


Propositions 
 

1. To mitigate greenhouse energy prediction, uncertainty addressing weather 

forecast error is more urgent than parametric error.  

(This thesis) 

 

2. For research to continue to offer insights into improving greenhouse economic 

performance, dynamic energy prices should be included.  

(This thesis) 

 

3. The progressing frontier of science makes contemporary research ever more 

complex. 

 

4. The reconceptualization of a mathematical method does not lack novelty but is a 

crucial validation of alternative representations of the same problem.  

 

5. Perpetuating large scale livestock farming is a tacet acceptance of global 

anthropocide. 

 
6. Popular interaction with technology will become entirely ritualistic with the 

technologically literate rising to a new priesthood.  
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Summary 
 

The global energy sector is responsible for a considerable contribution to climate 

change through carbon emissions. In response to this, energy intensive sectors 

and industries worldwide are attempting to improve their energy efficiency and 

transition to sustainable sources of energy. In the context of the Netherlands the 

greenhouse horticultural sector is a large consumer of energy, which is provided 

to the greenhouse in the form of electrical power and natural gas. Given the 

pressures of climate change and the need for greenhouses to be economically 

feasible and competitive, the efficient use of energy and the economic acquisition 

of energy is a priority.  

 

The strategy for energy usage and acquisition within a greenhouse is supported 

by computer simulations that predicts the future performance of the greenhouse 

if a certain management strategy were to be followed. Using these computer 

simulations it is possible to test multiple theoretical strategies before they are 

applied to the greenhouse. These strategies describe potential ways that the 

technical aspects of the greenhouse are operated, how the crop within the 

greenhouse might be managed and how the energy requirements of the 

greenhouse might be met.  

 

This approach can produce efficient management strategies from computer 

simulations that rely on mathematical models of the greenhouse and forecasted 

weather and energy price data.  This use of computer models does however 

present a problem, if the models are inaccurate the simulations they are used for 

are incorrect and the resulting management strategies may be flawed. 

 

Accordingly, the work included in this thesis focusses on how inaccuracies in the 

models and data used for greenhouse simulations affect the accuracy of those 

predictions. Furthermore, how does that influence the resulting management 

strategies and where are the opportunities for improvement. These 

improvements may be made by reducing specific inaccuracies or by 

incorporating inaccuracies into the strategy making process. 

 

From the perspective of energy management, efficiency in a greenhouse can be 

improved by either improving the accuracy of the amount of energy being 

acquired or by acquiring that energy at a better price. While it has been 
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previously outlined how accuracy may be improved, a possible avenue for 

acquiring energy at a better price is to incorporate any inherent capacity to store 

energy within the greenhouse. In doing so cheap energy can be bought and stored 

in some form for usage in high price periods. Existing greenhouse strategies 

incorporate the greenhouse hot water buffer as a capacity to store surplus heat 

energy. There are however, other energy capacities within the greenhouse, for 

example if the crop within the greenhouse can store surplus sugars in its 

assimilate pool. As such this thesis also focuses on identifying the potential of 

incorporating the assimilate pool into the process of deriving greenhouse 

management strategies. A further example explored in this thesis being, the use 

of the Combined Heat and Power generator (CHP) within the greenhouse to use 

available gas reserves to generate power to offset high price periods or if the 

greenhouse can offset power demand by anticipating periods of higher outside 

radiation using weather forecasts. 

 

Chapter 1 opens this thesis with a general introduction to the field of greenhouse 

horticulture globally and the current state of the field within the Netherlands. 

This chapter also elaborates on the current energy climate within the sector and 

the potential for energy efficiency given the pressures of energy prices, 

globalization and climate change.  

 

Chapter 2 investigates how the uncertainty present in weather forecasts affects 

the accuracy of greenhouse power and gas demand predictions, while using a 

rule-based greenhouse control method. Furthermore, this chapter explores how 

this prediction uncertainty affects the economics of the proposed greenhouse 

management strategy through a power market uncertainty analysis. This chapter 

suggests that the inclusion of multiple electrical power markets is key to 

accurately analysing the financial performance of a greenhouse. Furthermore, 

the inclusion of weather forecast errors led to a consistent over prediction of 

greenhouse energy demand. 

 

Chapter 3 presents an uncertainty analysis of how errors in the model 

parameters influence the uncertainty of the predicted greenhouse energy 

demand when using a rule-based greenhouse controller. The conclusions of this 

chapter recognise the importance of lamp lighting model parameters in the 

creation of prediction uncertainty in greenhouse power and gas demand. 

Furthermore, this chapter concluded that prediction uncertainty also arises from 

larger groups of parameters propagating uncertainty within the model. 
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Chapter 4 presents an uncertainty analysis of how error in the weather forecasts 

and model parameters both influence the uncertainty of the predicted 

greenhouse energy demand for a greenhouse model using a rule-based control 

method. This chapter finds that weather forecasts have the greatest impact on 

energy prediction uncertainty and that improvements in forecast errors create 

diminishing returns in reductions of the prediction error. 

 

Chapter 5 investigates how fluctuating electrical power prices influence the 

management strategy proposed by an optimally controlled greenhouse. 

Furthermore, this study investigates the potential of using the CHP, forecasted 

outdoor radiation and the crop’s assimilate pool, as a mechanism to buffer 

fluctuations in electrical power prices. This study concludes that the optimiser 

manages these fluctuating prices by selling power generated by the CHP at high 

price times and by reducing the amount of power that is bought externally. This 

study also found that to bridge times of high power prices, the gas price was the 

crucial factor when compared to the crop’s assimilate pool and the available 

radiation. This is due to the link between the gas price and the use of gas to 

generate power from the greenhouse’s CHP. However future research might 

explore a number of areas in which crop models might be improved to explore 

the effectiveness of using the crop as an energy buffer. 

 

Chapter 6 includes a general discussion of the work done as a part of this thesis. 

This chapter discusses the premises, methods and conclusions of all the chapters 

included in this thesis and the thesis overall. Furthermore, this discussion 

includes an assessment of the limitations of the thesis, as well as its potential 

impact on industry, the scientific community and broader society. 
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Glossary of terms 
 

Ã Polynomial chaos 
expansion coefficients 

#  Carbohydrate buffer state 

# ȟ  Maximum fraction of 
reserve carbohydrates 

# ȟ  Crop buffer maximum 

# ȟ  Crop buffer minimum Ã  Cost of boiler operation 

Ã  Cost of #/  Ã  Cost of boiler operation 

Ã  Electrical power buying 
price 

Ã  Electrical power selling 
price 

#  Crop carbohydrates in 
the fruits 

Ã ȟ  Harvested fruit selling 
price 

#  Crop carbohydrates in 
the leaves 

Ãȟ  Specific heat capacity of 
air  

#  Cost of initial power 
demand prediction  

# Cost of corrective power 
demand prediction  

#/ȟ  Greenhouse air #/  
concentration 

#6 Coefficient of variance 

Ä Vector of model 
disturbances 

Ä  Outdoor #/  
concentration 

Ä  Outdoor air vapour 
density 

Ä  Outdoor global radiation 

Ä  Outdoor air 
temperature 

Ä  Outdoor wind speed 

$ Index of days in the 
year 

Æ  Window ventilation rate 
upper constraint 

Æ  Window ventilation 
rate lower constraint 

È Time instances 

È Final time index È Initial time index 

(  Heat flux between the 
main compartment air 
and cover 

(  Heat flux between the 
main compartment air and 
floor 

(  Heat flux between the 
main compartment air 
and outside air 

(  Heat flux between the 
main compartment air and 
screen 

(  Heat flux between the 
main compartment air 
and the top 
compartment air  

(  Heat flux between the 
main compartment air and 
the canopy level air 

(  Heat flux between the 
main compartment air 

(  Heat flux between the 
main compartment air and 
the upper heating pipe  
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and the lower heating 
pipe  

É Index of parameters 
being analysed 

Ê Index of parameters being 
sampled 

* Optimisation cost 
function 

,  Greenhouse operations 
costs 

,  Greenhouse revenue -  Polynomial chaos 
expansion model 

-  Molar mass of water  -#  Assimilates from 
photosynthesis 

-#  Assimilates partitioned 
to growth respiration 

-#  Assimilates partitioned to 
fruits 

-#  Assimilates partitioned 
to leaves 

-#  Assimilates partitioned to 
stems 

Î Sample index/ Index of 
parameter subsets 

Î  Number of samples/ 
Number of parameter 
subsets 

Î  Number of parameters Ð Vector of model 
parameters 

0  Heat flux with the 
lamps  

0 APX day-ahead price  

0 Imbalance price 0  Heat flux incoming from 
the sun 

Ñ LH sampling index Ñ  LH sample size 

1 Forecast prediction 
horizon length 

2 Universal gas constant  

Ó Order of interaction  3) Sensitivity indices 

3) One-by-one local 
sensitivity indices 

3) Total order Sobol 
sensitivity indices 

3) First order Sobol 
sensitivity indices 

3,! Specific leaf area 

Ô Optimiser time index Ô Optimiser final time index 

Ô Optimiser starting time 
index 

4  Indoor air temperature  

4  Greenhouse air daily 
temperature sum 

Õ Vector of controlled inputs 

Õ  Requested heat flux 
from the boiler 

Õ  Volume of bought #/  

Õ  Requested heat flux 
from the CHP 

Õ  Requested #/  injection 

Õ  Bought electrical 
power 

Õ  Sold electrical power 
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Õ  Requested energy for 
the high pressure 
sodium lamp lighting 

Õ  Leaf harvest 

Õ  Controlled input upper 
constraint 

Õ  Controlled input lower 
constraint 

Õ  Requested screen set Õ  Requested heat flux to 
heat buffer 

Õ  Requested amount of 
ventilation 

Õ Forecast weather 

Õ  Recorded weather Õ Synthetic weather forecast 

Ö  Greenhouse air volume 6  Water vapour flux 
between the main 
compartment air and the 
cover 

6  Water vapour flux 
between the main 
compartment air and 
the outside air  

6  Water vapour flux 
between the main 
compartment air and the 
screen  

6  Water vapour flux 
between the main 
compartment air and 
the top compartment 
air 

6  Water vapour flux 
between the main 
compartment air and the 
canopy level air  

60  Main compartment 
water vapour pressure  

× Two week period index 

×  Number of two week 
long periods 

Ø Vector of model states 

Ø ȟ  The yield of mature 
fruits 

Ø  Model state upper 
constraint 

Ø  Model state lower 
constraint 

Ø Heat stored in heat Buffer 

Ø Model state initial 
conditions 

9 Model output 

9  Energy prediction 
made with weather 
forecasts 

9  Energy prediction made 
with weather recordings 

ɻ Index of subset of 
polynomial chaos 
expansion indices 

ɼ Bias correction factor 

ɾ Bias scaling factor ɝ9 The first order forecast 
error  

ɝ9 The second order 
forecast error  

ʀϷ Percentage prediction 
error 

 ʀ Weather forecast error ʀ Modified weather forecast 
error 
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ʀ Total forecast error in a 
forecast period 

ʀ Sampled weather forecast 
error 

ʀ  Two week long energy 
demand prediction 
error 

ʀ Energy prediction error 

ʀ  Accumulated energy 
demand over-
prediction 

ʀ  Accumulated energy 
demand under-prediction 

ʀȟ  Energy demand 
prediction root mean 
square (RMS) error 

ʀȟ  Estimated energy demand 
prediction root mean 
square (RMS) error 

ʃ Model parameter  ʃ Nominal parameter 

ʃ Parameter lower 
bounds 

ʃ Parameter upper bounds 

ɤ Total dry matter of 
sunlit leaves 

ʍ  Air density 

 Subset of polynomial ה
chaos expansion 
indices 

ɰ Multivariate polynomials 
of the polynomial chaos 
expansion 

ʖ Variation reductions 
factor 
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General introduction 
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Modern climate change poses a serious existential threat to the quality of human 

life and stability of our planet’s ecosystems. There is now a large body of 

scientific, empirical and experimental evidence that links human activity to our 

changing climate. While many aspects of human behaviour are linked to climate 

change, a sector of human industry that is a large contributor is the energy sector, 

and in particular the fossil fuel reliant areas of that sector. This sector’s carbon 

emissions contribute to approximately two thirds of global greenhouse gas 

emissions (Core et al., 2014) which are a key driver in climate change. 

 

This link between climate change, emissions and energy supply have stimulated 

a transition in the energy sector towards methods of electrical power generation 

that are not dependant on fossil fuels (Organisation for Economic Co-operation 

and Development. International Energy Agency, 2012). These methods of 

renewable electrical power generation are often dependant on the weather. 

Common examples of this being wind or solar power. These sources are unable 

to guarantee a power supply to an instant demand due to the variability of the 

weather unlike their fossil fuel-based predecessors. In terms of power security 

this creates a conflict between the desire to increase the share of renewable 

power production in the power mix and this issue of weather-based reliability 

(Smith et al., 2022). This issue is further compounded by a consistent increase in 

the globe’s yearly power demand (M. Cook, 2021). This increase in global 

demand creates greater competition for a finite amount of renewable energy 

infrastructure while also exposing more of the world economy to an unreliable 

weather dependant energy supply. To address the problem of providing sufficient 

renewable electric power generation, production and construction of renewable 

power sources is being increased and incentivized by government. 

 

There is also a need for changes in consumer behaviour as well as the 

construction of new infrastructure. For example, periods of sudden high 

electrical power demand are often met with quick access fossil fuel energy (Pina 

et al., 2012).  In response to this supply side incentives have been created to 

encourage power consumers to move their consumption away from times of 

peak power demand (Gellings & Chamberlin, 1987).  

 

In the Netherlands, all the previous issues and proposed solutions are present. 

However, the position of Dutch energy security is made more precarious by a 

historic reliance on domestic gas from the Groningen gas fields (Scheepers et al., 

2022). Which has led to the use of a large amount of natural gas reliant 

infrastructure. The Groningen gas fields have been closed and large sections of 

what was gas reliant infrastructure are planned to be electrified (Rijksoverheid, 
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2019). This additional transition exacerbates the already challenging magnitude 

of power demand and primes the Netherlands for alternative alterations and 

solutions across all sectors of the Dutch economy.  

 

Within the Netherlands a sector that consumes a large amount of energy is the 

greenhouse horticulture sector which required 110 PJ of electrical power and 55 

million MWhrs of natural gas in 2020 (Statistics Netherlands [Internet], 2021) 

and is responsible for producing a substantial amount of greenhouse gases as a 

result (Xue et al., 2021).  This reliance on external carbon intensive energy 

sources to run an industrial greenhouse has left the sector exposed to changes in 

energy availability and the corresponding fluctuations in prices. This 

vulnerability of the sector has become apparent given rapid rises in the gas (TTF) 

(Investing.com [Internet], 2021) and electrical power (APX day-ahead) 

(EnergieMarktInformatie.com [Internet], 2021) market prices over the years 

2021-2022 as can be seen in Fig. 1.1. 

 

 
 

Historically the sectors response to fluctuating and higher power prices was to 

use its access to contractually fixed price natural gas to sell power generated 

using gas powered generators within the greenhouse back to the grid instead of 

growing crops. While effective, this approach can diminish productivity and 

relies on the availability and affordability of increasingly scarce natural gas. This 
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issue combined with increasing external pressure to reduce the carbon footprint 

of the sector has stimulated significant research and development of tools to 

improve the energy efficiency and minimise the climate impact of greenhouses. 

As such the work within this thesis is aimed to investigate how the greenhouse’s 

energy demand might be managed such that the greenhouse’s energy efficiency 

is improved, and the greenhouse’s climate impact can be reduced. For the 

purposes of clarity this thesis focusses on energy improvements in specific areas 

of the greenhouse operation. As such the following section demarcated what 

aspects of the greenhouse system that are considered in this thesis. 

