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ABSTRACT: Industrial biotechnology uses Design−Build−Test−
Learn (DBTL) cycles to accelerate the development of microbial
cell factories, required for the transition to a biobased economy. To
use them effectively, appropriate connections between the phases
of the cycle are crucial. Using p-coumaric acid (pCA) production
in Saccharomyces cerevisiae as a case study, we propose the use of
one-pot library generation, random screening, targeted sequencing,
and machine learning (ML) as links during DBTL cycles. We
showed that the robustness and flexibility of the ML models
strongly enable pathway optimization and propose feature
importance and Shapley additive explanation values as a guide to
expand the design space of original libraries. This approach allowed
a 68% increased production of pCA within two DBTL cycles, leading to a 0.52 g/L titer and a 0.03 g/g yield on glucose.
KEYWORDS: machine learning, DBTL, one-pot library, Saccharomyces cerevisiae

1. INTRODUCTION
The reality of climate change calls for an imminent transition
to a biobased economy less reliable on the petrochemical
industry. Biotechnology contributes to solutions to this
problem as metabolic engineering allows microbial production
of a wide variety of compounds such as pharmaceuticals,
biofuels, food additives, and bulk chemicals.1 However, these
solutions often require very long development times that limit
their real-world application.2

Design−Build−Test−Learn (DBTL) cycles offer a frame-
work for systematic metabolic engineering. Pathways are
designed during the Design phase, and strains are constructed
in the Build phase and screened for production during the Test
phase. In the Learning phase, a relationship between the
pathway design and production is established and used to
inform new DBTL cycles.3 Advances in synthetic biology and
automation facilitate the engineering of microorganisms and
increase the throughput of the Build and Test phases.
However, predicting the effect of modifications in the Design
phase that may lead to improvements is nontrivial.4,5 In fact,
the acceleration of the Build and Test phases of the DBTL
cycle might lead to a paradox where more data leads to more
complexity but not necessarily better strain performance.6 To
avoid this, an efficient and meaningful link between the Design
and Learn phases of the cycle is crucial.
Machine learning (ML) can identify patterns in the system

of interest without the need of a detailed mechanistic
understanding of the problem.7 It has been used to aid strain

development with applications ranging from gene annotation
and pathway design to process scale-up.4 When used for
pathway optimization, common approaches start by creating
libraries of strains with varying regulatory elements (e.g.,
promoters and ribosome binding sites). These libraries include
a defined solution space that can be explored by random or
rational sampling.8,9 A subset of the library is then screened,
and genotype and production data are used to train the ML
algorithms. The algorithms then suggest a new round of
(improved) strains for construction, effectively linking the
Learn and Design phases of sequential DBTL cycles.5,8,10−12

Besides, ML algorithms are robust to missing data caused by
unsuccessful construction of specific strains, which facilitates
effective and efficient implementation of the DBTL cycles.12,13

p-Coumaric acid (pCA) is an aromatic amino-acid-derived
molecule produced from phenylalanine (Phe) or tyrosine
(Tyr). It is naturally found in plants and serves as a starting
material for commercially valuable products such as
pharmaceuticals, flavors, fragrances, and cosmetics.14 In
Saccharomyces cerevisiae, Phe and Tyr are synthetized via the
prephenate pathway (Figure 1A).15,16 This pathway starts with

Received: January 18, 2024
Revised: March 7, 2024
Accepted: March 14, 2024

Research Articlepubs.acs.org/synthbio

© XXXX The Authors. Published by
American Chemical Society

A
https://doi.org/10.1021/acssynbio.4c00035

ACS Synth. Biol. XXXX, XXX, XXX−XXX

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

W
A

G
E

N
IN

G
E

N
 U

N
IV

 &
 R

E
SE

A
R

C
H

 o
n 

A
pr

il 
17

, 2
02

4 
at

 1
4:

24
:0

4 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sara+Moreno-Paz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rianne+van+der+Hoek"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Elif+Eliana"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Priscilla+Zwartjens"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Silvia+Gosiewska"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vitor+A.+P.+Martins+dos+Santos"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vitor+A.+P.+Martins+dos+Santos"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joep+Schmitz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maria+Suarez-Diez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acssynbio.4c00035&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00035?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00035?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00035?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00035?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00035?fig=tgr1&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acssynbio.4c00035?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the condensation of erythrose-4-phosphate (E4P) and
phosphoenolpyruvate (PEP) by 3-deoxy-7-phosphoheptulo-
nate synthase (ARO3/4). Then, the pentafunctional protein
ARO1 converts 3-deoxy-7-phosphoheptulonate (DAHP) to 5-
enolpyruvylshikimate-3-phosphate (EPS3P), which is con-
verted to chorismate (CHO) by ARO2, and to prephenate
(PRP) by ARO7. Prephenate can then be converted to Phe by
prephenate dehydratase (PHEA) and ARO8/9 or to Tyr by
prephenate dehydrogenase (TYR) and ARO8/9. To continue
the synthesis of pCA, expression of heterologous genes is
needed: Tyr ammonia lyase (TAL) for synthesis from Tyr or
Phe ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H),
and its associated cytochrome P450 reductase (CPR) for
synthesis from Phe.14,17−19

The prephenate pathway is highly regulated where Tyr
exerts feedback inhibition on ARO3 and ARO7 and Phe on
ARO4.16 This regulation together with the availability of
precursors and appropriate expression of heterologous genes
have been demonstrated to influence pCA production.14,17,18

However, testing the effect of these factors individually might
result in the exclusion of possible synergistic effects.
Alternatively, combinatorial optimization of metabolic path-
ways can facilitate the search for optimal production albeit
involving the construction and testing of an exponentially
growing number of strains.8

We used ML-guided DBTL cycles to improve pCA
production in S. cerevisiae. We created combinatorial libraries
based on the Tyr- or Phe-derived pathways that simultaneously
altered expressed coding sequences and regulatory elements
(promoters) (Figure 1B). We showed a better performance of
the Phe-derived pathway, which was further optimized based
on ML predictions. Following this strategy, we achieved a 68%
improvement in production within two DBT(L) cycles and a
final pCA titer of 0.52 g/L, resulting in a 0.03 g/g yield of pCA
on glucose. Although higher pCA yields of up to 0.15 g/g have
been previously obtained,14 this study is an example of the use
of ML-guided DBTL cycles to systematize the generation of
efficient strains.

