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Abstract 
This study focuses on addressing ecological challenges located in Michoacán’s Trans-Mexican Volcanic 

Belt due to the expansion of avocado orchards, which is a risk to local wildlife, water resources, and 

forest fragmentation, but in the meantime has economic benefits to the area. 

Applying machine learning models for land use classification, the research explores the potential 

improvement through texture analysis, specifically applying Gray-Level Co-occurrence Matrix 

(GLCM) within the municipality of Uruapan, Michoacán, known for significant avocado cultivation and 

biodiversity. The investigation encompasses varying resolutions, from high-resolution Planetscope 

imagery of 3 meters to lower-resolution Sentinel-2 and Landsat 8 data varying from 10 to 60 meters. 

In the first research question, Random Forest (RF) and Support Vector Machine (SVM) models are 

compared for avocado orchard localization using Planetscope data. The RF model has the greater 

accuracy, achieving an F-score of 0.9545 compared to SVM's 0.9481. Following the application of 

GLCM texture features provides minimal improvement in RF predictions with a F-score of 0.9551 but 

adversely affects SVM in the spatial prediction, even with an F-score of 0.9453. Lastly, the study applies 

the Sentinel-2 and Landsat 8 data with coherent GLCM textures to the machine learning models which 

shows a decreased F-score and spatial predictions. 

Following these results, several recommendations are discussed for alternative accuracy metrics, feature 

extraction methods, and the application of deep learning with pre-trained models. To finally conclude 

that with the current results the GLCM texture features did not improve the overall accuracy. However, 

can be of potential use when accounting for the recommended model improvements. 
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Introduction 
There is a significant problem in the Michoacán region of the Trans-Mexican Volcanic Belt, where a 

high rate of forest land is being transformed into avocado orchards. (Mas et al., 2017) This poses an 

additional threat to the local wildlife in the temperate forests. As a result of this conversion process, the 

temperate forests are shrinking, and the remaining parts are becoming isolated from each other. This 

widespread occurrence primarily affects the wetter slopes of the Trans-Mexican Volcanic Belt region, 

situated at elevations between 1,500 and 2,000 meters. As of 2005, more than 22,270 hectares of forest 

had already been converted into avocado orchards. (Monterrubio-Rico et al., 2019) The transformed 

orchards are mostly Hass avocado trees. This use of homogeneity in avocado production brings along 

an increase in the use of pesticides, finally the increasing amounts of orchards puts pressure on the water 

reserves which increasingly being used. (De La Vega-Rivera & Merino-Pérez, 2021) 

Nonetheless, the avocado orchards do stimulate the economy and boost technological innovations to 

efficiently improve the cultivation of avocados. (Vargas-Canales et al., 2020) These two contradictory 

visions on the cultivation of avocados, makes it therefore important to localize with high accuracy these 

type of orchards as the exact locations are currently unkown. 

Land use classification in this region can help understand the impact size of avocado orchards. Multiple 

studies have already been conducted to detect land use change in the Michoacán region. The study of 

Latorre-Cardenas et al. (2023) used supervised classification on Sentinel-2 imagery to identify land use 

within the avocado belt to help determine temperate forest fragmentation. With an accuracy of 68.4%. 

Guerrero et al. (2008) use a multi-layered land use model called GEOMOD, from physical to social 

layers, to determine change in land use. GEOMOD is a model for land-use and land-cover change that 

operates on a grid system and can simulate the spatial progression or regression of land changes over 

time (Pontius, 2006) and determine driver for deforestation. Denvir (2023) uses the EGO 5 model to 

assess forest loss due to avocado orchards under various climate change scenarios. As well as the 

research of Arima et al. (2022) where a probit model is used to determine future deforestation due to an 

increasing amount of avocado orchards and how the spatial distribution of avocado cultivation is 

changing in response to both present and future climate conditions. Applying machine learning (ML) 

models to land use classification is done regularly and  give more promising results than others. Talukdar 

et al. (2020) stated in a literature review that Support Vector Machine (SVM), Random Forest (RF) 

models gave the best results in machine learning land use classification. The SVM aims to determine 

the optimal class separation or optimal hyperplane to separate the training data in pre-defined classes. It 

does this by identifying the support vectors, which is training data that is closest to the optimal decision 

boundary. Whereas, a RF model uses a collection of classifier models that work together to form a 

classification system. This collection of classifiers are used as a voting system for data to be placed in a 

pre-defined class by the majority vote. (Sheykhmousa et al., 2020) 

However, can these models be further improved? For this the thesis will go into the texture domain. In 

general, a texture can be informally defined as a set of texture elements which occurs in regular or 

repeated pattern. (Hung, C et al., 2019) Texture features describe the characteristics of image textures 

which is expressed as a function of the spatial variability of pixel intensities that are measured in 

grayscale. (Tüceryan & Jain, 1993) Examples of these grayscale patterns are seen in figure 1 of several 

land uses within Uruapan where clear distinction of texture is seen. Texture operators such as grey level 
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co-occurrence matrix (GLCM), local binary pattern (LBP) and texture spectrum (TS) are used to extract 

the texture features which contain the texture information. (Hung, C et al., 2019) Therefore, Erener and 

Duzgun, (2009) already suggest the application of texture layers on aerial bands to possibly come up 

with an improved model. Additionally, in the study of Puissant et al., (2005) is concluded that the spatial 

resolution does effect the accuracy of texture analysis on land use classification. They state, as expected, 

that higher resolution improve the land use classification using texture analysis. However, they used 

resolutions of 1, 2.5 and 5-10 meters which was analysed in 2006. In this research, a current image in 

combination with ML algorithms using the spectral information of the RS images is needed to assess 

the avocado orchard impact. Therefore, Planetscope is used with a resolution of 3 meters, but also open-

source datasets like Sentinel-2 and Landsat 8 with a resolution of 10 and 30 meters respectively to assess 

if texture analysis on lower resolution images is still viable.  

In short, this study is going to assess if additional texture analysis can assist in improving the overall 

land use classification accuracy on multiple resolutions and thereby ameliorate avocado orchard 

detection.  