1.1. The greenhouse system 
The following section outlines the definition of the greenhouse system 

considered in this thesis, its components and how they interrelate. The 

greenhouse system that is studied in this thesis reflects a conventional Dutch 

Venlo style greenhouse. The general layout of this greenhouse system is 

demarcated in the following section. Multiple greenhouse models and 

configurations are used in this thesis, as such the reader is encouraged to read 

the system description in each chapter for a detailed overview of the greenhouse 

system used in that chapter. For ease of explanation the general greenhouse 

system described here is divided into sections which are detailed below and in 

Fig. 1.2. These sections contain the transient dynamics of the climate within the 

greenhouse, which includes for example the air temperature, vapour density and 

#/  concentration.  

 



 

15 
 

 
Fig. 1.2 - The layout of the general greenhouse model considered in this thesis, 

displaying the 5 main high-level components of the greenhouse and their 

interrelation. The greenhouse climate (blue) is influenced by the weather, crop 

and input from the greenhouse energy system. The tomato crop (green) is 

influenced by the greenhouse climate. The greenhouse controls (purple) respond 

to the greenhouse climate, economics and weather. The greenhouse energy 

(yellow) is derived from the greenhouse controls through the actuation of energy 

assets. The greenhouse economics (red) are related to the yield from the tomato 

crop and the greenhouses energy balance. 

 

While the indoor climate within the greenhouse is influenced by the external 

weather conditions, the studied greenhouse includes a set of equipment that 

allow the greenhouse climate to be controlled. In the case of the greenhouse air 

temperature, this includes ventilation through the windows for cooling, and 

heating that is conserved with an insulating screen or heat buffer and supplied 

from the boiler or Combined Heat and Power generator (CHP) via heating pipes 

within the greenhouse. The light levels within the greenhouse is supplemented 

with High Pressure Sodium (HPS) lamps within the greenhouse chamber. The 

#/  levels within the greenhouse chamber are also supplemented using the 

exhaust of the CHP and boiler as well as pure #/  that is imported externally. 
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The economics of the greenhouse that are considered include the revenues that 

are generated via the selling of the crops and electrical power that is generated 

within the greenhouse. The costs that are considered relate to the externally 

bought gas and electrical power required to operate the greenhouse. This thesis 

uses the market prices derives from the Amsterdam Power Exchange (APX) day-

ahead market as well as the imbalance market to offer a more realistic costing of 

a Dutch greenhouse’s electrical power demand.  

 

The crop grown within this greenhouse is a generic tomato crop that is not 

specific to any cultivar and whose growth is described in terms of the structural 

biomass the plant has as well as the non-structural biomass or photo-assimilates 

the plant has produced and stored. Furthermore, the weight of mature fruits that 

are harvested are key outputs for the calculation of the greenhouse’s revenue. 

 

It should be noted that the greenhouse system considered in this thesis does not 

include the crop root system or the water and nutrition supply. Another aspect 

that is not included in the scope of this thesis is disease or plant health.  

Furthermore, while this thesis does focus on the energy efficiency of the 

greenhouse, the energy mix such as the use of renewable resources like solar 

power and wind power will not explicitly be considered. Instead, this thesis 

considers the greenhouse gas and power demand and their corresponding 

markets. 

1.2. Energy efficiency in greenhouse 

horticultural literature 
The extensive literature surrounding energy efficiency in greenhouses can be 

broadly divided into research into the introduction of new equipment and 

materials for the greenhouse and research into improved strategies to control 

the greenhouse through advanced control methods.  

 

Previous research regarding the use of new technologies can be further 

subdivided by the efficient operation of new equipment reducing energy demand 

and equipment being used for the reclamation of previously lost energy. An 

example of the research of contemporary equipment with a greater energy 

efficiency is the use of Light Emitting Diode (LED) lamps over traditional HPS 

lamps as investigated in (Katzin, 2021). Previous studies have investigated 

energy reclamation in greenhouses through the use of water buffers to store 
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surplus heat energy for later use (Seginer, van Straten, et al., 2017b; van Beveren 

et al., 2019, 2020). A further example of an energy retention technology covered 

in literature is the potential of energy screens.  These screens trap heat within 

the greenhouse chamber which otherwise would have been lost to the outside 

(Dieleman & Kempkes, 2006).  

 

Presently most greenhouses are controlled using a set of heuristic rules to 

control the greenhouse climate (Ali & Abdalla, 1993; Kuijpers, Katzin, et al., 

2021). These rules dictated the desired climate within the greenhouse and how 

the various equipment within the greenhouse should react if certain climate 

indicators exceed some threshold values that show a notable deviation from the 

desired climate. This desired climate is defined as a series of climate setpoints.  

 

A further way research has aimed to improve the energy efficiency of 

greenhouses is to improve the managerial strategies used to operate the 

greenhouse. Most commonly this is done by either introducing a more advanced 

control algorithm, using an optimiser to derive management strategies, deriving 

new climate setpoints or by exploiting some as yet underutilised energy buffer 

within the greenhouse to give some managerial flexibility.  

 

A significant body of research exists that aims to manage the control input of the 

greenhouse in a way that tracks predefined climate setpoints with ever greater 

accuracy. Doing so reduces managerial errors and can improve the operational 

efficiency of the greenhouse. These studies have done this by conceiving of new 

ways to control the greenhouse to meet target climate setpoints with greater 

precision than previous methods. While the original and most common form of 

controller used in industry is still the rule-based controller, researchers have also 

proposed the use of alternative controllers. These include Proportional, Integral, 

Derivative (PID) controllers (Hu et al., 2011; Pawlowski et al., 2016; Zeng et al., 

2012) as well as Open and Closed loop feedback controllers (Henten et al., 2008; 

Pasgianos et al., 2003). The aforementioned forms of greenhouse control are 

reactive as they respond to the status of the greenhouse in real time.  

 

Researchers have also proposed control algorithms that are predictive whereby 

a model is used to predict the future behaviour of a greenhouse if a certain 

management strategy were to be adopted to meet a series of climate setpoints. 

In doing this it is possible to iteratively test multiple possible control strategies 

and find one that provides the best energy efficiency and overall greenhouse 

performance. This performance is often assessed using some predefined 

measure which can included variables such as the total mass of produce or the 
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finances of the greenhouse operation. Examples of this type of controller are 

Model Predictive Control (MPC) (Blasco et al., 2007; L. Chen et al., 2018; W. Chen 

& You, 2020; Ramí rez-Arias et al., 2005) and Receding horizon optimal control 

(RHOC) (Gonza lez et al., 2014; Tap et al., 1996; van Straten et al., 2002; van 

Willigenburg et al., 2000). Other examples of control methods that have been 

proposed to improve the operational efficiency of greenhouses also include 

Fuzzy controllers (Atia & El-madany, 2016; Iliev et al., 2014; Ma rquez-Vera et al., 

2016; Mohamed, 2015; Su et al., 2017a) and Artificial neural network of Genetic 

algorithm-based controllers (Faouzi & Bibi-Triki, 2016; Guzman-Cruz et al., 

2010; Hasni et al., 2011; Pohlheim & Heiner, 1999; Seginer, 1997). 

 

In addition to previous literature investigating the optimisation of the control of 

the greenhouse climate such that it accurately tracks the climate setpoints there 

is a body of literature that covers the generation of new climate setpoints 

(Henten & Bontsema, 2009; Seginer, 2011). For example, previous research has 

defined setpoints for the efficient management of air humidity (Ko rner & Challa, 

2003) and heating control (Hwang et al., 1990; Lacroix & Kok, 1999). 

Furthermore, previous studies have defined setpoints-based on greenhouse 

economics (Su et al., 2021) and setpoints that considers the maximisation of crop 

production (Korner, 2003). These studies also increase the scope of greenhouse 

management to include the interaction between climate management, economic 

performance and the crop within the greenhouse.  

 

In summation, a significant amount of research has been done to improve the 

energy efficiency of greenhouses. However, given the scale of the pressures on 

the sector both from the potential scarcity of energy and the climate impact of 

greenhouse energy usage there is still a societal need for further improvements. 

To achieve this there are a number of specific areas of opportunity in which 

further energy efficiencies might be sought. These areas include the potential to 

reduce error in predictions of greenhouse energy demand through uncertainty 

analysis (section 1.2.1). Another avenue is to explore improvements that can be 

made by incorporating energy markets into greenhouse economics and energy 

demand analysis (section 1.2.2).  The third area investigated how the 

incorporation of the greenhouse crop as an energy buffer might improve 

greenhouse energy management (section 1.2.3). 
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1.2.1. Uncertainty analysis in greenhouse 

horticultural research 

A number of the greenhouse control methods discussed above rely on 

predictions of the future indoor climate of the greenhouse if a certain 

management strategy were to be adopted. This is done using a computerised 

mathematical model of the greenhouse and the forecasted weather and energy 

prices. However, if there are any errors within these models of the greenhouse or 

the data used in the simulations then any strategies derived from their 

predictions would be inaccurate. This distribution of errors in the prediction, 

resulting from a distribution of errors in the model or data, is known as 

prediction uncertainty and is assessed using an uncertainty analysis. 

 

Previous research has performed uncertainty analyses that investigated the 

impact of parametric uncertainty in relation to greenhouses.  A number of these 

studies focus on the impact of crop model parameterisation on the prediction 

uncertainty of crop yield (Cooman & Schrevens, 2006; Lo pez-Cruz et al., 2013, 

2020) and dehumidification usage (Schrevens et al., 2008). There are however 

no studies that analyse the parameters relating to the greenhouse climate and 

energy model in the context of electrical power and gas demand.  

 

There is also research relating to the role of errors within the weather forecast 

on the uncertainty in the prediction of greenhouse heating demand (Sigrimis et 

al., 2001; Vogler-Finck et al., 2017).  While other studies have assessed the impact 

of forecast error on the performance of greenhouses that are controlled using an 

optimal controller (Doeswijk et al., 2006; Tap et al., 1996). The aforementioned 

studies concluded that the inclusion of weather forecast errors degraded the 

performance of the greenhouse. However, there is a gap in literature to assess the 

impact of forecast error on the energy demand of the greenhouse. Specifically 

considering the influence on gas and power demand as well as on the economics 

of the greenhouse.   

 

As such there is a gap in the existing literature to analyse the impact of both 

weather forecast-based and model parameter-based error on greenhouse model 

prediction uncertainty. In particular the prediction of the economics of the 

greenhouse and the gas and electrical power demand.  
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1.2.2. Energy resource pricing in greenhouse 

horticultural literature 

The prices of gas and electrical power are key inputs in determining a 

greenhouse management strategy that is efficient in an economical and resource 

sense. Energy resources the greenhouse needs are traded for on the open market. 

More specifically the price of resources can guide when energy intensive 

equipment is operated or when energy should be acquired and stored for use in 

a later period, perhaps when prices are higher. As such the dynamics of energy 

prices should be as realistic as possible to produce an efficient and representative 

management strategy. However much of previous research into greenhouse 

management on an economic basis has used fixed value energy prices (Golzar et 

al., 2021; Kuijpers, 2021; Maga et al., 2012; Vadiee & Martin, 2012). While there 

have been studies that use dynamic prices (van Beveren et al., 2019) there is a 

little else in the existing literature where the performance of the greenhouse is 

assessed using dynamic prices. Specifically in the case of electrical power, prices 

from multiple markets should be incorporated as this is what is done in practice. 

By increasing the detail of the resource pricing used in greenhouse horticultural 

research the resulting recommendations for energy efficient operation are more 

accurate and reliable. This is because these recommendations will be based on 

more realistic representations of how energy is managed in the horticulture 

sector. 

1.2.3. Crop assisted energy management in 

Greenhouses 

Previous research (Elings et al., 2005; Korner, 2003; Ko rner & van Straten, 2008) 

has proposed using the inherent robustness of the greenhouse crop to manage 

fluctuation in available heat energy from both the outdoor environment and the 

greenhouse heating system. The underlying principle of this approach is known 

as temperature integration, in which the response of a crop to temperature 

fluctuations is averaged over a period of time. Allowing the crop to tolerate 

fluctuation in temperature.  

 

The aforementioned research has investigated the management of surplus heat 

energy but not surplus electrical energy. Previous research has introduced a 

concept that could be applied to storing both surplus heat and electrical energy.  

This opportunity comes in the form of the crop’s ability to store surplus sugars 
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internally in what is called the assimilate pool (Heuvelink, 1996; Jones et al., 

1991). The assimilate pool serves as a temporary reservoir for carbohydrates 

that are produced during photosynthesis and are later utilized to maintain and 

grow the plant. The rates at which this pool is filled or emptied is influenced by 

the greenhouse climate and as such it could be employed as an energy buffer. 

Furthermore, as these sugars are generated by photosynthesis, a process that is 

dependent on both heat and light it is possible to use the assimilate pool to store 

both surplus electrical energy through artificial lighting and heat energy through 

hot water-based heating. 

 

The impact of assimilate pool modelling on the performance of an optimally 

controlled greenhouse was investigated in Seginer (2022). This study found that 

the inclusion of an assimilate pool in the crop model is important for prediction 

accuracy and optimal controller performance. But this study does not consider 

how errors in the modelling of the assimilate pool might effect prediction 

accuracy or if the assimilate pool might be used as ana energy buffer. As such 

there is a gap in previous research as to the possible impact of using the 

assimilate pool as an energy buffer for the purpose of energy management. 

1.3. Aims 
As previously discussed, there has been a concerted effort to improve the energy 

performance of greenhouses in previous research, and a number of opportunities 

for future research have been identified above.  In response to these gaps this 

thesis contains two overarching aims. The first is to investigate the improvement 

in greenhouse energy management that can be made by accounting for uncertainty 

introduced from model parameters, weather forecasts and fluctuating energy 

prices. The second aim is to assess how the inclusion of the crop’s assimilate pool 

as an energy buffer, the use of the CHP or the radiation forecast might offer 

opportunities to manage the impact of fluctuating power prices. These aims can 

be more precisely articulated as a series of technical challenges to be overcome 

and a number of opportunities to address those challenges.  
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1.4. Technical challenges 
1) Possible errors in predictive models 

 

The future power demand of the greenhouse is traded for on the open market, 

based on the anticipated future demand of the greenhouse. The accuracy of this 

anticipated demand is dependent on the accuracy of the computer model used to 

make that prediction. Subsequently errors in these models can lead to energy 

management strategies that are economically suboptimal through the 

introduction of prediction uncertainty. This may lead to additional power being 

generated, or incorrectly bought power may be sold by the grower on more 

volatile short term markets. However, the potential of the model error to affect 

the accuracy of greenhouse energy demand prediction and the interaction 

between the greenhouse and the energy markets remains unknown. 

 

2) Variability in the weather forecasts 

 

Weather forecasts form a key component of the power trading process as they 

indicate the availability of natural energy. This is used to define how much 

heating and lighting is required, and how much power needs to be subsequently 

bought. Weather forecasts contain error and as such represent the uncertainty of 

future weather. These errors within the weather forecasts lead to inaccurate and 

uncertain predictions of power demand. Which can lead to subsequently 

inaccurate power trading, which has to be corrected via trading on short-term 

more volatile power markets which exposes the grower to potentially financial 

losses. Given this, the potential impact of weather forecast-based uncertainty on 

energy prediction and trading requires further research.  

 

3) The volatility of electrical power and gas prices 

 

Issues with improving greenhouse energy efficiency are not only limited to the 

models that are used to make predictions. The volatility in energy markets make 

optimising greenhouse energy usage more challenging. This volatility is further 

complicated by the reality that multiple electrical power markets which span 

different future periods of time are used in practice. This significantly more 

complex arrangement for electrical power acquisition in particular is not 

reflected in the literature but is key to assessing the true financial cost of 

greenhouse operations. 
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1.5. Opportunities 
Given these challenges there are corresponding opportunities to address them, 

both within the current greenhouse paradigm and from other areas of academia.  

 

Opportunities from within the contemporary greenhouse paradigm 

 

1) The availability of data streams 

 

The growing digitisation of the greenhouse sector has led to a greater availability 

of data which describe the status of the greenhouse and crop. Furthermore, data 

is available on the status of the weather, and the power market prices in the form 

of weather forecasts and historic data from multiple power markets. This 

increasing availability of accurate and comprehensive greenhouse data offers an 

opportunity for the analysis of the accuracy of models as well as the impact of 

inaccuracies within data streams on model performance.  

