruses produce virus particles: the viral hereditary material surrounded by a capsid, which in 
turn may be enclosed by a membrane in some viruses. The hereditary material of a virus can 
consist of RNA or DNA, and the number of viral genome segments varies between 1 and 12 
(Gelderblom 1996) For a successful infection of a new host, most or all of the genome 
segments must be transmitted between hosts. The complete and infectious extracellular form 
of a virus is referred to as the virion. We refer to the gross organization of the virion, specifically 
the distribution of viral genome segments over virus particles, as the virion architecture. 
Viruses with multiple genome segments have different strategies to package these segments 
into virus particles. Classically, three virion architectures were recognized (Sicard et al. 2016). 
Monopartite viruses have a single genome segment, and therefore each virus particle with a 
(full-length) genome segment contains the complete hereditary information. Multipartite 
viruses have multiple genome segments and package them into separate virus particles, and 
therefore multiple virus particles are needed to transfer the complete hereditary information. 
Segmented viruses have multiple genome segments, but package a copy of each segment 
into every virus particle, and hence each virus particle contains the complete hereditary 
material. The distribution of virion architectures over host species is non-uniform, as shown in 
a recent overview (Michalakis and Blanc 2020). Monopartite viruses represent the largest 
group, infecting predominantly animals, plants, and bacteria. Segmented viruses infect mainly 
animal hosts (including insects), although there are also a considerable number of segmented 
plant and fungal viruses. Multipartite viruses are found nearly exclusively infecting plants and 
fungi (Michalakis and Blanc 2020). In this classical perspective, segmented viruses combine 
potential benefits of having multiple genome segments, such as the possibility for 
reassortment (Chao, Tran, and Tran 1997) and faster replication (Pressing and Reanney 
1984), with the high infectivity of monopartite viruses. Faster replication would occur with 
smaller segment sizes when the availability of the replication complex is not a limiting factor 
(Sicard et al. 2016).   
 
While these categories of virion architecture have been very useful for understanding viral 
diversity, in the past decade the lines between these categories have started to blur (Koonin 
et al. 2020). Multipartite viruses have been shown to have unbalanced genome-segment 
frequencies, and there are indications that this highly variable “genome formula” is an adaptive 
mechanism, maintaining viral mRNA levels in different host environments (Sicard et al. 2013; 
Gallet et al. 2022). The putative benefit of changes in the genome formula is the rapid 
regulation of gene expression in host environments demanding different levels of virus gene 
expression (Sicard et al. 2013). However, some segmented viruses can also have an 
unbalanced genome formula. Examples of these segmented viruses include the animal 
viruses Influenza A virus (IAV) (Brooke et al. 2013), bluetongue virus (BTV) (Moreau et al. 
2020) and Rift Valley fever virus (RVFV) (Wichgers-Schreur et al. 2016), and the plant virus 
tomato spotted wilt virus (TSWV) (Kormelink et al. 1992). If some genome segments are more 
abundant than others, this may lead to the formation of incomplete virus particles. In some 
cases, including IAV and RVFV, virus populations with high frequencies of incomplete virus 
particles exist, and these incomplete particles contribute to transmission by complementing 
each other to introduce a complete genome (Bermúdez-Méndez et al. 2022). These 
segmented viruses do produce some complete virus particles, but the lower capacity for 
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transmission by incomplete particles makes them similar to multipartite viruses. Thus, these 
are expected to have lower infectivity than monopartite viruses but higher than that of 
multipartite viruses.  
 
The exact distribution of genome segments over virus particles has not been described for 
most segmented viruses. Even in those rare cases when the identity of the segments present 
in virus particles has been carefully documented, the number of segment copies has not 
(Wichgers Schreur and Kortekaas 2016). Fluorescent in situ hybridization (FISH) may 
determine that only the S segment of RVFV is present in a virus particle, but not whether there 
are multiple copies of the segment present. Given the sparsity of information on segmented 
virus virion architectures and our intuition that these distributions will matter for infectivity, we 
set out to address this question with a modeling approach. 

Virion architecture types 
 
Before we explain the approach in detail, we first describe the six different types of virion 
architectures we will consider here, which we term types I-VI. An overview of the genome 
architectures we are considering is given in Figure 1. 
 
Type I is the monopartite virion architecture: viruses with a single genome segment, each virus 
particle contains a full-length genome and is infectious. This is the most common virion 
architecture (Michalakis and Blanc 2020). Subtype IA is the multicopy-genome virion 
architecture. In some cases, viruses package multiple copies of their single genome segment 
into each virus particle (Rohrmann 2019). For example, Autographa californica multiple 
nucleopolyhedrovirus (AcMNPV) packages on average 4 nucleocapsids into each occlusion-
derived virus particle (Zwart et al. 2008). In theory, it is possible to combine this feature of 
virion architecture with some of the other virion architectures considered here. However, as 
we are unaware of real-world examples and the predicted effect of the type IA architecture is 
very straightforward, we only consider this feature in conjunction with an unsegmented 
genome. 

 
Type II are the multipartite viruses, viruses with segmented genomes that package each 
genome segment individually into a virus particle. Multipartite viruses are common among 
plant viruses (Michalakis and Blanc 2020), while only one  bipartite virus has been identified 
in Bombyx mori bideonsovirus (BmBDV) (Hu et al. 2016) and putatively in culex mosquitoes  
(Ladner et al. 2016). It is generally recognized that multipartition has a cost for infectivity 
(Fulton 1962). For simplicity, we do not allow multipartite viruses to co-package any genome 
segments. While we are aware that such co-packaging may occur, in our framework such 
viruses should be considered segmented viruses. 

 
Types III-VI are all considered segmented viruses: viruses that have multiple genome 
segments and can in principle package all of these segments in a single virus particle. Type 
III are the selective packagers. Although the genome consists of multiple segments, there are 
molecular mechanisms in place to ensure that one copy of each segment is packaged into 
every virus particle. This ensures that a complete genome is transmitted and each virus 
particle is fully infectious. A prototypical type III virus is the octapartite IAV. There are elaborate 
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mechanisms in place to ensure high packaging fidelity (Chou et al. 2012). These mechanisms 
include packaging signals in the untranslated regions of genomic RNA that result in specific 
RNA-RNA interactions between segments, and possibly interactions between genomic RNA 
and nucleoproteins (Li et al. 2021). Under some conditions considerable packaging errors 
occur (Farrell et al. 2023; Brooke et al. 2013; Diefenbacher, Sun, and Brooke 2018). 
 
Types IV, V, and VI can collectively be termed the non-selective packagers. During packaging, 
both the identity and the number of each segment need to be selected to ensure the type III 
architecture (i.e., one copy of each segment). Here, we therefore consider that non-selective 
packagers can have variation in the identity of the segments packaged (type IV), the total 
number of segments packaged (type V), or both (type VI). There is clear evidence for the 
existence of non-selectively packaging segmented viruses, as most virus particles are found 
to be missing one or more genome segments. One well-studied example is the tri-segmented 
RVFV, in which only a small proportion of virus particles contain at least one copy of all three 
genome segments (Bermúdez-Méndez et al. 2022; Wichgers Schreur and Kortekaas 2016).  
In fact, approximately half of RVFV virus particles do not contain any viral genomic RNA 
(Bermúdez-Méndez et al. 2022; Wichgers Schreur and Kortekaas 2016). This suggests that 
this virus is not simply a selective packager with a considerable packaging error, but rather a 
true non-selective packager. Many members of the Bunyavirales are spread by arthropod 
vectors and can replicate in them (Boshra 2022). Their other hosts are plants or mammals, 
with occasional zoonosis in humans, and the plant-infecting members like TSWV are also 
likely to be non-selective packagers (Wichgers-Schreur et al. 2018).  Although there are more 
segmented viruses of animals than plants ((Michalakis and Blanc 2020)), the models for non-
selective packagers we describe therefore could be pertinent to both animal and plant viruses. 
To the best of our knowledge, the empirical distribution of segment numbers over virus 
particles has not been described, and in principle, this distribution could lead to a range of 
different virion architectures. To limit the possibilities, we explore and simultaneously contrast 
different architectures, here we have chosen three putative architectures we refer to as types 
IV to VI. We stress that these are purely hypothetical architectures that we use for exploration, 
in the absence of a quantitative description of read-world virion architectures.  
 
For type IV, a fixed number of randomly sampled genome segments is packaged into each 
virus particle, with this number being equivalent to the total number of genome segment types. 
i.e., for a bi-segmented virus, each virus particle will contain two randomly sampled genome 
segments. This genome organization is plausible a priori if the virus particle has enough 
internal space to accommodate the full genome. 
 
For type V, a variable number of genome segments is packaged into each virus particle, with 
the maximum number that can be packaged being equal to the number of genome segment 
types. However, the identity of the segments is regulated such that multiple copies of the same 
segment are never packaged into the same virus particle, i.e. for a bi-segmented virus, zero, 
one, or two genome segments can be packaged into each virus particle. If two segments are 
packaged then both segment types will be represented and the virus particle has the complete 
hereditary material. 
 
 



Chapter 6

164

Figure 1. Overview of virion architectures. Following our descriptions in the section Virion 
Architecture Types, we illustrate the different virion architectures considered here. The figure 
illustrates the identities of the segments packaged into virus particles, and also the absolute 
numbers produced under these different architectures, following the assumptions made in this 
study. Note that the two genomic regions are joined in a single segment for virion architectures 
I and Ia.
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For type VI, both the number of genome segments and the identity of the segments are 
randomly sampled. For a bi-segmeted virus, zero, one or two genome segments can be 
packaged into each virus particle. If two genome segments are packaged, they can either be 
of the same type or both types, and therefore the complete hereditary material may not always 
be present in a virus particle. 

Scope and approach 
 
Our goal is to predict the impact of virion architecture on viral infectivity and the evolution of 
the genome formula using computational approaches.  First, we determine the cost to 
infectivity of the six different virion architectures. We make comparisons between  extant virion 
architectures (type I - III) and hypothetical types (types IV-VI). Using empirical distributions of 
segment identity over virus particles for RVFV (Bermúdez-Méndez et al. 2022), we can 
consider the predicted cost to infectivity for this virus under the type IV-VI virion architectures. 
Finally, selective packagers will not be able to conserve any changes that occur in their 
genome formula, as the frequency of genome segments packaged is always perfectly 
balanced. Therefore, we simulate competition between selective and non-selective packagers 
to explore whether putative benefits associated with variation in the genome formula may 
outweigh the cost to infectivity. 

Methods 
We first provide an overview of the approach, model assumptions and the underlying rationale 
for these assumptions. We describe the analytical model used to make numerical predictions 
for dose-response (types I-III), and the simulation-based models used (types I-VI). We then 
describe methods used for determining infectivity cost for the empirical distribution of segment 
identities over virus particles for RVFV. Finally, we provide a description of the simulation 
models used to compete different segmented virus architectures against each other, and 
thereby the implications of changes in the genome formula for these competitions. 

Overview of infectivity cost predictions 
 
We assume the infection process consists of two steps: (i) initial invasion of the host by a virus 
particle (i.e. physical entry into an environment that supports replication), followed by (ii) 
productive infection: replication in the host if a complete genome is present, resulting in the 
formation of new infectious virus particles in the host. None of the approaches used are 
spatially explicit. We assume that mass action – i.e. the independent action hypothesis (IAH) 
– describes the kinetics of invasion for all virus particles (Zwart and Elena 2015). Given a dose 
of 𝑛𝑛𝑛𝑛 virus particles and an invasion probability per particle 𝜌𝜌𝜌𝜌, the number of invading virus 
particles will be the product 𝜆𝜆𝜆𝜆 = 𝜌𝜌𝜌𝜌𝑛𝑛𝑛𝑛. We will assume that all virus particles are equally invasive, 
regardless of their genome-segment content. However, to successfully replicate and have a 
productive infection, all 𝜅𝜅𝜅𝜅 genome segments of the virus need to be present in the host. 
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We assume virion architecture per se does not impose a cost on genome and virus particle 
production. If the genome is segmented, the number of full-length genomes produced is the 
same as for a monopartite virus. This situation corresponds to a situation in which there is a 
fixed pool of enzymes and nucleotides available to replicate the genome. Similarly, these 
genome segments can be distributed over any number of virus particles. This situation 
corresponds most closely to the production of rod-shaped virus particles, in which the number 
of capsid units is proportional to the length of the genome segment to be encapsidated 
(Solovyev and Makarov 2016). In practice, we realize that there may be a cost to distributing 
genome segments over a large number of virus particles, as this may require e.g. the 
production of more spike proteins in an enveloped virus. However, for simplicity, we do not 
consider such effects. Finally, we assume all genome segments are always present at equal 
frequencies when making cost calculations. We make this simplifying assumption (i) to restrict 
the scenarios we consider, and (ii) because a balanced GF will lead to the highest level of 
infection when we assume the same probability of invasion for all types of virus particles. 
Under the assumptions we have made (i.e., equal infectivity of all virus particle types), the 
highest level of infection will be achieved with a balanced genome formula. Only in the 
simulations of competition between different virion architectures do we  relax this assumption 
and allow for an unbalanced genome formula. 
 
Given these starting assumptions, no virion architecture will be more infectious than type I, 
monopartite viruses. Segmentation of the genome has no intrinsic benefit but it can lead to 
the loss of genome segments and the ensuing loss of the capacity for productive infection. We 
therefore compare all architectures to type I. We then normalize this difference by the 
difference between type I and a bi-segmented type II virus, as the multipartite virion 
architecture is generally considered to be a costly virion architecture (Sicard et al. 2013; 
Sánchez-Navarro, Zwart, and Elena 2013).  To assess the effect of virion architecture on the 
capacity for infection, we consider the integral of the dose-response, considering dose on a 
logarithmic instead of a natural scale so that arbitrary model parameters (i.e., 𝜌𝜌𝜌𝜌) do not affect 
model predictions for the difference between integrals. This gives us the cost (𝐶𝐶𝐶𝐶) of a virion 
architecture, for example for the type III architecture: 

 

𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
∫ 𝑓𝑓𝑓𝑓𝐼𝐼𝐼𝐼
𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛𝑛𝑛=1 (𝑛𝑛𝑛𝑛)𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 − ∫ 𝑓𝑓𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛𝑛𝑛=1 (𝑛𝑛𝑛𝑛)𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛

∫ 𝑓𝑓𝑓𝑓𝐼𝐼𝐼𝐼
𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛𝑛𝑛=1 (𝑛𝑛𝑛𝑛)𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 − ∫ 𝑓𝑓𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛𝑛𝑛=1 (𝑛𝑛𝑛𝑛)𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛

 

 
and likewise for architectures IV-VI.  
 

Infectivity cost: numerical predictions from the analytical 
function 
 
To make numerical predictions of dose-response from a function, we used a previously 
described approach (Sánchez-Navarro, Zwart, and Elena 2013). If 𝜅𝜅𝜅𝜅 types of virus particles, 
each carrying a unique genome segment, are needed for infection, and all virus particle types 
have an equal frequency and probability of infection, the dose-response can be given by:  
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𝐼𝐼𝐼𝐼 = �(1 − 𝑒𝑒𝑒𝑒−𝜌𝜌𝜌𝜌𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗)
𝜅𝜅𝜅𝜅

𝑗𝑗𝑗𝑗𝑗𝑗

= (1 − 𝑒𝑒𝑒𝑒−𝜌𝜌𝜌𝜌𝑛𝑛𝑛𝑛)𝜅𝜅𝜅𝜅 

 
where 𝐼𝐼𝐼𝐼 is the proportion of infected hosts and j denotes the virus particle type. This approach 
works for the types I, IA, II, and III architectures. For types I, IA, and II, 𝜅𝜅𝜅𝜅 = 1. If the virion 
architecture affects 𝑛𝑛𝑛𝑛 (we assume there is a limited pool of genome segments that can be 
packaged, but not restrictions on the number of virus particles produced), we refer to this 
correction as 𝜷𝜷𝜷𝜷, resulting in an adjusted dose 𝛽𝛽𝛽𝛽n. Given type IA packages multiple full-length 
genome segments in each virus particle, this correction is 𝛽𝛽𝛽𝛽 = 𝑗

𝜃𝜃𝜃𝜃
, where 𝜃𝜃𝜃𝜃 is the number of full-

length genomes per virus particle. For the type II architecture, 𝜅𝜅𝜅𝜅 is equivalent to the number 
of genome segments (i.e., for a bi-segmented multipartite 𝜅𝜅𝜅𝜅 = 2 and for a tri-segmented 
multipartite 𝜅𝜅𝜅𝜅 = 3). For type III, we assume there are no packaging errors and hence  𝜅𝜅𝜅𝜅 = 1. 
In all cases, the integral is then calculated by numerical integration using the Gauss-Kronrod 
method from the Pracma package version 2.4.4 (Borchers 2023). 

Simulation-based predictions for infectivity cost: types I, II and 
III 
 
To make simulation-based predictions of dose response for all genome architectures we first 
need to determine the distribution of the total number of infecting virus particles. We consider 
all genome architectures so that we can compare numerical and simulation-based predictions 
for those virion architectures for which we can use both approaches (types I, IA, II and III).  
We let the number of infecting virus particles follow a Poisson distribution over hosts with a 
mean 𝜆𝜆𝜆𝜆 = 𝜌𝜌𝜌𝜌𝑛𝑛𝑛𝑛. We use the rpois() function in R, rendering a realization 𝜑𝜑𝜑𝜑. For types I, IA and 
III, when 𝜑𝜑𝜑𝜑 > 0 that host is infected. For type IA we need to adjust the dose, as done for the 
numerical prediction. For the type II architecture, we generate a realization of the number of 
infecting virus particles for each genome segment (i.e., virus particle type) 𝜑𝜑𝜑𝜑𝑗𝑗𝑗𝑗, and hosts are 
only infected if for all 𝜅𝜅𝜅𝜅 realizations 𝜑𝜑𝜑𝜑𝑗𝑗𝑗𝑗 > 0. For this virion architecture, 𝛽𝛽𝛽𝛽 = 𝜅𝜅𝜅𝜅 as a complete 
segmented genome requires the same resources as an unsegmented genome. 