1. Research needs 
The application of texture analysis on land use classification gave promising results for in the paper of 

Erener en Duzgun, (2009) They engage in the classification of historical black and white aerial 

photograph records, making them suitable for use in change detection studies. The use of only GLCM 

on black and white aerial images with an land use classification accuracy of 86% (Erener & Duzgun, 

2009). Ciriza et al., (2017) used GLCM texture analysis on detecting uprooted orchards with an accuracy 

of 88%, suggesting that the identification technique could also be applied on other permanent crops due 

to their plantation pattern.  

1

. 

2

. 

3

. 

4

. 

Figure 1. Grayscale textures of 1. forest, 2. farmland, 3. avocado orchard 
and 4. urban area within the municipality of Uruapan. 
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As suggested in the introduction, higher classification accuracy could help visualize avocado orchards 

impact. The study of Cho, et al. (2021) and Latorre-Cardenas et al. (2023) are the only papers that use 

Machine Learning to locate possible avocado orchards within the Michoacán region. Cho, et al. (2021) 

only uses six multi-layered 30 meter resolution Landsat images to get an avocado orchard location 

prediction, while Latorre-Cardenas et al. (2023) used nine bands with a resolution of 10 and 20 meters 

from Sentinel-2 imagery. These two studies have in common that they only use bands provided by the 

satellite of choice with resolutions between the 10, 20 and 30 meters. (U.S. Geological survey, 

2018)(Sentinel Online, n.d.) Meanwhile, Machine Learning models do not have a limit in input variables 

(Nikparvar & Thill, 2021) and no research has been conducted on the localization of avocado orchards 

in Michoacán combining these with texture analysis. Which for this paper is the aim to overcome this 

research gap. 

2. Research questions 

2.1. Main objective 

The main objective of this thesis is to find out if GLCM texture analysis in addition with satellite band 

combinations implemented in a machine learning model can improve the accuracy of avocado orchard 

localization in Uruapan, Mexico with varied satellite imagery resolutions.  

2.2. Main research question 

How can texture analysis improve machine learning models in detecting avocado orchards in Uruapan, 

Mexico? 

2.3. Sub research questions 

RQ1: Which machine learning algorithm, either Random Forest (RF) or Support Vector Machines 

(SVM), yields the most accurate results in detecting avocado orchards when applied to Planetscope's 

high-resolution images? 

RQ2: What is the contribution of the GLCM texture analysis method for the accurate identification of 

avocado orchards in Uruapan, Mexico, using the machine learning models that have been previously 

employed in RQ1? 

RQ3: Can GLCM maintain its accuracy and reliability while working with lower-resolution (Sentinel-

2 & Landsat 8/9) images as input, and how might its performance be influenced by the change in 

spatial resolution? 
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3. Methodology 

This section will cover the method and materials used to investigate every research question. The 

research will build up on each other per research question. In the first research question a focus was laid 

upon the current machine learning models and their accuracies, whilst SVM and RF models are created 

and assessed. For the second research question the machine learning models created are extended with 

additional GLCM layers where the accuracy of the different models of RQ1 and RQ2 are assessed. For 

the final research question, the models of the second research question are reused with Landsat 8 and 

Sentinel-2 satellite imagery to determine if the GLCM with lower spatial resolution is also effective in 

detecting avocado orchards. Finally, the combination of results gives us a clear understanding of the 

main research question. 

 

3.1. Study area 

Planetscope data has a limit of 5000 km2 per month of high resolution satellite imagery when used for 

research purposes. Therefore, within the ‘avocado belt’ I selected the area between the Pico de Tancítaro 

and the city of Uruapan. The study area ranges from 19.33 N to 19.52 N latitude and 102.02 W to 102.32 

W longitude (figure 3). The interest of this area is due to the fact that 20% (16,588 hectares) of the total 

area of the municipality of Uruapan cultivate avocados since 2014 due to its ideal climatic conditions 

and provides plenty of job opportunities (Vidales & Ortíz, 2014) and 63% is covered by forest in 2010 

(Global Forest Watch, 2022). Meanwhile, the Pico de Tancítaro is a ‘Región Terrestre Prioritaria’ 

(Priority Land Region) due to its rich biodiversity and ecosystem. (Medina-García et al., 2020) 

(Conabio, n.d.) 

Figure 3. Left: satellite image of Michoacan, Mexico. Right: satellite image of the study area, with on the left Pico de 
Tancítaro and on the right the city of Uruapan. (Google Earth Engine) 

Figure 2. Flowchart of the thesis methodology. 
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3.2. Data collection and pre-processing 

To cover the study area, satellite imagery from Planetscope’s DOVE cubesat was used. Planetscope is 

paid service or gives out academic licenses that provides 5000 km2/month, and has a better resolution 

than open source imagery from Sentinel-2 and Landsat 8, which will be used in the final research 

question to determine their relevancy in this study. An overview of the classifications of the satellites 

used can be found in table 1.  

 

The satellite imagery have requirements to give the best accuracy and analysis usage: The satellite 

imagery that is used has little to no cloud coverage (<5%), which can be setup within the satellite portal. 

The dates used are as recent as possible and the difference between the images from the three different 

platforms are within a range of 3 months. The imagery is obtained from their satellite image library, 

which can be found in table 1. To acquire the study area, a bounding box of the area is created, whereafter 

the exact study area is clipped in ArcGIS to the municipality of Uruapan.  

For the supervised machine learning models, which will be discussed in the next section, training data 

is needed for the machine learning models to run and test data to determine the accuracy of the final 

classification. Obtaining this data is done by creating random selected areas of interest (AOI) within the 

satellite imagery and assigning a class to it via visual observation. Visual observation however  can 

create human error and most importantly is a tedious task to do. (Abdi, 2019) The AOI is categorised 

as: ‘orchard’ and ‘other’. It is important that a sufficient amount of training- and test data is obtained, 

since this will have an impact on the overall accuracy of the predicted model. (Ouma et al., 2023) 

Therefore, a total of 122 AOI’s were obtained and classed, then a 70%-30% training-test data ratio be 

Table 1. Satellite types given resolution, bands and library. 