 

2) Managerial flexibility from the greenhouse crop 

 

Within the field of crop physiology there is a concept of a crop assimilate pool or 

crop buffer, this buffer represents the stored sugars in the plant that were 

generated via photosynthesis in surplus to the immediate requirements of the 

plant. There is an opportunity to incorporate this buffer in the control of a 

greenhouse in which the sugars generated by the plant can be deposited in this 

buffer when externally sourced energy is available and withdrawn from the 

buffer when viable externally sourced energy is scarce. Thus, giving more 

flexibility in how a greenhouse is managed in how and when externally sourced 

energy is acquired. 

 

Opportunities from outside the contemporary greenhouse paradigm 

 

3) Uncertainty analysis methods 

 

In other fields of research there is a body of statistical methods that can be used 

to better understand the uncertainty in greenhouse model predictions. These 

methods permit the quantification of prediction uncertainty that introduced 

from errors found in model parameters and input data. Moreover, they 

demonstrate how these sources compare and interact with each other and 

contribute to prediction uncertainty. By applying these methods, prediction 
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uncertainty can be reduced through targeted improvements of the accuracy of 

input data and model parameters. 

 

4) Optimization methods 

 

Optimization methods that may help improve operational efficiency by 

mitigating the costs of undesired future events and developments regarding 

weather and energy availability. The potential of this opportunity is further 

expanded by employing the natural flexibility of the crop to buffer power price 

fluctuations. 

1.6. Approach 
The research aims presented in this thesis is addressed in a series of chapters. 

These chapters pursue the aims of the thesis by address the challenges detailed 

above using the aforementioned opportunities: 

 

o Chapter 1 investigates how errors within weather forecasts affect 

greenhouse power trading. As such this chapter approaches challenge 2 

and 3 through opportunities 1 and 3.  

o Chapter 2 assesses the impact of parametric error on greenhouse energy 

demand prediction using an uncertainty analysis, this approach 

challenges 1 through opportunities 3. 

o Chapter 3 performs an uncertainty analysis on the combined impact of 

parametric and weather forecast error on energy demand prediction. 

This chapter approaches challenges 2 through opportunities 1 and 3. 

o Chapter 4 assesses if an optimal control method, the crop’s assimilate 

pool, CHP and radiation forecasts can be used to buffer fluctuating 

electrical power prices, approaching challenge 3 through opportunities 

1, 2 and 4.  
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Highlights 
• The study shows that weather forecasts create energy demand uncertainty. 

• A data-based sensitivity analysis was done for input data weather variables. 

• The greenhouse power costs are calculated using imbalance and day-ahead 

markets. 

• As the weather forecasts lengthen, the energy prediction error and power costs 

increase. 

• The radiation forecast has the greatest impact on the predicted power error. 

Abstract 
Currently the Dutch greenhouse horticultural sector has a high energy demand. 

The present use of weather forecasts can exacerbate this high energy 

consumption by contributing to suboptimal prediction and trading of the 

greenhouse’s power demand. This study investigates the role of weather forecast 

errors on energy prediction power and trading uncertainty in greenhouse 

horticulture. This was done using an uncertainty analysis and computer model 

of a tomato producing Venlo style greenhouse in Bleiswijk, The Netherlands. This 

greenhouse model was used to predict the greenhouse’s gas and electrical power 

demand. The study concluded that errors in the weather forecast of outdoor 

radiation, temperature and wind speed caused an overestimation of greenhouse 

energy demand. A sensitivity analysis showed that the radiation forecast error 

had the greatest impact on predicted greenhouse power demand errors with a 

mean relative error of φȢρϷ. Predicted gas demand errors were most dependent 

on the outside wind speed forecast mean relative error ρψȢπϷ and temperature 

forecast error ρχȢςϷȢ A power trading uncertainty analysis was done to 

investigate the impact of predicted energy demand errors on the cost of buying 

power on the Dutch imbalance and Amsterdam Power Exchange day-ahead 

market. This cost analysis found that the volume of initial power trading was 

greater than corrective trading. Additionally, the higher volatility in short term 

power prices resulted in higher corrective power costs per unit of power than if 

the power demand had been initially predicted with more accuracy. 
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2.1. Introduction 
 

The Netherlands has a large greenhouse sector of approximately ρπυυτ ÈÁ 

(Statistics Netherlands [Internet], 2021), with a power demand of ρρπ 0* in 2020. 

This power annually costs the grower φȢυπ Ό Í  (van der Velden & Smit, 2021) 

on average making cost effective energy buying a priority. An industrial 

greenhouse is a highly complex system, and the grower may require frequent 

advice to achieve efficient management. This advice is used to supplement and 

computerise human expertise by predicting the greenhouse’s future behaviour 

and offering appropriate climate management advice as shown in Fig. 2.1. 

Computer models and data streams are used to generate the advice and form part 

of a decision support system (DSS). The advice that this study focusses on is how 

much energy should be bought to operate the greenhouse. The external sources 

of energy being considered in this study are the gas and electrical power required 

by the greenhouse. 

 

 
Fig. 2.1 - A flow diagram of how a greenhouse decision support system 

connects sensor data, forecast data and the grower, and how advice on 

greenhouse energy consumption may be applied in the greenhouse. 

 

The predictive accuracy of a DSS is important as it allows the accurate planning 

and trading of power on the power markets (Wang et al., 2015). This 

greenhouse’s future energy demand is predicted using the weather forecast and 

predicted energy prices (van Beveren et al., 2020). However, errors within the 

weather forecasts may affect the accuracy of predictions and the efficiency of 

subsequent energy trading. 

 

In the Netherlands the greenhouse’s predicted power demand is initially bought 

using the APX (Amsterdam Power Exchange) day-ahead power market. The day-
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ahead market allows bidders to submit an order for power at an hourly rate, 

which will be delivered the next day. Any errors in this initial purchase are 

resolved by using corrective power trading on the APX intra-day market or 

imbalance market. The intra-day market allows the continuous trading of power 

on an hourly rate, and the imbalance price is used to reflect the immediate value 

of power given the current ratio of supply and demand on the grid.  

 

In previous greenhouse studies weather forecasts have been included in various 

forms. Some studies have used actual forecast data (Sigrimis et al., 2001; Su et al., 

2021), and others include simplified forms of forecasts such as a lazy-man 

forecast (Tap et al., 1996; van Ooteghem, 2010). Some studies create synthetic 

forecasts using models (Seginer, van Beveren, et al., 2018; Su et al., 2017a).  

 

Several studies that have focused on greenhouse energy management have 

included weather forecasts. Among these some address reducing the 

greenhouse’s heating demand (Chalabi et al., 1996; Su et al., 2021) or heating 

costs (Gutman et al., 1993). Keesman et al., (2003) investigates the reduction of 

ventilation costs in a potato storage facility using a receding horizon optimal 

controller and weather forecasts. However in these studies and several other 

studies it is assumed that the errors in weather forecasts have a negligible effect 

on the prediction accuracy of greenhouse models (Seginer et al., 2006; Seginer & 

McClendon, 1992). 

 

The potential impact of weather forecast errors on greenhouse prediction 

uncertainty has been partially addressed. Vogler-Finck et al., (2017) use a simple 

linear model and a recursive least squares approach to predict the heat demand 

of a Danish greenhouses using short term weather forecasts. Vogler-Finck 

concluded that the inclusion of real weather forecasts significantly improved the 

online prediction of heat load over using simplified weather forecasts. Tap et al., 

(1996), studied the greenhouse’s #/  and heating demand and simulated the 

financial performances of a greenhouse model being controlled with a receding 

horizon optimal controller. Tap et al., (1996) found a drop in the performance of 

a greenhouse when forecast errors were introduced, and that the performance 

worsened for longer forecasts. Doeswijk et al., (2006) also found that weather 

forecast errors increase the heating costs of operating a climate controlled 

storehouse. Sigrimis et al., (2001) offer a nuanced perspective by concluding that 

while the inclusion of weather forecasts can improve performance, the presence 

of weather forecast errors increased the costs of heating and that this cost only 

worsened with longer forecasts. 

 



 

31 
 

As shown above the error within weather forecasts previous research has 

analysed in the context of greenhouse heating control and economic 

optimisation. However, there is a knowledge gap as there are limited studies 

about the effects of weather forecast error on power demand prediction and the 

subsequent consequences for power trading.  

 

Several studies optimised the cost of the of the greenhouse’s energy usage 

(Golzar et al., 2021; Seginer et al., 2017; Vadiee & Martin, 2012; van Beveren et 

al., 2019; van Henten & Bontsema, 2009; Vanthoor et al., 2012) and several 

studies have included weather forecasts (Doeswijk et al., 2006; Gutman et al., 

1993; Keesman et al., 2003; Sigrimis et al., 2001; Tap et al., 1996). However, many 

studies are limited in how realistic they are when compared to what is done in 

practice as the economics of the greenhouse were often significantly simplified. 

For example a fixed power price is often used (Golzar et al., 2021; Kuijpers, 

Katzin, et al., 2021; Vadiee & Martin, 2012; Vanthoor et al., 2012). van Beveren et 

al., (2019) did include a fluctuating price by optimising the use of the 

greenhouse’s energy equipment using the imbalance price. However as 

discussed above, this is not what is done in practice.  

 

Many studies have optimised the economics of a greenhouse by using simplified 

market prices to assess the greenhouse’s economic performance. As a result, 

there is an additional knowledge gap as little information is available on the 

potential costs of power trading using fluctuating prices and multiple markets as 

is done in the greenhouse horticulture sector. 
 

The objective of this paper is to determine the impact of weather forecast error 

on greenhouse energy demand prediction and power trading. In addition, this 

study investigated which forecast variables have the greatest impact on power 

prediction error and how this impact changes depending on the weather forecast 

prediction horizon length. 

 

By identifying the roles of the error in weather forecast variables, improvements 

can be made to the most error prone variables through the targeted application 

of improved sensors or by using combinations of multiple forecasts. This in turn 

can improve the accuracy of energy demand prediction and the economic 

efficiency of power trading. 

 

In the subsequent sections the greenhouse model is briefly described. This is 

followed by an uncertainty analysis that describes the error in the weather 

forecast and how that propagates into uncertainty in the energy demand 
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prediction. Next the uncertainty in the energy demand prediction was used to 

calculate the costs of power trading when trading on the APX day-ahead and 

imbalance markets. A local sensitivity analysis was then done to assess which 

weather forecast variable’s errors are having the greatest impact on prediction 

uncertainty. The results are then interpreted to focus on the impact weather 

forecast errors have on energy prediction and trading. Moreover, this study aims 

to assess how this impact changes when using weather forecasts of differing 

prediction horizon lengths.  

 

This paper makes a novel contribution to the field of greenhouse horticultural 

modelling by investigating the propagation of weather forecast error into 

predicted greenhouse energy demand and power trading. The novelty of this 

work consists of the following features: 

• This study takes a detailed approach to assessing the costs of buying the 

greenhouse’s power demand. This demand is calculated initially using 

the APX day-ahead power market price, which is a realistic 

representation of the initial and largest round of trading done by 

growers in practice in the Netherlands. Then the cost of the mispredicted 

power is calculated using the imbalance market price to represent the 

costs of short-term corrective trading. 

• The application of this input data-based uncertainty analysis in the 

greenhouse horticulture domain is novel and in particular the 

application of a weather forecast-based uncertainty analysis within the 

greenhouse domain.  

• Unlike previous sensitivity analysis methods in the greenhouse 

modelling domain which focused on the sensitivity of parameters, this 

study uses an input data discrete sensitivity analysis which is applied on 

the weather variables to determine the largest contributors to the 

energy prediction uncertainty.  

2.2. Materials and methods 

2.2.1. Model definition 

The greenhouse model used in this study is composed of modules (Fig. 2.2) which 

are described in the following subsections. This study uses the greenhouse model 

KASPRO (de Zwart, 1996; Dieleman et al., 2005; Elings et al., 2006; Luo, de Zwart, 

et al., 2005; Luo, Stanghellini, et al., 2005) which is extensively calibrated to 
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represent a commercial Venlo type Dutch greenhouse. For clarity of explanation 

the KASPRO model is described as being divided into modules which simulate 

the operation of the indoor greenhouse climate, energy system and rule-based 

controller. The energy asset control action is the response of the controller to 

activate the greenhouse energy assets (CHP, Boiler, lamps, screens, and 

ventilation). The climate control action defines the heating, lighting and #/  

input to the greenhouse climate from the energy assets. 

 

 
Fig. 2.2 - This figure shows the relations of the modules within the KASPRO 

greenhouse model and the role of weather data. 

2.2.2. Greenhouse climate module 

The climate module models the indoor climate of the top and main 

compartments of the greenhouse and includes 16 state variables, including the 

indoor air temperature, carbon dioxide concentration, and vapour pressure. The 

greenhouse climate module (Fig. 2.2) receives input data from the outside 

weather and the energy input to the climate from the energy module. Fig. 2.3 

shows the relative position of the elements in the greenhouse and their relation 
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to the top and main compartments. This includes the air above and below the 

thermal screen, at the greenhouse cover and crop canopy level, as well as in six 

layers of soil. The elements displayed in this figure are not to scale. The transfer 

of water vapour, #/  and energy between elements of the greenhouse are 

governed by the processes of radiative and latent heat exchange, conduction, 

convection, ventilation, and condensation.  

 

 
Fig. 2.3 - This figure shows a cross section of the modelled Venlo type 

greenhouse. The figure describes the location of the greenhouse elements 

(screens, covers and pipes) within the greenhouse compartments as 

described in the KASPRO greenhouse model. The elements in this figure are 

not to scale but shows their relative positions in the greenhouse and 

abbreviations.  
 

This study focusses on the states in the model describing the indoor air 

temperature and water vapor pressure in the main compartment in the form of 

differential equations (Eqs. 2.1 – 2.2). The insight gained from the model’s indoor 

air #/  state (de Zwart, 1996) was not used in this paper as the relevant outdoor 

#/  data was unavailable. The implications of this limitation are examined using 

a sensitivity analysis described in appendix A. 

 

The main compartment temperature (Eq. 2.1) (de Zwart, 1996) is scaled by a 

fraction of air density (ʍÁÉÒȟ specific heat capacity of air (ÃÐȟÁÉÒ and the volume of 

air (ÖÁÉÒ. This is then multiplied by the net energy being transferred between the 
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regions of the greenhouse, composed of the heat gained from the artificial lights 

(0!ÌÕ!ÉÒ and solar radiation (03ÕÎ!ÉÒװȟ upper and lower heating pipes 

((5ÐÐ!ÉÒȟ(,Ï×!ÉÒ and the canopy air ( . Also included are the heat lost to 

the floor (!ÉÒ&ÌÒȟװtop compartment ((!ÉÒ4ÏÐȟװshade screen (!ÉÒ3ÃÒȟ thermal 

cover ((!ÉÒ#ÏÖװand the outside ((!ÉÒ/ÕÔȢ  
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(2.1) 

 

Within the model the main compartment vapour pressure state (Eq. 2.2) (de 

Zwart, 1996) is defined as a fraction of the water molar mass (-( , the gas 

constant (2, the volume of air (ÖÁÉÒ) and the main compartment air temperature 

(4ÁÉÒ). This was then multiplied by the sum of the vapour released from the 

canopy 6  and lost to the top compartment, screen, cover and outside 

(6!ÉÒ4ÏÐȟ6!ÉÒ3ÃÒȟ6!ÉÒ#ÏÖȟ6!ÉÒ/ÕÔ. 

 

 Ä60ÁÉÒ
ÄÔ

ρ

-(Ͻ
ÖÁÉÒ
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(2.2) 
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For the purposes of this study a representative greenhouse design was specified. 