Simulation-based predictions for infectivity cost: type IV 
 
There are two approaches that can be used for modeling type IV  architecture, which assumes 
non-selective packaging of a fixed number of genome segments. In the first approach 
(henceforth Model A); for simplicity we provide a description for a bi-segmented virus. We first 
draw a realization of the number of infecting virus particles 𝜑𝜑𝜑𝜑. Next, we draw the number of 
copies of the first genome segment present (𝜒𝜒𝜒𝜒𝑗) from a binomial distribution with the rbinom() 
function. For this binomial distribution, the probability of success is 0.5 as both segments are 
equally abundant. We are describing a scenario in which 𝜅𝜅𝜅𝜅 segments are packaged randomly 
(with respect to segment identity) into each virus particle, so for a bi-segmented virus this 
results in 2𝜑𝜑𝜑𝜑 trials for the binomial distribution. The number of copies of the second genome 
segment is 𝜒𝜒𝜒𝜒2 =  2𝜑𝜑𝜑𝜑 − 𝜒𝜒𝜒𝜒𝑗. A host is infected if for both realizations 𝜒𝜒𝜒𝜒𝑗𝑗𝑗𝑗 > 0. The same approach 
can be extended to a tri-segmented virus. For the type IV  architecture the total number of 
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virus particles produced is equivalent to type III, because the number of nucleocapsids per 
virus particle is fixed and hence more virus particles cannot be produced.  
 
The second approach (henceforth Model B) used to model the type IV architecture is 
described elsewhere, where it is employed to model what we here term the type V virion 
architecture (Bermúdez-Méndez et al. 2022). We specify the frequency of virus particle types 
with different genome-segment contents, noting only whether each segment type is present 
or absent. For a bi-segmented virus with encapsidation up to 2 genome segments per virus 
particle, there are four possible virus particle types {segment 1, segment 2}: {0,0}, {1,0}, {0,1}, 
and {1,1}, with 0 indicating a segment is absent and 1 indicating it is present (with one or more 
copies). We represent the relative frequency 𝑟𝑟𝑟𝑟 of each of these four types as a set {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4}. 
We assume an even frequency of genome segments, and for the bi-segmented virus 𝑟𝑟𝑟𝑟2 = 𝑟𝑟𝑟𝑟3 
and therefore we only present {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟4}. For type IV architecture, all virus particles contain 2 
randomly selected segments, and therefore for a bi-segmented virus {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟4} = �0, 1

4
, 1
2
�. 

Likewise, for a tri-segmented virus there are eight types of virus particle possible: 
{𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4, 𝑟𝑟𝑟𝑟5, 𝑟𝑟𝑟𝑟6, 𝑟𝑟𝑟𝑟7, 𝑟𝑟𝑟𝑟8} having a segment content {0,0,0}, {1,0,0}, {0,1,0}, {0,0,1}, {1,1,0}, 
{1,0,1}, {0,1,1} and {1,1,1}, respectively. As under our assumptions 𝑟𝑟𝑟𝑟2 = 𝑟𝑟𝑟𝑟3 = 𝑟𝑟𝑟𝑟4 and 𝑟𝑟𝑟𝑟5 = 𝑟𝑟𝑟𝑟6 =
𝑟𝑟𝑟𝑟7, we only present {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟5, 𝑟𝑟𝑟𝑟8}, and for a tri-segmented type III virus {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟5, 𝑟𝑟𝑟𝑟8} =
�0, 1

27
, 6
27

, 6
27
�. To implement this model, we randomly assign each infecting virus particle to one 

of these types using the sample() function in R, weighting the probability of each outcome with 
the relative frequency of that virus-particle type. The host is only infected if all genome 
segments are present. 

Simulation-based predictions for infectivity cost: type V 
 
The type V virion architecture assumes a variable number of genome segments are packaged, 
but that only unique segment identities are packaged into a virus particle. This virion 
architecture was modeled with modified Models A and B. For Model A, after drawing the 
number of infecting virus particles (𝜑𝜑𝜑𝜑) as before (i.e., for type IV), we determine the genome-
segment content of the virus particle by randomly drawing the number of genome segments 
present using a binomial distribution with a probability of success 1/𝜅𝜅𝜅𝜅 and 𝜅𝜅𝜅𝜅 trials. i.e. On 
average, each virus particle contains one genome segment and the maximum number is the 
number of unique genome segments. For the bi-segmented virus, all two-segment virus 
particles will contain the complete genome under the assumptions made. For the tri-
segmented virus, the genome-segment content of two-segment virus particles is determined 
using the sample() function without replacement of genome segment identity (i.e., each 
segment sampled is unique), whereas all three-segment virus particles contain the complete 
genome. As before, infection only proceeds in hosts in which all three segment types are 
represented. 
 
For this architecture we need to account for the lower mean number of nucleocapsids 
packaged in virus particles, resulting in a larger pool of virus particles. Intuitively, on average 
one genome segment is packaged per virus particle, so bi-segmented and tri-segmented type 
V viruses produce twice and thrice as many virus particles as the type IV, respectively. 
Formally and more generally, 𝛽𝛽𝛽𝛽 = 𝜅𝜅𝜅𝜅/∑𝜔𝜔𝜔𝜔𝑘𝑘𝑘𝑘𝑘1 𝛷𝛷𝛷𝛷𝑗𝑗𝑗𝑗𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗 , where 𝛽𝛽𝛽𝛽 is the correction to the total number 
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of virus particles produced, 𝛷𝛷𝛷𝛷 is the frequency of a virus particle type, 𝜓𝜓𝜓𝜓 is the total number of 
genome segments it contains (irrespective of segment identity), and 𝜔𝜔𝜔𝜔 is the total number of 
virus particle types.  𝜅𝜅𝜅𝜅 𝜅 𝜔𝜔𝜔𝜔, as there are more types of virus particles than genome segments 
possible for non-selectively packaging segment viruses. In this case, given the model 
assumptions, we can obtain 𝛷𝛷𝛷𝛷 values by determining the binomial probability mass function 
(PMF) for the distribution of genome segments over virus particles and dividing by the number 
of unique virus particles (in terms of segment content) with that number of segments. |In other 
words, for the bi-segmented type V virus, all particles with a total of two segments have both 
segment types, so there is only unique virus particle type whereas for a tri-segmented virus 
there are three combinations of genome segments that can be present in the particles with a 
total of two segments. 
 
For Model B, it follows from elementary probability that for the bi-segmented virus all virus 
particle types are equally common and hence {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟4} = �1

4
, 1
4

, 1
4
�. For the tripartite virus, we 

use 𝛷𝛷𝛷𝛷𝑗𝑗𝑗𝑗 as described above for the correction to the number of virus particles (i.e., 𝛽𝛽𝛽𝛽) resulting 
in  {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟5, 𝑟𝑟𝑟𝑟8} ≈ {0.296,0.148,0.074,0.037}.  The number of virus particles can be corrected 
as for Model A (i.e., using 𝛽𝛽𝛽𝛽). 

Simulation-based predictions for infectivity cost: type VI 
 
The type VI virion architecture combines non-selective packaging of genome segments with 
variation in the number of segments packaged. 𝛽𝛽𝛽𝛽 is identical to type V, as only the distribution 
of genome segment identity (but not the total number of genome segments) is different over 
virus particles. For Model A, as for type V,  we randomly draw the number of infecting virus 
particles from a Poisson distribution and the number of genome segments per virus particle 
from a Binomial distribution, assuming a probability of success 1/𝜅𝜅𝜅𝜅 and 𝜅𝜅𝜅𝜅 trials for the latter. 
We then need to set segment identity for those virus particles with more than 2 genome 
segments. For example, for a bi-segmented virus, we determine the total number of infecting 
virus particles with 2 genome segments, and then draw the number of successes 𝜒𝜒𝜒𝜒1 over the 
total number of genome segments present in this sub-population of virus particles. 
 
For approach B, we use simple probabilistic arguments to determine the distribution of virus 
particle types. For example, for a bi-segmented virus following type VI architecture, virus 
particles with two genome segments have a probability of ¼ of containing only segment one, 
and likewise for segment 2. Hence, we can correct the expected frequency of virus particle 
identities such that {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟4} = �1

4
, �1
4

+ �1
4
⋅ 1
4
�� , �1

4
− �1

2
⋅ 1
4
��� = {0.25, 0.3125, 0.125}. Likewise, 

for the tri-segmented virus {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟5, 𝑟𝑟𝑟𝑟8} ≈ {0.296,0.174,0.057,0.008}. 
 
 

Infectivity cost: predictions for RVFV 
 
To consider the implications of virion architecture for infectivity in a real-life example, we re-
used previously published data on RVFV (Bermúdez-Méndez et al. 2022). For these data, the 
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distribution of genome segment identities over virus particles is known (i.e., which genome 
segment type is present or absent in a virus particle), whereas the distribution of the number 
of segments per identity has not been quantified (i.e., the number of copies of each genome 
segment type in a virus particle). We were only able to perform this calculation with Model B. 
The frequency of virus particle identities (e.g., {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟5, 𝑟𝑟𝑟𝑟8}) is identical for all three 
architectures here, and only the correction for the number of virus particles (𝛽𝛽𝛽𝛽) will be different 
across virion architectures. For the theoretical type IV and V architectures, we can calculate 
this correction directly given the frequency or virus particle identities. (E.g., Model IV assumes 
there are always three genome segments, so if only one segment type is present in a virus 
particle all three segments must have the same identity. For Model V, per definition there is 
only a single copy of each segment present in a virus particle.)  
 
By contrast, the assumptions for Model VI will result in a specific distribution of the number of 
copies of a genome segment over virus particles, so we needed to verify if the empirical 
distribution was compatible with model predictions. We used grid searches to test whether 
varying the probability of success for the binomial distribution of genome segments per virus 
particle (previously set to 1/𝜅𝜅𝜅𝜅 for theoretical comparisons) could reconcile model predictions 
with the data. We also considered whether any distribution of the virus particle types (i.e., not 
limited to having a binomially distributed number of genome segments per virus particle) could 
account for the data, again by performing a grid search over all possible relative frequencies 
of virus particle types. For both grid searches, we selected parameter values that minimized 
the sum of squares for predicted and observed relative frequencies of virus particle identities. 
As only the unrestrained distributions of virus particle types could account for the observed 
patterns under the type VI architecture, we used these predicted distributions of the number 
of segments per virus particle for making the correction to the number of virus particles. 
 

Simulations of competition between selective and non-selective 
packagers 
 
To explore the potential effects of the genome formula on the evolution of non-selectively 
packaging segmented viruses, we adapted a model of multipartite virus genome-formula 
evolution (Zwart and Elena 2020). This model was intended to explore the competition 
between cognate monopartite and bi-segmented multipartite viruses and identify conditions 
favorable for multipartite viruses. The model incorporates a function linking the intracellular 
GF and virus particle yield per cell. This function links the log of the ratio between the two 
segments,  𝑟𝑟𝑟𝑟 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙10 �

𝑓𝑓𝑓𝑓1
𝑓𝑓𝑓𝑓2
�,  to a level of virus particle accumulation using the normal probability 

density function. The optimal value of r for virus particle production is then the mean of the 
normal distribution (μ), while its variance (𝜎𝜎𝜎𝜎2) determines how sensitive virus particle 
production is to any deviations from the optimum. By varying parameters μ and 𝜎𝜎𝜎𝜎2, we can 
test how the outcome of competition between monopartite and multipartite viruses will be 
affected as the intracellular genome formula has different effects on virus particle production. 
The model incorporates a fixed multiplicity of cellular infection and virus evolution in a 
regulated number of effectively infected cells. There is stochastic variation in the number of 
virus particles infecting cells and a function that links the intra-cellular genome formula and 
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virus particle yield produced. In the original study this model was used to study competition 
between a monopartite and multipartite viruses, but here we adapted this model to consider 
competition between a bi-segmented type III selective packager and a bi-segmented type IV 
or V non-selective packager. The type VI was excluded because it requires greater model 
complexity, while showing similar infection kinetics to the type IV. We tried to keep conditions 
identical to those previously reported, using the same fixed values or ranges of parameters as 
previously used (see Table 1 for an overview of model parameter values). In the below 
description, we highlight the changes made to the original model to represent these different 
virus variants. 
 
We first explain competitions between types III and IV. The type III selective packager, whilst 
having a segmented genome, behaves exactly the same as the monopartite virus, by virtue of 
its perfect, selective packaging. The type IV non-selective packager produces virus particles 
with either two copies of the same segment (1,1 or 2,2), or one copy of both segments (1,2). 
We must therefore introduce a new class of virus particles (1,2) to the model, and account for 
the double genome segment content of the single-segment-type virus particles when 
calculating the genome formula. We first set initial frequencies of the virus particles of the 
selective packager (𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠 ) and non-selective packager virus variants (𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗) to 𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠 = 1

2
, 𝑣𝑣𝑣𝑣1,2 = 1

4
 and 

𝑣𝑣𝑣𝑣1 = 𝑣𝑣𝑣𝑣2 = 1
8
. This starting population represents equal frequencies of the genome segments 

(𝑓𝑓𝑓𝑓) of the type III and IV viruses (𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠,1 = 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠,2 = 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠,1 = 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠,2 = 1
4
), where 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 indicates the non-

selective packagers. Next, we must estimate the number of cells to be used to hold steady the 
number of effectively infected cells. Here we use the same approach as before (Zwart and 
Elena 2020, equation 1), considering the MOI, the fractions of cells invaded by the single 
segment type particles (𝑣𝑣𝑣𝑣1, 𝑣𝑣𝑣𝑣2) and the fraction of cells invaded by virus particles with a 
complete genome (𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠 + 𝑣𝑣𝑣𝑣1,2) in place of the fraction of cells infected by the monopartite. We 
then alter the model to divide the Poisson-distributed total number of invading virus particles 
over the four virus-particle types based on their frequencies. For all simulations, we used the 
model variant with coinfection exclusion between the two viruses. We choose this variant of 
the model a priori, because in previous work on multipartite viruses, coinfection exclusion 
prevents the cognate monopartite virus from exploiting the multipartite virus's genome-
formula-derived benefits. Coinfection exclusion is modeled as a stochastic process mediated 
by the second genome segment, therefore favoring the more abundant virus variant within a 
cell (Zwart and Elena 2020). Next, we can determine the within-cell genome formula (𝑟𝑟𝑟𝑟) for 
each cell, which we consider on a log10 scale. As we assume there is no within-cell selection 
for segments, the frequency of genome segments that invaded the cell will be represented in 
the virus particles generated. For cells infected by the the type III virus, given there is 
coinfection exclusion and therefore a balanced genome-segment content in virus particles, 

per definition 𝑟𝑟𝑟𝑟 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠,1
𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠,2
� = 0. For cells infected by the type IV virus, 𝑟𝑟𝑟𝑟 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙10 �

𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠,1
𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠,2
� =

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙10 �
2𝜑𝜑𝜑𝜑1+𝜑𝜑𝜑𝜑1,2
2𝜑𝜑𝜑𝜑2+𝜑𝜑𝜑𝜑1,2

�, recalling that 𝜑𝜑𝜑𝜑 is a realization of the number of infecting virus particles. The 

total virus particle yield can then be determined as before, using the normal probability density 
function with a mean 𝜇𝜇𝜇𝜇 and variance 𝜎𝜎𝜎𝜎2 (Zwart and Elena 2020). To partition this yield over 
virus particle types, we first use the binomial PMF to determine the frequencies of 𝑣𝑣𝑣𝑣1 and 𝑣𝑣𝑣𝑣2. 
For this PMF, the number of trials is two (i.e., the fixed number of genome segments per 
particle), the number of successes is two (i.e., we want to know the fraction of virus particles 
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containing only this segment type), and the probability of success is the relative frequency of 
segment 𝑛𝑛𝑛𝑛, 1 or 𝑛𝑛𝑛𝑛, 2 in that cell. Note that as the genome formula becomes more unbalanced, 
there will be fewer 𝑣𝑣𝑣𝑣1,2 virus particles and the infectivity of the type IV sub-population will 
decrease. Finally, we modified the performance metric used in the original simulations on 
multipartite viruses to determine the winner of the competition if both viruses were maintained. 
We adjusted this metric to reflect the relative frequency of all segments associated with a 
variant. 
 