Figure 1. (A) pCA production pathway. Heterologous genes are preceded by a two-letter code indicating the organism of origin where “ec” refers
to E. coli, “at” to Arabidopsis thaliana, and “fj” to Flavobacterium johnsoniae, see legend for color codes. (B) Library structure. The library consists of
gene clusters formed by a selection marker (Marker) and six factors with levels including different open reading frames (ORFs) and different
promoters. Lighter colors are used to indicate factor’s levels included in the design but not obtained experimentally. GLC, glucose; PEP,
phosphoenolpyruvate; E4P, erithrose-4-phosphate; DAHP, 3-deoxy-7-phosphoheptulonate; DHQ, 3-dehydroquinate; DHS, 3-dehydroshikimate;
SHK, shikimate; S3P, shikimate-3-phosphate; EPS3P, 5-enolpyruvylshikimate-3-phosphate; CHO, chorismate; PRP, prephenate; PPYR,
phenylpyruvate; PHE, phenylalanine; CIN, cinnamate; pCA, p-coumaric acid; HPPYR, 4-hydroxyphenylpyruvate; TYR, tyrosine.

Table 1. Summary of Factors and Their Levels in the TAL and PAL Libraries

factors levels (promoter + ORF)

1 2 3 4 5 6 7

1 TDH3-ENO2 TDH3-RKI TDH3-TKL TDH3-ARO2 TDH3-
ARO4

RPL8A-
ARO4

MYO4-
ARO4

2 TEF1-ARO1 TEF1-AROL RPL28-AROL UREA3-
ARO4

3 PRE3-PHA PRE3-CHS PRE3-ARO7 ACT1-ARO7 PFY1-ARO7
4 ENO2-PAL ENO2-TAL RPS9A-PAL RPS9A-

TAL
VMA6-PAL VMA6-TAL

5 KI_OLE1-C4H KI_OLE1-
ARO9

CHO1-C4H CHO1-
ARO9

PXR1-C4H PXR1-ARO9

6 PGK1-CPR PGK1-TYR RPS3-CPR RPS3-TYR CCW12-CPR CCW12-
TYR
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2. RESULTS
2.1. DBTL Cycle 1: Exploring the Design Space.

2.1.1. Design: Selection of Factors and Levels. Two
independent libraries were designed depending on whether
pCA was produced from Phe (PAL route) or Tyr (TAL route;
Figure 1A). Any design of the libraries is formed by a 7-genes
cluster (6 factors and a selection marker) integrated in the
genome of S. cerevisiae (Figures 1B and S1). The combination
of a promoter, open reading frame (ORF), and terminator
(cassette) in the gene cluster constitutes a factor that can take
different levels depending on the chosen promoter and/or
ORF. The size of the library is determined by the number of
factors and levels, so library = ∏i = 1

F Li, where F is the number
of factors and Li is the number of levels of factor i. Both
libraries shared factors 1 and 2 and differed in the other 4
factors (Figure 1B).
Factor 1 contained five ORFs: enolase (ENO1), ribose-5-

phosphate isomerase (RKI1), transketolase (TKL1), ARO2,
and feedback-resistant ARO4 (ARO4K229L) under the TDH3
promoter. Besides, ARO4K229L could be downstream of two
additional promoters (RPL8A and MYO4) as the expression of
this gene has resulted in significantly increased pCA titers.14,18

ENO1, RKI1, and TKL1 were chosen considering that the
availability of PEP and E4P can also affect the production.
ARO2 was included as an additional level to test the effect of
other shikimate pathway genes (Table 1).
Levels for factor 2 were based on the assumption of ARO1

as the rate-limiting step (Table 1). Rodriguez et al. observed
increased pCA production when ARO1 or AROL from
Escherichia coli, which catalyzes the phosphorylation of
shikimate, was overexpressed in yeast.18 Therefore, 4 levels
were chosen: expression of AROL under three different
promoters (TEF1, RPL28, and UREA3) and expression of
ARO1 under a strong promoter (TEF1).
The focus of factor 3 was on the expression of the feedback-

resistant variant ARO7G141S under three different promoters
(PRE3, ACT1, and PFY1) as expression of this gene improved
pCA titers.14,18 Besides, the expression of PHEA and TYRA
from E. coli with the PRE3 promoter is considered as
additional levels for the PAL and TAL libraries, respectively
(Table 1). These bifunctional enzymes have a chorismate
mutase activity (conversion of CHO to PRP) and either

prephenate dehydratase (PHEA) or dehydrogenase (TYRA)
activity, specific for the formation of Phe or Tyr,
respectively.20,21