This greenhouse is a Venlo type greenhouse producing tomato in Bleiswijk, 

Netherlands. The greenhouse has the following physical parameters: 

 

Table 2.1: Parameters of the simulated greenhouse structure 

Property Value Units  Property Value Units 

Footing area 2.4 ÈÁ  Window size 2.5 x 

1.2 

Í 

Total height 6.5  Í  Upper heating 

pipe diameter 

0.027 Í 

Number of 

windows 

1200 ~  Lower heating 

pipe diameter 

0.051 Í 

Number of 

chambers 

1 ~  Number of lower 

heating pipe per 

floor area 

1.25 0ÉÐÅÓ

ϽÍ  
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Gutter 

height 

6  Í  Number of 

upper heating 

pipe per floor 

area 

0.625 0ÉÐÅÓ

ϽÍ  

Cladding 

area 

27000 Íς     

2.2.3. Greenhouse energy module 

The greenhouse energy module receives the data describing the use of energy 

system components from the rule-based controller. The energy module describes 

the amount of pipe heating, lamp lighting and injected ὅὕ  input into the 

greenhouse climate as well as the required gas and power to operate the 

components of the energy system. These components include a shading and 

energy screens. Heating was supplied via a lower and upper heating rail pipe 

system from a boiler, combined heat and power generator (CHP) and heat storage 

tank. Lighting was supplied from two arrays of SON-T 1000W HPS (High Pressure 

Sodium) lamps. The greenhouse energy system components properties are listed 

in table 2.2. 

 

Table 2.2: Properties of the greenhouse energy system components 

relating to the capacity of the components, and efficiency of energy 

assets 

Property Value Units 

Lower heating pipe 

diameter 

51  mm 

CHP power rating 43 7ϽÍ  

CHP thermal capacity 60  7ϽÍ  

Artificial light intensity 0.648  ÍÏÌϽÍ ϽÈ  

Upper heating pipe 

diameter 

27  ÍÍ 

CHP heating efficiency 47 Ϸ 

Boiler thermal capacity 170  7ϽÍ  

Heat tank volume 1000  Íσ 

Boiler heating efficiency 94  Ϸ 

CHP electrical efficiency 37  % 
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2.2.4. Rule-based controller 

The rule-based controller module receives data from the outside weather and the 

indoor greenhouse climate and outputs the usage of greenhouse energy assets to 

meet predefined indoor climate conditions (Luo, de Zwart, et al., 2005). The use 

of energy assets was defined as the immediate fraction of window aperture, 

fraction of lamp lighting levels and fraction of insulation screen coverage. The 

controller also dictates the temperature of the greenhouse heating system via the 

control of the CHP and boiler. 

 

The controller resembles an industrial grade controller which operates from a 

considerable library of threshold-based rules. The threshold values were defined 

by climate profiles which detail desired climate conditions as a series of setpoints 

over time, as well as the time, outside weather and the actual indoor climate. 

The climate profile used in this study has a relative humidity set point of 85% 

and a requirement to light the greenhouse for 18 hours a day ending at 20:00. 

The temperature climate profile has setpoints of ρψᶼ# between sunset and 

sunrise, ςπᶼ# one hour after sunrise, ρωᶼ# one hour before sunset. For 

consistency over the simulations the climate set point scheme was kept the same 

for all weather forecast prediction horizon lengths. 

2.2.5.  Model assumptions 

The greenhouse climate and energy system model were implemented with some 

simplifications and assumptions. Key simplifications and assumptions are listed 

below: 

• The greenhouse compartments are homogeneous spaces, with no spatial 

microclimate variation within them. 

• The effects of shadow screens, covers, ventilation windows and artificial 

lighting on state variables are uniform within their related regions of the 

greenhouse. 

• The flow of water through the heating system was assumed to be constant 

over time. 

• KASPRO (de Zwart, 1996; Dieleman et al., 2005; Elings et al., 2006; Luo, de 

Zwart, et al., 2005; Luo, Stanghellini, et al., 2005) is an extensively calibrated 

model and it is assumed that this calibration makes it a sufficiently 

representative predictor. 

• It is assumed that the predictions made using the weather recordings 

represent a ground truth to be compared with the weather forecasts. This is 
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necessary as it is not possible to record the performance of a real greenhouse 

that operates using forecasts with no error as no such forecasts exist.  

2.2.6. Power market data 

The cost of power trading in this study was calculated using the Netherlands APX 

day-ahead and the imbalance market price for power over the same period as the 

forecast data. The APX day-ahead market was chosen as it represents the prices 

upon which the majority of initial energy trading is done for growers. The APX 

price data is applied in an uncertainty analysis along with weather forecast data. 

This is done to represent a medium-term energy planning scenario over multiple 

days. To calculate the costs of corrective power trading that is done based on the 

mispredicted power demand the imbalance market price is used. The imbalance 

price was chosen over the intra-day market due to the lack of availability of intra-

day market data. In this study it is assumed that the volumes of power traded by 

the grower do not affect the market price.  

2.2.7. Recorded and forecasted weather data 

A dataset of hourly weather forecasts and weather recordings is used in this 

study. The dataset includes hourly forecast and recording variables of the outside 

temperature ᴈ , wind speed άϽί   and global solar radiation ὡϽά . 

The forecasts have a five-day length and were generated at: 06:00, 09:00, 12:00, 

15:00 and 17:00 over a two-month period (13 Oct 2019 – 16 Dec 2019), resulting 

in 292 five-day forecasts in total. The forecasts were generated by the weather 

forecast company Meteoconsult and was sourced from an operational 

greenhouse and is comparative to what information is available to growers. 

 

The forecasts of outside vapour concentration ὫϽά  were not included in the 

original dataset. In place of these forecasts, recordings were retrieved from a 

nearby KNMI (Koninklijk Nederlands Meteorologisch Instituut) meteorological 

station for the same period of time were used in place of a forecast. The outdoor 

ὅπ concentration for both the weather forecast and recordings was assumed to 

be constant at 410ppm, the impact of this assumption is examined in appendix 

A. 

 

In addition, the cloudiness index (CI) was fixed to the average of the period (CI = 

0.7). A sensitivity analysis found that this assumption has little impact on the 

study’s result, the results of which can be seen in appendix A. The sky 
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temperature (Luo, de Zwart, et al., 2005) and levels of diffused radiation (Orgill 

& Hollands, 1977) were computed using the available climate variables. Any 

missing entries in the datasets were filled with the value at the previous time 

instance, this was done for simplicity. 

2.2.8. Uncertainty analysis method 

This study uses a method that is described in four sections. These sections 

describe the method used to compose the weather forecasts, and to explain the 

uncertainty in the weather forecast, energy prediction and power trading 

respectively. The steps of the method, their relations, key variables, and sections 

are shown in Fig. 2.4. This study analyses the effect of using weather forecasts of 

increasing length ὗ , from 1 to 5 days long at daily intervals. This study defines 

uncertainty analysis as the analysis of a distribution of errors.  

 

 
Fig. 2.4 - The steps for the analysis method used in this study and the 

corresponding sections of the manuscript. Each step in the figure includes 

title of the step, the corresponding section of the manuscript and the key 

variable from that step. This method is iterated through each forecast 

prediction horizon length ╠  using the index ░.  
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2.2.8.1. Compose weather forecast series 

This study uses series of weather forecasts with a horizon length in hours ὗ 

,where ὗ  ςτȟτψȟχςȟωφȟρςπ. These horizon lengths are indexed through 

using Ὥ ρȢȢὭ , where Ὥάὥὼ υ. For each weather forecast horizon length and 

forecast starting time, a series of consecutive forecasts ό  was used. This series 

of forecasts spanned the time period of the entire dataset. Due to 5-day forecasts 

being recalculated daily, it is possible to concatenate forecasts with periods 

shorter than 5 days. This was done by truncating the weather forecasts from their 

starting sample to the given horizon length. 

2.2.8.2. Weather forecast uncertainty analysis 

To investigate the role of weather forecast uncertainty on greenhouse energy 

prediction uncertainty, a sample-based uncertainty propagation method is 

adapted and applied (van der Meer et al., 2018). In this study time in is 

discretised using hourly time steps and each time interval is defined by its length 

in hours, ὗὭ, and starting point ὈȟὬ, where Ὠ is the day of the year, and Ὤ is 

the time index, defined in this study as the hours in the day. The hourly forecast 

error ‐ ὈȟὬ  at each time instance is defined as the difference between the 

weather recording (ὢὗὭ
Ὑ ὈȟὬ  and forecasts (ὢὗὭ

Ὂ ὈȟὬ  : 

 

 ʀ1É
& $ȟÈ Õ1É

& $ȟÈ Õ1É
2 $ȟÈ. (2.3) 

 

These errors were then summed ʀ4
&
 as this represented the quantity of error 

made over a forecast period, such that, 

 

 ʀ4
&$ В ʀ1É

&1É
È ρ $ȟÈ. (2.4) 

2.2.8.3. Energy demand uncertainty analysis 

The energy prediction error is calculated as the difference between predictions 

calculated using weather forecasts and predictions made with weather 

recordings for the same period. The energy demand predictions ὣ from the 

model includes the gas demand ὣὋ (άσϽά ςϽὬ
ρ
) and power demand  ὣ (ὡϽ

ά ϽὬ ) where ὣ ὣ ὣ . The greenhouse energy demand ὣὗὭ
Ὂ  is 

calculated using the KASPRO model over a period ὗὭ, with inputs equal to the 

forecasted weather data ό . This results in predicted energy demand as a 

function of forecasted data, 
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 91É
& $ȟÈ 9Õ1É

& $ȟÈ . (2.5) 

 

Then the energy demand 9  is calculated using the recorded weather data 

Õ  as input, 

 

 91É
2 $ȟÈ 9Õ1É

2 $ȟÈ . (2.6) 

 

The hourly prediction error ‐  is calculated by comparing the weather 

forecast and weather recording-based energy predictions. Where 

 

 ʀ1É
0 $ȟÈ 91É

& $ȟÈ 91É
2 $ȟÈ. (2.7) 

 

To avoid having the prediction errors cancel each other out the positive and 

negative error are summed for each forecast period 1É to represent the 

accumulated over-prediction ʀ04
0

 and accumulated under-prediction ʀ  

respectively. Such that, 

 

 ʀ04
0 $ В ʀ1É

01É

È ρȟʀ0$ȟÈ π
$ȟÈ, and (2.8) 

 ʀ.4
0 $ В ʀ1É

01É

È ρȟʀ0$ȟÈ π
$ȟÈ. (2.9) 

 

The initially predicted energy demand 9  and mispredicted energy demand 

ʀ  are summed to allow a direct comparison of the quantity of error made 

over a forecast period, where, 

 

 94
&$ В 91É

&1É
È ρ $ȟÈ.  (2.10) 

 ʀ4
0$ В ʀ1É

01É
È ρ $ȟÈ, and (2.11) 

2.2.8.4. Power trading uncertainty analysis 

This study investigates the financial consequences of power demand 

misprediction. These consequences are dependent on the volume of 

misprediction and the price of power on the markets it is being traded on. The 

hourly APX day-ahead market price ὖ  was used to calculate the power cost 

ὅ  of the initially predicted energy demand ὣ , where, 

 

 # $ȟÈ 0 $ȟÈϽ9 $ȟÈ. (2.12) 
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The cost of the corrective bidding ὅ  of the mispredicted energy ‐  is 

calculated using the imbalance market price ὖ  and 

 

 #1É
) $ȟÈ 0)$ȟÈϽʀ1É

0 $ȟÈȢ (2.13) 

 

To analyse and display the distribution of costs the matrices are concatenated 

into a vector. It should be noted that the power that can be generated and sold 

from the combined heat and power generator (CHP) is not considered in this 

study. This analysis does not consider the cost of gas demand as it is often fixed 

by contract unless a maximum supply rate is exceeded, which is assumed to be 

the case. 

2.2.9. Sensitivity analysis of energy demand 

predictions  

To understand which weather variable’s forecast has the greatest effect on the 

predicted power and gas demand 9 a local discrete sensitivity analysis was 

performed. This sensitivity analysis was done on the forecast and recorded 

weather variables which include, outdoor temperature, global radiation and 

wind speed. The first order error ɝ9  of each weather forecast variables are 

calculated ÕË
& . Each weather forecast variable is in turn used to replace the 

corresponding recorded weather variable and applied to calculate the energy 

demand predictions with the remaining recorded weather variables Õ . The 

index Ë is the index of each weather forecast variable and Ê is the index of the 

remaining weather variables. Such that 

 

 ɝ9 $ȟÈ 9Õ $ȟÈ 9Õ $ȟÈȟÕ $ȟÈ , (2.14) 

 

where all the weather forecast variables were made equal to the recorded 

variables, except index Ë:   

 

 ÕÊ
& ÕÊ

2ȟÊ ËȢ (2.15) 

 

The second order error interactions ɝ9ς  is calculated by replacing pairs of 

weather forecast variables Õȟ  to assess their combined influence. Where, 

 

 ɝ9ȟ $ȟÈ 9Õ $ȟÈ 9Õ $ȟÈȟÕȟ $ȟÈ ,   (2.16) 
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1.  where ÕÊ
& ÕÊ

2ȟÊ ÎȟÊ Í.  (2.17) 

 

Where Í and Î are the indexes of all pairs of weather forecast variables. To allow 

comparison between predicted gas and power demand the percentile prediction 

error ʀϷ  was then calculated for the first and second order errors, accordingly 

 

 
ʀϷ
ρȟς $

В ɝ9ρȟς $ȟÈ1
Èρ

В 982$ȟÈ1
Èρ

 
ρzππ. 

(2.18) 

 

This percentile prediction error was then used to calculate the first and second 

sensitivity indices ὛὍ which is defined as the average absolute percentage error, 

 

 3)ȿʀϷ $ȿ. (2.19) 

2.3. Results 
The results describe the effect of weather forecast uncertainty on energy use 

predictions and are split into four sections. The first section assesses the 

uncertainty in weather forecast variables. The second section shows the effect of 

the weather forecast error on greenhouse model prediction uncertainty and how 

it changes with the length of the weather forecast prediction horizon. The third 

section includes a power trading uncertainty analysis using multiple markets and 

weather forecast prediction horizon lengths. The last section investigates the 

interrelations between the input weather data and energy predictions using a 

discrete sensitivity analysis. 
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2.3.1. Weather forecast uncertainty 

 
Fig. 2.5 - Boxplots of the total weather forecast errors (Eq. 2.4) made over 

the forecast prediction horizon forecast length ╠ . Where the encircled 

point is the mean, the box is the 1st, the whiskers are the 2nd standard 

deviations, and the open circles are the outliers. 

 

Fig. 2.5 presents the total weather forecast errors (Eq. 2.4) within each forecast 

variable for an increasing forecast horizon length. For all the forecast variables 

the mean error becomes more negative, and the variance increases as the horizon 

increases. This means that on average the forecast consistently underestimates 

the available outside temperature, global radiation and wind speed. 
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2.3.2. Greenhouse gas and power demand 

uncertainty 

 
Fig. 2.6 - Boxplot distributions of the accumulated over and under 

prediction (Eqs. 2.8-2.9) of gas and power demand when using forecasts of 

different forecast prediction horizon lengths. Where the encircled point is 

the mean, the box is the 1st, and the whiskers are the 2nd standard 

deviations (outliers omitted for clarity). 
 

The greenhouse gas and power demand were simulated using different weather 

forecast prediction horizon lengths. Fig. 2.6 shows that as the forecast horizon 

increases the variance and mean of the over and under-predicted power and gas 

increases. In addition, the amount of over-predicted power and gas is greater 

than the under-predicted amount in both mean and variation. Subsequently in 

this case the greenhouse model tends to overestimate the power and gas 

demand. This originates from the bias present in the weather forecasts, namely, 

in the case of power demand, a negative bias in the global radiation forecast error 

(Fig. 2.7), meaning too little natural light is being forecast. This result is also 

reflected in the sensitivity results shown in section 2.3.4. 
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2.3.3. Greenhouse power trading uncertainty 

analysis 

 
Fig. 2.7 - A histogram of the market prices on the APX day-ahead and 

imbalance power markets. 
 