Satellite type Resolution Bands Image library Source 

Planetscope 

(DOVE) 

3 meters Coastal Blue: 431 - 452 nm 

Blue: 465 – 515 nm 

Green I: 513 - 549 nm 

Green: 547 – 583 nm 

Yellow: 600 - 620 nm 

Red: 650 – 680 nm 

Red Edge: 697 – 713 nm 

NIR: 845 – 885 nm 

Planet Explorer European Space 

Agency (2022) 

Sentinel-2 10 meters 

20 meters* 

60 meters** 

Coastal Blue**: 443 nm 

Blue: 490 nm 

Green: 560 nm 

Red: 665 nm 

Red edge 1*: 705 nm 

Red edge 2*: 740 nm 

Red edge 3*: 783 nm 

NIR: 842 nm 

Copernicus ESA (n.d.) 

Landsat 8 30 meters Coastal Blue: 430-450 nm 

Blue: 450 – 510 nm 

Green: 530 – 590 nm 

Red: 640 – 670 nm 

NIR: 850 – 880 nm 

SWIR 1: 1570 – 1650 nm 

SWIR 2: 2110 – 2290 nm 

USGS Earth 

Explorer 

NASA (2021) 
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held into account and will be randomly selected. These AOI are in 

Arcgis used to extract the feature layers to be used in the machine 

learning models.  

Finally, for the accuracy assessment, the data from INEGI is used. 

INEGI is autonomous public organization that focuses on the 

regulation and coordinating statistical and geographical information 

of Mexico. (De Estadística Y Geografía Inegi, n.d.) The percentage 

of avocado cultivation sown per hectare within the municipality of 

Uruapan is obtained from their database. In addition to this, land use 

and vegetation vector data set from 2016 of INEGI (Inegi, 2016) was 

used (figure 4.) to give an indication of  potential avocado orchard 

locations. Since avocado trees are classed as permanent crop 

(Glossary:Permanent Crops, 2023), the INEGI data represents it as 

permanent cycle rainfed agriculture and permanent annual cycle 

rainfed agriculture. 

3.3. Machine learning models 

As already mentioned, there are several studies that cover land use classification using machine learning. 

In this research several of these studies will be analysed in context of model usage, classification and 

accuracy assessment. Finally, some of these machine learning models will be applied on the study area. 

In this thesis two supervised machine learning models will be used: random forest model (RF) and the 

support vector machine (SVM). Both ML models will be created in Python. 

3.3.1. Random Forest 

The first ML model is the ‘Random forest’. The RF model uses a collection of regression and 

classification trees. RF is a supervised model, thus needs training data to train the model otherwise called 

‘in-bag samples’ (Belgiu & Drăguţ, 2016) and can have as many predictor variables to use as possible 

input.  

3.3.2. Support Vector Machine 

The second ML is the ‘Support Vector Machine’. Just like the RF, the SVM is a supervised model that 

aims to find a distinction via the pre-defined classes (which are set via the training data) via a hyperplane. 

The optimal hyperplane refers to the separation of classes with the least amount of misclassifications. 

(Mountrakis et al., 2011) Scaling is performed on the feature training- and test set to standardize the 

features by removing the mean and scaling to unit variance. This preprocessing step make certain that 

the features have comparable scales which can help to improve performance and computation speed. 

(Testas, 2023) 

3.3.3. Parameter selection 

Obtaining the fit for the machine learning models is via a five-fold cross validation to optimize the 

models hyperparameters to acquire the optimal predication accuracy. For the RF model the following 

parameters are used: 

 

Permanent cycle rainfed agriculture 2016 

Permanent annual cycle rainfed agriculture 2016 

Figure 4. Possible avocado orchard locations in the 
municipality of Uruapan. 
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• n_estimators: 50, 100, 200 

• max_depth: ‘None’, 10, 20 

• min_samples_split: 2, 5, 10 

• min_samples_leaf: 1, 2, 4 

For the SVM model the following parameters are used: 

• C: 0.1, 1, 10 

• gamma: 'scale', 'auto', 0.1, 0.01 

• kernel: 'linear', 'rbf' (Radial Basis Function), 'poly' (polynomial) 

• degree: 2, 3, 4 (Only in case of a polynomial kernel) 

After analysing, the best hyperparameters are used to fit the model. 

3.3.4. Confusion matrix 

To assess the accuracy of the classified maps by the machine learning models, a confusion matrix is 

used. A confusion matrix provides a summarized overview of the prediction distribution across all 

classes. Within the confusion matrix, the predicted pixel of the test set will be divided in the True-

Positive (TP), True-Negative (TN), False-Positive (FP) and False-Negative (FN) which will be used to 

calculate the precision, recall and F-score metrics: (Heydarian et al., 2022)   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (2) 

𝐹𝑠𝑐𝑜𝑟𝑒 =  2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 
 (3) 

The F-score returns high values if the precision and recall give high values as well, a harmonic mean. 

(Kozák et al., 2022) Thus, the F-score will give a proper insight into the accuracy of the classified map. 

The confusion matrix metrics will be applied to every machine learning model created in this thesis. The 

results of the above mentioned metrics will be compared within every sub research question, giving us 

with improved or reduced accuracies the conclusion for the accuracy assessment.  

Since only the test set of the model is used to determine the accuracy of the model, it is also important 

to know if the total predicted avocado orchards area in the whole study extent is accurate. To do so, the 

area sown for avocado production of Uruapan are collected via INEGI and the percentage over the whole 

study area are determined. By dividing the total sown avocado orchards over the total Uruapan 

municipality area, the percentage of the area meant for avocado orchards is obtained. However, since 

this data is gathered from a table, no spatial accuracy can be drawn from this. Then, by obtaining the 

ML prediction, the pixels that are classed as avocado orchard are divided by the total area in pixels. This 

gives the percentage of predicted avocado orchards and so by comparing this with the actual avocado 

orchards percentage an accuracy conclusion can be drawn of the machine learning model. 
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3.4. GLCM texture analysis 

The second research question is about the usage of grey level co-occurrence matrix and defining the 

contribution of the GLCM texture analysis for classifying avocado orchards. For this process the  GLCM 

statistical measures are applied on the Planetscope, Sentinel-2 and Landsat 8 satellite imagery.  