Factors 4, 5, and 6 of the PAL library each focused on one of
the heterologous genes required for pCA production from Phe:
PAL, C4H, and CPR under the control of three different
promoters (ENO2, RPS9A, VMA6; KI_OLE1, CHOI, PXR1;
and PGK1, RPS3, and CCW12, respectively). In the TAL
library, levels of factor 4 were formed by TAL under the
control of three promoters (ENO2, RPS9A, and VMA6). In
order to obtain a design space with the same size as the PAL
library, factors 5 and 6 included the expression of ARO9 and
TYR with the same promoters used for the PAL library (Table
1).
Considering the factors and levels used, the number of

possible designs in each library was 3024 (7·4·4·3·3·3).
2.1.2. Build and Test: Construction and Screening of the

Combinatorial Library. For each of the promoter−terminator
pairs designed, the cassettes formed by the promoter-GFP-
terminator were constructed and transformed into yeast.
Positive colonies were found for all of the constructs but the
strong promoter−terminator pairs for factors 3 and 5 (PRE3-
ADH1 and KI_OLE1-TDH3). Cells were grown in BioLector
bioreactors, and fluorescence was analyzed using fluorescence-
activated cell sorting (FACS). For factor 1, the fluorescence of
strong and medium promoters differed by an order of
magnitude. For factors 2, 4, and 6, the fluorescence values
for the medium promoters were approximately half of those
from strong promoters. Weak promoters showed fluorescence
values 1 or 2 orders of magnitudes below those of the strong
and medium promoters (Figure S2).
The cassettes required for the in vivo assembly of the gene

clusters were created by combining promoters, ORFs,
terminators, and homology regions. All cassettes except those
containing the strong promoter for factor 5 and the strong and
medium promoters for factor 6 were obtained, which reduced
the size of the PAL and TAL libraries from 3024 possible
designs to 672 designs per library (Figure 1B).
S. cerevisiae cells expressing Cas9 were transformed with a

mixture of the correct cassettes using a one-pot transformation.
Cells were plated in selective media, and 440 strains per library
were randomly selected for screening of pCA production.

Figure 2. Screening before sequencing strategy. For each of the routes allowing pCA production, 672-member libraries were defined. For the PAL
route, production of 440 randomly selected strains was measured, and 225 strains were selected for sequencing; 189 correct strains containing 91
unique pathway designs were found. For the TAL route, 440 strains were screened from which 38 were sequenced; 30 of these strains were correct,
and 24 unique designs were found.
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These stains were grown in 96 DWP for 48 h, pCA was
extracted, and samples were measured using nuclear magnetic
resonance (NMR) (Figure 2). Colonies from the PAL route
produced pCA ranging from 0 to 0.22 au; colonies from the
TAL route produced significantly less pCA, with only three
colonies producing above the detection limit (0.05 au) and a
maximum production of 0.10 au.
Considering the screening results, the production space was

sampled including low, medium, and high producers in order
to obtain high-quality data for ML4 and to analyze the
efficiency of the library generation method. For the TAL route,
38 strains were sequenced from which 30 sequences were
correct (i.e., contained the gene cluster with 7 genes), and 24
contained unique pathway designs (i.e., different integrated
gene clusters) (Figure 2). Considering that 80% of the
sequenced strains were correct, the observed low pCA
production was likely caused by the lower efficiency of the
TAL route and not by incorrect library construction. These
results agreed with previous reports that identified the PAL
route as the most suitable pathway for pCA production.14

Therefore, optimization of pCA production was focused on the
PAL route. Out of the 672 possible designs in this library, 225
strains were selected for sequencing based on their pCA titers,
ensuring that the strains from different clusters were
sequenced. We found 189 correct strains (84%) from which
91 (48%) were unique, validating the library construction
approach (Figure 2). Out of the 91 unique designs, 58 designs
were present in one strain, and 33 had multiple replicates
(Figure S3). Besides, for all factors, at least a strain containing
each of the levels was found (Figure 3A).

2.1.3. Learn: Model Selection, Training, and Predictions.
One of the challenges of applying ML to strain design is
training data requirements. While some reports suggest the
homogeneous sampling of the complete solution space,4 others
suggest the benefit of including mainly good producers.10

Therefore, we divided our data into two data sets: the complete
data set that included data from producers and nonproducers
and the producers data set. Stratification was used during
training to ensure a constant proportion of poor, medium,
good, and very good producers in the training and test sets.
Train sets were used to find optimal hyper-parameters for four
ML algorithms: multiple linear regression (MLR), support
vector regression (SVR), kernel ridge regression (KRR), and
random forest regression (RFR). While MLR assumes a linear
relationship between the factors and the response, SVR and
KRR can capture nonlinear relationships, and random forest is
an ensemble method that excels at handling complex
interactions. The performance of the models with optimized
hyper-parameters was evaluated on the test set (Figure S4).
The models trained with the producers data set showed better
performance than that of those trained using the complete data
set (Table 2). MLR and KRR or all models were chosen as
predictors for the complete and the producer data sets,
respectively.
The selected models were trained in each data set using two

different learning strategies: “one-time training” and “recurrent
training” (Figure S4). The first strategy consisted of one-time

Figure 3. (A) Comparison of factor levels on the training set and top 10 predicted strains considering the CO (complete data set, one-time
training), CR (complete data set, recurrent training), PO (producers data set, one-time training), and PR (producers data set, recurrent training)
rankings. Ps, pm, and pw indicate strong, medium, and weak promoters, respectively. (B) Experimental validation of the CR ranking predictions.
Production relative to the BMP strain (same as CR7* strain) is shown. The genotype of the strains follows the same color code presented in panel
A.