A comparison between the prices of the APX day-ahead and imbalance market is 

shown in Fig. 2.7. The comparison shows that the day-ahead price has a higher 

mean price than the imbalance price. However, the imbalance price has a far 

longer tail than the day-ahead price where extreme prices can occur. In addition, 

the day-ahead price is strictly positive during this period, and the imbalance 

price ranges over both positive and negative values. 
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Fig. 2.8 - A boxplot (left) of the initially predicted power demand (Eq. 2.10) 

and the subsequently calculated corrective power demand (Eq. 2.11). 

These power demands are described as the total per forecast period ╠. The 

mean and standard deviation for the initial and corrective demands (right) 

are displayed for each forecast prediction horizon length. Where the box is 

the 1st, and the whiskers are the 2nd standard deviations. 
 

Fig. 2.8 shows the total volume of the initial and corrective power demand prediction 

of a forecast period (Eqs. 2.10-2.11). The total volume of the initially predicted 

demand is much greater than the corrective demand for all weather forecast 

prediction horizon lengths. For both the initial and corrective demand the mean 

increases, and the standard deviation decreases with the weather forecast 

prediction horizon length. In addition, the initial and corrective demand has a 

positive bias for all the forecast prediction horizon lengths. To better look at the 

impact of misprediction on incurred costs only nonzero results are shown for the 

power demand and costs (Eqs. 2.12-2.13) displayed in Fig. 2.9. 
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Fig. 2.9 - A boxplot (left) of the initial power costs (Eq. 2.12) and the 

subsequently calculated corrective power costs (Eq. 2.13). The mean and 

standard deviation for the initial and corrective demands (right) are 

displayed for each forecast prediction horizon length. Where the box is the 

1st, and the whiskers are the 2nd standard deviations. 
 

The comparative costs of the initial and corrective trading are shown in Fig. 2.9 

and are derived from Eqs. 2.12 – 2.13. The initial bid is the larger in mean cost 

than the corrective costs and increases in mean and standard deviations as the 

forecast prediction lengths increase. The corrective costs have a greater variation 

and increase in mean cost with the forecast prediction horizon lengths. The 

standard deviation of the corrective costs does rise to a peak at a 72hr forecast 

horizon before declining. The negative value of the corrective bid cost represents 

the grower being paid as an incentive to purchase power on the imbalance 

market. This can occur when there is a surplus of power on the grid.  
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2.3.4. Sensitivity analysis of greenhouse gas 

and power demand  

 
Fig. 2.10 - A heatmap of the local discrete sensitivities (Eq. 2.19) of the 

predicted power and gas usage to weather forecast error.  
 

The sensitivity analysis shown in Fig. 2.10 is done using a 48-hour weather 

forecast. This analysis revealed that the power demand prediction error is most 

related to the global radiation forecast error. The gas use prediction error is most 

related to the temperature forecast error, then the wind forecast error and 

marginally to the global radiation forecast error. Moreover the error in gas 

prediction is highly sensitive to the second order interactions of errors in forecast 

variables. 

2.4. Discussion 
This study investigates the role of weather forecast error on greenhouse energy 

demand prediction and power trading. Additionally this study considers the 

impact of each forecasted weather variable and how power trading is impacted 

when using multiple markets. This study uses a method that is not validated as 

part of this studies analysis but provides novel and relevant insight into the 

management of energy in greenhouses. 
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This study explores how weather forecast errors can result in the misprediction 

of both gas and power demand in a greenhouse. In this specific study, the 

prediction uncertainty suggests an overprediction of the gas and power demand 

of the greenhouse. The overprediction of energy demand is linked to the notable 

negative bias in the temperature and global radiation forecast errors (Figs. 2.5). 

As a result, the amount of available natural heat and radiation is being 

consistently underestimated and as a result excess gas and power is being bought 

to meet this perceived deficit (Fig. 2.6). It should be noted that the overprediction 

of the greenhouse energy demand in this study is case specific and it is entirely 

possible for different weather forecasts to produce alternate patterns of 

misprediction. However this study demonstrates that the effects of misprediction 

can be large. The analysis also concludes that the cumulative amount of energy 

being mispredicted increased with the weather forecast prediction horizon 

length, corroborating the conclusions of (Tap et al., 1996). This is understandable 

as longer forecasts should become progressively more uncertain. The 

conclusions made on the volume of the predicted energy demand were made 

using a winter dataset and have not been extrapolated to the whole year. This is 

as the winter is the season of the highest use of artificial lighting in practice and 

requires more power than the rest of the year. 

 

The sensitivities of the energy predictions to weather forecast variables showed 

that gas prediction is sensitive to wind and temperature forecast error while 

power prediction is sensitive to the global radiation forecast error (Fig. 2.10). 

This observation is due to the fact that the global radiation forecast directly 

influences the need for supplementary artificial lighting and therefore the power 

demand. Gas is used to provide heat and its demand depends on heat moving 

through the greenhouse based on the temperature gradient between the inside 

and outside temperature and the convective energy transported through the 

greenhouse shell. The dependence of gas use prediction error on the temperature 

forecast and not the global radiation forecast may be because the dataset used in 

the study was from a Dutch winter where the ambient radiation levels are low. In 

summer one would expect that both the outside radiation and temperature 

would have a large effect on gas demand prediction as solar radiation is a key 

source of natural heat in the greenhouse. These results were calculated using 48-

hour long weather forecasts and as such this assumption excludes how these 

sensitivities might change over varying weather forecast prediction horizon 

lengths. While this does provide an opening for future research this study has 

shown that the broad trends and biases in the weather forecast error are 

consistent for all horizon lengths. Consequently it is anticipated that the 

conclusions of this analysis would be broadly consistent for all horizon lengths. 
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The power trading uncertainty analysis included in this paper offers a number of 

key insights into how weather forecast error might affect the power trading 

process and economic efficiency of the greenhouse. Most prominently, the 

corrective trading of mispredicted power can impact the economic performance 

of the greenhouse. This impact arises from the fact that although the volume of 

power being traded in corrective bidding is relatively smaller than the initial 

trade (Fig. 2.8), the corrective imbalance price is more volatile (Fig. 2.7). This can 

lead to the grower risking a higher price for their power than if it had been 

bought correctly in the initial trade. In this way it is better to reduce the impact 

of weather forecast error to mitigate the risk of volatile short-term prices. 

 

Additionally the power trading analysis confirmed the conclusion of Sigrimis et 

al., (2001), in that the inclusion of forecast errors increases the operating costs 

of a greenhouse. Moreover, these costs worsen with the increasing length of the 

weather forecasts as can be seen by the increase in the mean costs for both the 

initial and corrective trading (Fig. 2.9). Subsequently shorter weather forecasts 

would be preferable for minimising error. Interestingly the standard deviation of 

the initial and corrective power demand decreases as the forecast horizon 

increases. A hypothesis is that the errors tend to cancel out when summed over 

longer periods. So a large deviation from the mean is less probable for a long 

prediction horizon. An analysis should be performed with a larger dataset for 

more reliable conclusions to be drawn. It should also be noted that the markets 

used are Dutch and conclusions may vary based on the region of the market used. 

Another interesting observation is that the standard deviation of the corrective 

power demand costs (Fig. 2.9) rise to a peak at a 72 hour long forecast and then 

decreases. This is a potential result of a combination of lower prediction error at 

shorter forecast lengths and a cancellation of costs at longer forecasts lengths. 

Indeed, this happened in the corrective costs and not the initial costs as the price 

distribution for the day-ahead market has a greater bias to positive values, 

whereas the imbalance price is more centred on zero and takes negative values 

more frequently, as can be seen in Fig. 2.7. 

 

While this method is simple to apply it calculates the prediction error directly, 

without the assumptions related to the initial distribution of the weather forecast 

error that have been used in previous studies (Seginer, van Beveren, et al., 2018; 

Su et al., 2017b). Thus, the conclusions drawn from this method are inexorably 

linked to the weather forecast dataset as they are so spatially and temporally 

specific. While this specificity makes conclusions difficult to generalise it could 

be done using large or varied forecast datasets and multiple greenhouse models. 
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Despite this the use of direct comparison of energy predictions in this method 

means that it can be applied other greenhouse systems and model formats and 

offer the same analysis. Moreover this method can be applied to data from any 

place or time and produce relevant insight. 

 

This study does not include outside #/  data but assumes it is constant, this 

presents limitations to the conclusions regarding energy consumption as one use 

of a CHP is to provide supplementary #/ , which in turn is dependent on the 

outside conditions. The operation of the CHP for this purpose also affects the 

greenhouse energy demand due to the power and heat that is also produced. The 

inclusion of outside #/  data may offer insight into how the CHP is operated 

based on motives other than power demand and how that might affect selling 

surplus power to the grid. As this study is conducted in winter when the demand 

for supplementary #/  is less, it is anticipated that this surplus power will be 

relatively minor when compared to the power trading discussed in this study. 

 

A limitation of this study is that the economic analysis uses the imbalance market 

price for the short-term trading of power. While the imbalance price has been 

used in previous research (van Beveren et al., 2019) it is more common in 

practice to use the intra-day market price. Despite this limitation the conclusions 

of this study are relevant as the imbalance and intra-day markets are comparable 

representations of short-term power prices.  

 

The possible practical consequences of energy demand prediction error and the 

subsequent power trading are that grower may lose economic efficiency by 

having to trade on the more volatile short-term markets. These short-term 

markets are often supplied by immediately accessible power, often originating 

from fossil fuels. As a result, decreasing the corrective power trading of a 

greenhouse may also help reduce its carbon footprint. To try and achieve this the 

weather forecast bias could be accounted for in the energy prediction and energy 

buying process. This would need to have a highly localised approach as the 

variations in local climate strongly influence the validity of the global radiation 

forecast as demonstrated by Doeswijk & Keesman, (2005). 

 

Additionally, the insight from the sensitivity analysis presents an opportunity to 

improve the data collection and screening process by identifying weather 

forecast data with errors that disproportionally impact the uncertainty of model 

prediction. In particular this study’s conclusion that the global radiation forecast 

is a key cause of power misprediction parallels the importance of accounting for 

the error in radiation sensors found in Bontsema et al., (2011). This type of 
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insight can drive more efficient energy consumption in the horticultural sector, 

but also extends to any facility that uses weather forecasts to define its climate 

and energy buying strategy, such as food storage warehouses and offices. 

2.5. Conclusion 
To conclude, this study investigates the role of weather forecast uncertainty and 

its effect on greenhouse energy demand prediction and power trading. This was 

done through the direct comparison of predictions made with weather 

recordings and forecasts. The economic analysis of power trading was done using 

multiple markets to quantify the costs more realistically.  

 

This study shows a clear bias in the prediction of gas and power demand to buy 

more than is necessary when using a weather forecast. This bias is linked to the 

high sensitivity of the energy predictions to underestimate of temperature and 

global radiation in the forecasts in this study. The error present in weather 

forecasts and in greenhouse energy demand predictions do increase with longer 

weather forecast prediction horizon lengths. The power trading analysis 

concluded that while the volume of initial trading was greater than the corrective 

trading, the higher volatility in short term Imbalance market prices can result in 

higher costs per unit of power. Additionally, the means of the demand and cost of 

both initial and corrective demand increase with the forecast horizon prediction 

length. A sensitivity analysis was done on the weather forecast variables and 

concluded that in the Dutch winter case the global radiation forecasts have the 

greatest impact on power prediction error φȢρϷ, whereas gas demand 

prediction is strongly influenced by the wind ρψȢπϷ and outside temperature 

forecast ρχȢςϷ. 
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Highlights 
• An electrical power and gas demand uncertainty analysis was performed. 

• A polynomial chaos expansion was used as part of an uncertainty analysis. 

• The proposed algorithm shows groups of parameters impacting prediction 

uncertainty. 

• Lamp intensity is the key factor for power and gas demand prediction 

uncertainty. 

Abstract 
Within the modern greenhouse horticultural sector energy usage is planned 

using mathematical models that simulate the greenhouse’s future performance. 

These models contain parameters whose values can be inaccurate which create 

errors in model predictions. This reduces the effectiveness of energy 

management and planning done using these models. This study proposes and 

demonstrates an algorithm to quantify the impact of parameter errors on 

greenhouse gas and electric power prediction uncertainty. The proposed 

algorithm introduces a Polynomial Chaos Expansion as a method for the 

sensitivity analysis in the domain of greenhouse horticulture. Contrary to 

commonly used sensitivity analyses, this approach introduces the analysis of 

higher order interactions into the domain of greenhouse horticultural research. 

It was found that for both electric power and gas production the HPS lamp power 

rating was the most influential individual parameter. Moreover this study found 

that for power demand the uncertainty in parameters relating to the lamp system 

were far more impactful than those related to the crop or greenhouse structure, 

with a respective coefficient of variation of 24%, 5% and 5%. This study makes a 

notable and novel conclusion that for parameters related to the greenhouse 

structure, larger groups of parameters were responsible for prediction 

uncertainty through higher order interactions of second to sixth order. These 

results reinforce the importance of future greenhouse research considering the 

impact of higher order parameter interactions on prediction uncertainty using 

the algorithm proposed in this study.  
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3.1. Introduction 
Growers in the modern greenhouse horticulture sector use computerised 

decision support systems to aid in the electrical power and gas buying processes. 

This is done by predicting the greenhouse’s future electrical power and gas 

demand using a mathematical model of the greenhouse and forecasted weather 

data. However, these predictions are vulnerable to errors that are introduced 

through inaccuracies in the parameter values of the model. 

 

The exact value of a parameter is often unknown. If we estimate the parameter 

value it is likely to contain some errors. When these parameters are used for 

model predictions their errors translate into errors in the predictions. As the 

values of these errors are unknown the true values of these parameters are 

uncertain, which leads to uncertainty in the predictions. In practice uncertainty 

in the predictions can result in the misprediction and mis-buying of power and 

gas, which can result in financial loss for the grower and unnecessary energy 

consumption. 

 

This insight allows for the targeted improvement of model parameter and input 

data used in decision support tools. Any improvement in the accuracy of model 

parameters and input data would in turn create more accurate predictions of 

greenhouse electrical power and gas demand, which would lead to more efficient 

electrical power and gas buying by the grower. On a societal level this gained 

energy efficiency from greenhouse horticulture would cause a sizable decrease 

in the Dutch national electrical power demand, which in turn would result in less 

total electrical power generation, gas demand and a decrease in #/  emissions. 

 

Previous research in greenhouse horticulture has included the impact of 

parametric uncertainty in greenhouse modelling. For example, (Lo pez-Cruz, 

Martí nez-Ruiz, Ruiz-García , & Gallardo, 2020; Lo pez-Cruz, Ruiz-Garcí a, Ramí rez-

Arias, & Va zquez-Pen a, 2013), performed a parametric uncertainty analysis on 

the uncertainty of a predicted greenhouse lettuce growth. (Cooman & Schrevens, 

2006) performs a similar analysis but uses an individual Monte Carlo sample for 

each tomato crop model parameter. Cooman concluded that the light and #/  use 

efficiency of the crop are key parameters in propagating uncertainty into the 

predicted fruit dry weight. (Schrevens, Jancsok, & Dieussaert, 2008) assesses the 

impact of crop parameter uncertainty on the dehumidification and electrical 

power demand of a greenhouse and concluded that the uncertainty in crop 

parameters had little effect on the uncertainty of the predicted power demand. 
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These studies have mainly focussed on the role of parametric uncertainty within 

the greenhouse crop model parameters. However, there is a knowledge gap 

pertaining to the effects of greenhouse climate and energy model parameters on 

greenhouse electrical power and gas demand prediction. 

 

A few studies considered parametric uncertainty in the context of energy 

demand. For example (Golzar, Heeren, Hellweg, & Roshandel, 2018) performed a 

sensitivity analysis on the climate setpoints and found a trade-off between crop 

yield and energy demand whereby large energy savings could be made but at the 

expense of a slightly lower crop production. (Vanthoor, van Henten, et al., 2011) 

performed a similar analysis on the effect of errors in the weather, greenhouse 

design parameters and set points on boiler energy demand and crop growth. This 

was done using a normalised derivative-based sensitivity index for the individual 

or first order effect of parameters and a meta-model based approach for the 

combined effects of parameter pairs, also known as second order effects. 