For the competition between the type III and the type V viruses, for conciseness only we 
highlight the differences in the competition between types III and IV. Type V has the same 
number of classes of virus particles as type IV, but the number of genome segments 
encapsidated in these particles is different (i.e., these particles then contain only a single copy 
of the segment). Hence, to maintain (𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠,1 = 𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠,2 = 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠,1 = 𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠,2 = 1

4
), the initial frequencies of the 

virus particles needs to be 𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠 = 2
5
 and 𝑣𝑣𝑣𝑣1 = 𝑣𝑣𝑣𝑣2 = 𝑣𝑣𝑣𝑣1,2 = 1

5
. The infection process is identical to 

the type IV virus, but to determine the genome formula in infected cells we need to account 

for the differences in genome segment content:  𝑟𝑟𝑟𝑟 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠,1
𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠,2
� = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙10 �

𝜑𝜑𝜑𝜑1+𝜑𝜑𝜑𝜑1,2
𝜑𝜑𝜑𝜑2+𝜑𝜑𝜑𝜑1,2

�. To model 

the packaging of genome segments into virus particles with an unbalanced genome formula 
is more complex for the type V than for the type IV. Recall there is a variable number of 
genome segments over virus particles, but if two segments are packaged they will represent 
the two segment types. If there is an unbalanced genome content, we reason that the bi-
segmented type V virus will package virus particles according to its idealized scheme (I.e., 
{𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟4} = �1

4
, 1
4

, 1
4
�) until the rarer variant is depleted, at which point only single-copy virus 

particles with the other segment will be generated. Prior to running the simulations of 
competition between viruses, we ran multiple simulations of the encapsidation process for 
different genome formula values. During the competition simulations, we randomly selected 
an iteration corresponding to the genome formula in that cell, allowing us to capture stochastic 
variation in the encapsidation process without having to run a simulation for each individual 
cell.  
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Table 1: Model parameter values 
 

Section Model 
parameter 

Value or range Comments 

Dose response  ⍴ 0.001 Probability of cell entry per virus 
particle 

  n 1 - 105  Dose range 

 θ 2 Number of complete genome copies 
per virus particle for type IA virus 

 Simulations 104  Number of individuals per dose 

 Simulations 
Model B 

103  Number of individuals per dose 

Evolutionary 
Competitions 

C 103  The number of effectively infected 
cells 

 Max. passages 100 The maximum number of passages 
for which each individual simulation is 
allowed to proceed 

 Simulations 103  The number of independent 
simulations for each set of conditions 

 Probability of 
change in  the 
environment 

0.2 The probability that the environment 
changes in each round of passaging, 
i.e., that a new value of μ will be 
drawn.  

 log10(MOI) -2, -1.9, -1.8, (...) 2  Cellular multiplicity of infection (MOI) - 
the number of virus particles entering 
a cell  

 ψ 0, 0.1, 0.2, (...) 2 Parameter that sets the range (0 ±ψ) 
from which values of μ can be drawn 

  𝜎𝜎𝜎𝜎2  0.01., 0.1, 1, 10 Parameter that determines sensitivity 
of virus accumulation to deviations 
from the optimal genome formula μ. 
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Results and discussion 

Virion architecture is predicted to impact infectivity 
 
By comparing the integrals of the dose response for different virion architectures, we could 
determine the cost to infectivity for each virion architecture over a fixed range of viral doses. 
Considerable research has suggested that multipartite viruses have a high cost to infectivity, 
due to the loss of genome segments during transmission (Fulton 1962; Gutiérrez and Zwart 
2018; Sánchez-Navarro, Zwart, and Elena 2013). We used the comparison between the dose-
response of a bi-segmented, multipartite virus (Type II, 𝜅𝜅𝜅𝜅 = 2) and monopartite virus (Type I), 
to normalize the predicted infectivity cost for all virion architectures as compared to the 
monopartite virus. The cost to infectivity for the monopartite is therefore per definition 0, whilst 
for the bi-segmented, multipartite virus it is 1. 
 
We found that many virion architectures had a high predicted cost to infectivity (Table 2, see 
also Supplementary S1: Table S1). First, packaging multiple copies of a single-segment 
genome into each particle is very costly within our framework, leading to an infectivity that is 
considerably lower than that of the bi-segmented multipartite virus. Although this genome 
architecture is not common, it has been adopted by the multiple nucleopolyhedroviruses (in 
the genus Alphabaculovirus, double-stranded DNA insect viruses). For these viruses, each 
occlusion derived virion contains multiple nucleocapsids, each of which contains a copy of its 
monopartite genome (Slack and Arif 2007). This result immediately highlights an important 
caveat of our framework: we consider the implications of virion architecture by making 
simplifying assumptions on virus particle production and only consider genome completeness 
as a criterion for infectivity. In the real world, other biological factors will come into play. For 
multiple nucleopolyhedroviruses, packaging multiple genome copies (i.e., nucleocapsids) into 
each virus particle may enhance infectivity by allowing faster passage through the larval 
midgut, a key barrier to infection (Slack and Arif 2007). Our framework therefore cannot in 
itself predict whether a virion architecture is likely to occur, we can only predict the associated 
infectivity cost ceteris paribus. 
 
Within this framework, genome segmentation is not necessarily associated with a cost to 
infectivity. Type III viruses have segmented genomes but selectively package them into virus 
particles, making their virus particle production and the infectivity of each virus particle 
equivalent to that of the monopartite virus (type I). Given this intuitive result, for a long time, it 
has been assumed that all segmented viruses would be selective packagers.   Research on 
IAV has shown that a large pool of the viral population is composed of incomplete viral 
particles, missing virus genome segments, that have reduced infectivity compared to complete 
genomes but contribute to increasing overall virus infectivity (Brooke et al. 2013; 
Diefenbacher, Sun, and Brooke 2018; Farrell et al. 2023). We therefore chose to include an 
estimate of the cost to infectivity of the type III virion architecture with errors in packaging, 
under low (𝜏𝜏𝜏𝜏 = 0.025) and high (𝜏𝜏𝜏𝜏 = 0.25) error rates (Supplementary S2). By errors we 
understand the packaging of the wrong segment type, as the correct total number of segments 
is always packaged in the scenario we consider. When the error rate is low, the cost to 
infectivity is much lower than that incurred by other virion architectures (types IV, V or VI). 
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When the error rate is high, the cost to infectivity for the bi-segmented virus is similar to that 
of the type V non-selective packager, which packages a variable number of segments (Table 
S1). For very high error rates, a type III virion architecture with errors or a type IV virion 
architecture will become indistinguishable in terms of the realized distribution of segments 
over virus particles..  
 
Our results confirm that all the other virion architectures for the segmented viruses have an 
infectivity cost compared to monopartite viruses and their selectively packaging relatives 
(Table 2). Surprisingly, the infectivity cost for two of these architectures - types IV and VI - 
approach the predictions for the multipartite viruses (type II). By contrast, the type V 
architecture has a considerably lower cost than the other two non-selective packagers and the 
multipartite viruses. We do not know why non-selective packaging has evolved, and indeed 
whether it may be associated with certain benefits that outweigh its costs. Putative 
evolutionary benefits of non-selective packaging and mechanisms of selective packaging of 
genome segments, may allow which virion architectures actually evolve. However, we predict 
that the type V virion architecture will have a much lower infectivity cost ceteris paribus, making 
it the most plausible virion architecture for the non-selective packagers within our framework.  
 
We recognize that the virion architectures that we have postulated for the non-selective 
packaging segmented viruses (types IV, V and VI) are all hypothetical: to the best of our 
knowledge the distribution of genome segments over virus particles has not been quantified. 
We have therefore chosen three possible architectures to explore their effect on infectivity, 
while making some assumptions to constrain the variations considered. For example, we 
assume the mean number of genome segments per virus particle is 1 for types V and VI, to 
ensure a contrast with the type IV architecture. Other values for the mean number of genome 
segments per virus particle can be explored, and indeed we consider this possibility later for 
RVFV. 

 
Why does the infectivity cost of the types IV and VI non-selective packagers approach that of 
the multipartite viruses? The cost to infectivity for multipartite viruses (type II) has a single 
cause under our assumptions. Given that nucleotide and enzyme pools constrain the number 
of virus particles produced and that multipartite viruses package only a single genome 
segment per virus particle, a bi-segmented multipartite virus may generate twice as many virus 
particles as the cognate monopartite. Therefore, cost arises because some hosts are only 
invaded by virus particles carrying one segment type, which cannot support replication. 
Abortive infections due to incomplete genomes can occur for type II, IV, V and VI 
architectures. Only the type IV and VI architectures result in the formation of multiple copies 
of the same segment in a single virus particle. Within our framework, these virus particles are 
wasteful because the additional copies of the same segment have no added benefit for 
infectivity, but do result in the formation of less particles. To illustrate these differences, 
consider the differences in the dose-response for type II and IV architectures (Figure 2). Type 
IV non-selective packagers have an infectivity advantage relative to type II multipartite viruses 
at low doses due to the occurrence of complete virus particles, which are completely absent 
in the multipartite virus population. At higher doses where the probability of infection by two 
virus particles becomes appreciable, the multipartite virus has higher infectivity relative to the 
type IV non-selective packager because its packaging is less wasteful. 
 



Chapter 6

176

 
 
 

 
 

Table 2: Theoretical cost to infectivity predictions. We give an overview of the cost of 
different virion architectures, as a function of the number of genome segments (𝜅𝜅𝜅𝜅 𝜅 [1,2,3]). 
All costs have been normalized by the difference in the integrals of the type I and II viruses, 
such that the cost of the type I is 0 and the cost of the type II is 1. Fields that correspond to 
combinations of virion architecture and segment number that are logically excluded are 
colored gray. Where possible we provide the numerical prediction of infectivity cost, if 
numerical predictions cannot be made we provide the Model A simulation-based prediction. 
Full results for all approaches are given in Table S1 (Supplementary S1), and illustrate that 
there was good agreement between the different modeling approaches used.  
 

Category  Type Cost,          
1 segment  

Cost,          
2 segments               

Cost,                
3 segments  

Monopartite: single genome copy per virus particle  I  0b     

Monopartite: multiple genome copies per virus particle,   

θ = 2 

Ia 

  

 

1.001a 

  

  
θ = 3 1.586a,      

Multipartite  II   1.000b 1.416b  

Segmented, selective packaging  III    0b 0b 

 Segmented, variable segment identity  IV   0.832c  1.360c 

Segmented, variable segment number  V    0.582c  1.135c 

Segmented, variable segment identity & number  VI    0.971c  1.417c 
a θ = 2 and 3, for  two or three genome copies per virus particle, b numerical prediction, c Model A simulation-
based prediction. 
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Figure 2. Dose response for different virion architectures. To illustrate the different 
infectivity costs associated with virion architecture, we show dose-response curves for four 
virion architectures.  The x-axis represents the log10-transformed virus-particle dose, and the 
y-axis is the response (number of infected hosts). The type I (black, solid line) has the highest 
infectivity, followed by the type V (blue, dotted line). At low doses the type IV outperforms the 
type II, because the type IV contains some virus particles with a complete genome and the 
type II does not. By contrast, at high doses the type II outperforms the type IV, as it produces 
more virus particles and the probability of multiple virus hits has increased.

Predictions for RVFV highlight the relevance of virion 
architecture 

Our theoretical models predicted large differences in the infection cost for different non-
selectively packaging segmented viruses. Although we think these virion architectures are 
plausible prima facie, they are hypothetical. To consider our model predictions for existing 
virion architectures of non-selectively packaging segmented viruses, we considered previous 
RVFV results. For virus particles originating from mammalian and insect cell lines, the 
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distribution of genome segment types over virus particles is known, although the number of 
copies of each segment has not been quantified (Bermúdez-Méndez et al. 2022). We could 
therefore use a simulation-based prediction for type IV - VI based on Model B (see 
Supplementary Text 1 for details) to determine infectivity: all virion architecture models have 
the same frequency of virus particle types, whereas the total number of virus particles 
produced depends on the virion architecture. For the type VI architecture, we infer the 
distribution of the total number of genome segments over virus particles using different 
approaches (Supplementary Text 1 and Figure S1). 
 
Infectivity for RVFV was estimated for the virion architecture types IV, V and VI (Table 3), and 
we observe that the differences between virion architectures is more pronounced than for our 
theoretical examples (Table 2).    For virus populations derived from mammalian cells, the 
frequency of virus particles with a complete genome is very low, and hence the cost to 
infectivity is greater under all virion architectures compared with virus particles derived from 
insect cells Overall, the cost to infectivity for the types IV and VI is consistently higher than 
that of a bi-segmented type II virus, and in the case of a type IV virus it is higher than that of 
a tri-segmented type II virus. In the previous study of Bermudez-Mendez et al (2022), the 
effect of non-selective packaging on virus infection was considered. However, the possibility 
that different virion architectures were compatible with the data was not considered, and the 
type V virion architecture was simply assumed when modeling infection (Bermúdez-Méndez 
et al. 2022). Our results here (Table 3) shows that the type V virion architecture is most 
consistent of that for RVFV and reinforces the relevance of virion architectures for virus 
infectivity. By combining cryo-EM, RNA sequencing and strand-specific qRT-PCR of the tri-
segmented TSW, Yvon et al. (2023) show that virus particles contain a mix of genomic viral 
RNA co-packaged with complementary strands, and that within-host TSW  accumulation and 
virus particle content produce comparable unequal genome formula ratios (Yvon et al. 2023). 
Demonstrating that at least for TSW and possibly for other viruses of the Bunyavirales, such 
as RVFV,  that the virus particle content may not only be heterogenous for genomic virus 
segments but also for complementary strands.  further highlighting the need for complete 
information. Highlighting the relevance of having complete, quantitative information on the 
distribution of genome segments over virus particles, a task which will be technically 
challenging.   
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Table 3: Infectivity cost predictions for RVFV. We give an overview of the infectivity cost 
of different segmented, non-selectively packaging virion architectures using the Model B 
simulation-based approach, based on a limited characterization of RVFV virus particles.  Full 
results are given in Table S1. 
 

Category  Type Cost, RVFV Mammalian Cost, RVFV Insectile 

 Variable segment identity  IV 1.975 1.311 

Variable segment number  V 1.028 0.734 

Variable segment identity & number  VI 1.386 1.061 

Competitive fitness of non-selectively packaging viruses  
 
For all multipartite viruses tested, the genome formula (i.e., the relative frequency of genome 
segments) is unbalanced (Sicard et al. 2013; Wu et al. 2017; Yu et al. 2019; Hu et al. 2016). 
Moreover, the genome formula of FBNSV and AMV was shown to be host dependent (Sicard 
et al. 2013; Wu et al. 2017) and values close to the equilibrium value are associated with 
higher accumulation (Sicard et al. 2013; Wu et al. 2017), suggesting that it can play a role in 
virus adaptation as tested in Chapter 4 and 5 of this thesis. For an idealized selectively 
packaging segmented virus (type III), the frequency of genome segments will be fixed during 
transmission: it will be reset to equilibrium in the population of virus particles produced by an 
infected cell. Therefore, even if beneficial genome formula changes occurred within a cell or 
host due to selection, they would not be transmitted. By contrast, the non-selectively 
packaging segmented viruses (types IV, V and VI) can acquire  genome formula changes, if 
the frequency of the different particle types produced in a cell depends on the intra-cellular 
genome formula. We therefore adapted a model of competition between monopartite and 
multipartite viruses, to study competition between a selective packaging virus (type III) and 
two non-selective packagers (types IV and V). We chose to focus on the latter two 
architectures for two reasons: (i) they represent the two different mechanisms by which non-
selective packaging occurs (loss of segment identity control or loss of control over the total 
number of segments during packaging) and, (ii) both these architectures have three classes 
of virus particles containing segments instead of five classes for the type VI architecture, 
resulting in lower model complexity. For the type V architecture, note that we had to establish 
the distribution of segments when the genome formula is unbalanced. Briefly, we let the ratio 
of single-segment to double-segment (i.e., with both segment types present) virus particles be 
2:1 until one of the segments is depleted. This means that virus particles with both segments 
present will be made at the same rate as for a balanced genome formula until the rarer 
segment type is depleted, at which point the virus only produces particles containing single 
segments of the most frequent segment type. 
 
For the competitions between types III vs IV and III vs. V, we found patterns reminiscent of 
the results for monopartite and multipartite viruses (Zwart and Elena 2020). The non-
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selectively packaging viruses could displace the selectively packaging virus when virus 
particle yield was sensitive to the genome formula (i.e., when 𝜎𝜎𝜎𝜎2 <  1), when there was 
considerable variation in the environment in the optimum genome formula (high ѱ values), 
and when MOI was in an intermediate range (Figures 3 and 4). However, the types IV and V 
could also displace the type III when virus particle yield was not sensitive to the genome 
formula (i.e., when 𝜎𝜎𝜎𝜎2  ≥  1), at high MOI values. When 𝜎𝜎𝜎𝜎2  = 10, this outcome occurs 
irrespective of 𝜓𝜓𝜓𝜓 (range of values for μ) for both genome architectures). When 𝜎𝜎𝜎𝜎2  = 1, the type 
V displaces the the type III at low 𝜓𝜓𝜓𝜓 values (Figure 4). Similar outcomes were not seen for 
competitions between monopartite and multipartite viruses, where the monopartite viruses 
always dominated in this parameter space (Zwart and Elena 2020). What could account for 
this unexpected outcome? 
 