Table 2. Performance of ML Methods (R2) Trained with the
Complete or Producer Datasets Using Stratification on Test
Dataa

complete data set producers data set

(91 designs) (63 designs)

MLR 0.70 ± 0.17 0.82 ± 0.15
SVR 0.71 ± 0.23 0.82 ± 0.19
KRR 0.72 ± 0.18 0.80 ± 0.11
RFR 0.72 ± 0.19 0.82 ± 0.16

aMLR, multiple linear regression; SVR, support vector regression;
KRR, kernel ridge regression; RFR, random forest regression.
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training with all of the available data and did not provide
uncertainty in the predictions. The second strategy was based
on recurrent learning on 90% of the available data, which
reduced the impact of possible outliers in the training data and
allowed uncertainty quantification of predictions. The trained
models were then used to predict the pCA titers of the 672
designs from the full design space. Considering that the models
selected for each data set had similar performances (Table 2),
the designs were ranked based on the frequency in which each
design was predicted to be in the top 1, top 5, or top 10 by
each model. In this way, the construction of designs commonly
predicted as top producers by different models was favored.
Four rankings were obtained: the CO and CR rankings based
on the complete data set and the one-time or recurrent training
strategies, respectively, and the PO and PR rankings based on
the producers data set (Figure S4).
Training strategies were evaluated based on their ranking of

the best-measured producer (BMP) strain, the five best-
measured producers (5-BMPs), and all the measured non-
producers (Figure S5). The best measured producers were
expected to rank high, while measured nonproducers were
expected to hold lower positions. Regardless of the training
strategy, including nonproducers during training did not
change predictions of measured top producers but improved
predictions of measured nonproducers, ensuring correct
coverage of the complete design space by the ML predictions.
In order to improve pCA production, the designs predicted

to render the highest titers were evaluated (Figure S6).
Notably, the BMP strain was predicted as part of the top 10
designs in all but the CO ranking. A comparison between the
levels present in the training data and the top 10 designs
predicted by all of the learning strategies is depicted in Figures
3A and S6. Top predicted strains showed a preference for
ARO4 under weak or strong promoters compared to the other
ORFs. For factors 2 and 3, ARO1 or AROL under a strong
promoter and PHA or ARO7 under its medium promoter were
favored. Finally, the strongest promoters tested for PAL and
C4H were enriched in the predicted top producers.
However, predicted pCA production improvements com-

pared to the BMP strain were low (6 ± 8%, 2 ± 5%, 3 ± 6%,
and 1 ± 5% depending on the learning strategy used) (Figure
S7). Therefore, the initially screened library was a good
representation of the whole design space and had already
achieved the highest possible production. Although we used
13.5% of the full library data for model training, ML algorithms
are frequently trained with data representing ca. 5% of the
library design space. Therefore, we tested the effect of reducing
data availability on model performance (Figure S12, Table 3).
When 40% of the available training data was used for training

with stratification (equivalent to 5.4% of the library space), the
coefficients of determination of the test sets remained above
0.6 for all the models but MLR regardless of the data set used,
suggesting that the identification of 36 unique strains could
have been sufficient for ML training.
2.2. DBT Cycle 2: Expansion of the Original Design

Space. ML analysis suggested that the optimal production is
possible considering the initial design space had already been
found. In order to validate this prediction, the top predicted
designs by all of the learning strategies were constructed.
Figure 3B shows the predicted and measured production of the
top 7 designs in the CR ranking. As expected, the production
of these strains did not significantly improve, with respect to
the BMP strain. Similar results were obtained with the top
strains from the CO, PO, and PR rankings, with production
remaining within the BMP mean ±20% (Figure S8).
In order to improve pCA production, the original design

space had to be expanded, and the permutation feature
importance and Shapley additive explanation (SHAP) values
were used to guide the new designs. Permutation feature
importance identifies the factors with the greatest influence on
model performance by evaluating the decrease in model
accuracy when the values of a factor are shuffled. Factor 5,
representing the expression strength of C4H, was identified as
the most relevant factor, followed by factor 4 (PAL expression)
(Figures 4A and S10). Considering that the predicted top
producers had C4H under the strongest promoter tested and
never chose the weaker promoter for PAL, we hypothesized
that higher expression of these genes could lead to higher
production. This was confirmed by the SHAP values, a
technique for explainable ML based on game theory that not
only identifies significant factors but also determines how they
affect the model output.22 For all the training strategies used
(except the MLR model with the producer data set), the
highest positive impact on model output (i.e., production) was
caused by expressing C4H and PAL under the strongest
promoter tested. Similarly, the highest negative impact was
caused by the expression of C4H and PAL under weaker
promoters (Figures 4B and S11). The importance of these
genes was confirmed by substituting the promoters of PAL or
C4H with weak promoters in the BMP strain and the best
strain in the CR ranking (CR1). In both cases, strains with the
lower expression of PAL and/or C4H showed significantly
reduced pCA production (Figure 4C). Besides, although the
effect of different expression levels of CPR could not be
assessed due to unsuccessful cassette construction, changing
the promoter of CPR in the BMP and CR1 strains did not
significantly change pCA production (Figure S9).
To further increase the expression of the genes, the strains

with double copies of each of the genes were created using
BMP and the best-constructed strain from CR ranking (CR4)
as hosts. Positive colonies containing double copies of ARO4
and ARO4-AROL-ARO7-PAL-C4H-CPR in the BMP host
and PAL-C4H-CPR in the CR4 host were not found. As
expected, when extra copies of factors 1 (ARO4), 2 (AROL or
ARO1), and 3 (ARO7 or PHEA) were integrated, production
of pCA did not significantly change (Figure 4D). However,
production did not significantly increase when double copies of
PAL or C4H were integrated. Even though average production
increased with a double copy of C4H, this change was not
significant (Figure 4D). The integration of a double copy of
the complete gene cluster was achieved only in one colony of
the CR4 host, and its production was similar to that in strains