Vanthoor’s study highlighted the importance of glass PAR and FIR transmission 

properties as well as outdoor radiation levels for growth and energy predictions. 

However, in both of these cases the analysis considered the overall energy 

demand of the greenhouse and does not consider the impact on the constituent 

gas and electrical power demand that make up a greenhouse energy demand and 

only considered a system with a boiler. As a result, there is a clear opportunity to 

explore the impact of model parameter uncertainty on an operational level 

where gas and electrical power demand can be managed separately.  

 

Although a number of studies have proposed methods to assess the impact of 

multiple sources of prediction uncertainty. These methods rely on sampling 

these sources which can become computationally intractable with a large 

number of parameters or data streams. This makes many of these methods 

unsuitable due to the large number of parameters associated with greenhouse 

models. To mitigate these issues previous studies have performed uncertainty 

analyses using a meta-model based approach to attribute the sources of 

uncertainty to a large number of parameters and the interactions between 

parameters (Blatman & Sudret, 2011). This was done using a polynomial chaos 

expansion (PCE) based meta-model, where the Sobol sensitivity indices of each 

parameter were analytically calculated from the coefficients of the meta-model 

(Mara & Becker, 2021; Sudret, 2008). 

 

While previous parameter uncertainty analyses have been conducted in 

greenhouse horticulture as detailed above, in all of these studies the number of 
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analysed parameters were only a small fraction of the total number of 

parameters used within these models, leaving a gap for an algorithm that 

systematically considers a larger number of relevant parameters in an 

uncertainty analysis using a method such as PCE. Furthermore, the application 

of PCE would allow the assessment of the combined effects of groups of 

parameters. Additionally, while previous research has focused on predicting crop 

growth and energy demand, there is a gap in the literature for an uncertainty 

analysis that applies to the prediction of electrical power and gas demand. 

 

To address the research gaps detailed above, this study proposes an algorithm 

inspired by the methodologies described in the aforementioned literature. This 

algorithm combines a Latin Hypercube sampling approach, parameter pre-

screening that considers all model parameters, and a PCE-based sensitivity 

analysis to allow for an analysis of the variance in energy predictions. This PCE 

analysis is preferable as it efficiently attributes prediction variance to errors 

present in a large set of model parameter on both an individual parameter level 

and collectively via higher order sensitivity indices that are calculated from the 

PCE. The proposed uncertainty algorithms were applied on a Dutch tomato 

growing greenhouse use case to identify the comparative roles of different model 

parameters on the prediction of electrical power and gas usage.  

3.2. Materials and Methods 
This study proposes and demonstrates an algorithm for the analysis of 

greenhouse power and gas demand prediction uncertainty that arises from 

parametric uncertainty. The following sections (3.2.1-3.2.2) describe the 

greenhouse model and weather data used to demonstrate the algorithm 

described in this study. The algorithm is described in section 3.2.3 and is then 

applied to three use cases, the results of which are described in section 3.3. It 

should be noted that for the remainder of this study electrical power will be 

referred to as power. 

3.2.1. Greenhouse model 

The greenhouse climate, tomato crop and energy model being used was 

Greenlight (Katzin et al., 2020), which is a calibrated, open source model. 

Greenlight is a dynamic differential equation-based model which emulates a 

tomato growing Venlo type greenhouse. The model receives input from weather 
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data of the outside temperature, wind speed, radiation, vapour density and #/  

concentration. The model predicts the greenhouse indoor climate states, which 

are the indoor air temperature, vapour concentration, ambient radiation and #/  

concentration. In addition, Greenlight predicts the power and gas demand of the 

greenhouse and the growth of the tomato crop within the greenhouse. The model 

was parametrised for Bleiswijk in the Netherlands. This study used a rule-based 

control scheme that is based on the current industry standard and was originally 

described by (Vanthoor, Stanghellini, van Henten, & de Visser, 2011). Due to the 

importance of the gas and power demand we have included a brief description of 

their corresponding equations. The power demand 9   7ϽÍ  was 

calculated as the product of the power rating of the HPS lamps (ʃ ȟ ) and 

the degree of actuation of the HPS lamps (9  ), where 0 is no lighting 

and 1 is full lighting. Accordingly 9   is defined as 

 

 9  ʃ ȟ Ͻ9   Ȣ (1) 

  

The formula for gas demand 9   Í ϽÓ ϽÍ  was defined as the 

amount of energy used by both the boiler (9  ) and CHP (9  ) 

generator in watts per square meter, divided by the energy content per cube of 

gas ʃ   as defined by Vermeulen, (2008), where ʃ   σςϽ ρπ *Ͻ

Í .  Accordingly  

 

 9   
 

 Ͻ9  9  . (2) 

3.2.2. Weather data 

The recorded weather data used was taken from a weather recording station in 

Bleiswijk, the Netherlands from 2018-01-01 00:00 to 2019-01-01 00:00 at 5-

minute intervals. The recorded weather data variables are the outside 

temperature ᴈ , wind speed ÍȢÓ , direct solar radiation 7ȢÍ  and 

outside relative humidity (Ϸ). The outdoor #/  concentration for both the 

weather forecast and recordings was assumed to be constant at 410 (ÐÐÍ). In 

addition, the cloudiness index (CI) was fixed to the average of the period (CI = 

0.7) and the sky temperature  and levels of diffuse radiation  were estimated 

using the available climate variables and according to the respective methods 

proposed in (Luo, de Zwart, et al., 2005) and (Orgill & Hollands, 1977). Any 

missing entries in the datasets were filled with the linearly interpolated values 
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of the adjacent data points. For the purposes of demonstrating the algorithm 

presented in this paper in a way that is computationally tractable this study 

focussed on a simulation period of 2018-03-01 00:00:00 to 2018-03-15 

00:00:00. 

3.2.3. An algorithm to compute how parameter 

uncertainty propagates into prediction 

uncertainty 

In this study the propagation of greenhouse model parameter uncertainty into 

greenhouse power and gas demand prediction uncertainty was investigated. This 

was done using an algorithm whose steps begin with a pre-selection of any 

parameters that are not relevant to this analysis. Then the distributions of each 

parameter that remains were defined. These parameters were then grouped into 

subsets of parameters that were linked by processes they are related to. For each 

of these subsets of parameters, sampled values were taken from each parameter 

distribution and were used to calculate the predicted greenhouse energy 

demand. This predicted energy demand was then compared with the prediction 

that was made with the nominal parameter values to calculate the prediction 

error that arose from sampling these parameters. This was then repeated until 

the full number of samples has been drawn. A PCE analysis was then performed 

using the sampled parameter values and the corresponding energy demand 

prediction error. These steps are then repeated for each subset of parameters.  

 

Once this has been done the parameters that were found to be sensitive in each 

subset were used to form a new subset. This was done to investigate any 

combined effect that may exist between the most sensitive parameters of all of 

the parameter subsets. This new subset was then sampled and used for energy 

predictions and a PCE analysis in the same fashion as has been previously 

described. Having done this the final PCE will give a measure of contribution to 

energy demand prediction uncertainty from each parameter and combination of 

parameters. Crucially this algorithm proposes a structure way to consider all 

parameters within the model and arrive at a computationally tractable set of 

uncertainty indices. 
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The steps of a this algorithm are shown in Fig. 3.1 and applied in three use cases. 

In the first use case 3 subsets of model parameters and their influence on power 

demand prediction uncertainty is examined. In the second use case a subset of 

these model parameters is taken to examine its influence on greenhouse gas 

demand prediction uncertainty. In the third use case the two most sensitive 

parameters from the previous two use cases is taken and used to perform an 

analysis on both gas and power demand prediction uncertainty. The steps for the 

algorithm used in each of these use cases are described in detail in the following 

subsections and for a clear overview is displayed diagrammatically below in Fig. 

3.1 in the form of a block diagram.  
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Fig. 3.1 - The steps taken in the model parameter uncertainty algorithm. 

Each block represents a step taken in the algorithm. Each step also includes 

the corresponding section in the text and the related variable assignation. 
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This algorithm contains two loops.  The first loop iterates through each 

subset of parameters ἶ up to the number of parameter subsets per use 

case (ἶἵἩὀ). The second loop iterates through the parameter sample Ἱ 

until the sample size ἹἵἩὀ is reached. 

3.2.3.1. Model parameter distributions 

The parameters were modelled as truncated normal distributions in which each 

parameter distribution (Ä) was defined as the product of a uniform distribution 

(Ð) and a normal distribution (Ð). The normal distribution (Ð) defined the 

statistical distribution of values for each parameter, and a uniform distribution 

(Ð) that sets limits to prevent extremely small and large sample values. As a 

result each parameter had an associated distribution Ä with a mean (ʈ), standard 

deviation (ʎ) and an upper and lower limit (ʃȟʃ) such that Äʈȟʎȟʃȟʃ ÐÐ 

where  

 

 Ð 5ͯʃȟʃ Ȣ (3.1) 

 

5 was a uniform distribution with finite lower and upper bounds ʃ  and  ʃ that 

truncates a normal distribution Ð which was defined as,  

 

 Ð .ͯʈȟʎȢ   (3.2) 

 

. denotes a normal distribution with a mean set at the parameters nominal value 

ʃ such that 

 

 ʈ ʃ (3.3) 

 

and 3 standard errors was set to 10% of the mean, so the standard deviation is 

 

 ʎ
Ȣ
. (3.4) 

 

Each of the model parameter was assumed to be independently distributed from 

any other parameter. 
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3.2.3.2. Initial parameter pre-selection 

The algorithm includes a pre-selection process from the full set of model 

parameters, then a metamodel based sensitivity analysis was done using a 

selected subset of parameters. A pre-selection process was done to reduce the 

number of relevant parameters as the application of uncertainty analysis 

methods on large models like Greenlight is computationally intensive. This is 

because sampling models with a large number of parameters require a large 

number of samples to cover all the possible combinations (Vazquez-Cruz et al., 

2014). This pre-selection process was performed using a series of rules to 

exclude model parameters from the full sample set that were not relevant for this 

study. Parameters that met any one of the following criteria were discarded from 

the analysis: 

 

• The model parameter is related to an unused section of the model. 

• The model parameter does not contain uncertainty. 

• The model parameter is a climate set point. 

• The model parameter is not related to the process involved in the power 

generation, light physics or heating in the greenhouse. 

 

Parameters relating to the greenhouse’s power generation, light physics and 

heating were selected to demarcate the study’s scope and as the study only 

focusses on the prediction of power and gas demand. The key process 

contributing to power demand is the power demand of the lighting, so the 

processes that are related to the artificial lighting in the greenhouse were 

included. Furthermore, the process of indoor heating consumes a large amount 

of gas. For the use case analysing gas demand prediction uncertainty this study 

focusses on the parameters relating to the greenhouse heating system. 

 

The parameters that were selected were then apportioned into four subsets 

where each subset is related to a specific operation that is simulated in the 

greenhouse model. This was done to highlight the sensitivity of different 

processes in the greenhouse as well as the parameters themselves and to reduce 

the computational intensity of the analysis by subdividing the parameters into 

relevant groups. The following subsets were used in this study: 

 

1. Power demand and greenhouse structure related parameters 

2. Power demand and HPS lamps related parameters 

3. Power demand and crop related parameters 

4. Gas demand and heating related parameters 
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These subsets of parameters were then assigned to a use case that focussed on 

either power or gas demand prediction. The first three parameter subsets are 

related to power demand prediction uncertainty and are used in the first use 

case. The fourth parameter subset is related to greenhouse gas demand and is 

used in the second use case. These two use cases are analysed and the 

parameters that were found to be sensitive were combined into a third use case 

that analyses the combined impact of these sensitive parameters on both gas and 

power demand prediction.  

 

After this pre-selection process was completed, each subset of model parameters 

was included in an analysis of variance. This was done by drawing a Latin 

Hypercube (LH) sample (Eq. 3.5) from the selected parameters and using this to 

simulate the resulting prediction error when compared to predictions made with 

nominal parameter values. For simplicity the mean value of each parameter was 

set as its nominal value as in Eq. 3.3. For the remainder of the study, steps in the 

algorithm that can be interchangeably applied to the analysis of both gas and 

power demand will be referred to using the collective term energy in place of 

either power or gas. 

3.2.3.3. Calculation of energy demand prediction error 

Initially a subset of parameters (ʃ) was selected using the index Î where Î

ρȢȢÎ . This subset of parameters was then sampled, where Ñ is the index of the 

sample, this sample was taken from the distributions $ of each parameter where 

$Êȟʈȟʎȟʃȟʃ  where Ê is the index of each parameter. These samples were taken 

using a Latin Hypercube sampling method, resulting in  

 

 ʃ Ê ͯ $ʈÊȟʎÊȟʃÊȟʃ Ê for Ñ ρȢȢÑ ȟÎ

ρȢȢÎ  and Ê ρȢȢÎ , 

(3.5) 

 

where Î  is the number of parameters. Time was discretised to hourly time 

instances È with È ÈȢȢÈ where È is the starting index and È is the final index. 

The predicted energy demand of the greenhouse was defined as 9, where 9 is a 

function of the initial time È, the time step of the simulation È, the parameter 

values of the model ʃ and the uncontrolled weather input to the model Õ. Each 

set of sampled parameter values ʃȢ and the recorded weather Õ  was used to run 

the model and predict the energy demand 9ÈȟÈȟʃȟÕ È . The nominal 

predicted energy demand 9ÈȟÈȟʃȟÕ È  was used as a base reference and 
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was calculated using the nominal parameter values ʃ (table 2.3). Subsequently 

the prediction error ʀȟ and its root mean squared error were then calculated 

for each parameter sample Ñ where 

 

 ʀȟ ÎȟÑȟÈȟÈȟʃȟÕ È 9ÈȟÈȟʃ ȟÕ È

9ÈȟÈȟʃȟÕ È  and 

(3.6) 

 ʀȟ ȟ ÎȟÑȟÈȟʃȟÕ

 В ʀȟ ÎȟÑȟÈȟÈȟʃȟÕ È
 

  . 

(3.7) 

 

For each parameter subset Î, ʃȢ is the set of samples for all the parameters in the 

subset and the corresponding set of root mean squared error (ʀȢ
ȟȟ ) are then 

used to perform an analysis of the prediction variance. 

3.2.4. Analysis of prediction variance 

The analysis of variance within this study was performed using a Polynomial 

Chaos Expansion based sensitivity analysis and a coefficient of variation-based 

uncertainty analysis which are detailed below. 

3.2.4.1. Polynomial Chaos Expansion based global 

sensitivity analysis 

Due to the large number of greenhouse model parameters, a sampling-based 

approach to a global sensitivity analysis would require a large number of samples 

to accurately assess the prediction variation resulting from all possible 

combinations of parameter values. For example, an uniform discretisation of a 

parameter space of N points per parameter would need .  samples, with 0 being 

the number of parameters. Given this, if hypothetically . ρπ and 0 ρπ the 

number of samples required is ρπ. This requirement means that a sampling-

based approach is computationally intensive and ultimately computational 

intractable. 

 

To avoids these issues and conduct a sensitivity analysis on the large number of 

model parameters, a polynomial chaos expansion (PCE) based sensitivity 

analysis was conducted. A PCE is a form of meta-model and allows for greater 

computational efficiency when compared to a conventional sampling-based 
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analysis. This is as parameter samples are used to calibrate the meta-model and 

the Sobol sensitivity indices can be calculated analytically from the coefficients 

of the meta-model (Sudret, 2008).  

 

For the algorithm described in section 3.2.3, the variance in the energy demand 

prediction error was decomposed and attributed to the respective input 

parameters used in each parameter subset. Sobol 1st,2nd and total order indices 

(Archer et al., 1997; Sobol, 1993) were used as the metric of variance in the 

variance decomposition.  