GLCM functions analyse the texture of a grayscale image by determining the frequency of occurrence 

of pixel pairs with specific values and in defined spatial arrangements within the image. This process 

involves generating a GLCM and subsequently deriving statistical measures from the resulting matrix. 

(MathWorks, n.d.) The texture operator GLCM has a variety of statistical measures that are performed 

within the defined window size, which is due to computational power set on 3, and an angle of 45 

degrees (Nizalapur & Vyas, 2020): 

1. Homogeneity of the pixels within the window size 

2. Contrast is the rate of the variation between pixels within the window size 

3. Dissimilarity is defined by the difference between the absolute values of the grayscale 

4. Entropy is defined by the irregularity between the pixels within the window size 

5. Angular Second Moment (ASM) signifies how the grey level in the image show the regularity 

of distribution  

6. Correlation quantifies the probability of occurrence for the specified pairs of pixels 

simultaneously. 

(O’Byrne et al., 2012) (Gaudêncio et al., 2022) 

Ultimately, the importance per statistical measure is obtained. This process will be accomplished by 

feature importance. Since the RF- and SVM model are used, I need two separate methods to get the 

optimal feature set. The RF model uses in this case the ‘Mean Decrease of Impurity’ (MDI). MDI 

calculates the cumulative reduction in loss or impurity resulting from all splits associated with a specific 

feature based on their Gini-index value. (Xiao et al., 2019) For the SVM model, the permutation-based 

feature importance is used. The permutation importance assesses the importance of a used feature, using 

F and systematically shuffling the values. The permutation disrupts the link between the F and the 

feature and thereby altering the predictive performance of the model. A notable impact on the prediction 

performance occurs if F holds a substantial importance. The degree of change in the prediction accuracy 

helps to identify the features that contribute the most in the model. (Oh, 2022) Comparing both optimal 

selected features will give us an answer of the most useful GLCM statistical measure. 

3.5. Resolution Assessment 

For the final sub-research question, the ML model, previously made for the GLCM analysis, will be 

used to evaluate the practicability of GLCM on various open-source satellite imagery. As already 

mentioned, for this research Sentinel-2 and Landsat 8 will be used in combination with the GLCM 

features of these satellites. The model input will be the band combination showed in table 1 respectively 

to their resolution. Finally, a confusion matrix will be created for each satellite usage, where the 

prediction, recall and F-score metrics are calculated from. These metrics are compared with each other, 

giving a conclusion to the final sub-research question. 
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4. Results 
What machine learning model for land use classification, when applied to Planetscope's high-

resolution images, yields the most accurate results in detecting avocado orchards? 

First, the satellite data from Planetscope is obtained with the date 13-03-2023, of a series of images put 

into a mosaic. The imagery put into the RF and SVM models gave the following results. 

• Random forest model 

From the parameter selection the following parameters were selected: 'max_depth': None, 

'min_samples_leaf': 1, 'min_samples_split': 2 and 'n_estimators': 200. The Random Forest model gave 

with the usage of the MDI a ranking where the NIR band has the highest importance of approximately 

0.37 to predict the avocado orchards. Followed by green  with a feature importance of around 0.12. After 

that the sequence follows down with blue, red edge, red, coastal blue, yellow and green 1 which have a 

feature importance close to each other between 0.6 and 0.11.  

The prediction given in the 30% test set of the study area created an confusion matrix with the accessory 

precision and recall variables. TP is 79,042, FP is 3,161 and FN is 4,372 (figure 5) giving the following 

accuracy metrics: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
79042

79042 + 3161
= 0.962 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
79042

79042 + 4372
= 0.948 

𝐹𝑠𝑐𝑜𝑟𝑒 =  2 ∙
0.962 ∙ 0.946

0.962 + 0.946
= 0.9545 

 

• Support vector machine 

From the parameter selection the following parameters were selected: 'C': 10, 'gamma': scale and 'kernel': 

'rbf'. The Support Vector Machine has after feature permutation a more gradually decrease in feature 

importance where the yellow feature has the most importance, followed by NIR, blue, green, red, green 

1, coastal blue and red edge. The prediction given of the test set gives an TP of 78,829, FP of 3,374 and 

a FN of 5,248 as seen in the confusion matrix. (figure 6) Giving the accuracy metrics: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
78829

78829 + 3374
= 0.959 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
78829

78829 + 5248
= 0.938 

𝐹𝑠𝑐𝑜𝑟𝑒 =  2 ∙
0.959 ∙ 0.938

0.959 + 0.938
= 0.9481 

 

Figure 5. Confusion matrix and Feature importance of Planetscope RF model. 

Figure 6. Confusion matrix and Feature importance of Planetscope SVM model. 
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The total agricultural area is determined to be 
23604.77

101290.00
∙ 100 = 23% (Inegi, 2020). Where 23,604.77 

represents the hectares sown and 101,290.00 the total area of Uruapan in hectares. Meanwhile, only 
17640

101290.00
∙ 100 = 17% is avocado orchard in 2022. (Inegi, 2020) For these two models the total avocado 

orchard pixels in the RF and SVM models are 24,148,485 and 22,237,289 pixels respectively. Given the 

total pixel area of 112,687,097, this tells us that 21.4% for RF and 19.7% for SVM of the total area is 

predicted as avocado orchard. The spatial distribution from the RF and SVM give similar spatial 

disribution patterns that are coherent with the permanent cycle agriculture from 2016. (figure 7) The 

main faults that are observed are located in forests North of the study area. Meanwhile, some predictions 

are not within or close to the permanent cycle agricultural boundaries however, are observed to be 

orchards.  

 

 

 

 

 

Figure 7. Planetscope avocado orchard prediction RF (left) and SVM (right). 
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What is the optimal spatial texture analysis method within GLCM for the accurate identification 

of avocado orchards in Uruapan, Mexico, using the same machine learning models that have been 

previously employed? 

For this research question I added the GLCM textures to the feature layers and repeated the models. 