Based on previous results (Zwart and Elena 2020), we included coinfection exclusion in the 
model to avoid coinfections, so that the type III could not exploit the genome-formula 
associated benefits of the types IV and V. For low 𝜎𝜎𝜎𝜎2 values and high MOI values, the genome 
formula of the type IV and V viruses can vary without losses in infectivity or virus-particle 
production. Therefore, when genome formula drift (Gutiérrez and Zwart 2018) leads to an 
increase in the frequency of the second genome segment - which encodes for gene products 
facilitating coinfection exclusion - the types  IV and V displace the type III through interference 
competition (Figure 4). To illustrate this effect, consider the genome formula dynamics for a 
number of conditions, in which a systematic upregulation of the second genome segment is 
seen for low 𝜎𝜎𝜎𝜎2 values (Figure 5). This emerging property of the genome formula was noted 
earlier for the simulated competitions between monopartite and multipartite viruses, but it was 
only manifest in small parameter space and had only a marginal effect on the success of the 
multipartite virus (Zwart and Elena 2020).  By contrast, the types  IV and V display this property 
over a large parameter space, presumably because their infectivity cost is lower than for the 
type II viruses. We do not know if segmented viruses exploit changes in the genome formula 
during adaptation in the real world. Clearly genome-formula variation exists for some 
segmented viruses (Bermúdez-Méndez et al. 2022; Moreau et al. 2020), and for IAV - which 
is considered to be a selective packager - segment frequency can be downregulated under 
some conditions (Sun and Brooke 2018; Brooke et al. 2014). Our results highlight the potential 
versatility of the genome formula, as this mechanism is used to adapt to conditions in ways 
we had not anticipated when developing these simulations. 
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Figure 3. Competition between type III and IV virion architectures. Competitions between 
viruses were run over a range of conditions including the magnitude of environmental 
heterogeneity in optimal virus gene expression (𝜓𝜓𝜓𝜓), the cellular multiplicity of infection (MOI), 
and the sensitivity of virus yield to the genome formula (𝜎𝜎𝜎𝜎2). The lower the value of 𝜎𝜎𝜎𝜎2, the 
greater the sensitivity to the genome formula. The heat indicates which virus predominated in 
the competitions.
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Figure 4. Competition between type III and V virion architectures. Competitions between 
viruses were run over a range of conditions including the magnitude of environmental 
heterogeneity in optimal virus gene expression (𝜓𝜓𝜓𝜓), the cellular multiplicity of infection (MOI), 
and the sensitivity of virus yield to the genome formula (𝜎𝜎𝜎𝜎2). The lower the value of 𝜎𝜎𝜎𝜎2, the 
greater the sensitivity to the genome formula. The heat indicates which virus predominated in 
the competitions.
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Figure 5. Genome formula dynamics of the type IV virus. We illustrate the genome formula 
dynamics of a type IV virus during competitions with a type III virus, as we vary the sensitivity 
of virus yield to the genome formula (𝜎𝜎𝜎𝜎2). For all panels, the x-axis is passage number and 
the y-axis is the frequency of genome segment 1 of the type IV virus. The solid blue line is the 
mean of 104 simulations, and the dotted grey lines are 50 individual simulations. The mean is 
only shown for those passages where there is a representative number of competitions (> 
2000) in which neither virus (type III or IV) has fixed. For all simulations, the MOI is 10 and 
there is considerable environmental heterogeneity in optimal virus gene expression (𝜓𝜓𝜓𝜓 = 2). 
In panels A and B, there is high sensitivity of virus yield to the genome formula (low values of 
𝜎𝜎𝜎𝜎2), and the environment dictates the genome formula, resulting in high variation between 
individual simulations. As the sensitivity to the genome formula decreases (increasing values 
of 𝜎𝜎𝜎𝜎2) in Panels C and D, the variation in the genome formula between simulations decreases 
and there is a lower frequency of segment 1, corresponding to an increase in segment 2 which 
codes for a coinfection exclusion function. By increasing the strength of cellular coinfection 
exclusion, the type IV displaces the type III virus.  

Concluding remarks

We have predicted the cost to infectivity for a broad range of existing (types I-III) and putative 
(types IV-VI) virion architectures. For those viruses with segmented genomes and non-
selective packaging (types IV-VI), we find the lowest infectivity cost for the type V architecture. 
This virion architecture has stochastic variation in the total number of segments packaged, 
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whilst each package is unique. Although this virus cannot infect as efficiently as the 
monopartite (type I) and segmented, selective packager (type III), it is more efficient than the 
multipartite (type II) and alternative non-selective packaging types, which introduce stochastic 
variation in the identity of segments packaged (types IV and VI). Similar results were obtained 
for purely hypothetical virus populations, and when informing these models with observations 
of RVFV virus particles. When we simulated competition between selective and non-selective 
packagers, we found that both the types IV and V could outcompete the type III selective 
packaging virus under some conditions. These virion architectures therefore empower the 
adaptive benefits of the genome formula, possibly explaining their existence. Here we also 
found additional benefits for both virion architectures: type IV and V populations wielded 
genome-formula change in unexpected ways, enabled by the low cost to infectivity of this 
architecture. Overall, our results suggest that of the three segmented, non-selectively 
packaging virion architectures we have explored, the type V is the most likely to exist.  
 
We do advise caution when interpreting the results of these models which have a number of 
simplifying assumptions. Firstly, a fixed amount of (ribo)nucleic acids for assembling genome 
segments as the only constraint for virus particle production in these models. Accordingly this 
assumption does not account for the cost for the total quantity of virus particles produced. We 
expect that this best reflects the situation of helical flexible filamentous viruses (and likely also 
the rigid rod-shaped viruses e.g. Tobamovirus) particles, where the number of capsid proteins 
needed to produce the particle is similar to the segment length (Solovyev and Makarov 2016). 
For viruses which have a more constrained morphology and rigid structure such as the 
icosahedral viruses (Hespenheide, Jacobs, and Thorpe 2004), and enveloped viruses this 
assumption might not hold. However, RVFV is an enveloped icosahedral virus that is known 
to produce empty virus particles (Bermúdez-Méndez et al. 2022; Wichgers Schreur and 
Kortekaas 2016), suggesting that also in this system the number of virus particles is not the 
limiting factor but rather the production of RNPs. Secondly, the model assumes that all viral 
doses are equally relevant when making comparisons across virion architecture types. We do 
this for simplicity and recognize that this is a broad generalization that does not account for 
the differences in real-world virus doses typically encountered by hosts. If a particular dose-
response range is more relevant, this could have a substantial effect on model predictions.  In 
Figure 2, there can be trade-offs at different doses between the virion architectures as seen 
for type II and type IV. The host-vector interaction will shape the infective doses in natural 
infections of the Bunyavirales, and provide insights on virion architectures for non-selective 
packaging viruses. Thirdly, there will be stochastic GF variation at the intracellular level from 
differences in virus replication. This will influence how the GF is inherited and reduce the 
proposed GF benefit of regulaitng segment copies for viral gene expression. Future work can 
include the intracellular GF variability to compare competitions between type III virion 
architecture with packaging errors and type IV and V non-selective packagers. We assume 
that infections can be initiated with a single copy of each genome segment (a balanced GF) 
however depending on the host, cell, or tissue environment it may be beneficial to have 
multiple copies of segments to accommodate differences in MOIs and will  affect infection 
kinetics. This would favor an unbalanced GF at the within-host level and potentially at the 
between-host level as well. Lastly we assume that selectively packaging viruses have perfect 
packaging of segment type and number, however there are likely to be differences from 
stochastic process and differences in packaging efficiency.   
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We recognize that the virion architectures that we have postulated for the non-selective 
packaging segmented viruses (types IV, V, and VI) are all hypothetical: to the best of our 
knowledge, the distribution of genome segments over virus particles has not been quantified. 
We have, therefore, chosen three possible architectures to explore their effect on infectivity 
while making some assumptions to constrain the variations considered. For example, we 
assume the mean number of genome segments per virus particle is 1 for types V and VI, to 
ensure a contrast with the type IV architecture. Other values for the mean number of genome 
segments per virus particle can be explored, and indeed we had to consider this possibility for 
RVFV. We eagerly anticipate quantitative data on the distributions of virus segments over virus 
particles for segmented viruses, which allows testing of these predictions. If other non-
selective virion architectures exist in the real world, we predict that these architectures must 
(i) directly or indirectly (e.g., by trade offs) enable other benefits, and/or (ii) occur because of 
constraints of packaging. E.g., non-selective packaging may always affect the identity of 
segments being packaged, in which case this putative virion architecture would not be 
possible. 
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Predicted infectivity of RVFV for type VI virion architecture 
 
𝛽𝛽𝛽𝛽, a correction to the number of virus particles produced based on packaging, can be directly 
determined for the type IV and V architectures. However, the type VI architecture is more 
constrained: both the number of segments and the stochastic nature of their distribution over 
virus particles are specified under the model. We found that this architecture did not fit the 
data when we assumed a binomial distribution of the number of genome segments over virus 
particles with a mean of 1, or when we relaxed this assumption and fitted the mean value of 
genome segments per virus particle (Figure S1a,b). We therefore estimated the fractions of 
virus particles with 1, 2 or 3 types of genome segments that best fit the empirical distribution, 
without assuming any statistical distribution a priori (Figure S1c,d). This approach better 
reconciles the type VI virion architecture and the data, although there are still some 
discrepancies for the virus particles from insect cells. However, having a reasonable 
approximation of the distribution of the number of genome segments over virus particles, we 
can now estimate 𝛽𝛽𝛽𝛽 for all three architectures and determine the cost to infectivity. 
 
 
 
 
 
 



Chapter 6

188

Figure S1. Observed and inferred distributions of RVFV genome segments over virus 
particles for type VI virion architecture. For the tri-segmented RVFV, the distribution of 
segment types over virus particles is known, but the number of segment copies present has 
not been quantified. For the type IV and V virion architectures, the model assumptions 
automatically lead to the distribution of genome segments over virus particles. However, for 
the type VI, model parameter choices will affect how well the model matches the data. We 
must infer the distribution of the total number of genome segments over virus particles (as 
opposed to the distribution of genome segment types over particles) to know the relative 
number of virus particles that can be generated under the type VI virion architecture. Here we 
compare the observed (orange) and predicted (blue) distribution of the number of genome 
segment types over virus particles The comparison is between the observed distribution and 
type VI model predictions of the number of segment types per virus particle is made for 
mammalian (top panels) and insect cells (bottom panels). The two models considered for this 
distribution, are Model comparisons  for panel (a) and (b) are for type IV virion architecture: 
binomial distribution of the total number of genome segments per virus particle (left panels) 
and  for panel (c ) and (d) type VI virion architecture: an unconstrained distribution (see 
Methods section) derived from fitting a model empirical data (right panels). For the Binomial 
model, there are clearly discrepancies between the model and both datasets, whereas the 
unconstrained distribution provides a better fit. For the type VI virion architecture  
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Supplementary S2 
 
The type III virion architecture describes segmented viruses which co-package their genome 
segments in virus particles. The process of segment packaging can be a highly orchestrated 
process ensuring that a single copy of each segment is included within the virus particle (Chou 
et al. 2012). This is reliant on high fidelity packaging, with no error, however experimental 
evidence has shown that there can be uneven packaging of genome segments due to 
difference in packaging fidelity (Brooke et al. 2013).  The consequence of differences in 
packaging fidelity are virus particles which contain incomplete sets of genome segments and 
thereby introducing differences in the infectivity of virus particles based on their genome 
segment composition (Diefenbacher, Sun, and Brooke 2018; Farrell et al. 2023). Not only do 
differences in error rates introduce biases in virus particle’s segment composition, these 
differences may also be advantageous for virus infection in different tissues and to escape 
host immune responses (Farrell et al. 2023; Vahey and Fletcher 2020). We therefore devised 
simulation-based approach to determine the cost to infectivity for the type III virion architecture 
when there is high, medium and low packaging fidelity.  
 

Simulation-based predictions for infectivity cost: type III with 
packaging error 
 
To determine the cost to infectivity of a type III virion architecture, we use a modified version 
of Model B (see: Methods) by providing the corresponding frequency of virus particle types 
(i.e., the set {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, [. . . ]}) for a bi-segmented and and tri-segmented virus. For the type III 
architecture with packaging errors, the distribution of virus particle types needs to be predicted 
from the error rate. We assume (i) the error rate for packaging is 𝜏𝜏𝜏𝜏 (per segment packaged 
into a virus particle), and (ii) that the error rate for each segment packaging event is 
independent. For a bi-segmented virus, the expected frequencies of each virus particle type 
are given in Figure S1. There are four possible combinations of virus particle types {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4} 
describing the frequency of correct packaging of segments 1 and 2, and the frequency when 
either one is packaged with error. Note that if both segments 1 and 2 are packaged incorrectly, 
they are both of the wrong type and therefore a complete genome is present. Hence, all of the 
double-error fraction must be added to the correctly package fraction to determine the fraction 
of virus particle with complete genomes, (1 − 𝑒𝑒𝑒𝑒−𝜏𝜏𝜏𝜏 )2𝑒𝑒𝑒𝑒−2𝜏𝜏𝜏𝜏. For a tri-segmented virus, having 
multiple packaging errors does not automatically lead to the presence of all genome segments, 
and only a subset of the multiple-error fractions restore the full genome. By considering all the 
possibilities, we can again work out the expected frequencies of all virus particle types (Figure 
S2). We determine predictions for low and high error rates. When 𝜏𝜏𝜏𝜏 = 0.025, for a bi-segmented 
virus {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟4} = {0, 0.024, 0.951} and for a tri-segmented virus {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟5, 𝑟𝑟𝑟𝑟8} = {0, 1.49 ×
10−4 , 0.024, 0.928}. When 𝜏𝜏𝜏𝜏 = 0.25, for a bi-segmented virus {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟4}  = {0,0.172,0.655} and 
for a tri-segmented virus {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟5, 𝑟𝑟𝑟𝑟8} ={0, 0.010,0.156,0.504}. 
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Figure S2. Consequences of packaging errors for the distribution of genome segments 
over virus particles for a bi-segmented virus. 𝜏𝜏𝜏𝜏 is the rate at which an incorrect segment is 
packaged, and the subscript indicates the rate for a specific segment for clarity (but 𝜏𝜏𝜏𝜏1 = 𝜏𝜏𝜏𝜏2 =
𝜏𝜏𝜏𝜏). In the green regions, both segment types are packaged into a virus particle. Note that for 
the bi-segmented virus, if both segments are packaged incorrectly the complete genome is 
present.
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Figure S3. Consequences of packaging errors for the distribution of genome segments 
over virus particles for a tri-segmented virus. 𝜏𝜏𝜏𝜏 is the rate at which an incorrect segment 
is packaged, and the subscript indicates the rate for a specific segment for clarity (but 𝜏𝜏𝜏𝜏1 =
𝜏𝜏𝜏𝜏2 = 𝜏𝜏𝜏𝜏3 =  𝜏𝜏𝜏𝜏). The green color indicates the region in which all three segment types are 
packaged into a virus particle, where the blue and magenta regions indicate regions in which 
all segments are sometimes packaged into virus particles. In all three blue regions, two 
packaging errors are made and if the right combination of errors is made, all segments will still 
be present. This occurs in 1

4
  of instances in each of these three regions, as illustrated in the 

box with the blue outline in the top right for one scenario (i.e., the case in which the correct 
segment is packaged only for the first segment.) In the magenta region, three packaging errors 
occur, and in 2

8
 = 1

4
  of instances a complete genome is present, as illustrated in the box with 

the magenta outline in the bottom right. Note that in the figure we focus on which fractions with 
errors contain a complete genome, but even when they do not lead to the completion of the 
genome, each fraction with errors must be added to the virus type it corresponds to.
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Exploring the costs and benefits of multipartition 
 

Viruses have genomes that can be divided into one or several molecules called segments, 
and differ in the way these segments are packaged into particles. Monopartite viruses package 
their single nucleic acid molecule into a single particle, whilst in segmented viruses, segments 
are co-packaged into a single virus particle and transmitted together, ensuring that infections 
can be initiated with a single virus particle. Multipartite viruses have a genome divided into 
several segments, each of them packaged independently into virus particles. All segments are 
required for infection, thus presenting a conundrum: how can successful infections be initiated 
when there is a physical disconnect at each between-host transmission event? Monopartite 
viruses have single-hit infection kinetics, whereby a single infectious particle is required to 
initiate infection (Druett 1952; Bald 1937). Unlike monopartite viruses, multipartite viruses 
require complementation between segments to initiate infection and display multi-hit infection 
kinetics (Fulton 1962; Lauffer and Price 1945). This can be observed in the dose-response 
relationship with steeper gradients for segmented and multipartite viruses and a shift in the 
position of the curve (Fulton 1962; Lauffer and Price 1945). This poses a cost to transmission, 
as many segments and a higher dose are required to initiate infection (Iranzo and Manrubia 
2012). It is a well-described dilemma for multipartite virus infection, and the cost of 
multipartition has not been determined empirically (Gutiérrez and Zwart 2018).  We do not 
have an accurate estimate for the potential cost of transmission for virus genomes which differ 
in the number of genome segments and their genome organization. Simultaneously, we are 
aware that segmented viruses may have incomplete packaging of viral genome segments 
leading to virus populations in which the complete genome set is not co-transmitted (Nakatsu 
et al. 2018, 2016; Diefenbacher, Sun, and Brooke 2018). This would have an increase in the 
cost of transmission when compared to segmented viruses, which co-package a complete 
genome set.  
 
Possible benefits of a multipartite virus genome organization have been an open question 
since their discovery, and proposed benefits to the segmentation of the genome include: (1) 
faster replication of shorter segments when polymerase is not a limiting factor (Nee 1987; 
Sicard et al. 2016), (2) increased genetic diversity by recombination and segment 
reassortment (Sicard et al. 2016), (3) increased virus particle stability (Ojosnegros et al. 2011) 
and (4) adaptive gene expression change via segment frequency (Sicard et al. 2013). The 
benefits of multipartition have recently been reviewed (Sicard et al. 2016; Michalakis and Blanc 
2020; Lucía-Sanz and Manrubia 2017) and discussed in Chapter 1 of this thesis. Benefits (1) 
and (2) are shared with segmented viruses (Sicard et al. 2016), whilst the proposed benefits 
of viral gene expression regulation by altering genome segment copies, “the genome formula” 
(GF), has been described for the octapartite faba bean necrotic stunt virus (FBNSV) (Sicard 
et al. 2013).  
 