 

The PCE used in this study for each subset Î was in the form of a deterministic 

model - and can be described as a polynomial. This model was calibrated using 

ʀȢ
ȟ ȟ and the corresponding parameters samples ʃɆ.  Accordingly this model 

described the relationship between a set of model parameters ʃ

 ʃ ρ ȣʃ Î  , and the approximated energy demand error ʀȟ  such 

that 

 

 ʀȟ - ʃ . (3.8) 

 

This PCE is formed of a series of multivariate polynomials (ɰ) and coefficients 

(Ã) whose basis functions are based on Hermite polynomials. Each univariate 

component of the PCE is considered to be orthogonal each other. The PCE terms 

are described using the index É where Ó ρȟȢȢȢȟÎ , and are used to group 

terms that represent every possible combination of parameters. The PCE can 

subsequently be described as a series of summations that collect the terms 

relating to the impact and interactions of model parameters ʃ. These summation 

terms describe the collection of PCE terms relating to the impacts of groups of 

parameters of different sizes such that,  

 

 
-ʃ  Ã  Ãɰ ʃ

ᶰ

 
(3.9) 

  Ãɰ ʃȟʃ

ᶰ ȟ

Ễ  

  Ãɰ ʃȟȢȢȟʃ

ᶰ ȟȣȟ

Ễ

Ễ

  

 В Ãɰ ʃȟȢȢȟʃᶰ ȟȟȣ
.  
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Here ɻᶰᴓ  is a Î -dimensional index representing the entire parameter 

space. The terms of the PCE are collected into groups using a subset ה which 

denoted a subset of terms related to parameters which are defined in its 

subscript É. This series of summations collect terms that relate to the mean (Ã) 

and the impact of groups of parameters, where the second term denotes the first 

order impact of parameters (É). The third term relates to the second order 

impact of any pair of parameters whose index is described using É and É. The 

fourth term relates to the higher order impact of any number of parameters 

(ÉȟȣȟÉ) and the fifth term is the total order impact of all the parameters where 

the index is from 1 to Î .  

 

The polynomials used in this PCE were constructed using Hermite polynomials, 

whose coefficients (Ã) were calculated with the sparse-favouring least-square 

minimization least angle regression (LARS) method (Efron et al., 2004). Using 

LARS was shown to be advantageous as it greatly improved overall 

computational efficiency by using an iterative method to only identify the PCE 

coefficients relating to the impactful parameters (Blatman & Sudret, 2011).  

 

The method used in this study also included a degree-adaptive calculation of the 

order of the polynomials as part of the meta-model calibration process. The 

degree range is set from 1 to 10 degrees. This method iteratively increased the 

degree of the PCE polynomials, assessed the a-posteriori cross-validation error 

using a leave-one-out error metric and selecting the degree of polynomial that 

has the lowest error. This study used a proposal range of one to ten degrees 

within which the optimal polynomial degree was found. 

 

The Sobol sensitivity indices were derived from the coefficients of the meta-

model (Ã) as described in (Sudret, 2008). The first order Sobol indices 3  for 

each parameter were defined as the fraction of prediction variance that can be 

attributed exclusively to a single parameter (ʃ  over the total variance in the 

PCE. The total variance of the PCE prediction was calculated as  

 

 

6ÁÒ-ʃ   6ÁÒ Ãɰ   Ã%ɰ ʃ Ȣ 

(3.10) 

 

Subsequently the first order sensitivity (3)) for each parameter was calculated 

as 
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3)  

6ÁÒ-ʃ

6ÁÒ-ʃ

В Ã%ɰ ʃᶰ

6ÁÒ-ʃ
 ȟ!

ɻצᴓ ȿɻ π Ëɴ ʃ  

(3.11) 

 

In which the numerator of the first order Sobol indices was defined as the square 

sum of a subset (! ) of the non-zero terms which include coefficients Ã  and 

bases (ɰ ) relating exclusively to parameter ʃ. The total order Sobol indices 

3) were defined as  

 

 3)  3)ȟȣȟ 

Ṓ ȟȣȟ

Ȣ (3.12) 

 

Where the total order sensitivity indices is the sum of a subset of sensitivity 

coefficients (3) that relate exclusively to parameter ʃ or having any interactions 

with ʃ at any order of basis function in the polynomial. 

3.2.4.2. Coefficients of variation 

In addition to the Sobol indices, the coefficients of variation ὅὠ were used to 

compare the variability of the energy prediction uncertainty created by each 

subset of parameters, where 

 

 ὅὠὲȟ‐Ȣ
ȟ ȟ Ȣ

ȟȟ

Ȣ
ȟȟ . (3.13) 

3.2.5. Combined parameter subset 

Following the analysis of all four parameter subsets, the two most sensitive 

parameters found in each subset were then combined into a new subset and 

analysed using the steps describes in section 3.2.3.3 and 3.2.4.1. For this subset 

of parameters both predicted electrical power and gas demand were considered. 

3.3. Results 
The algorithm proposed in this study is now demonstrated in three use cases 

using a model that describes a Dutch tomato producing greenhouse. The 

outcomes of the use cases below demonstrate in which areas uncertainty 

reduction can be most effectively applied to ensure accurate greenhouse power 

and gas demand prediction. According to the algorithm described in section 
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3.2.3, initially the full set of 242 parameters in Greenlight were reduced to 36 

viable parameters (table 3.1) using the pre-selection criteria. The full set of 

parameter descriptions can be found in (Katzin et al., 2020) and the full pre-

selection process is detailed in the supplementary material. This document 

details how the pre-section criteria was applied to the complete dataset and how 

the subset of accepted parameters was reached. 

 

Table 3.3: Pre-selection of accepted parameters 

 Full 

set 

In active 

module 

Uncertain 

constants 

Not 

climate 

setpoint  

Associated 

with power 

& Lighting 

Associated 

with 

heating 

Accepted 

Count ςτς ςςς ςςσ ςρπ τσ ςπ σφ 

 

The 36 parameter that were accepted in the pre-selection were then apportioned 

into four subsets and assigned to two use cases relating either to power or gas 

demand prediction uncertainty. The number of accepted parameters (Î ) per 

subset (Î) and their associated use case can be seen in table 3.2.  

 

 Table 3.2: Use cases and subsets of accepted parameters 

 Greenhouse power demand uncertainty 

use case 

 Greenhouse gas demand 

uncertainty use case 

 Power 

demand and 

structure 

related 

parameters 

Power demand 

and HPS lamps 

related 

parameters 

Power 

demand 

and crop 

related 

parameters 

 Gas demand and heating 

related parameters 

Count ρρ ρρ τ  ρπ 

 

The following subsections address each use case in turn focussing first on the 

power demand uncertainty, then gas demand uncertainty and then the combined 

gas and power demand uncertainty. 

3.3.1. Computational settings 

For the application of the algorithm proposed in this study the following settings 

are used, ὲ   τ, ή  ρπππ and Ὤ   τπσς. 
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3.3.2. Greenhouse power demand uncertainty 

use case 

The parameters used for the greenhouse power demand uncertainty use case are 

described below in table 3.3. This table details which parameter subset each 

parameter is assigned to, each parameter mean, standard error (as defined in 

section 3.2.3.1), range of possible values and literary reference. 

 

Table 3.3: Definition of model parameter distributions 

Power demand and greenhouse structure related parameter subset 

Parameter name 

Ᵽ 

Distributi

on range 

—ȟ—  

Mean 

‘  

Standard 

error 

„ 

Units Mean value 

reference 

Ratio of global 

radiation absorbed 

by the greenhouse 

construction 

Ᵽ╡╪▀ȟ╬▫▪▼◄. 

π ȟЊ  πȢρ σȢσ

Ͻ ρπ  

- (Vanthoor, 

Stanghellini, 

et al., 2011) 

NIR reflection 

coefficient of the 

roof Ᵽ╝╘╡ȟ►▄█ȟ►▫▫█. 

π ȟρ πȢρσ τȢσ

Ͻ ρπ 

- (Vanthoor, 

Stanghellini, 

et al., 2011) 

PAR reflection 

coefficient of the 

roof Ᵽ╟═╡ȟ►▄█ȟ►▫▫█. 

π ȟρ πȢρσ τȢσ

Ͻ ρπ 

- (Vanthoor, 

Stanghellini, 

et al., 2011) 

NIR transmission 

coefficient of the 

roof 

Ᵽ╝╘╡ȟ◄►╪▪▼ȟ►▫▫█. 

π ȟρ πȢψυ πȢπςψ - (Vanthoor, 

Stanghellini, 

et al., 2011) 

PAR transmission 

coefficient of the 

roof 

Ᵽ╟═╡ȟ◄►╪▪▼ȟ►▫▫█. 

π ȟρ πȢψυ πȢπςψ - (Vanthoor, 

Stanghellini, 

et al., 2011) 

NIR reflection 

coefficient of 

thermal screen 

Ᵽ╝╘╡ȟ►▄█ȟ◄▐▄□. 

π ȟρ πȢσυ πȢπρς - (Vanthoor, 

Stanghellini, 

et al., 2011) 
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PAR reflection 

coefficient of 

thermal screen 

Ᵽ╟═╡ȟ►▄█ȟ◄▐▄□. 

π ȟρ πȢσυ πȢπρς - (Vanthoor, 

Stanghellini, 

et al., 2011) 

NIR transmission 

coefficient of 

thermal screen 

Ᵽ╝╘╡ȟ◄►╪□▼ȟ◄▐▄□. 

π ȟρ πȢφ πȢπς - (Vanthoor, 

Stanghellini, 

et al., 2011) 

PAR transmission 

coefficient of 

thermal screen 

Ᵽ╟═╡ȟ◄►╪□▼ȟ◄▐▄□. 

π ȟρ πȢφ πȢπς - (Vanthoor, 

Stanghellini, 

et al., 2011) 

NIR reflection 

coefficient of the 

floor 

Ᵽ╝╘╡ȟ►▄█ȟ█■▫▫►. 

π ȟρ πȢυ πȢπρχ - (Vanthoor, 

Stanghellini, 

et al., 2011) 

PAR reflection 

coefficient of the 

floor 

Ᵽ╟═╡ȟ►▄█ȟ█■▫▫►. 

π ȟρ πȢφυ πȢπςς - (Vanthoor, 

Stanghellini, 

et al., 2011) 

      

Power demand and HPS lamps related parameter subset 

Parameter name 

Ᵽ 

Distributi

on range 

—ȟ—  

Mean 

‘  

Standard 

error 

„ 

Units Mean value 

reference 

Maximum 

intensity of lamps 

Ᵽ■╪□▬ȟ□╪●. 

π ȟЊ  ρρπ σȢχπ 7

ϽÍ  

(Katzin et 

al., 2020) 

Fraction of lamp 

input converted to 

PAR 

Ᵽ╟═╡ȟ█►╪╬ȟ■╪□▬. 

π ȟρ πȢσχ πȢπρς - (J. A. Nelson 

& Bugbee, 

2014) 

Fraction of lamp 

input converted to 

NIR 

Ᵽ╝╘╡ȟ█►╪╬ȟ■╪□▬. 

π ȟρ πȢςς χȢσ

Ͻ ρπ 

- (J. Nelson & 

Bugbee, 

2015) 
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Transmissivity of 

lamp layer to PAR 

Ᵽ╟═╡ȟ◄►╪▪▼ȟ■╪□▬. 

π ȟρ πȢωψ πȢπσσ - (de Zwart et 

al., 2017) 

Reflectivity of 

lamp layer to PAR 

Ᵽ╟═╡ȟ►▄█ȟ■╪□▬. 

π ȟρ π πȢρ - (de Zwart et 

al., 2017) 

Transmissivity of 

lamp layer to NIR 

Ᵽ╝╘╡ȟ◄►╪▪▼ȟ■╪□▬. 

π ȟρ πȢωψ πȢπσσ - (de Zwart et 

al., 2017) 

Reflectivity of 

lamp layer to NIR 

Ᵽ╝╘╡ȟ►▄█ȟ■╪□▬. 

π ȟρ π πȢρ - (Katzin et 

al., 2020) 

Lamp area 

Ᵽ╪►▄╪▼ȟ■╪□▬. 

π ȟЊ  πȢπς φȢχ 

Ͻ ρπ 

Í Ͻ 

ÌÁÍÐ 

Í  

ÆÌÏÏÒ 

(de Zwart et 

al., 2017) 

Emissivity of 

topside of lamp 

Ᵽ▄□░▼ȟ◄▫▬ȟ■╪□▬. 

π ȟρ πȢρ σȢσ

Ͻ ρπ 

- (Katzin et 

al., 2020) 

Emissivity of 

bottom side of 

lamp 

Ᵽ▄□░▼ȟ╫▫◄ȟ■╪□▬. 

π ȟρ πȢω πȢπσ - (Katzin et 

al., 2020) 

Joules to 

micromole 

conversion of PAR 

output of lamp 

Ᵽ╟═╡ȟ╬▫▪ȟ■╪□▬ȟ. 

π ȟЊ  τȢω πȢρφ ʈÍÏÌϽ 

0!2 

*  

(J. Nelson & 

Bugbee, 

2015) 

      

Power demand and crop related parameter subset 

Parameter name 

Ᵽ 

Distributi

on range 

—ȟ—  

Mean 

‘  

Standard 

error 

„ 

Units Mean value 

reference 

PAR extinction 

coefficient of the 

canopy Ᵽ╟═╡ȟ╬╪▪. 

π ȟρ πȢχ πȢπςσ - (Vanthoor, 

Stanghellini, 

et al., 2011) 
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PAR extinction 

coefficient of the 

canopy for light 

reflected from the 

floor Ᵽ╟═╡ȟ█■▫▫►. 

π ȟρ  πȢχ πȢπςσ - (Vanthoor, 

Stanghellini, 

et al., 2011) 

NIR extinction 

coefficient of the 

canopy Ᵽ╝╘╡ȟ╬╪▪. 

π ȟρ πȢςχ πȢππωρ - (Vanthoor, 

Stanghellini, 

et al., 2011) 

Maximum capacity 

of the crop buffer 

Ᵽ╫◊█ȟ□╪●. 

π ȟЊ  ςπ

Ͻ ρπ 

φχπ - (Vanthoor, 

Stanghellini, 

et al., 2011) 

 

In accordance with the algorithm set out in section 3.2.3 each subset of 

parameters had 1000 samples drawn. These sampled parameter values of each 

subset were used to predict the greenhouse power demand for the purpose of an 

uncertainty analysis. The results from each subset of parameters are described 

below. 

3.3.2.1. Results for the power demand uncertainty 

analysis use case using the greenhouse structure related 

parameter subset 

To assess the sensitivity of the predicted greenhouse power demand a PCE based 

sensitivity analysis was performed using the model parameter sample from the 

greenhouse structure related parameter subset and the corresponding 

greenhouse power demand prediction error. The predicted power demand error 

was found to have a CV of 5.1%. The corresponding first order and total 

sensitivity indices are presented in Fig. 3.2. 
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Fig. 3.2 - First and total order sensitivity indices from the power demand 

uncertainty analysis use case using the greenhouse structure related 

parameter subset. 

 

Fig. 3.2 shows that for the structure related parameter subset all parameters do 

impact the variation in the prediction via the total order indices. However, none 

of the included parameters are found to have a first order effect, meaning no 

single parameter was found to be individually responsible for variation the 

predictions. Instead this PCE analysis predicts that the variation in the 

predictions are only attributed to larger groups of parameters via higher order 

interactions of second to sixth order which implies errors amplify as they interact 

dynamically. The indices for these higher order effects can be seen in table 3.4. 

This insight along with the low coefficient of variation indicate that while these 

parameters do produce a small amount of prediction variation no one 

parameters is notably impactful.  