Table 3. Performance of ML Methods (R2) on Test Sets
When Models Are Trained with Training Data Size Equal to
5.4% of the Librarya

complete data set producer data set

no stratification stratification no stratification stratification

MLR 0.52 ± 0.24 0.56 ± 0.23 0.61 ± 0.25 0.65 ± 0.23
SVR 0.57 ± 0.25 0.65 ± 0.21 0.64 ± 0.27 0.73 ± 0.22
KRR 0.61 ± 0.22 0.67 ± 0.16 0.65 ± 0.21 0.64 ± 0.19
RFR 0.65 ± 0.22 0.70 ± 0.20 0.70 ± 0.24 0.75 ± 0.22

aMLR, multiple linear regression; SVR, support vector regression;
KRR, kernel ridge regression; RFR, random forest regression.
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with an extra copy of C4H. In both hosts, double copies of
PAL and C4H resulted in significantly increased production
(63% in BMP and 58% in CR4). Besides, significantly
increased production was also found when double copies of
PAL-CPR (36%) and C4H-CPR (60%) were expressed in CR4
and PAL-C4H-CPR were expressed in BMP (68%) (Figure
4D).
The observed increase in pCA production, only obtained

when expanding the original design space, confirmed that the
original space had been sufficiently sampled and validated
feature importance and SHAP values as strategies to guide its
expansion.

3. DISCUSSION
Accelerating the design of industrially relevant strains is crucial
to transition to a biobased economy. In order to exploit the full
potential of microorganisms, the combinatorial optimization of
metabolic pathways is required. However, this involves the
construction and testing of an exponentially growing number
of strains which becomes unfeasible.23 Alternatively, the
solution space can be sampled by following a rational or
randomized approach. Statistical design of experiments reduces
the number of strains to build and test while maximizing the
information gained about the complete solution space.
However, it requires the construction of specific strains, and
it is sensitive to experimental limitations: information is lost

when a strain cannot be built.24 As shown here, ML presents
an alternative to learn from randomly generated libraries of
strains, which is robust to missing data. Besides, when ML is
used, libraries can be flexibly designed to include factors with
different numbers of levels based on prior knowledge. We used
factor 1 to explore genes that could influence pCA production
assigning 7 levels to this factor. Instead, we assigned 3 levels to
factors 4, 5, and 6, aiming to fine-tune the expression of the
required heterologous genes. We used 4 levels for factors 2 and
3 to simultaneously test the effect of homologous ORFs from
different origins and tune the expression of one of them. The
robustness and flexibility of the ML approach were also shown
when some of the designed levels could not be implemented
experimentally. Although the design spaces of the PAL and
TAL libraries were reduced from 3024 members to 672, the
relationship between the remaining levels could still be
efficiently explored.
Another challenge to combinatorial pathway optimization is

the need for the characterization of genetic parts that ensure
that the solution space is sufficiently explored. This is
especially important when the aim is to fine-tune the
expression levels of pathway genes.5,8,10,12 In principle, the
optimization of gene expression would benefit from the use of
quantitative variables as factors (e.g., GFP fluorescence,
protein levels) as they would allow the identification of an
optimal expression level.25 However, although effort is taken to

Figure 4. (A) Representative example of feature selection results, where f1, f2, f3, f4, and f5 refer to factors 1−5, respectively. (B) Representative
example of the SHAP values, where ps, pm, and pw refer to strong, medium, and weak promoters, respectively. (C) Effect of substituting promoters
of PAL and/or C4H by the weakest alternative (pw) in two different hosts: BMP and predicted top producer by the complete recurrent strategy
(CR1). (D) Effect of integration of double copies of genes in two different hosts: BMP and the constructed predicted top producer by the complete
recurrent strategy (CR4). Significant differences with respect to each host are indicated by *. Colonies with double copies of ARO4 and the
complete gene cluster were not obtained in the BMP host. Colonies with double copies of PAL-C4H-CPR were not obtained in the CR4 host, and
a single colony was obtained with the correct integration of the complete gene cluster.
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appropriately characterize how regulatory elements affect gene
expression, this is seldom achieved as in vivo expression
depends on factors such as the downstream gene26 or the gene
order in an operon3 and cannot be accurately predicted.
Alternatively, regulatory elements can be treated as categorical
variables reducing the impact of the characterization data.8

This approach allowed us to include noncharacterized
promoters as members of the library and avoid a further
decrease in the design space size. Besides, the use of categorical
variables does not limit factor levels to differences in
expression strength. As shown here, factors might include
levels that represent differences in expression but also different
ORFs, broadening the scope of ML-guided pathway
optimization to the selection of genes from different origins
or alternative overexpression targets.
A limitation to the use of ML is the requirement for

sufficient and quality data for training.4 We showed that
including nonproducers as part of the training set is not
required to find the top producing strains but improves
predictions of poor producers which helps ensuring that the
design space has been sufficiently sampled. This is especially
important when the top producer is already present in the
training data. Although we trained ML models with data
representing 13.5% of the library, we showed that when the
amount of data used for training decreased, stratification
during training improved the mean R2 and reduced its standard
deviation (Figure S12, Table 3). Stratification allowed the
classification of samples based on production. Therefore, a
sufficient number of samples from each category should be
present in the training data. As shown here, this can be
achieved using a screening before sequencing approach, which
allowed an efficient exploration of the design space and
reduced the chance of sequencing duplicate designs.
ML algorithms cannot extrapolate; they cannot predict the

performance of strains with factor levels different from those
used during training.7 Still, they can be used to determine
whether the best producer from the library is already present in
the training data and to justify the expansion of the original
design space. When this is required, we proposed the use of
feature importance and SHAP values to guide this expansion
and point at the most relevant factors, which, in this case, led
to a 68% improvement in pCA production. Notably, while
feature importance only points as the significant factors, the
SHAP values provide additional information regarding how the
factor’s levels influence the model output.22