Where the results for the RF and SVM are drawn.  

• Random forest 

From the parameter selection the following parameters were selected: 'max_depth': None, 

'min_samples_leaf': 1, 'min_samples_split': 2 and 'n_estimators': 200. The RF model with these 

parameters shows a similar pattern where the NIR band has the most influence with an importance of 

0.33, whereas the other spectrum features retaliate between 0.07 and 0.11. The six GLCM textures do 

not have a higher importance than 0.01 The confusion matrix with a TP of 79,118, FP of 3,374 and a 

FN of 5,248 (figure 8) give the following accuracy assessment: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
79118

79118 + 3085
= 0.962 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
79118

79118 + 4344
= 0.948 

𝐹𝑠𝑐𝑜𝑟𝑒 =  2 ∙
0.962 ∙ 0.948

0.962 + 0.948
= 0.9551 

 

 

• Support Vector Machine 

From the parameter selection the following parameters were selected: 'C': 10, 'gamma': scale and 'kernel': 

'rbf'. This SVM model tells us that also in this case the yellow and NIR feature have the highest 

importance with 0.27. Followed by the other Planetscope spectral band ranging between 0.09 and 0.21. 

Finally, the GLCM features are listed between 0.03 and 0.04, with ‘dissimilarity’ close to zero. The 

confusion matrix with a TP of 78,857, FP of 3,346 and a FN of 5,759 (figure 9) give the following 

accuracy assessment: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
78857

78857 + 3346
= 0.959 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
78857

78857 + 5759
= 0.932 

𝐹𝑠𝑐𝑜𝑟𝑒 =  2 ∙
0.959 ∙ 0.932

0.959 + 0.932
= 0.9453 

 

 

Figure 8. Confusion matrix and Feature importance of Planetscope + GLCM texture RF model. 

Figure 9. Confusion matrix and Feature importance of Planetscope + GLCM texture SVM model. 



12 
 

For the two models in combination with GLCM texture the total avocado orchard pixels in the RF and 

SVM models are 23,479,219 and 4,531,641 pixels respectively. Since the image size remained the same, 

by dividing the predicted pixels by the total area pixels which gives us 20.8% for RF and 4,0% for SVM 

of the total area that is predicted as avocado orchard. The locations of the predictions for the RF model 

show similar results as in figure 7, where they mostly are predicted in the expected areas in combination 

with some predictions in forests. The SVM model however shows an unusual low predicted area. (figure 

10) Looking at the image reveals that the SVM models creates its predictions also greatly based on some 

of the GLCM features and thus the contours of the avocado orchards.  

 

 

 

  

Figure 10. Planetscope + GLCM texture avocado orchard prediction RF (left) and SVM (right-up) with a zoomed in location (right-bottom). 
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Can GLCM maintain its accuracy and reliability while working with lower-resolution (Sentinel-

2 & Landsat 8/9) images as input, and how might its performance be influenced by the change in 

resolution? 

For the final research question four predictions were made. RF and SVM models for Sentinel 2 and 

Landsat 8 in combination with the GLCM textures. The satellite imagery was taken for Sentinel-2 is 29-

04-2023 and Landsat 8 is 08-05-2023. 

• Random forest 

o Sentinel 2  

Firstly, the RF model for Sentinel 2 is created. From the parameter selection the following parameters 

were selected: 'max_depth': 20, 'min_samples_leaf': 2, 'min_samples_split': 2 and 'n_estimators': 200. 

This gave the feature importance and confusion matrix of the RF model for Sentinel 2. The ranking 

gives us the result that ‘Red edge 3’ has the most influence on the prediction with an importance of 

0.175. Followed by other Sentinel 2 spectral bands between 0.13 and 0.07. Finally, the texture features 

are listed with an importance between 0.03 and 0.015. Next, the confusion matrix gave as results TP of 

1,084, FP of 292 and a FN of 314 (figure 11) which give the following accuracy metrics: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1084

1084 + 292
= 0.788 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
1084

1084 + 314
= 0.775 

𝐹𝑠𝑐𝑜𝑟𝑒 =  2 ∙
0.788 ∙ 0.775

0.788 + 0.775
= 0.781 

 

 

 

o Landsat 8  

Secondly, the RF model for Landsat was formed. The parameter selection gave us the following result: 

'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 5 and 'n_estimators': 100. This gave us 

the feature importance and confusion matrix. Herein, the NIR feature has the highest importance with 

0.34, followed by the other Landsat 8 spectral bands ranging from 0.06 to 0.15. At the bottom of the 

ranking the GLCM texture features are to be found ranging from 0.015 to 0.03. The confusion matrix 

has the TP of 732, FP of 111 and the FN of 103 (figure 12), giving the accuracy metrics: 

 

 

 

 

Figure 11. Confusion matrix and Feature importance of Sentinel-2 RF model. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
732

732 + 111
= 0.868 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
732

732 + 103
= 0.877 

𝐹𝑠𝑐𝑜𝑟𝑒 =  2 ∙
0.868 ∙ 0.877

0.868 + 0.877
= 0.872 

 

 

• Support vector machine 

o Sentinel 2  

The second part of this research question is the SVM model. For the Sentinel 2 the parameter selection 

was 'C': 10, ‘degree’: 2, 'gamma': 0.1 and 'kernel': 'rbf'. This gave the feature importance with the green 

feature as most important with a value of 0.2. Followed by a more gradually importance decline with 

the Sentinel 2 spectral bands ranging between 0.06 to 0.175. After the spectral features, the texture 

features are listed with an importance between 0.015 and 0.05. The confusion matrix gave a result with 

a TP of 1,022, FP of 354 and a FN of 302 (figure 13), which give the following accuracy metrics: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1022

1022 + 354
= 0.743 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
1022

1022 + 302
= 0.772 

𝐹𝑠𝑐𝑜𝑟𝑒 =  2 ∙
0.743 ∙ 0.772

0.743 + 0.772
= 0.757 

 

 

 

 

o Landsat 8  

Finally, the SVM model for the Landsat 8 is created and gave a result using the parameter selection of 

'C': 10, ‘degree’: 2, 'gamma': 0.1 and 'kernel': 'rbf'. The feature importance of this model was given and 

gave as most important feature the NIR band with an importance of 0.3. After that, the other spectral 

features were presented, except blue, with an importance between 0.05 and 0.16. The blue feature was 

valued as 0.02. The texture layers are also in this case together between 0.01 and 0.04. The confusion 

matrix had a TP of 747, a FP of 96 and a FN of 102 (figure 14), which give the models accurate 

assessment: 

 

Figure 12. Confusion matrix and Feature importance of Landsat 8 RF model. 