In the following sections, I provide an overview of the experimental results from this thesis and 
detail how these findings contribute to understanding: (1) the cost to transmission in 
multipartite and segmented viruses, (2) the role of GF drift in deleterious GF change, and (3) 
how GF change in CMV does not contribute to viral adaptation. I end this final thesis chapter 
with a discussion on what factors might contribute to the existence of multipartite viruses.   
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Quantifying the cost of infectivity in multipartite and 
segmented viruses 
 

In chapter 2 of this thesis, I quantify the cost of transmission for multipartite viruses by 
combining the change in the gradient of the dose-response relationship as well as the shift in 
the position of the curve. This was done by re-analyzing experimental data for infections of 
the tripartite alfalfa mosaic virus (AMV) in different Nicotiana tabacum hosts which 
constitutively express one or two AMV genes (Sánchez-Navarro, Zwart, and Elena 2013; 
Taschner et al. 1991). By infecting plants with AMV inoculations in which one or two segments 
are provided in excess, it is possible to quantify how changes in segment number alter the 
dose-response relationship. Our results, re-analyzing the dose-response relationship of AMV, 
show that the cost of transmission for multipartition is higher than predicted, because we 
considered both the gradient and position of the dose response curve.  
 
Segmented viruses may be divided into two groups based on the packaging strategy: selective 
and non-selective packagers (Figure 1 in Chapter 6). Selective packagers (e.g., Type III 
according to the classification used in Chapter 6), such as the influenza A virus (IAV), are 
thought to package a full complement of genome segments into each virus particle (Chou et 
al. 2012; Nakatsu et al. 2018). The choreographed packaging of segments is mediated by 
packaging signals and RNA-RNA interactions  (Li et al. 2021; Hutchinson et al. 2010; Goto et 
al. 2013). The efficiency of segmented virus packaging may vary and a considerable portion 
of the virus population may contain incomplete sets of the viral genome (Nakatsu et al. 2016; 
Diefenbacher, Sun, and Brooke 2018; Brooke et al. 2013). Non-selectively packaging 
segmented viruses differ in the manner in which segments are distributed over virus particles; 
the identity, the number of genome segments or both may vary across virus particles. This 
results in three hypothetical classifications that we considered: Type IV: segmented non-
selective packager, a fixed number of genome segments of variable identity; Type V: 
segmented non-selective packager, variable number of genome segments and fixed segment 
identity, or both (Type VI: segmented non-selective packager, variable number of genome 
segments and variable segment identity). For the non-selective packaging viruses, a well-
studied example is the Rift Valley fever virus (RVFV), which has been shown to produce a 
large fraction of virus particles that are devoid of any segments or contain an incomplete 
genome set (Bermúdez-Méndez et al. 2022; Wichgers Schreur and Kortekaas 2016). In 
chapter 6, I develop a modelling and simulation approach to quantify the cost to infectivity of 
these putative segmented virus genome organizations, which differ in their segment co-
packaging strategies, and link them to what is known about the empirical distribution of 
genome segments over virus particles in RVFV.  
 
Under the model we propose, selectively packaging segmented viruses (i.e., Type III) do not 
have a higher cost to transmission than monopartite viruses (Type I). When selective 
packagers have frequent errors in packaging fidelity, the cost to transmission approaches that 
of the non-selectively packaging virus (E.g., Type V). Furthermore, we show that some non-
selectively packaging viruses (I.e., Type IV and VI) have a cost to transmission which is nearly 
equivalent to that of the multipartite viruses, and that at high doses the multipartite virus has 
a lower cost to infectivity than the non-selective packaging virus (I.e., Type IV). Combining the 
results from chapter 2 and chapter 6, we show that the cost to infectivity for multipartite viruses 
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is high but that in some postulated cases multipartite viruses may have a lower cost than 
segmented viruses. This suggests that the divisions between genome organizations are not 
as clear as initially described, and I propose that there may be a gradient in terms of the cost 
of transmission for the different genome organizations ranging from the least costly, 
monopartite viruses to the most costly, multipartite viruses (Figure 1).  
 
The proposed gradient may be derived from differences in packaging strategy and the 
resulting distribution of genome segments over virus particles. Firstly, type III selective 
packagers have a cost of transmission which is equivalent to that of a monopartite virus as all 
segments are packaged and transmitted together. There may be differences in the fidelity of 
packaging, which may result in a decline in the virus particle content and an increase in the 
cost of transmission (pink arrow in Figure 1). For Type III segmented viruses there may be an 
increase in the cost of transmission as a function of the packaging error rate (represented as 
the increase in the light-blue shaded area occupied by Type III viruses in Figure 1). 
Furthermore, as the error rate increases packaging will eventually resemble that of the non-
selective packagers (Type IV and V), whereby control is lost over the identity or number of 
segments packaged. Similarly, mechanisms which promote the packaging of near-complete 
virus particles, such as adhesions of particles to one another (Andreu-Moreno and Sanjuán 
2018), may decrease the cost of transmission for multicomponent viruses. It becomes clear 
that, whilst the categories of genome organization are useful for understanding different 
packaging strategies for segmented and multipartite viruses, there may be instances where 
these strict boundaries may become less clear.  .   
 
Both of the approaches in chapter 2 and chapter 6 do not take into account ecological factors 
such as heterogeneity in host susceptibility, variation in exposure to viruses under real-world 
conditions, and virus transmission or other potential mechanisms which might mitigate the 
cost of transmission. Thus, whilst providing a useful framework for quantifying the cost of 
transmission in experimental settings, it does not provide an estimate of the cost to 
transmission in natural infections.  I will now describe how some of the above factors may 
change the cost of transmission. 
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Figure 1. A conceptual relationship between virus genome packaging strategy and the 
cost of transmission. Monopartite viruses are indicated in purple: Type I and Type IA 
(monopartite viruses which package multiple copies of the virus genome in an occlusion body), 
segmented viruses (Type III selective packer in light blue and Non-selective packagers: Type 
IV – VI in orange) and in green the multipartite viruses (Type II). The light-blue arrow 
represents the Type III selective packager with errors. As the extent of error-prone packaging 
increases, the cost of transmission shifts towards the non-selective packaging segmented 
viruses. Defective interfering particles (DI) are represented in a dark brown circle, which may 
be associated with monopartite, segmented and multipartite viruses. The size of the ellipse is 
an approximation of the number of virus genomes which may employ this packaging strategy. 
Created with BioRender.com. 

The majority of multipartite viruses are found infecting plants (Michalakis and Blanc 2020; 
Lucía-Sanz and Manrubia 2017) and only a single insect virus (Bombyx mori bidensovirus) 
has been confirmed to be multipartite (Hu et al. 2013). Why would plants be a more suitable 
environment for multipartite viruses? Multipartite virus infection has relied on the tenet of 
complementation, that all virus genome segments be present within the same cell for an 
infection to be initiated. However, plant cells may present a unique environment for multipartite 
virus infection, as cells are connected to one another via plasmodesmata; junctions which 
physically connect cells one to one another (Faulkner 2018). Plant cells are continuously 
connected by the cytoplasm and microtubules, a feature known as the symplastic pathway
(Faulkner 2018). Plasmodesmata are a pathway for the transport of water, photoassimilates, 
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essential nutrients and other macromolecules (Miras et al. 2022). This pathway is exploited 
by plant viruses to facilitate local cell-cell and long-distance movement  (Miras et al. 2022; 
Heinlein 2015; Su et al. 2010). As part of within-host movement during infection, virus 
segments, virus ribonucleoprotein complexes and gene products may be transported via the 
symplastic pathway (Navarro, Sanchez-Navarro, and Pallas 2019; Lazarowitz and Beachy 
1999; Kozieł, Julian Bujarski, and Otulak Kozieł 2023). This would potentially reduce the cost 
of transmission at the within-host level. Recently, it was shown that the octapartite FBNSV 
gene products may be found in cells where the respective genome segment is absent and that 
virus replication can occur across cells by complementation of cells containing at least one 
genome segment (Sicard et al. 2019). This represents the first observation that multipartite 
viruses do not require the full genome set within a cell for infection and replication. We 
developed a model to explore how gene product sharing may reduce the cost of transmission 
in chapter 2, finding that gene product sharing (ρ) is beneficial at moderate levels of sharing 
(ρ < 0.5), when MOI is low ( 3 – 100.5) and when virus replication is not sensitive to the GF (σ2 

=10). In contrast, earlier theoretical work suggests that multipartite viruses can outcompete 
monopartite viruses only when replication is sensitive to the GF (Zwart and Elena 2020).  
Combining these two results , therefore, suggests the two explanations (rapid adaptation in 
gene expression by changes in the GF and gene product sharing) are mutually exclusive. To 
date the GF has been measured at the whole plant level in systemic infection, it may be 
reasonable to assume that gene product sharing may be especially beneficial at the early 
infection stage when a small number of cells are infected and contain at least one virus 
genome segment. It remains to be seen to what extent gene product sharing may minimize 
the cost to within-host spread and how general gene product sharing is in other multipartite 
virus species.   
 
The cost of transmission for multipartite viruses may be reduced by factors which influence 
vector transmission. Most plant viruses have arthropod vectors (Lucía-Sanz and Manrubia 
2017). The total number of segments which are acquired during feeding will affect the rate of 
transmission, lowering the probability of  missing segments (Betancourt et al. 2008; Ali et al. 
2006). There will also be differences in the segment identities, as not all segments may be 
equally acquired during feeding. Combined, the total number of segments and the segment 
identity may affect the virus's genetic diversity in a starting population. For FBNSV the number 
of genome segments transmitted during aphid transmission differs per segment type and 
ranges between 3  - 7 copies (Gallet et al. 2018). Furthermore, the duration of aphid feeding 
and the number of aphids may influence how many segments are transmitted to a new host 
(Gallet et al. 2018). During longer acquisition times a larger pool of segments may be sampled, 
both in the total number and in segment type, thereby increasing the likelihood that a complete 
set of genome segments is transmitted. The number of aphids during acquisition and 
transmission increases the number of virus particles which may be transmitted, as several 
aphids may feed and re-inoculate the same plants. Combined, these factors will likely 
influence the exact conditions under which a multipartite virus is transmitted and therefore 
determine the magnitude of the fitness cost to infectivity. If virus doses are high, the between-
host cost of transmission for multipartition may be limited, as suggested by other work 
(Valdano et al. 2019). However, real-world estimates of viral doses are unknown and this 
number is likely to be highly variable.  
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GF variation may be deleterious for CMV-i17F 
 

A seminal study with FBNSV infections in Vicia faba and Medicago truncatula showed that 
genome segments accumulated to a host-specific ratio, the GF (Sicard et al. 2013). 
Furthermore, there was frequency-dependent selection towards an equilibrium the “setpoint 
genome formula”, which may be associated with higher virus titre (Sicard et al. 2013). The 
potential adaptive benefit of the GF linked to increased virus titre has also been described for 
the tripartite alfalfa mosaic virus (AMV) (Wu et al. 2017). These observations provide the first 
tentative link between the GF and a viral fitness component, virus titre. However, the exact 
nature of the link between the GF and virus titre remains unclear.  
 
In this thesis the GF was measured in four different host species; C. quinoa (chapter 4), A. 
thaliana, N. benthamiana and N. tabacum (chapter 5). Although variation in the GF has only 
been reported for FBNSV (Sicard et al. 2013) and AMV (Wu et al. 2017), measurements of 
the GF variability are also limited to a small set of host plant species. The extent of GF variation 
is poorly understood and limits of the viable GF space (i.e. the full set of possible GF values 
for a virus that supports some level of virus replication) are unknown. Moreover, how the viable 
GF space varies within a single virus isolate and across different host species are also not 
known. Can we start to map the GF landscape for CMV, determining the GF space that can 
support infection and the relationship between the GF and virus titre? In other words, is it 
possible to obtain empirical GF fitness landscapes?  
 
In chapter 3, I developed a method for quantifying GF variation; the genome formula distance 
(D). The Euclidean distance between two GF values. For this metric I make predictions of GF 
variation for two scenarios: (i) stochastic GF variation for different segments and (ii) a 
maximum GF drift,  when there is a single population bottleneck. I use D to estimate GF 
variation under several different conditions; when comparing GF values from different 
experimental groups, and comparing GF variation between the inoculum and the  infected 
tissues. I show by re-analyzing data from AMV (Wu et al. 2017), that the inoculum GF 
influences that found in infected leaves. To my knowledge, this is the first report that the GF 
may be transmitted from one host to another. and indicates that the GF may be heritable.  
 
In chapter 4 of this thesis, I investigate the relationship between the GF and virus titre in local 
lesion infections in Chenopodium quinoa.  C. quinoa plants are infected with an isolate of the 
tripartite single-stranded RNA virus, cucumber mosaic virus-i17F (CMV-i17f).  Plants were 
inoculated with CMV derived from infected Nicotiana tabacum and N. benthamiana in three 
separate experiments. I measured the GF in individual local lesions from each experiment by 
RT-qPCR and estimated virus titre from PCR cycle quantification (Cq) values, which are 
inversely related to virus titre. Using the GF variation metric (D), developed in chapter 3 of 
this thesis,  I was able to show that there is a high degree of  GF variation in C. quinoa local 
lesions across experiments. As the three experiments differ in the inoculum source it is not 
possible to compare the experiments directly to one another, however I analyzed the distance 
between the inoculum and local-lesion GFs of inocula relative to that of the local lesions and 
found that there is a strong effect of inoculum on the GFs of local lesions. This is similar to 
results from the re-analysis of AMV (Wu et al. 2017) in chapter 3. Together these results show 
that the GF may be transmissible for AMV and CMV. Furthermore, it is in contrast to results 
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from FBNSV, where inoculum GF and inoculation procedure did not influence the observed 
GF in V. faba and M. truncatula plant species (Sicard et al. 2013).  In the C. quinoa 
experiments mechanical transmission is used for inoculating CMV-i17F and this may play a 
role in the transmissibility of the GF.   
 
In nature CMV is transmitted horizontally by aphids, most commonly by Myzus persicae and 
Aphis gossypii. This virus may also be vertically transmitted via infected seeds of host species 
(Jacquemond 2012). The experiments in chapter 4 used mechanical inoculation, a procedure 
which uses a high dose of the virus, often in excess to ensure successful infection. Thus, we 
can expect that that the bottleneck size is broad. However, analysis of GF variation in 
mechanical inoculation experiments 1 and 3 showed that for both experiments D was similar 
to predicted values corresponding to the maximum GF variability caused by a single bottleneck 
event. This result indicates that even at high virus doses, there is a narrow bottleneck for 
infections. This is likely due to the individual bottleneck size per local lesion, which is narrow. 
In nature CMV infections via vector transmission, have a narrow population bottleneck, as 
measured by considering genetic drift for a single genome segment (Ali et al. 2006; Betancourt 
et al. 2008). For CMV, a vector transmission bottleneck has been estimated to be on average 
~ 3 individuals for two vectors, A. gossypii and M. persicae (Ali et al. 2006), and in another 
study was estimated as 1 – 2 individuals after transmission by the aphid A. gossypii 
(Betancourt et al. 2008). These bottleneck estimates appear to be in agreement with what is 
measured in Chapter 4, suggesting that although mechanical inoculation is at a high dose, 
experimental measurements of bottleneck size are comparable to those seen for vector 
transmission. Seed transmission ensures that CMV infection persists in an environment, as 
the infected seed bank may be maintained in a landscape patch which has a higher density 
of suitable host plants.  In seed transmission of CMV, infection occurs primarily in the seed 
embryo and seed coat (Ali and Kobayashi 2010). This provides an early start for infection, as 
a small virus population is maintained and can develop over a longer time period during the 
course of infection (weeks or months) (Cobos et al. 2019). For GF transmission via seed, I 
speculate that there is likely a GF which is specific for the initial plant development stages and 
the potential for maintenance of an equilibrium GF. (Vitti et al. 2022) show that seed 
transmission of CMV in N. tabacum is most likely for the first generation of offspring. In the 
case of the GF, this would, therefore, represent that it is unlikely to have intergenerational 
transmission of the GF over longer periods of time.  In both vector and seed transmission the 
bottleneck size may be similar or larger to that in mechanical transmission.  
 
Furthermore, in chapter 4 I was able to show that in experiment 1, which used an inoculum 
with high levels of CMV RNA1, there is bimodal GF variation. The existence of GF clusters is 
statistically supported in experiment 1, where the majority cluster (cluster 1) is associated with  
high virus titre compared to the minority cluster (cluster 2) which has a low virus titre.  The low 
titre GF space identified in experiments 1 has not been observed for other multipartite viruses. 
In AMV and FBNSV the GF stabilizes around an equilibrium level (Wu et al. 2017; Sicard et 
al. 2013), which may be linked to increased virus titre. I also show that the low titre local lesions 
seen in experiment 1 are associated with a GF which is closer to that of the inoculum, 
indicating that the low titre GF space can be accessed when it is transferred from the inoculum. 
The bimodal GFs identified in chapter 4 were not observed for CMV-i17F infection in C. quinoa 
(Boezen, Johnson, et al. 2023) (Figure 2). These observations are based on whole leaves and 
not local lesions, thus representing the mean GF over the leaf from several lesions. The GF 
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identified in Boezen et. al (2023) is more balanced and is comparable to the dominant GF in 
chapter 4 experiment 1, which is associated with higher virus titre.  
 