The highest titers of pCA measured in this study were 0.51
± 0.03 and 0.52 ± 0.06 g/L obtained using the BMP strain
with additional copies of PAL-C4H or PAL-C4H-CPR. These
strains were cultivated in 96DWP with 20 g/L of glucose,
resulting in 0.03 g/g pCA yield on glucose. However, higher
titers and yields of pCA have been reported. Rodriguez et al.
obtained 1.96 g/L of pCA (0.04 g/g) by expressing AROL,
feedback-resistant variants of ARO4 and ARO7, eliminating
competing metabolic pathways and using synthetic fed-batch
media.18 Production was further improved by Liu et al. by
combining the TAL and PAL pathways and including a
phosphoketolase pathway to increase the E4P availability. This
strain produced 3.1 g/L in shake flasks and up to 12.5 g/L in
bioreactors operated as fed-batch with a maximum yield of
0.15 g/g.14 Considering these results, the production of our
developed strains could be improved in next cycles that focus
on gene deletions and media and bioprocess optimization. This
optimization would benefit from an improved experimental

throughput achievable, for instance, using barcode sequences
to mitigate sequencing costs27 or a pCA biosensor for titer
estimation.28 This throughput, in turn, could allow the
simultaneous testing of gene deletions, process conditions,
and gene overexpression using multiple gene copies that could
lead to a further increased production. However, a tradeoff
between the build and test capacity and efficiency and the
complexity of the learning step must be established by ensuring
that a minimum percentage of the library space (e.g., 5%) can
be used for model training. When this throughput is not
achievable, sequential DBTL cycles, such as those presented
here, are useful to identify the relevance of the tested factors
and levels and decide whether they are maintained or replaced
in subsequent optimization cycles.
This study is an example of how ML-guided DBTL cycles

can accelerate the generation of efficient strains. We showed
the robustness of this approach to experimental limitations and
its flexibility regarding design, which can be expanded beyond
traditional tuning of gene expression. We propose a screening
before sequencing approach to allow for stratification during
training, especially important for small data sets. Furthermore,
we showed how feature importance and SHAP values can be
used to expand the original design space and further improve
strain performance.

4. MATERIALS AND METHODS
4.1. Organisms and Media. S. cerevisiae strains were

derived from CEN.PK113-7D and grown at 30 °C in Yeast
Extract Phytone Dextrose media for transformations and
precultures (YEPhD, 2% Difco phytone peptone (Becton-
Dickinson (BD), Franklin Lakes, NJ, USA), 1% Bacto Yeast
extract (BD), and 2% D-glucose (Sigma-Aldrich, St Louis, MO,
USA)) and minimal media for production experiments
(Verduyn Luttik with 2% glucose29). When required, anti-
biotics were added to the media at appropriate concentrations:
200 μg/mL nourseothricin (Jena Bioscience, Germany)and
200 μg/mL geneticin (G418, Sigma-Aldrich). E. coli DH10B
(New England BioLabs, Ipswich, MA, USA) was used as the
cloning strain and grown at 37 °C in 2*Peptone Yeast Extract
media [2*PY, 1.6% tryptone peptone (BD), 1% Bacto yeast
extract (BD) and 0.5% NaCl (Sigma-Aldrich)]. When
required, antibiotics were added to the media at appropriate
concentrations: 100 μg/mL ampicillin (Sigma-Aldrich) and 50
μg/mL neomycin (Sigma-Aldrich). Solid medium was
prepared by the addition of Difco granulated agar (BD) to
the medium to a final concentration of 2% (w/v).
4.2. Cassette Construction. DNA templates for pro-

moters and terminators30 as well as ORFs were codon
optimized31 and can be found in Table S1. Bricks were
assembled into cassettes (promoter + ORF + terminator) via
Golden Gate (using BsaI-HF v2.0 (NEB) and T4 DNA Ligase
(Invitrogen)) into a backbone plasmid containing a 50 bp
homologous connector sequence to facilitate in vivo
recombination of the gene cluster as described in ref 32
(Figure S1). Golden Gate products were transformed into
chemically competent E. coli DH10B. The Wizard SV 96
Plasmid DNA purification system (Promega, Madison, WI,
USA) was used for plasmid isolation. The cassettes were
confirmed by polymerase chain reaction (PCR) using the Q5
High-Fidelity DNA polymerase (NEB) with primers from IDT
(Leuven, Belgium) and analyzed on a LabChip GX Touch
Nucleic Acid Analyzer (Perkin-Elmer). Plasmids with correct
fragment size were amplified by PCR using Q5 High-Fidelity
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DNA polymerase (NEB), and integration site flanks (50 base
pair homologous region) were attached to the first and the last
cassettes of the gene cluster (Figure S1). PCR products were
purified using Promega Wizard SV PCR Clean-Up kit and
quantified using DropSense 96 (Trinean).
4.3. Strain Construction. Strains were constructed as