Figure 13. Confusion matrix and Feature importance of Sentinel-2 SVM model. 
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Figure 15.Avocado orchard predictions of a) Sentinel-2 + GLCM texture RF, b) Sentinel-2 + GLCM texture SVM,    
c) Landsat 8 + GLCM texture RF and d) Landsat 8 + GLCM texture SVM. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
747

747 + 96
= 0.886 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
747

747 + 102
= 0.880 

𝐹𝑠𝑐𝑜𝑟𝑒 =  2 ∙
0.886 ∙ 0.880

0.886 + 0.880
= 0.883 

 

 

At last the land coverage was 

calculated for all four models. The total area for Sentinel 2 is 2,137,289 pixels and for Landsat 8 it is 

1,127,467 pixels. The predicted pixels for every model are for Sentinel 2 RF: 647,021 and SVM: 

590,530 and for Landsat 8 RF: 421,993 and SVM: 591,906. Using the same method as in the previous 

questions the total area predicted is 30.3%, 37,4%, 27,6% and 52,5% respectively. The spatial 

distribution for all predictions well placed within the permanent cycle agricultural borders. However, 

both satellite data have their own flaws when an prediction is made. The Sentinel-2 models have the city 

of Uruapan classified as avocado orchards, while the Landsat 8 models classify excessive amounts of 

land as avocado orchards in the South of the study area. (figure 15) 

  

Figure 14. Confusion matrix and Feature importance of Landsat 8 SVM model. 
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5. Discussion 

What machine learning model for land use classification, when applied to Planetscope's high-resolution 

images, yields the most accurate results in detecting avocado orchards?  

From the first results between the RF and SVM model for the Planetscope data, assessing the first 

accuracy metrics comes with a F-score of 0.9545 and 0.9481 respectively. So, this tells us that the RF 

model in this case has the upper hand in predicting the avocado orchards in the study area. The study of 

Talukdar et al. (2020) created a comparison between multiple ML models on land use classifications 

where they came to the conclusion that the RF model gives the highest accuracy. Additionally, in a more 

recent paper, the accuracy assessment for RF and SVM for land use classification is made and came out 

that RF is the superior model in this case. (Adugna et al., 2022) This is in line with the findings of the 

sub research question based on the F-score of the confusion matrices. Next to that the accuracy was also 

tested on the complete study area. Based on the statistical and geographical data of INEGI, 17% of the 

Uruapan municipality is used for avocado orchards. Meanwhile, RF predicts 21.4% and SVM predicts 

19.7%. Lastly, the spatial predictions give the last insights in the performance of the models. From the 

prediction maps, the RF model shows more predictions within the INEGI vector, but have to take into 

account that this dataset is from 2016 and land use could be different in the satellite data used in this 

paper. Based on all these results the RF model would in this case yield the most accurate predictive 

results.  

What is the optimal spatial texture analysis method within GLCM for the accurate identification of 

avocado orchards in Uruapan, Mexico, using the same machine learning models that have been 

previously employed? 

After adding the GLCM texture feature layers it can be concluded that the RF model has the same F-

score of 0.9551 as the model without the GLCM texture features. Surprisingly, when applying the 

models fit to predicting the percentage of avocado orchards of the entire study area, an improvement is 

seen where the new model predicts 20.8% of the total area as avocado orchards. Even though the feature 

importance on GLCM features was almost non-relevant it did improve the RF model. Ciriza et al., 

(2017) found that the total accuracy increases by 3.3% when adding GLCM features to satellite bands 

features. However, that is with an feature amount of 56 and after selection to only five features it 

increases by 9.2%. Additionally, the GLCM features justified in this study are correlation, contrast and 

entropy. Meanwhile, the RF feature importance shows that entropy as top contributor for the texture 

features. However, due to the limited importance and increase in F-score this does not say enough about 

the prediction improvement of the entire RF model. The SVM model showed a similar pattern with the 

GLCM features on the bottom with as top contributor ASM. The justified feature entropy is only on the 

third spot of the GLCM features. However, in the case of the SVM model, a slight decrease within the 

F-score is seen to 0.9453, compared to the SVM model of RQ1. Additionally, the spatial prediction 

showed a different predict method where is mainly focused its prediction on some of the GLCM features 

which explains the 4,0% of the total prediction. Showing only the contours of the fields makes it difficult 

to visually assess the accuracy in combination with the percentage. This makes its difficult also in future 

classifications to assess the prediction quality if only contours are sown. This only, seems to be an issue 

for the SVM model, but looking at the feature importances, it takes the GLCM more into account than 

the RF model. This says that the GLCM features negatively influence the localization of avocado 
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orchards with these models. Nonetheless, both models exhibit comparable spatial predictions obtained 

from the land use data provided by INEGI. 

Can GLCM maintain its accuracy and reliability while working with lower-resolution (Sentinel-2 & 

Landsat 8) images as input, and how might its performance be influenced by the change in resolution? 

Finally, Sentinel-2 and Landsat 8 bands and GLCM textures were used as replacement for the 

Planetscope wavelets and textures. The results gave a RF F-score of  0.781 and 0.872 for Sentinel-2 and 

Landsat 8 respectively and a SVM F-score of 0.757 and 0.883 for Sentinel-2 and Landsat 8 respectively. 