Local lesions are the consequence of the host hypersensitive response (HR), which activates 
programmed cell death at sites of infection to limit the spread of the virus. This spatial 
separation, combined with observation of high GF variation in experiments 1 and 3 
approaching prediction for maximum GF drift, suggests that the variation is a consequence of 
a single bottleneck event.  By combining the empirical GFs from experiments 1 – 3 and Boezen 
et al. (2023), it is possible to identify regions where CMV GFs are likely to occur and given the 
data for virus accumulation, begin to map the empirical viable GF space for CMV in C. quinoa 
analogous to traditional genetic fitness landscapes. Firstly, we observe that a broad GF space 
can be occupied for CMV-i17f local lesion infections (Figure 2). Secondly, most GFs are not 
located in a region with higher RNA2 levels (> 0.5), whilst RNA1 levels are rarely found below 
0.2 and RNA3 levels don’t exceed a frequency of 0.9. The majority of GF measures occur 
within a balanced central region which is the identified cluster 1 in experiment 1.  The second 
identified region is that of cluster 2 in experiment 1, between 0.8 – 1.00 RNA1: 0 – 0.5 RNA2 
and 0 -0.2 RNA3. Whilst the separation for these clusters is supported in experiment1, it is not 
supported in experiment 3. Data on virus accumulation (Figure 3 here and Chapter 4 of this 
thesis), show that these clusters may be associated with differences in virus titre.  
 

 

Figure 2. GF variation of CMV-i17F in C. quinoa local lesion and whole leaf infections. 
Local lesion infections of CMV-i17f at 10 days post infection (dpi) from three experiments:  
Chapter 3, this thesis) and whole leaves of C. quinoa (Boezen, Johnson, et al. 2023) Local 
lesion infections from Chapter 3 of this thesis, experiment 1 (LL_Cq_Exp1: n = 52, red 
triangles), experiment 2 (LL_Cq_Exp2: n = 4, brown dots) and experiment 3 (LL_Cq_Exp3: n 
= 12, blue squares).  CMV-i17F infections from whole leaves of C. quinoa (Boezen, Johnson, 
et al. 2023) (Methods Comparison: n = 4, 8 dpi, magenta triangles).  
 



Chapter 7

206
 

 

The empirical fitness landscape of C. quinoa was investigated by using the GF distance metric 
(D), following the approach developed in chapter 3 of this thesis and reported earlier by (Wu 
et al. 2017). First, for C. quinoa experiments 1 – 3 (chapter 4 of this thesis), data was 
combined, and the mean GF was calculated. Thereafter, the distance to this mean GF (D) was 
calculated for each local lesion individually. The strength of the relationship between virus titre 
and GF was statistically tested by performing a Kendall rank correlation (Kendall 1938; Abdi 
2007) with ties using the cor.test function in R 4.3.1 (R Foundation for Statistical Computing 
2023).  For the combined C. quinoa data, there is a weak, but significant positive relationship 
between  D and the Cq value obtained by RT-qPCR, which is inversely related to virus titre (Z 
= 2.473, p = 0.013, τ = 0.206). Simplified, the greater D for individual local lesions, the lower 
the virus titre. We know from chapter 4 of this thesis, that the GF and virus titres in experiment 
1 have a bimodal distribution and cluster into two groups. We can analyze the individual 
clusters to determine if GFs further from the centroid have lower virus titre. Combining the 
data from all three experiments, we contrast two groups: (1)  the cluster 1 samples, as 
determined statistically for experiment 1 and including all samples from experiments 2 and 3, 
which fall in the same GF space, and (2) the cluster 2 samples from experiment 1 (Chapter 4, 
this thesis). This was done for the majority cluster 1, finding that there is no significant 
relationship between D and virus titre (Kendall rank correlation: Z = 1.743, p = 0.081, τ = 
0.179). This indicates that cluster 1 has a broad GF space and a relatively stable high titre 
(Figure 3). When analyzing the local lesions grouped into cluster 2, we also find no statistically 
significant relationship between virus titre and D (Z = -0.226, p = 0.821, τ = -0.034), indicating 
that within the smaller cluster 2, the virus titre does not decrease with increasing GF distance. 
Combined, these results suggest that the GF space may be described as a mesa-like 
landscape: a broad central region where the GF can vary without appreciable consequences 
for fitness. There is an neighbouring  narrow valley where no GF values have been measured, 
followed by a smaller mesa where considerable GF variation is allowed, but all GF values are 
associated with lower fitness. The fitness for all GF spaces other than the two mesas, including 
the narrow valley that separates them, is so low that we do not observe any populations there. 
I speculate that the lack of observations in this space may be due to selection constraining the 
GF to the two mesas. These results and the patterns inferred may be used as a starting point 
for future experiments to characterize the GF fitness landscape. Having observed the broad 
GF variability in C. quinoa local lesion infections of CMV, it is unknown whether a similar GF 
space may be found in other host species and whether there may be links to virus titres. 
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Figure 3. Empirical GF fitness landscape of CMV-i17f in systemic (14 days post 
infection) of A. thaliana, N. benthamiana and N. tabacum and local infections in C. 
quinoa. Virus titre is used as a proxy for viral fitness during the course of infection. Tire is 
defined as the cycle quantification (Cq) value from qPCR of CMV-i17f local lesion and systemic 
infections. Cq is inversely related to virus titre, such that lower values indicate higher virus titre 
whilst higher Cq values indicate lower virus titre. A. thaliana (n = 12, Chapter 5 of this thesis), 
local lesion infections in C. quinoa (10 dpi) (experiment 1: n = 52, experiment 2: n = 4 and 
experiment 3: n = 12, Chapter 4 of this thesis). CMV-i17F infections from whole leaves of C. 
quinoa (Boezen, Johnson, et al. 2023) (n = 4, 8 dpi). N. benthamiana (n = 12, from Chapter 5 
of this thesis and n = 4 (Boezen, Johnson, et al. 2023). N. tabacum (n= 12, Chapter 5 of this 
thesis, n= 4 (Boezen, Johnson, et al. 2023), n = 9 from (Boezen, Vermeulen, et al. 2023) and 
n=14 from Johnson, Grum-Grzhimaylo et al. Unpublished data). 
 
  
In chapter 5 of this thesis, I quantify the GF in three host species; Arabidopsis thaliana, 
Nicotiana benthamiana and Nicotiana tabacum; and the dynamics of GF change using an 
experimental evolution approach. I measure the GF in ancestral and evolved lines and attempt 
to link it to changes in virus titre, a virus fitness component. Results from this experiment are 
unexpected, as we expect to see adaptive GF changes whereby for different host species 
there is a host-specific GF and that it is linked to improved virus fitness (e.g. higher virus titre) 
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(Sicard et al. 2013; Wu et al. 2017). The results show that; (1) a host-specific GF shift is only 
observed for A. thaliana whilst N. tabacum and N. benthamiana have similar GFs to one 
another, (2) there is no clear adaptation of  the GF in each host: that is, the initial host-specific 
GF  in the first passage is unchanged at the final passage within a host species, (3) several 
virus populations go to extinction, and (4) there appears to be a decline in virus titre potentially 
associated with changes in the GF. I will begin by discussing the range of GF values measured 
for CMV-i17F in the three host species; A. thaliana, N. benthamiana and N. tabacum and 
compare and contrast this to observations in C. quinoa.  
 
The CMV-i17F GF in A. thaliana appears to be restricted to an area with 0.3 -0.9 RNA1:0 – 
0.2 RNA2:0.8 – 1.0 RNA3 (Figure 3). The majority of observations  were found within this GF 
region, with a single observation found with RNA3 level at 0.65. Second, the axis of GF 
variation appears to be largely for RNA1. This suggests that in A. thaliana the GF may be 
more constrained compared to that found in C. quinoa. N. benthamiana has a GF space similar 
to that of A. thaliana, however GF variation along RNA1 is more restricted (GF values do not 
exceed a frequency of 0.6 for RNA1). The GF space occupied for N. tabacum is also found 
with variation along RNA1 axis, but exhibits more variation in RNA3 (0.3 – 0.95) and RNA2 (0 
– 0.4).  When comparing the GF space of A. thaliana, N. benthamiana and N. tabacum to that 
of C. quinoa, it is clear that in those host species the GF space appears more constrained. 
These differences may be formed partly by the differences in infection process at play. In C. 
quinoa local lesion infections restrict virus movement due to the antiviral hypersensitive 
response (HR) and cell death process (Lam, Kato, and Lawton 2001). In local lesions a small 
number of cells are infected (~10s to 100s) and the virus replication occurs within the confines 
of the necrosis zone. These infected cells will therefore undergo apoptosis and experience a 
reduction in cellular water, enzymatic degradation of proteins, and DNAse activity (Coll, Epple, 
and Dangl 2011). 
 
During systemic virus infection, there has been virus replication and movement from the 
initially infected cells to other cells and tissues. Therefore, the GF space occupied in systemic 
infection is representative of several rounds of virus replication and potentially the selection of 
a GF that is optimized for a specific tissue type. By comparing these two scenarios, it becomes 
clear that the GF variation in local lesion infections is predicted to be higher due to the 
stochastic nature of the start of an infection and plant cell HR, whilst in systemic infection, GF 
variation may be due to bottlenecks during within-host movement and several rounds of virus 
replication. In FBNSV, diminishing GF variation is observed during the course of infection, as 
the GF converges on a host-specific equilibrium as the virus moves between leaves (Sicard 
et al. 2013).  The results from chapter 5 (systemic infections in N. tabacum, N. benthamiana 
and A. thaliana) do not indicate that there may be convergence to an equilibrium GF occurring; 
however, these measurements are taken at a single time point and would not capture the 
dynamics of GF change within-host.  
 
If the GF space in the three hosts (N. tabacum, N. benthamiana and A. thaliana) is similar to 
what is observed for C. quinoa, there may be regions which are characterized by higher or 
lower virus titre. In chapter 5, several virus populations went extinct and the GF may be 
associated with low virus titre. In A. thaliana and N. benthamiana, several virus populations 
have a lower virus titre; these are also GF values which are at the extreme or along the edge 
of the GF space. This may indicate that the changes in the GF have pushed these populations 
to an area of low accumulation. As described earlier for C. quinoa, the mean GF was 
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calculated for the three systemically infected hosts: A. thaliana, N. benthamiana and N. 
tabacum. The GF distance to the mean (D) was then determined for each host to test the 
hypothesis that populations with a larger GF distance will have a lower virus titre.  In A. 
thaliana, there is a marginally significant positive relationship between D and virus titre 
(Kendall rank correlation: Z = 2.268, p = 0.023, τ = 0.504), suggesting that there is a flat 
landscape for describing the GF fitness landscape. Viral fitness drops with increased distance 
from the mean (i.e. larger values of D), given for a few populations along the edge of the 
landscape. The majority of virus populations have similar virus titre and lower values for D.  
 
There was no significant relationship between D and virus titre for N. benthamiana (Z = 0, p = 
1, τ = 0) and N. tabacum (Z = 0.883, p = 0.377, τ = 0.0988). As with the earlier analogy of a 
fitness landscape, the shape of the GF space in A. thaliana, N. benthamiana and N. tabacum 
may be visualized more as occupying a narrower space. This is in contrast to what is observed 
for C. quinoa where there is a broad GF space with moderate levels of virus titre and a small 
area with low virus titre. The presence of low virus titre GFs within the GF space in N. 
benthamiana and N. tabacum suggests that it may be similar to holey adaptive landscapes 
observed in other systems (Gavrilets 1999). 
 

GF stability in CMV-i17f  
 

Sicard and colleagues (2013) put forward the hypothesis that the GF may allow viral copy 
number variation (CNV), positing that changes in viral genome segment copies have a direct 
effect on viral gene expression (Sicard et al. 2013). Thus, we can expect that changes in the 
GF correspond to changes to viral gene expression. Whilst the GF has been measured in 
other multipartite viruses, the accompanying changes in virus gene expression have not been 
measured (Wu et al. 2017; Sicard et al. 2013; Yu et al. 2019; Boezen, Johnson, et al. 2023).  
 
Viral CNV has extensively been studied in the monopartite vaccinia virus (VACV) (Bayer, 
Brennan, and Geballe 2018). In VACV infection, amplifications of the K3L gene have been 
observed, with concomitant increases in  expression of the cognate protein (Elde et al. 2012). 
CNV dynamics in VACV has been termed the “genomic accordion”, as there is K3L gene array 
amplification, followed by an increase in mutation supply and fixation of a beneficial H47R 
mutation, which increases VACV anti-phosphorylation activity and is followed by the collapse 
of the amplified region to single-copy (Elde et al. 2012). This process bears similarity to the 
innovation-amplification-divergence (IAD) model described in bacterial species (Näsvall et al. 
2012). I hypothesize that the GF may follow genomic accordion and IAD dynamics during 
infection.  The dynamics of GF change in time and over several infection and transmission 
cycles is unknown. Is there an adaptive role associated with changes of the GF? I propose 
that increased genome segment copies lead to increased gene dosage and mutation supply. 
That the short-term GF gene dosage benefit may be later replaced by a beneficial allele after 
the reduction in segment copies and the fixation of the beneficial allele in the viral population 
.   
In chapter 5 I studied GF dynamics of the CMV in the three hosts; N. tabacum, N. 
benthamiana and A. thaliana. I find that virus infectivity is variable across hosts and extinctions 
occur in all hosts. I further examined how changes in virus titre may be linked to extinctions, 
showing that extinct populations had low virus titres just before extinction. I do not observe 
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adaptation of CMV to the host species (no significant changes in virus titre for any population), 
and a systematic host-specific GF shift is only observed for A. thaliana.  
 
In chapter 5 I further investigate what factors may be contributing to virus extinctions and low 
titre. I explored four hypotheses H0: stochastic variation in virus titre between individual plants, 
H1:  a deleterious GF shift in the absence of mutations which affect the GF, H2:  deleterious 
mutations which do not affect the GF and lastly H3: a combination of the last two -  that de 
novo mutations arise in the population via genetic drift which lead to a deleterious GF shift. 
Comparing the initial and final timepoint it is clear that the GFs are different between host 
species but that the GF does not systemically shift within a species, except in N. tabacum. I 
find evidence that in the case of 2 low-titre populations (one in A. thaliana and one in N. 
benthamiana), deleterious GF changes contributed to the extinction of these populations.  
 
NGS analysis of the CMV populations identified 53 de novo mutations, either as single or 
multiple nucleotide polymorphisms. I observed a repeated non-synonymous mutation T673S 
in RNA2, encoding the RNA-dependent RNA polymerase (RdRp), in three extinct populations, 
comprising two populations in A. thaliana and one in N. benthamiana. I observe a higher 
number of low-frequency and intermediate mutations in two of these populations, than found 
for other populations, suggesting that the T673S may be a mutator mutation and may have 
contributed to extinctions. Combining low titre and mutation data in an analysis suggests that 
stochastic events leading to low tire (H0), deleterious GF change (H1) or deleterious mutations 
(H2) contributed to the observed extinctions in different populations.  
 
In chapter 5, I do not observe adaptation of CMV via the GF and hypothesize that the limited 
host–specificity of the GF may be linked to the fact that CMV is a generalist pathogen. CMV 
is known to infect more than 1000 plant species (Roossinck 2001), and selection for host-
specific GFs for such a broad number of species is unlikely. GF variation and host-specificity 
are likely to be influenced by within-host factors whilst remaining a trait under viral genetic 
control. Virus control of the GF may ensure the fine-tuning of virus replication, movement and 
packaging to host processes in a manner which promotes virus adaptation and improves virus 
fitness. For a generalist virus this may be a potential source of conflict, as host-specificity 
promotes viral within-host fitness and may reduce between-host fitness, as there is likely an 
upper limit on the number of host species for which unique host-specific GFs can be 
maintained.  
 
I propose that for a generalist virus, such as CMV, there may be a trade-off between within-
host and between-host GF specialization due to CMV adaptation to multiple hosts. At the 
within-host level I anticipate that selection for the GF will occur rapidly; that the initial infection 
may cause stochastic variation in the GF and after several rounds of virus replication there is 
a shift from the initial GF to an optimal GF, due to stabilizing selection, for a given host. This 
may improve overall within-host fitness; the ability to spread rapidly and infect many different 
tissues and cell types. At this level, virus replication within-host is prioritized and there is 
specialization.  
 
At the between-host scale, the optimal GF may be one associated with higher virus titre and 
a balanced GF. A large number of virus particles and a representation of all segments would 
ensure transmission of all genome segments. The between-host transmission for CMV 
through aphids is non-specific as it occurs via nonpersistent transmission (Jacquemond 2012).  
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Results from Chapter 4 of this thesis suggest that there is a narrow bottleneck for CMV 
transmission of genome segments, in line with other studies that have observed considerable 
genetic drift acting on individual segments (Betancourt et al. 2008; Ali et al. 2006; Gallet et al. 
2018).  
 
The host-specificity of the GF is well described for FBNSV (Sicard et al. 2013), AMV (Wu et 
al. 2017) and BBTV (Yu et al. 2019). The GF has also been reported to change during the 
course of infection towards an equilibrium, the “setpoint GF” that appears to be associated 
with higher accumulation (Sicard et al. 2013). The equilibrium has been demonstrated to be 
linked to higher virus titre in AMV (Wu et al. 2017). Understanding GF dynamics at the within-
host level will elucidate what viral and host processes drive GF changes and provide a more 
comprehensive map of the GF space, and its link to virus titre. In a preliminary study on the 
temporal and tissue development of the GF in N. tabacum, I found that the GF may differ for 
different tissues, an indication that different segment frequencies may be required for virus 
replication in these tissues (Figure 4). This is in keeping with recent work on beet necrotic 
yellow vein virus (BNYVV) that there are tissue-specific GFs and that these GFs differ in the 
virus titre (Dall’Ara et al. 2024). Strikingly, for the early timepoint (7 days post infection) the 
CMV-I17F GF is consistently found in a region of GF space that I have not observed in a 
considerable number of other experiments (e.g. Figure 2 and 3).  
 