described in refs 32,33. In short, host strain SHK001
preexpressing Cas9 (integrated on locus INT1, Table S1)
was used to enable a targeted integration via CRISPR-Cas9
into S. cerevisiae’s genome. A linear guide RNA targeting a
single locus (Table S5) was amplified from a gBlock (IDT)
with 50 bp homology regions to pRN1120. Plasmid backbone
pRN1120 was amplified for in vivo assembly of the gRNA
plasmid. PCRs were performed with Q5 High-Fidelity DNA
polymerase (NEB). PCR products were confirmed on a 0.8%
agarose gel and purified using Wizard SV Gel and PCR Clean-
Up kit (Promega). DNA fragments were quantified using a
Nanodrop (Thermo Fisher Scientific). The primers used are
provided in Table S4.
Equimolar amounts (100−300 ng/kb) of the cassettes,

linear gRNA (210 ng/kb), and linear backbone (35 ng/kb)
fragments were transformed to the cells following the LiAc/
ssDNA/PEG (lithium acetate/single-stranded DNA/polyethy-
lene glycol) method.34 Reagents required for yeast trans-
formation were obtained from Sigma-Aldrich (lithium acetate
dihydrate (LiAc) and DNA sodium salt from salmon testes
(ssDNA)) and Merck (poly(ethylene glycol) 4000 (PEG)).
The connector sequences on the cassettes facilitate in vivo
recombination of a cluster of genes in the genome.32

Transformants were plated on a Qtray (NUNC) containing
YEPhD agar medium and a selection agent. The colonies
appeared on the plate after 3 days of incubation at 30 °C.
Single colonies were picked with Qpix 420 (Molecular
Devices) into 96-well plates containing YEPhD agar medium
and a selection agent and regrown for 3 days at 30 °C.
4.4. Whole Genome Sequencing. S. cerevisiae cells (OD

5−10) were pelleted and lysed in 200 μL of 0.9% physiologic
salt supplied with 2 μL of RNase cocktail (Invitrogen) and 5
mg/mL Zymolyase 100T (MP Biomedicals). The mixture was
incubated at 37 °C for 45 min. Next, 200 μL of 2X cell lysis
solution (0.05 M EDTA, 4%SDS) was added to the mixture,
followed by vortexing. 168 μL of protein precipitation solution
(10 M NH4Ac) was added, and proteins were precipitated by
centrifugation for 10 min at 20 K rcf at 4 °C. The DNA in the
supernatant was precipitated with an equal volume of
isopropanol (centrifugation for 2 min at 16 K rcf at room
temperature). The DNA pellet was washed with 70% ethanol.
The ethanol was discarded, and the pellet was left to dry and
then dissolved in MilliQ water. The isolated genomic DNA
was quantified using the Qubit (Thermo Fisher Scientific) and
Nanodrop (Thermo Fisher Scientific), purified using the Zymo
Research gDNA Clean & Concentrator kit and sequenced
using the ligation sequencing kit (LSK-SQK109) with the
native barcoding expansion (EXP-NBD114) from Oxford
Nanopore Technologies according to the manufacturer’s
instructions on a GridION device (FLOW-MIN106 flow cell).
4.5. Promoter−Terminator Characterization. Combi-

nations of promoter−terminators were characterized using
GFP as a reporter gene (see Table S3 for details). Precultures
were prepared in 96-well half-deep well plates (HDWPs)
containing 350 μL of YEPhD + Pen/Strep (Invitrogen) and
incubated at 30 °C, 750 rpm, 80% humidity for 48 h. Ten μL
of the grown preculture was reinoculated to an MTP-R48-B

FlowerPlate (m2p-laboratories) containing 1 mL of minimal
medium + Pen/Strep (Invitrogen). The plate was incubated 48
h in the BioLector at 30 °C, 800 rpm, and 85% humidity.
Biomass (em. 620 nm/ex. 620 nm) and fluorescence (em.488
nm/ex. 520 nm), each with 3 filters (gain of 100, 50, and 20),
were measured every 15 min. 40 μL of 2 day old main culture
was measured using fluorescence-activated cell sorting (BD,
FACSAria Fusion) to detect the single cells expressing GFP at
a flow rate of 10 000 evt/s. The signal of fluorescent proteins
was detected with a bandpass filter set at 530/30 nm for eGFP.
The data was recorded using the BD FACSDiva 8.0.2 software
to retrieve the geometric mean of the fluorescence distribution.
Data was analyzed using FlowJo (version 10.6.2).
4.6. pCA Production Experiments. Colonies were grown

in 96 microtiter plates (MTP) Nunc flat bottom (Thermo
Fisher Scientific) containing YEPhD and an appropriate
selection agent for 48 h at 30 °C, 750 rpm, and 80% humidity.
Cultures were reinoculated in HDWP (Thermo Fisher
Scientific, AB-1277) containing 350 μL of YEPhD and a
selection agent and grown for 48 h in the same conditions. The
grown cultures were reinoculated to HDWP containing 350 μL
minimal media (Verduyn Luttik with 2% glucose29) and
incubated for 2 days at 30 °C, 750 rpm, 80% humidity. In all
plates, blank wells and wells containing a control strain
(SHK0046, see Table S3) were included. For flow-NMR
measurements, 250 μL of broth was sampled to a 96-deep well
plate (DWP) and mixed with 500 μL of acetonitrile (Sigma-
Aldrich) by pipetting. The mixture was centrifuged at 4000
rpm for 10 min. 500 μL of the supernatant was transferred to a
new DWP for analysis with flow-NMR. For liquid chromatog-
raphy−mass spectrometry (LC/MS) measurements, 250 μL of
broth was sampled. One ml acetonitrile was added, and the
sample was mixed by pipetting and centrifuged. 250 μL of the
supernatant was diluted with 375 μL of MilliQ and used for
analysis with LC/MS.
4.7. pCA Quantification with Automated Segmented-