Which concludes that the accuracy assessment using the F metrics says that open source data like 

Sentinel-2 and Landsat 8 does not maintain its accuracy when predicting avocado orchards when using 

GLCM features and thus perform worse than Planetscope’s satellite imagery. This also counts for the 

area coverage prediction where the avocado orchards prediction is more than 10% to 35% higher than 

with Planetscope’s imagery. As already mentioned in the introduction, Puissant et al., (2005) tells that 

higher resolution have a higher accuracy as is seen in this accuracy assessment. However, even though 

the F-score is a pleasantly high, the reliability of this prediction is doubtful. When looking at the maps 

in figure 15, the maps of the Sentinel-2 and Landsat 8 predictions show predictions that are definitely 

false. For example, Sentinel-2 predictions show that also the city of Uruapan is viewed as avocado 

orchards for both RF and SVM. Meanwhile, the Landsat 8 models are overpredicting with high amounts 

of area that is not avocado orchards. This is especially visible in the SVM model of Landsat 8. This 

brings me to the practical implications and limitations of this study. 

Practical implications  

Computational time 

When comparing the RF and SVM models, I noticed during running the models that the computation 

time of SVM is way higher than that of the RF model. Example of this is predicting the whole 

Planetscope data around 100 hours, which was reduced to 12 hours using multiple cores from the high 

performance computer from the GRS faculty. This was also found in the research of Adugna et al., 

(2022). To find a trade-off between accuracy and time-efficiency, a radial basis function would be most 

optimal. (Jozdani et al., 2019) In the parameter selection this came forward in the lower resolution that 

‘rbf’ was also the selected kernel to use. Due to time restrictions, the ‘rfb’ kernel is also used to obtain 

the SVM Planetscope fit. Reason for this is that the change in resolution causes the amount of pixels per 

feature layer to be 50 and 100 times smaller for Sentinel-2 and Landsat 8 respectively.  

Regrettably, this was not enough for the model to be finished within a reasonable timeframe and 

therefore split the study area up into four quarters. The upper right quarter was used since this still had 

the most information to come up with a reasonable prediction as can be seen in figure 8a and c. This is 

less the case in the lower resolution predictions, perhaps due to the reduction of training pixels in an 

already limited amount of training pixels compared to Planetscope’s model. The high amount of 

dimensions of the model in combination with a decrease/low amount of training pixels can lead to the 

curse of dimensionality. Ultimately, this can decrease the accuracy of the ML model. (Salimi et al., 

2018)  
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Methodological reflection 

Accuracy assessment 

Reading the land use and land cover papers like Adugna et al., (2022), Erener, A., & Duzgun, S. (2009) 

and from the paper reviews of Talukdar et al. (2020), the kappa coefficient was mainly used as a 

accuracy metric. It is also seen as a standard, but statistically robust metric to test the accuracy in 

classification. It considers outcomes that may have occurred by random chance. (Ben-David, 2008) In 

a more recent review study, they looked at differences between Matthews Correlation Coefficient 

(MCC), Cohen’s Kappa Coefficient and Brier Score. Herein, the MCC is seen as more informative than 

the Kappa coefficient and Brier Score, but only in binary classifications such as in this paper. (Chicco 

et al., 2021) Therefore, for future classifications, a more widely accuracy assessment metrics could be 

used to assess the models performance.  

Feature extraction 

To counter the high amount of dimensions/curse of dimensionality and computation time, a 

dimensionality reduction method could be applied to also improve accuracy and test if texture features 

are still reasonable the take into the model. Methods that could be applied are Principal Component 

Analysis (PCA), Linear Discriminant Analysis (LDA), Independent Component Analysis (ICA) and 

Minimum Noise Fraction (MNF). (Moharram & Meena, 2022) In this paper the RF model was still 

reasonable to use. Nevertheless, for future research using high dimensionality and time consuming 

models, such as SVM, a feature extraction method could be used.  

Texture analysis 

In this thesis the use of machine learning models is utilized. Nonetheless, with the upcoming of deep-

learning models,  an option could be the use of conventional neural networks (CNN) with the use of pre-

trained models such as ResNet50. (Dewangkoro & Arymurthy, 2021) Or with the use of Discrete Cosine 

Transforms (DCT) to enhance the fine-grained multi-scale land cover object identification for high 

resolution imagery, which could be used to detect land cover change (Zhu et al., 2023). These methods 

could be more modern practices and perhaps promising alternatives in detection of avocado orchards. 

Significance of findings 

Overall, I believe that the sub-research questions results give a swift overview of the influence of GLCM 

texture analysis, however more could be done to strengthen the main objective as explained in the 

methodological reflection. As for the predicted avocado orchard, only 76 pixels for RF and pixels 28 for 

SVM added to the TP when adding the GLCM texture features. Despite the limited change in the 

confusion matrix, this change reflects to 0.6% or 608 ha of improvement to the total predicted study 

area, despite not being spatially explicit. However, more research has to be done to say more about the 

significance of GLCM texture in discovering avocado orchards. 
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6. Conclusion 
The primary aim of this thesis was to assess if GLCM texture analysis in combination with various 

satellite imagery can improve the detection of avocado orchards in Uruapan, Mexico. The study was 

structured around three sub-research questions to evaluate the possibility of GLCM texture analysis.  

Initially, Planetscope’s data was utilized to determine which machine learning model, RF or SVM, gave 

the superior accuracy in estimating avocado orchards. From the F-score, the RF model had a score of 

0.9545 versus a score of 0.948 of that SVM. The spatial prediction gave 21.4% for RF and 19.7% for 

SVM, which is closer to the 17% of avocado orchards, but visually the RF model gave more promising 

results. In combination with the quicker running time of RF, to conclude that RF model has the upper 

hand of the two models. Afterwards, these models were used in combination with GLCM features: 

homogeneity, dissimilarity, ASM, entropy, contrast and correlation, to check the influence on the 

predictions. The F-score for RF is 0.9551 and for SVM 0.945. This also gave a limited improvement in 

the spatial prediction where the GLCM features negatively influenced the SVM model where the total 

area prediction is 4,0% in combination with the visual prediction of only contours of land. Ultimately, 

the feature importance tells us that entropy came highest from the GLCM features, also including the 

Sentinel-2 and Landsat 8 results. Nevertheless, the GLCM features are barely significant to the model 

with the current model set up. Finally, the models were used on open source data from Sentinel-2 and 

Landsat 8. The F-score came logically back as less accurate with RF 0.781 and 0.872 respectively and 

for SVM 0.757 and 0.883 respectively. Also with the addition of the area prediction which is more than 

10% off, it is not reliably enough compared to Planetscope’s data, but has potential if more is done in 

creating the ML model when assessing the prediction placement in the study area.  