 

 
Figure 4. CMV-i17F GF space shifts spatiotemporally in N. tabacum. CMV-i17F infection 
in N. tabacum at 7 days post infection (dpi) in apical leaf tissue (red circles, n = 6) and root 
tissues (blue triangles, n = 8) and at 14dpi in apical leaf (red circles, n = 14) and root tissues 
(blue triangles, n = 14) of (from Johnson, Grum-Grzhimaylo et al. Unpublished data).  
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Why do multipartite viruses exist? 
 

Multipartite viruses are a conundrum, as the cost of transmission is high and the benefits of 
genome segmentation and separate transmission are unclear. A considerable amount of 
research has been dedicated to understanding their emergence and the conditions which 
allow for a multipartite virus genome organization to develop. Several modelling approaches 
have been put forward to explain why multipartite viruses might arise, many of which rely on 
the occurrence of an initial fragmented form of a monopartite virus and the generation of a bi-
segmented virus which requires complementation for replication (Iranzo and Manrubia 2012; 
Lucía-Sanz, Aguirre, and Manrubia 2018; Leeks et al. 2023; Park, Denha, and Higgs 2023). 
In order for a multipartite virus to arise, there would need to be an initial benefit for segmenting 
the genome. (Nee 1987) proposed that shorter genome segments have a faster replication 
than the full-length monopartite equivalent when polymerase activity is not a limiting factor. A 
second benefit is improved virus particle stability due to packaging of a shorter genome 
segment, as demonstrated for foot and mouth disease virus (FMDV) (Ojosnegros et al. 2011). 
Secondary benefits of segmentation include the ability to exchange genome segments by 
reassortment, combining beneficial mutations and removing deleterious mutations and the 
ability to regulate viral gene expression, by altering the ratio of genome segments in a host-
specific manner (Sicard et al. 2013). I will first begin by discussing the different evolutionary 
models developed to explain the emergence of multipartite viruses, followed by the ecological 
factors and conditions which allow them to endure.  
 
(Iranzo and Manrubia 2012) propose in a modelling approach that multipartite viruses are a 
product of the competition between two spontaneous viral genome segments which have 
different segment lengths. Segments are co-dependent and require the presence of the other 
for replication. The evolutionary advantage of genome segmentation is from the slower 
degradation of a shorter genome segment due to the increased stability of the virus particles 
compared to the longer monopartite ancestor (Iranzo and Manrubia 2012). They identify 
several scenarios for either monopartite or bipartite virus existence: (1) shorter segments will 
be at higher frequency when the degradation of a longer monopartite virus occurs more 
rapidly, (2) high MOI favours the bipartite virus, (3) both monopartite and bipartite forms of the 
virus can coexist when there is slower degradation of the monopartite virus and (4) for a highly 
multipartite virus to outcompete the monopartite virus, MOIs of >100 are required for genomes 
which consist of 5 segments or more. (Leeks et al. 2023) propose that multipartite viruses 
arose as a result of the presence of cheater genomes derived from a monopartite ancestor. In 
this scenario, cheater genomes do not produce a shared gene product with the monopartite 
virus but may take advantage of co-infections to use these products from the monopartite 
variant. The cheater genomes are segmented viruses which have deletions compared to the 
monopartite ancestor and can use the shared gene products to increase in frequency. Cheater 
genomes can increase in frequency when: (1) there is co-infection with a monopartite virus, 
as the cheater has faster replication due to shorter genome segments (Nee 1987), (2) 
duplicate cheater co-infection results in the production of a single gene product and (3) if two 
different cheater types co-infect a cell, there is complementation and virus replication. The co-
infection of two different cheaters can occur more easily, facilitating multipartition to evolve.  
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Since we observe a large diversity of multipartite virus genomes for nucleic acid type 
(DNA/RNA) and strandedness (plus, minus or ambi-sense), the presence of phylogenetic 
groups comprised of both monopartite and bipartite viruses (e.g. the genus Begomovirus) and 
that many natural infections occur in the presence of satellite viruses and defective interfering 
particles, it is likely that multipartition arose on several occasions. The two evolutionary models 
presented for the existence of multipartite viruses (Iranzo and Manrubia 2012; Leeks et al. 
2023) show it as a process driven by either the competition between genome segments of 
different lengths or from cheater genomes which parasitize a monopartite virus population. 
We know that here are virus species with genome segments of different lengths (e.g. CMV) 
and the presence of selfish replicators such as satellite viruses and defective interfering 
particles in virus populations (Nawaz-ul-Rehman et al. 2009; Mansourpour et al. 2021), thus 
there are plausible real-world scenarios which may represent processes similar to those 
presented by the models of multipartite virus evolution.  
 
Most multipartite viruses infect plants and have arthropod vectors (Michalakis and Blanc 2020; 
Lucía-Sanz and Manrubia 2017). How may these ecological conditions contribute to their 
continued existence? (Valdano et al. 2019) test the effect of aphid feeding behavior on the 
transmission of multipartite viruses via a modelling approach and find that higher transmission 
of a multipartite virus is predicted between host species that are genetically similar and that 
with increasing host heterogeneity, there is a decline in transmission. Recently, (Di Mattia et 
al. 2022) showed for FBNSV that existing infections could be complemented by inoculations 
with missing segments, but only in the background of a replicating virus population. 
Complementation of virus segments in time between inoculations presents an opportunity as 
many viruses share common functional proteins. This raises the possibility that in mixed 
infections, missing functions may be complemented by another virus. This would reduce the 
cost of transmission as the specificity of virus segments will be reduced, and this is likely to 
occur for common functions such as virus movement or viral suppressors of RNA silencing.   
 
Given that many multipartite viruses are vector-mediated plant-infecting viruses, there would 
be a cost associated with GF changes which are optimal in one host but not another. Vector 
transmission of multipartite viruses will play an important role in transmitting all segments, but 
also the frequency of segments. Begomoviruses have either monopartite or bipartite 
genomes, and the acquisition of a second genomic segment (DNA-B) has facilitated the host 
range expansion of the previously monopartite pepper yellow Mali virus  (PepYVMLV) 
(Ouattara et al. 2022). The bipartite begomoviruses East African cassava mosaic Cameroon 
virus (EACMCV) and African cassava mosaic virus (ACMV) differ in GFs between source and 
donor plants compared to the whitefly vector, Bemisai tabaci, as well as each other (Kennedy 
et al. 2023). In a single infection, ACMV and EACMV maintained 0.6 (DNA-A: DNA:B) GF, with 
DNA-A as the least abundant. During co-infection, the GF of ACMV shifted, increasing by 1 
order of magnitude, whilst EACMV shifted to a balanced GF. Thus,  the between-host 
transmission cost is low for the whitefly vector (Kennedy et al. 2023).  
 
Within a broader ecological context, it is known that mixed viral infections are common in 
plants and that opportunities for interaction are possible via common vector species. One such 
example is vector co-transmission by A. craccivora of the monopartite alfalfa leaf curl virus 
(ALCV) and FBNSV; where virus localization is similar in different aphid compartments, 
however, FBNSV accumulation was decreased  (Di Mattia, Ryckebusch, et al. 2020). In the 
bipartite tomato mottle virus (ToMoV) virus transmission efficiency and host titer is reduced 
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when acquired sequentially or when co-inoculated with the monopartite tomato yellow leaf curl 
virus (TYLCV) during persistent transmission (McLaughlin et al. 2022). A similar approach 
using incomplete FBNSV infections  (missing segments C, N or U4) which were 
complemented via sequential aphid transmission showed that the complete genome could be 
reconstituted within the vector midgut cells of A. pisum  (Di Mattia et al. 2022). Additionally, we 
do not know if there are interactions between viruses when they are co-transmitted in a 
common vector (Tamborindeguy et al. 2023).  
 

 

Concluding remarks and future outlook  
 

In the current thesis, I investigated GF change at short and longer time scales to understand 
GF variation and evolution in different host species. I find that the GF of the generalist CMV is 
highly variable in the host C. quinoa, whilst showing less variation in A. thaliana, N. 
benthamiana and N. tabacum. Furthermore, CMV infection is characterized by a narrow 
bottleneck in which a small number of genome segments contribute to the development of the 
GF during infection.  The GF of CMV is transmissible from one host to another, a first indication 
that the GF can have a between-host benefit.  By investigating GF change in single and serial 
passage experiments I show that some GF changes may be deleterious and associated with 
lower virus titres whilst also showing that for experimental evolution of CMV the GF change is 
robust over several rounds of infection. I found preliminary evidence that genome 
segmentation in the form of segmented and multipartite viruses may be a general mechanism 
for increasing virus host range. I developed a framework for quantifying the cost of 
transmission for varying genome organization and show that in some cases segmented 
viruses may have a higher cost of transmission than multipartite viruses. Future research on 
the GF should investigate the genetic basis of GF control, as I observe that stochastic GF 
change and deleterious mutations may contribute to extinctions. Follow-up experiments can 
also further map the GF fitness landscape by including other measures of virus fitness, e.g. 
(1) the proportion of encapsidated versus non-encapsidated RNA  to elucidate which 
components of the virus population contribute to GF transmission and (2) mapping virus 
infectivity to the GF space for different hosts – as you can expect that as the virus becomes 
specialized on a given host that there may be a trade-off in successful infection in other hosts.  



7

General Discussion

215
 

 

References 
 

Abdi, Hervé. 2007. “The Kendall Rank Correlation Coefficient.” In Encyclopedia of 
Measurement and Statistics, 508–10. Thousand Oaks, California: Sage. 
https://doi.org/10.4135/9781412952644. 

Ali, Akhtar, and Michelle Kobayashi. 2010. “Seed Transmission of Cucumber Mosaic Virus in 
Pepper.” Journal of Virological Methods 163 (2): 234–37. 

Ali, Akhtar, Hongye Li, William L. Schneider, Diana J. Sherman, Stewart Gray, Dawn Smith, 
and Marilyn J. Roossinck. 2006. “Analysis of Genetic Bottlenecks during Horizontal 
Transmission of Cucumber Mosaic Virus.” Journal of Virology 80 (17): 8345–50. 

Andreu-Moreno, Iván, and Rafael Sanjuán. 2018. “Collective Infection of Cells by Viral 
Aggregates Promotes Early Viral Proliferation and Reveals a Cellular-Level Allee 
Effect.” Current Biology: CB 28 (20): 3212-3219.e4. 

Bald, J. G. 1937. “The Use of Numbers of Infections For Comparing the Concentrations of 
Plant Virus Suspensions: Dilution Experiments with Purified Suspensions.” The 
Annals of Applied Biology 24 (1): 33–55. 

Bayer, Avraham, Greg Brennan, and Adam P. Geballe. 2018. “Adaptation by Copy Number 
Variation in Monopartite Viruses.” Current Opinion in Virology. Elsevier. 
https://doi.org/10.1016/j.coviro.2018.07.001. 

Bermúdez-Méndez, Erick, Kirsten F. Bronsvoort, Mark P. Zwart, Sandra van de Water, Ingrid 
Cárdenas-Rey, Rianka P. M. Vloet, Constantianus J. M. Koenraadt, Gorben P. 
Pijlman, Jeroen Kortekaas, and Paul J. Wichgers Schreur. 2022. “Incomplete 
Bunyavirus Particles Can Cooperatively Support Virus Infection and Spread.” PLoS 
Biology 20 (11): e3001870. 

Betancourt, Mónica, Alberto Fereres, Aurora Fraile, and F. Garcia-Arenal. 2008. “Estimation 
of the Effective Number of Founders That Initiate an Infection after Aphid 
Transmission of a Multipartite Plant Virus.” Journal of Virology 82 (24): 12416–21. 

Boezen, Dieke, Marcelle L. Johnson, Alexey A. Grum-Grzhimaylo, René Aa van der Vlugt, 
and Mark P. Zwart. 2023. “Evaluation of Sequencing and PCR-Based Methods for 
the Quantification of the Viral Genome Formula.” Virus Research, February, 199064. 

Boezen, Dieke, Maritta Vermeulen, Marcelle Johnson, Rene Van Der Vlugt, Carolyn 
Malmstrom, and Mark Zwart. 2023. “Mixed Viral Infection Constrains the Genome 
Formula of Multipartite Cucumber Mosaic Virus.” Frontiers in Virology 3. 
https://doi.org/10.3389/fviro.2023.1225818. 

Brooke, Christopher B., William L. Ince, Jens Wrammert, Rafi Ahmed, Patrick C. Wilson, 
Jack R. Bennink, and Jonathan W. Yewdell. 2013. “Most Influenza a Virions Fail to 
Express at Least One Essential Viral Protein.” Journal of Virology 87 (6): 3155–62. 

Chou, Yi-Ying, Reza Vafabakhsh, Sultan Doğanay, Qinshan Gao, Taekjip Ha, and Peter 
Palese. 2012. “One Influenza Virus Particle Packages Eight Unique Viral RNAs as 
Shown by FISH Analysis.” Proceedings of the National Academy of Sciences of the 
United States of America 109 (23): 9101–6. 

Cobos, Alberto, Nuria Montes, Marisa López-Herranz, Miriam Gil-Valle, and Israel Pagán. 
2019. “Within-Host Multiplication and Speed of Colonization as Infection Traits 
Associated with Plant Virus Vertical Transmission.” Journal of Virology 93 (23). 
https://doi.org/10.1128/JVI.01078-19. 

Coll, N. S., P. Epple, and J. L. Dangl. 2011. “Programmed Cell Death in the Plant Immune 
System.” Cell Death and Differentiation 18 (8): 1247–56. 

Dall’Ara, M., Y. Guo, D. Poli, D. Gilmer, and C. Ratti. 2024. “Analysis of the Relative 
Frequencies of the Multipartite BNYVV Genomic RNAs in Different Plants and 
Tissues.” The Journal of General Virology 105 (1). 
https://doi.org/10.1099/jgv.0.001950. 

Di Mattia, Jérémy, Babil Torralba, Michel Yvon, Jean-Louis Zeddam, Stéphane Blanc, and 
Yannis Michalakis. 2022. “Nonconcomitant Host-to-Host Transmission of Multipartite 



Chapter 7

216
 

 

Virus Genome Segments May Lead to Complete Genome Reconstitution.” 
Proceedings of the National Academy of Sciences of the United States of America 
119 (32): e2201453119. 

Diefenbacher, Meghan, Jiayi Sun, and Christopher B. Brooke. 2018. “The Parts Are Greater 
than the Whole: The Role of Semi-Infectious Particles in Influenza A Virus Biology.” 
Current Opinion in Virology 33 (December): 42–46. 

Druett, H. A. 1952. “Bacterial Invasion.” Nature 170 (4320): 288–288. 
Elde, Nels C., Stephanie J. Child, Michael T. Eickbush, Jacob O. Kitzman, Kelsey S. Rogers, 

Jay Shendure, Adam P. Geballe, and Harmit S. Malik. 2012. “Poxviruses Deploy 
Genomic Accordions to Adapt Rapidly against Host Antiviral Defenses.” Cell 150 (4): 
831–41. 

Faulkner, Christine. 2018. “Plasmodesmata and the Symplast.” Current Biology: CB 28 (24): 
R1374–78. 

Fulton, Robert W. 1962. “The Effect of Dilution on Necrotic Ringspot Virus Infectivity and the 
Enhancement of Infectivity by Noninfective Virus.” Virology. 
https://doi.org/10.1016/0042-6822(62)90038-7. 

Gallet, Romain, Frédéric Fabre, Gaël Thébaud, Mircea T. Sofonea, Anne Sicard, Stéphane 
Blanc, and Yannis Michalakis. 2018. “Small Bottleneck Size in a Highly Multipartite 
Virus during a Complete Infection Cycle.” Journal of Virology 92 (14). 
https://doi.org/10.1128/JVI.00139-18. 

Gavrilets, Sergey. 1999. “A Dynamical Theory of Speciation on Holey Adaptive Landscapes.” 
The American Naturalist 154 (1): 1–22. 

Goto, Hideo, Yukiko Muramoto, Takeshi Noda, and Yoshihiro Kawaoka. 2013. “The Genome-
Packaging Signal of the Influenza A Virus Genome Comprises a Genome 
Incorporation Signal and a Genome-Bundling Signal.” Journal of Virology 87 (21): 
11316–22. 

Gutiérrez, Serafín, Yannis Michalakis, Manuella Van Munster, and Stéphane Blanc. 2013. 
“Plant Feeding by Insect Vectors Can Affect Life Cycle, Population Genetics and 
Evolution of Plant Viruses.” Functional Ecology 27 (3): 610–22. 

Gutiérrez, Serafín, and Mark P. Zwart. 2018. “Population Bottlenecks in Multicomponent 
Viruses: First Forays into the Uncharted Territory of Genome-Formula Drift.” Current 
Opinion in Virology. https://doi.org/10.1016/j.coviro.2018.09.001. 

Heinlein, Manfred. 2015. “Plasmodesmata: Channels for Viruses on the Move.” In 
Plasmodesmata: Methods and Protocols, edited by Manfred Heinlein, 25–52. New 
York, NY: Springer New York. 

Hu, Zhaoyang, Guohui Li, Guangtian Li, Qin Yao, and Keping Chen. 2013. “Bombyx Mori 
Bidensovirus: The Type Species of the New Genus Bidensovirus in the New Family 
Bidnaviridae.” Chinese Science Bulletin = Kexue Tongbao 58 (36): 4528–32. 

Hutchinson, Edward C., Johann C. von Kirchbach, Julia R. Gog, and Paul Digard. 2010. 
“Genome Packaging in Influenza A Virus.” The Journal of General Virology 91 (Pt 2): 
313–28. 