Flow NMR Analysis. The DWP plates were lyophilized to
remove the nondeuterated solvents. 100 μL of the solution of 1
g/L internal standard, 1,1-difluoro-1-trimethylsilanyl methyl-
phosphoric acid (FSP, Bridge Organics), in MilliQ water was
added into DWP prior to the lyophilization. To the lyophilized
samples was added 600 μL of D2O (Cambridge Isotope
Laboratories (DLM-4)) and homogenized. The samples were
analyzed on a CTC PAL3 Dual-Head Robot RTC/RSI 160 cm
robotic autosampler (CTC Analytics AG, Zwingen, Switzer-
land) fluidically coupled to a Bruker spectrometer Avance III
HD 500 MHz UltraShield.35 1H spectra were recorded with
the standard pulse program (zgcppr) with the following
parameters: 16 scans, 2 dummy scans, 33 000 data points, 16.4
ppm spectral width, 1.2 s relaxation delay (d1), 8 μs 90° pulse,
2 s acquisition time, 15 Hz water suppression, and a fixed
receiver gain (rg) of 64 Spectra were processed and analyzed
using Topspin 4.1.4 (Bruker). Spectral phasing was applied,
and spectra were aligned to 3-(trimethylsilyl)-1-propane-
sulfonic acid-d6 sodium salt (DSS-d6, Sigma-Aldrich) at 0
ppm. Auto baseline correction was applied on the full spectrum
width. Additional third-order polynomial baseline correction
for selected regions was applied if needed. The amount of pCA
(doublet, 6.38 ppm, n = 2H) was calculated relative to the
signal of FSP. NMR production data per plate was normalized
by SHK0046 production.
4.8. pCA Quantification with LC-HR-MS Spectrome-

try. Samples were analyzed on a Vanquish Horizon UHPLC
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system coupled to a Q Exactive Focus mass spectrometer
(Thermo Fisher). The chromatographic separation was
achieved on an Acquity UPLC BEH C18 column (100 mm
× 2.1 mm, 1.7 μm, Waters), using gradient elution with (A)
0.025% formic acid in LC−MS-grade water and (B) 90% LC−
MS-grade acetonitrile (Sigma-Aldrich) with 10% mobile phase
A with a run time of 9 min. The gradient started with 1% B
linearly increased to 50% B in 5 min, followed by rapid
increase to 99% B in 0.1 min, kept at 99% for 1.9 min, and then
re-equilibrated with 1% B for 1.9 min. The flow rate was kept
at 0.6 mL/min using an injection volume of 2 μL, and the
column temperature was set to 50 °C. pCA was detected in
negative APCI mode and quantified using an external
calibration line of a reference standard. Using this chromato-
graphic system, the coumaric acid elutes at retention times of
3.05 min with m/z 163.0403 (M-H), in good agreement
(within 2 ppm) with the theoretical m/z value of 163.04007.
4.9. ML-Guided Strain Design. Originally, the PAL and

TAL libraries each contained 3024 different designs. However,
due to problems during cassette construction, the design space
was reduced to 672 designs per library. We randomly screened
440 strains per library and classified them into four clusters
based on NMR pCA production titers. Strains from every
cluster were randomly selected for sequencing in order to
cover the complete solution space. Colonies were considered
correct when they had targeted integration of the complete
gene cluster (7 cassettes, one per factor, and the selection
marker). For gene clusters present in more than one correct
sequenced colony, the average pCA production was consid-
ered. Two data sets were used: a complete data set including
data from producers and nonproducers and a producers data
set. Colonies were considered nonproducers when the
measured pCA production was below 0.05 au.
From the available regressor models in the scikit-learn

library, the performance of MLRs, SVRs, RFR, and KRR
models was evaluated. pCA production was modeled using the
factor levels (genes or their expression strength), treated as
categorical variables using one-hot encoding, as inputs (Table
1). Models were evaluated on their ability to predict pCA titers
measured by NMR (model output). Each data set was split
into train (90% data) and test sets (10%) using stratification
(i.e., maintaining the proportion of the different classes in both
sets). For all models except MLR, hyper-parameters were
selected based on leave-one-out cross-validation in the train set
using the maximum error as the score. Predictions of models
with optimized hyper-parameters were compared to the test set
using the coefficient of determination (R2) as the score. This
process was repeated ten times, and models were compared
based on their average R2 on the test sets. Additionally, the
impact of the training data size on model performance was
tested: after the training test split, percentages of the training
data from 5 to 100% were used for training, and model
performance was evaluated using the test set with R2 as the
score. See Figure S4 for an overview of the model selection
strategy.
For each data set, the models selected based on R2 were

trained following two different strategies: “one time training”
and “recurrent training”. In the first strategy, all data from the
data set was used for model training. In the second strategy,
90% of the data from the data set was used for model training,
and this process was repeated 100 times. Trained models were
used to predict pCA titers for all of the designs in the design
space. For each data set and training strategy, top producers

were ranked based on the frequency of each design being
predicted as top 1, top 5, and top 10 by each model (Figure
S4).
The impact of the different factors on pCA production was

evaluated by permutation feature importance using the
permutation_importance function from the inspection module
of the scikit-learn library. In addition, the SHAP values were
calculated using the shap library.22

All of the data and scripts used are available in GitLab
(https://gitlab.com/wurssb/Modelling/ml4pca). Model selec-
tion, training, and feature importance were performed using
Python 3.8.8 and Scikit-learn 1.1.3.36
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