From these results and some literature reviewing, extra or different accuracy assessments could be used 

such as MCC or Kappa coefficient for the use of binary classification and to research the impact of 

GLCM texture analysis and reduce the computation time, a feature extraction like PCA, LDA, ICA or 

MNF could help realise this. 

With the sub-research question covered and the discussion handled, the main research question can be 

reviewed: “How can texture analysis improve machine learning models in detecting avocado orchards 

in Uruapan, Mexico?” While the inclusion of GLCM features did not significantly improve the overall 

accuracy of the machine learning models for avocado orchard detection in Planetscope data, the analysis 

minimally suggests that texture information can potentially aid in orchard identification and more and/or 

other research has to be done to discover the competence of GLCM texture analysis with the 

recommendations given.  
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8. Appendix 

 

  

Year Id status Name province Idddr Name ddr Idcader Nomcader Id municipality Gemeente Idciclo Productive name Id modality Name modality Measure Id unity Nomination Id Name cultivation Sown (ha) Harvested (ha) Damaged (ha) Production volume Yield Price medio rural (pesos) Production value (pesos)
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 1 Otoño-Invierno 1 Riego 200201 Tonelada 5740000 Calabacita 10 10 0 195.5 19.55 7749.92 1515109.36
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 1 Otoño-Invierno 1 Riego 200201 Tonelada 6120000 Chile verde 12 12 0 73.2 6.1 8707.45 637385.34
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 1 Otoño-Invierno 1 Riego 200201 Tonelada 7490000 Maíz grano 155 155 0 550.25 3.55 6200 3411550
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 1 Otoño-Invierno 1 Riego 200201 Tonelada 8970000 Tomate rojo (jitomate) 12.5 12.5 0 176.25 14.1 10109.36 1781774.7
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 1 Otoño-Invierno 1 Riego 200201 Tonelada 8980000 Tomate verde 8 8 0 70.7 8.84 9500 671650
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 2 Primavera-Verano 2 Temporal 200201 Tonelada 5690000 Cacahuate 12 12 0 21.6 1.8 13447.96 290475.94
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 2 Primavera-Verano 2 Temporal 200201 Tonelada 5740000 Calabacita 15 15 0 196.5 13.1 9223.06 1812331.29
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 2 Primavera-Verano 2 Temporal 200201 Tonelada 7490000 Maíz grano 4730 4730 0 10926.3 2.31 6607.06 72190719.68
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 2 Primavera-Verano 2 Temporal 200201 Tonelada 8970000 Tomate rojo (jitomate) 25 25 0 352.5 14.1 9636.6 3396901.5
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 1 Riego 200201 Tonelada 5060000 Aguacate 11260 11110 0 121572 10.94 25925.11 3151768051
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 1 Riego 200201 Tonelada 5460000 Ave del paraíso 6 6 0 1751 291.83 306 535806
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 1 Riego 200201 Tonelada 5820000 Caña de azúcar 171.27 171.27 0 13504.64 78.85 980 13234547.2
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 1 Riego 200201 Tonelada 5830000 Semilla de caña de azúcar 2 2 0 206 103 945 194670
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 1 Riego 200201 Tonelada 6530000 Durazno 30 30 0 264 8.8 10974.28 2897209.92
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 1 Riego 200201 Tonelada 7060000 Guayaba 222 222 0 2222 10.01 9823.87 21828639.14
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 1 Riego 200201 Tonelada 7560000 Mango 15 15 0 226.5 15.1 7812.52 1769535.78
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 1 Riego 200201 Tonelada 7830000 Nanche 11 11 0 60.39 5.49 7750.84 468073.23
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 1 Riego 200201 Tonelada 7920000 Nopalitos 31 31 0 1653.01 53.32 3540.13 5851870.29
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 1 Riego 200201 Tonelada 9310000 Zarzamora 300 180 0 4500 25 20045.44 90204480
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 2 Temporal 200201 Tonelada 5060000 Aguacate 6380 6380 0 64507 10.11 26565.03 1713630206
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 2 Temporal 200201 Tonelada 5460000 Ave del paraíso 12 12 0 5214.1 434.51 402 2096068.2
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 2 Temporal 200201 Tonelada 5830000 Semilla de caña de azúcar 5 5 0 422.14 84.43 810 341933.4
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 2 Temporal 200201 Tonelada 6530000 Durazno 14 14 0 119 8.5 11168.92 1329101.48
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 2 Temporal 200201 Tonelada 7830000 Nanche 14 14 0 73.21 5.23 7875.6 576572.68
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 2 Temporal 200201 Tonelada 7920000 Nopalitos 42 42 0 2523.99 60.1 3708.82 9361024.59
2022 16 Michoacán 86 Uruapan 1 Parangaricutiro 102 Uruapan 3 Perennes 2 Temporal 200201 Tonelada 15050000 Pastos y praderas 110 110 0 2812.11 25.56 435.28 1224055.24

Total 23604.77 23334.77 0 234193.89 1314.23 220250.25 5103019742

Table 2. INEGI dataset of crop production in Uruapan, Mexico. 
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List of research data 

Type Data 

Final report  word, PDF 

Midterm presentation pptx 

Final presentation pptx 

Planetscope satellite imagery TIFF 

Sentinel-2 satellite imagery TIFF 

Landsat 8 satellite imagery TIFF 

Mexico administrative levels Shapefile 

INEGI land use and land vegetation Shapefile 

INEGI crop production 2022 Excel 

Random Forest model Python Source File 

Support Vector Machine model Python Source File 

GLCM texture R Source File 

Grayscale images Figure 

Study area  Maps 

Avocado prediction maps Maps 

Confusion matrices and feature importances Figure 

Flowchart methodology Figure 

Satellite data Table 

 

 

 

 

Table 3. List of deliverables. 