Iranzo, Jaime, and Susanna C. Manrubia. 2012. “Evolutionary Dynamics of Genome 
Segmentation in Multipartite Viruses.” Proceedings of the Royal Society B: Biological 
Sciences 279 (1743): 3812–19. 

Jacquemond, Mireille. 2012. “Cucumber Mosaic Virus.” Edited by Gad Loebenstein and 
Hervé Lecoq. Advances in Virus Research 84 (January): 439–504. 

Kendall, M. G. 1938. “A New Measure of Rank Correlation.” Biometrika 30 (1–2): 81–93. 
Kennedy, George G., William Sharpee, Alana L. Jacobson, Mary Wambugu, Benard Mware, 

and Linda Hanley-Bowdoin. 2023. “Genome Segment Ratios Change during Whitefly 
Transmission of Two Bipartite Cassava Mosaic Begomoviruses.” Scientific Reports 
13 (1): 10059. 

Kozieł, Edmund, Józef Julian Bujarski, and Katarzyna Otulak Kozieł. 2023. “Chapter 16 - 
Plant Cell Apoplast and Symplast Dynamic Association with Plant-RNA Virus 
Interactions as a Vital Effect of Host Response.” In Plant RNA Viruses, edited by 



7

General Discussion

217
 

 

Rajarshi Kumar Gaur, Basavaprabhu L. Patil, and Ramasamy Selvarajan, 311–28. 
Academic Press. 

Lam, Eric, Naohiro Kato, and Michael Lawton. 2001. “Programmed Cell Death, Mitochondria 
and the Plant Hypersensitive Response.” Nature 411 (6839): 848–53. 

Lauffer, M. A., and W. C. Price. 1945. “Infection by Viruses.” Archives of Biochemistry 8 
(December): 449–68. 

Lazarowitz, S. G., and R. N. Beachy. 1999. “Viral Movement Proteins as Probes for 
Intracellular and Intercellular Trafficking in Plants.” The Plant Cell 11 (4): 535–48. 

Leeks, Asher, Penny Grace Young, Paul Eugene Turner, Geoff Wild, and Stuart Andrew 
West. 2023. “Cheating Leads to the Evolution of Multipartite Viruses.” PLoS Biology 
21 (4): e3002092. 

Li, Xiuli, Min Gu, Qinmei Zheng, Ruyi Gao, and Xiufan Liu. 2021. “Packaging Signal of 
Influenza A Virus.” Virology Journal 18 (1): 36. 

Lucía-Sanz, Adriana, Jacobo Aguirre, and Susanna Manrubia. 2018. “Theoretical 
Approaches to Disclosing the Emergence and Adaptive Advantages of Multipartite 
Viruses.” Current Opinion in Virology 33 (December): 89–95. 

Lucía-Sanz, Adriana, and Susanna Manrubia. 2017. “Multipartite Viruses: Adaptive Trick or 
Evolutionary Treat?” Npj Systems Biology and Applications 3 (1): 34. 

Mansourpour, Mahsa, Romain Gallet, Alireza Abbasi, Stephane Blanc, Akbar Dizadji, and 
Jean-Louis Zeddam. 2021. “Effects of an Alphasatellite on Life Cycle of the 
Nanovirus Faba Bean Necrotic Yellows Virus.” Journal of Virology, November, 
JVI0138821. 

Michalakis, Yannis, and Stéphane Blanc. 2020. “The Curious Strategy of Multipartite 
Viruses.” Annual Review of Virology 7 (1): 203–18. 

Miras, Manuel, Mathieu Pottier, T. Moritz Schladt, J. Obinna Ejike, Laura Redzich, Wolf B. 
Frommer, and Ji-Yun Kim. 2022. “Plasmodesmata and Their Role in Assimilate 
Translocation.” Journal of Plant Physiology 270 (March): 153633. 

Nakatsu, Sumiho, Shin Murakami, Keiko Shindo, Taisuke Horimoto, Hiroshi Sagara, Takeshi 
Noda, and Yoshihiro Kawaoka. 2018. “Influenza C and D Viruses Package Eight 
Organized Ribonucleoprotein Complexes.” Journal of Virology 92 (6). 
https://doi.org/10.1128/JVI.02084-17. 

Nakatsu, Sumiho, Hiroshi Sagara, Yuko Sakai-Tagawa, Norio Sugaya, Takeshi Noda, and 
Yoshihiro Kawaoka. 2016. “Complete and Incomplete Genome Packaging of 
Influenza A and B Viruses.” MBio 7 (5). https://doi.org/10.1128/mBio.01248-16. 

Näsvall, Joakim, Lei Sun, John R. Roth, and Dan I. Andersson. 2012. “Real-Time Evolution 
of New Genes by Innovation, Amplification, and Divergence.” Science 338 (6105): 
384–87. 

Navarro, Jose A., Jesus A. Sanchez-Navarro, and Vicente Pallas. 2019. “Key Checkpoints in 
the Movement of Plant Viruses through the Host.” Advances in Virus Research 104 
(July): 1–64. 

Nawaz-ul-Rehman, Muhammad Shah, Shahid Mansoor, Rob W. Briddon, and Claude M. 
Fauquet. 2009. “Maintenance of an Old World Betasatellite by a New World Helper 
Begomovirus and Possible Rapid Adaptation of the Betasatellite.” Journal of Virology 
83 (18): 9347–55. 

Nee, Scan. 1987. “The Evolution of Multicompartmental Genomes in Viruses.” Journal of 
Molecular Evolution 25: 277–81. 

Ojosnegros, S., J. García-Arriaza, C. Escarmís, S. C. Manrubia, and C. Perales. 2011. “Viral 
Genome Segmentation Can Result from a Trade-Off between Genetic Content and 
Particle Stability.” PLoS Genetics 7 (3): 1001344. 

Park, Hyunjin, Saven Denha, and Paul G. Higgs. 2023. “Evolution of Bipartite and 
Segmented Viruses from Monopartite Viruses.” Viruses 15 (5). 
https://doi.org/10.3390/v15051135. 

R Foundation for Statistical Computing. 2023. R: A Language and Environment for Statistical 
Computing (version 4.3.1). Vienna, Austria. https://www.r-project.org/. 



Chapter 7

218
 

 

Roossinck, M. J. 2001. “Cucumber Mosaic Virus, a Model for RNA Virus Evolution.” 
Molecular Plant Pathology 2 (2): 59–63. 

Sánchez-Navarro, Jesús A., Mark P. Zwart, and Santiago F. Elena. 2013. “Effects of the 
Number of Genome Segments on Primary and Systemic Infections with a Multipartite 
Plant RNA Virus.” Journal of Virology 87 (19): 10805–15. 

Sicard, Anne, Yannis Michalakis, Serafín Gutiérrez, and Stéphane Blanc. 2016. “The 
Strange Lifestyle of Multipartite Viruses.” Edited by Tom C. Hobman. PLoS 
Pathogens 12 (11): e1005819. 

Sicard, Anne, Elodie Pirolles, Romain Gallet, Marie-Stéphanie Vernerey, Michel Yvon, Michel 
Peterschmitt, Serafin Gutierrez, Yannis Michalakis, and Stéphane Blanc. 2019. “A 
Multicellular Way of Life for a Multipartite Virus.” ELife 8 (March): e43599. 

Sicard, Anne, Michel Yvon, Tatiana Timchenko, Bruno Gronenborn, Yannis Michalakis, 
Serafin Gutierrez, and Stéphane Blanc. 2013. “Gene Copy Number Is Differentially 
Regulated in a Multipartite Virus.” Nature Communications 4: 2248. 

Su, Shengzhong, Zhaohui Liu, Cheng Chen, Yan Zhang, Xu Wang, Lei Zhu, Long Miao, 
Xue-Chen Wang, and Ming Yuan. 2010. “Cucumber Mosaic Virus Movement Protein 
Severs Actin Filaments to Increase the Plasmodesmal Size Exclusion Limit in 
Tobacco.” The Plant Cell 22 (4): 1373–87. 

Tamborindeguy, Cecilia, Fernando Teruhiko Hata, Rúbia de Oliveira Molina, and William 
Mário de Carvalho Nunes. 2023. “A New Perspective on the Co-Transmission of 
Plant Pathogens by Hemipterans.” Microorganisms 11 (1). 
https://doi.org/10.3390/microorganisms11010156. 

Taschner, P. E., A. C. van der Kuyl, L. Neeleman, and J. F. Bol. 1991. “Replication of an 
Incomplete Alfalfa Mosaic Virus Genome in Plants Transformed with Viral Replicase 
Genes.” Virology 181 (2): 445–50. 

Valdano, Eugenio, Susanna Manrubia, Sergio Gómez, and Alex Arenas. 2019. “Endemicity 
and Prevalence of Multipartite Viruses under Heterogeneous Between-Host 
Transmission.” PLoS Computational Biology 15 (3): e1006876. 

Vitti, Antonella, Israel Pagán, Brigida Bochicchio, Angelo De Stradis, Pasquale Piazzolla, 
Antonio Scopa, and Maria Nuzzaci. 2022. “Cucumber Mosaic Virus Is Unable to Self-
Assemble in Tobacco Plants When Transmitted by Seed.” Plants 11 (23). 
https://doi.org/10.3390/plants11233217. 

Wichgers Schreur, Paul J., and Jeroen Kortekaas. 2016. “Single-Molecule FISH Reveals 
Non-Selective Packaging of Rift Valley Fever Virus Genome Segments.” PLoS 
Pathogens 12 (8): e1005800. 

Wu, Beilei, Mark P. Zwart, Jesús A. Sánchez-Navarro, and Santiago F. Elena. 2017. “Within-
Host Evolution of Segments Ratio for the Tripartite Genome of Alfalfa Mosaic Virus.” 
Scientific Reports 7 (1): 1–15. 

Yu, Nai-Tong, Hui-Min Xie, Yu-Liang Zhang, Jian-Hua Wang, Zhongguo Xiong, and Zhi-Xin 
Liu. 2019. “Independent Modulation of Individual Genomic Component Transcription 
and a Cis-Acting Element Related to High Transcriptional Activity in a Multipartite 
DNA Virus.” BMC Genomics 20 (1): 573. 

Zwart, Mark P., and Santiago F. Elena. 2020. “Modeling Multipartite Virus Evolution: The 
Genome Formula Facilitates Rapid Adaptation to Heterogeneous Environments.” 
Virus Evolution 6 (1). https://doi.org/10.1093/ve/veaa022. 

  



 
 

 





Summary

221
 

 

Summary 
 

Virus genomes consist of RNA or DNA in single or several molecules packaged together or 
separately into virus particles. They may be classified as monopartite viruses, comprised of a 
single genome segment which is individually packaged.  Segmented viruses have genomes 
composed of several segments which are packaged together into a single virus particle. Lastly, 
there are the multipartite viruses, having several genome segments which are individually 
packaged into virus particles and transmitted. The differences in the number of genome 
segments and individual packaging of multipartite viruses influence the likelihood of infection, 
as viruses with more segments will require higher doses to initiate an infection.  In this thesis, 
I investigate the costs and benefits of a multipartite virus strategy combining theoretical and 
experimental approaches.  
 
In Chapter 1, I provide an overview of historical and contemporary research on multipartite 
viruses. I discuss the cost of multipartition for between-host transmission and the proposed 
benefits. There are several proposed benefits for multipartition; faster replication of shorter 
genome segments when polymerase is abundant, increased genetic diversity via 
reassortment, increased virus particle stability and gene expression regulation by segment 
copy number change – the genome formula (GF). I discuss the hypothesis of viral gene 
expression regulation by the GF, supporting evidence in the literature, and the potential role 
of the GF in local adaptation. I discuss potential factors which may affect the GF and present 
the model system for this thesis, cucumber mosaic virus (CMV). 
 
In Chapter 2, I present a review of the state of the art in addressing the costs and benefits of 
the multipartite virus genome strategy. I develop a quantitative approach for estimating the 
cost to transmission of multipartition by analyzing the changes in shape and position of the 
dose-response curve. I test this by reanalyzing experimental infections of the tripartite alfalfa 
mosaic virus (AMV) in which there is the constitutive expression of one or two viral genome 
segments by host plants. I show that the cost of transmission for multipartite viruses is higher 
when including the change in position of the dose-response curve.  Experiments with faba 
bean necrotic stunt virus (FBNSV) have shown that infection can occur by complementation 
across neighboring cells, where genome segments may be absent. I model the relationship 
between the GF and viral gene product sharing, showing that gene product sharing may 
minimize the cost to transmission of multipartite viruses. I also show that the benefits of gene 
product sharing and gene expression regulation bY the GF may be mutually exclusive.  I next 
pose the question if genome segmentation may be a means for expanding virus host range. 
By analyzing virus-host databases I show that genome segmentation indeed may contribute 
to wider host ranges in segmented and multipartite viruses.  
 
In Chapter 3, I develop an approach for quantitatively analyzing GF variation in multipartite 
and segmented viruses. I use the GF distance (D), the Euclidean distance between any two 
GF values to quantify GF variation. D allows for comparing GF variation between multipartite 
viruses which have different segment numbers, nucleic acid type and infection process. I 
estimate theoretical GF variation for two scenarios; firstly when there is random GF variation 
(𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) and the maximum GF variation when there is GF drift after a single bottleneck (𝐷𝐷𝐷𝐷�𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑). 

I calculate D for empirical GF measurements from three multipartite viruses; CMV, AMV and 
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FBNSV. Re-analysis of AMV data shows that the GF is transmissible, as the GF in the 
inoculated leaf is more similar to the inoculum than expected by chance.  
 
In Chapter 4, I experimentally determine GF variation in CMV local lesion infections, infections 
which are restricted to a small number of cells, in the host Chenopodium quinoa. To this end I 
inoculate C. quinoa plants in three experiments with the isolate CMV-i17F derived from 
Nicotiana benthamiana or Nicotiana tabacum, and determine the GF by RT-qPCR. Results 
show that GF variation is high across experiments and I show that GF variation (D) is high in 
local lesions, approaching that of maximum variation from a single population bottleneck 
(𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��������) . I also show that there is an inoculum effect on the GF in local lesions, suggesting 
that the GF may be transmissible. When examining GF variation across experiments, I show 
that for experiment 1 the GF observations may be divided into two groups. The first group is 
a large majority cluster with a central balanced GF, and a second minority cluster occupies a 
narrow GF space with variation in the axis of RNA1 and RNA2 and with low RNA3. The two 
clusters showed significant differences in virus titre, where the majority cluster had a higher 
virus titre than the minority one. This is the first evidence of multiple clusters for the GF within 
a single host, and the association with differences in viral fitness.  
 
In Chapter 5, I hypothesize that the GF segment copy number changes allow for viral gene 
expression regulation and local adaptation of a multipartite virus in different hosts. I infect 
Arabidopsis thaliana, N. benthamiana and N. tabacum with CMV-i17F and serially passage 
the virus for five rounds. I determined the GF by RT-qPCR and estimated virus fitness by using 
virus titre as a fitness measure. I use sequence analysis of the evolved populations to 
determine GF and mutation interactions during local adaptation. My results show that CMV-
I17F has a variable GF, in which Nicotiana hosts are similar whilst the GF of A. thaliana is 
distinct. In all hosts, there is an extinction of virus populations associated with a decline in 
virus titre. Analysis of sequencing data identified point mutations in several populations, most 
commonly on RNA 2a, the viral RNA-dependent RNA polymerase, and untranslated regions. 
Extinctions appear linked to the presence of the mutation in RNA2a or shifts in the GF.      
 
In Chapter 6, I investigate the cost of genome organization and packaging strategy on 
infectivity. Multipartite viruses package genome segments individually into virus particles, 
whilst segmented viruses package all genome segments together in a single virus particle. 
For segmented viruses, there may be error-prone packaging, wherein not all genome 
segments are packaged together in a virus particle. In addition, there may be non-selective 
packaging of genome segments, where there may be differences in the number of genome 
segments packaged and the identity of segments. I develop a mathematical modelling 
approach to quantify the cost to infectivity using the change in gradient of the dose-response 
relationship and the shift in position. Our results show that the cost to infectivity is highest for 
the non-selective packaging segmented viruses. I re-analyse empirical data for Rift valley 
fever virus (RVFV) and show that it may have a cost to infectivity similar to that of a multipartite 
virus.    
 
In Chapter 7 I synthesize my results from each chapter and place them within a broader 
context. I further develop the cost of transmission for multipartite and segmented viruses. I 
present a conceptual overview of the genome particle content and the cost of transmission, 
showing that error-prone segmented viruses may display transmission dynamics similar to 
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non-selective packaging segmented viruses. I synthesize available CMV-i17F GFs in A. 
thaliana, C. quinoa, N. benthamiana and N.tabacum hosts and the relationship to virus titre, 
discussing the empirical GF fitness landscape. I show that in C. quinoa, there may be two 
mesa-like features in the GF landscape: a larger mesa with a broad central GF space that is 
associated with high virus titre and a second narrower mesa associated with lower virus titre 
and with GFs having variation along the axis of RNA2, high RNA1 and low RNA3. N. 
benthamiana and N. tabacum do not display differences in viral fitness based on the GF space 
occupied by CMV-I17f, whilst infections in A. thaliana are characterized by a flat fitness 
landscape in which virus populations with a greater GF distance have lower virus titre. I end 
with a discussion on why multipartite viruses exist and suggest that future research should 
focus on characterizing the GF fitness landscape for encapsidated and unencapsidated RNA 
to identify which component of the GF space of virus population is transmitted.   
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