 

The two parameters with the greatest total order indices (Fig. 3.2) are 

— ȟ ȟ  and — ȟ ȟ . The most sensitive parameter — ȟ ȟ  is used 

to calculate how much radiation is reflected from the floor. Subsequently the 

amount of radiative energy absorbed by the floor was calculated and then how 

the floor temperature changes. This change in floor and crop canopy temperature 

influences the air temperature via latent heat exchange. The air temperature is 

used to control the lamps, which in turn affects the power demand of the 

greenhouse. The second most sensitive parameter — ȟ ȟ  is the reflection 

coefficient of the glass. — ȟ ȟ  determines how much radiation is being 

reflected and transmitted through the glass, cover and blackout screen. Then 
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— ȟ ȟ  influences how much radiation reaches the thermal screen, top 

compartment, pipes and floor. As such these states describe how much heat from 

the sun is transferred to the aforementioned components and then to the indoor 

air. The air temperature is then used to control the lamps and therefore 

influences the power demand. 

 

The analysis of this subset reveals that parametric uncertainty propagates into 

the indoor air temperature state through the absorption and transmission of 

radiative heat by the structure. The indoor temperature then influences the 

temperature-based lamp lighting rule set, which in turn affects the power 

demand. Overall, it can be concluded that uncertainty in the parameters related 

to the structure has a small net impact on prediction uncertainty. However, the 

design of the controller, particularly the air temperature-based rule, allows the 

propagation of uncertainty into greenhouse power demand prediction. 
 

Table 3.4: Higher order sensitivity indices from the power demand 

uncertainty analysis use case using the greenhouse structure related 

parameter subset 

Parameter names Ᵽ Second order indices 

Ᵽ╟═╡ȟ►▄█ȟ►▫▫█ϽⱣ╟═╡ȟ►▄█ȟ◄▐▄□  πȢρς 

Ᵽ╝╘╡ȟ►▄█ȟ◄▐▄□ϽⱣ╟═╡ȟ►▄█ȟ█■▫▫► ρȢφϽρπ  

 Third order indices 

Ᵽ╡╪▀ȟ╬▫▪▼◄ϽⱣ╝╘╡ȟ►▄█ȟ◄▐▄□ϽⱣ╟═╡ȟ►▄█ȟ◄▐▄□ πȢρτ 

Ᵽ╝╘╡ȟ◄►╪▪▼ȟ►▫▫█ϽⱣ╟═╡ȟ◄►╪□▼ȟ◄▐▄□

ϽⱣ╝╘╡ȟ◄►╪□▼ȟ◄▐▄□ 

ωȢπϽρπ  

 Fourth order indices 

Ᵽ╡╪▀ȟ╬▫▪▼◄zⱣ╟═╡ȟ►▄█ȟ►▫▫█zⱣ╝╘╡ȟ►▄█ȟ◄▐▄□

Ᵽz╝╘╡ȟ►▄█ȟ█■▫▫► 

πȢρτ 

 Fifth order indices 

Ᵽ╟═╡ȟ►▄█ȟ►▫▫█ϽⱣ╟═╡ȟ►▄█ȟ█■▫▫►ϽⱣ╟═╡ȟ◄►╪▪▼ȟ►▫▫█

ϽⱣ╝╘╡ȟ◄►╪□▼ȟ◄▐▄□
ϽⱣ╝╘╡ȟ►▄█ȟ█■▫▫► 

πȢςτ 

 Sixth order indices 

Ᵽ╡╪▀ȟ╬▫▪▼◄ϽⱣ╟═╡ȟ►▄█ȟ►▫▫█ϽⱣ╟═╡ȟ◄►╪▪▼ȟ►▫▫█

ϽⱣ╟═╡ȟ►▄█ȟ◄▐▄□ϽⱣ╝╘╡ȟ◄►╪□▼ȟ◄▐▄□ϽⱣ╝╘╡ȟ►▄█ȟ█■▫▫► 

σȢχϽρπ  
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3.3.2.2. Results for the power demand uncertainty 

analysis use case using the HPS lamps related parameter 

subset 

Performing the analysis using the HPS lamps related parameter subset and the 

corresponding predicted power demand produced a PCE, the power demand 

predictions used to calculate this PCE had a CV of 24%. The resulting first and 

total order sensitivities can be seen in Fig. 3.3. 

 

 
Fig. 3.3 - First and total order sensitivity indices from the power demand 

uncertainty analysis use case using the HPS lamps related parameter 

subset on a logarithmic scale. 

 

For the HPS lamps related parameter subset the parameter relating to the 

maximum intensity of the HPS lamps (— ȟ ) was by far the most impactful 

on power demand prediction uncertainty, accounting for nearly all of the 

variation in the predicted power demand. This result is understandable as the 

power demand of the greenhouse is almost entirely from operating the lamps, 

and by changing their power rating the total demand changes. In addition, the 

power rating of the lamps influences the amount of heat energy the lamps 

transfer into the greenhouse. As such — ȟ  also influences the air 

temperature and consequently the control dynamics. The parameter with the 

second largest impact was — ȟ ȟ  Ȣ This parameter is related to what 

fraction of the radiation from the lamps is emitted above the lamps. This 

radiation interacts with the greenhouse screen, cover and is transmitted into the 

sky, in doing so influencing lamp, screen and indoor air temperature. A change in 
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air temperature influences the temperature-based rules controlling the lamps 

and subsequently the power demand. 

 

While other parameters are found to have some impact, these impacts are small 

in comparison to the role of — ȟ . The PCE did predict a number of second 

order effects in which a pair of parameters was found to have a role in creating 

prediction uncertainty. The 5 largest second order indices can be seen in table 

3.5. 

 

Table 3.5: Second order sensitivity indices from the 

power demand uncertainty analysis use case using the 

HPS lamps related parameter subset 

Parameter names Ᵽ Second order indices 

Ᵽ■╪□▬ȟ□╪●ϽⱣ▄□░▼ȟ◄▫▬ȟ■╪□▬  ςȢτϽρπ  

Ᵽ▄□░▼ȟ◄▫▬ȟ■╪□▬ϽⱣ▄□░▼ȟ╫▫◄ȟ■╪□▬ σȢψϽρπ  

Ᵽ╟═╡ȟ►▄█ȟ■╪□▬ϽⱣ▄□░▼ȟ╫▫◄ȟ■╪□▬ ςȢφϽρπ  

Ᵽ╟═╡ȟ◄►╪▪▼ȟ■╪□▬ϽⱣ╝╘╡ȟ◄►╪▪▼ȟ■╪□▬ ςȢσϽρπ  

Ᵽ╟═╡ȟ►▄█ȟ■╪□▬ϽⱣ▄□░▼ȟ◄▫▬ȟ■╪□▬ ςȢπϽρπ  

 

The second order sensitivities shown in table 3.5 are all of small orders of 

magnitude when compared to the other sensitivity indices that range between 0 

and 1, the largest of which is the combined influence of the — ȟ  and the 

emissivity of the top of the lamp — ȟ ȟ . This combined effect is logical as 

the maximum intensity of the lamp influences the amount of radiation that can 

be transmitted upwards. These combined effects influence the air temperature 

and as previously described propagate into the control dynamics and the power 

demand. The remaining second order sensitivity indices reflect the combine 

impacts of the upper — ȟ ȟ  and lower — ȟ ȟ  emissivity of the 

lamps and how the lamp radiation is transmitted and reflected from the cover.  

3.3.2.3. Results for the power demand uncertainty 

analysis use case using the crop related parameter subset 

The third parameter subset in the power demand use case was related to the 

parameters used in the crop model. The power demand predictions used for this 

PCE had a CV of 5.1%. The first and total order sensitivity indices for this subset 

are displayed below in Fig. 3.4. 
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Fig. 3.4 - First and total order sensitivity indices from the power demand 

uncertainty analysis use case using the crop related parameter subset. 

 

The analysis performed on the crop related parameter subset show that 

parameters in the crop model do influence the predicted power demand 

uncertainty and that the magnitude of this influence is comparatively small given 

the low value of the coefficient of variance. This outcome highlights the impact of 

the parameters relating to the PAR extinction coefficient of the crop’s canopy 

from above (— ȟ ) and below (— ȟ ). The parameter — ȟ  is used to 

calculate how much downwards lamp radiation is absorbed by the crop canopy. 

This is then used to calculate the amount of heat that the incoming radiation 

contributes to the air temperature through the canopy temperature, which as in 

the previous cases influences the control of the lamps. The parameter — ȟ  

is used to calculate how much lamp radiation is absorbed by the crop that is 

reflected from the floor and how this affects the temperature of the air. The 

analysis also provided two second order indices that are displayed below in table 

3.6. 

 

Table 3.6: Second order sensitivity indices from the 

power demand uncertainty analysis use case using the 

crop related parameter subset 

Parameter names Ᵽ Second order indices 

Ᵽ╟═╡ȟ╬╪▪ϽⱣ╟═╡ȟ█■▫▫► πȢτφ 

Ᵽ╟═╡ȟ╬╪▪ϽⱣ╝╘╡ȟ╬╪▪ πȢςω 
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The second order indices in table 3.6 show that the largest second order 

interaction that the PCE defined was between — ȟ  and — ȟ . These two 

parameters having a combined effect is logical as both influence the absorption 

of radiation by the crop canopy from above and below. The next second order 

sensitivity indices highlights the combined impact of the lamp PAR and NIR 

radiation that is absorbed by the crop canopy. These parameters both influence 

the amount of heat the lamps transmit to the indoor air and thereby influence 

the control of the lamps.  

 

The parameter — ȟ  was found to have a nonzero total order indices, this 

impact was caused by a small magnitude higher order interaction in which the 

parameter — ȟ  was included. In Fig. 3.4 the total order indices are much 

greater than the first order indices. This is as the total order indices are a 

combination of the first and second order indices and as the second order effects 

are large the total order effects are far greater than the first order effects.  

3.3.3. Greenhouse gas demand uncertainty use 

case 

The second use case in this study focusses on the prediction uncertainty in the 

prediction of gas demand arising from variations in parameters related to the 

heating system. The parameters that were selected as part of the pre-selection 

process are detailed in table 3.7.  

 

Table 3.7: Definition of model parameter distributions for the gas 

demand and heating related parameter subset 

Parameter name Ᵽ Distribution 

range 

—ȟ—  

Mean 

‘  

Standard 

error 

„ 

Units Mean 

value 

reference 

Ventilation 

discharge coefficient 

Ᵽ╬╓▌▐ 

π ȟρ πȢχυ πȢπςυπ - (Vanthoor, 

Stanghelli

ni, et al., 

2011) 

Greenhouse leakage 

coefficient 

Ᵽ╬╛▄╪▓╪▌▄ 

π ȟρ  ρȢπ

Ͻρπ 

σȢσ

Ͻρπ 

- (Vanthoor, 

Stanghelli

ni, et al., 

2011) 
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Specific heat 

capacity of roof 

layer Ᵽ╬╟╡█ 

π ȟЊ  πȢψτ

Ͻρπ 

ςψ *Ͻ+ Ȣ 

ϽËÇ 

(Vanthoor, 

Stanghelli

ni, et al., 

2011) 

Thermal screen flux 

coefficient Ᵽ▓╣▐╢╬► 

π ȟρ  πȢπυ

Ͻρπ 

ρȢχ

Ͻρπ 

Í Ͻ 

Í Ͻ 

+ Ͻ 

Ó  

(Vanthoor, 

Stanghelli

ni, et al., 

2011) 

FIR emission 

coefficient of the 

heating pipes 

Ᵽ▄▬▼╟░▬▄ 

π ȟρ πȢψψ πȢπςω - (Vanthoor, 

Stanghelli

ni, et al., 

2011) 

Capacity of the 

heating system 

Ᵽ▬║▫░■ 

π ȟЊ  ςȢρ

Ͻρπ 

χȢπϽρπ 7 (Vermeule

n, 2016) 

Heat capacity of 

lamp Ᵽ╬╪▬╛╪□▬ 

π ȟЊ  ρππ σȢσ *Ͻ+

Ͻ 

Í  

(Kusuma 

et al., 

2020) 

Heat exchange 

coefficient of lamp 

Ᵽ╬╗▄╬╛╪□▬═░► 

π ȟρ πȢπω σȢπ

Ͻρπ 

7Ͻ 

Í Ͻ 

+  

(Kusuma 

et al., 

2020) 

 

These parameters were sampled and used to calculate the gas demand. These 

samples and predictions were then used to calculate a PCE. The gas demand 

prediction errors were found to have a CV of 12%. The first and total order 

sensitivity indices that were calculated from the PCE are displayed in Fig. 3.5.  
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Fig. 3.5 - First and total order sensitivity indices from the gas demand 

uncertainty analysis use case using the gas demand and heating related 

parameter subset. 

 

The sensitivities displayed in Fig. 3.5 show that the gas demand prediction is 

sensitive to variations in the FIR emission coefficient of the heating pipes 

(— ), the capacity of heating system (— ) and heat exchange coefficient 

of lamp and the air (— ). The parameters —  and —  are related 

to the amount and efficiency of heat transferred from the boiler to the air 

temperature. By influencing the air temperature these parameters interact with 

the control dynamics as defined by the rules that control the boiler that are based 

on the air temperature. The same relationship is true for —  where the 

heat from the lamps influences the air temperature. The second order sensitivity 

indices found as part of the sensitivity analysis are displayed in table 3.8. 

 

Table 3.8: Second order sensitivity indices from the gas 

demand and heating related parameter subset 

Parameter names Ᵽ Second order indices 

Ᵽ▄▬▼╟░▬▄ϽⱣ╬╗▄╬╛╪□▬═░► πȢςυ 

Ᵽ▄▬▼╟░▬▄ϽⱣ▬║▫░■ πȢρφ 

Ᵽ▬║▫░■ϽⱣ╬╗▄╬╛╪□▬═░► πȢπρυ 

 
The second order sensitivities are displayed in Fig. 3.5. The combined effect of 

—  and —  were found to have the greatest combined impact. 
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These two parameters influence the temperature within the greenhouse by 

influencing the amount of heat energy that is transmitted into the greenhouse air 

from the lamps and hot water pipes. 

3.3.4. Greenhouse combined gas and power 

demand uncertainty use case 

The two most sensitive parameters from each of the previous two use cases were 

then taken and combined in an analysis of both gas and power demand 

prediction uncertainty, the selected parameters are described below in table 3.9. 

 

Table 3.9: Definition of model parameter distributions  

Combined gas and power demand parameter subset 

Parameter name 

Ᵽ 

Distribution 

range —ȟ—  

Mean 

‘  

Standard 

error 

„ 

Units Reference 

FIR emission 

coefficient of the 

heating pipes 

Ᵽ▄▬▼╟░▬▄ 

π ȟρ πȢψψ πȢπςω - (Vanthoor, 

Stanghelli

ni, et al., 

2011) 

Heat exchange 

coefficient of lamp 

Ᵽ╬╗▄╬╛╪□▬═░► 

π ȟρ πȢπω σȢπ

Ͻ ρπ 

ὡϽ 

ά Ͻ 

ὑ  

(Kusuma 

et al., 

2020) 

PAR extinction 

coefficient of the 

canopy Ᵽ╟═╡ȟ╬╪▪ 

π ȟρ πȢχ πȢπςσ - (Vanthoor, 

Stanghelli

ni, et al., 

2011) 

PAR extinction 

coefficient of the 

canopy for light 

reflected from the 

floor Ᵽ╟═╡ȟ█■▫▫► 

π ȟρ  πȢχ πȢπςσ - (Vanthoor, 

Stanghelli

ni, et al., 

2011) 

Maximum 

intensity of lamps 

Ᵽ■╪□▬ȟ□╪● 

π ȟЊ  ρρπ σȢχ ὡ

Ͻά  

(Katzin et 

al., 2020) 

Emissivity of 

topside of lamp 

Ᵽ▄□░▼ȟ◄▫▬ȟ■╪□▬ 

π ȟρ πȢρ σȢσ

Ͻ ρπ 

- (Katzin et 

al., 2020) 
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PAR transmission 

coefficient of the 

roof 

Ᵽ╟═╡ȟ◄►╪▪▼ȟ►▫▫█) 

π ȟρ πȢψυ πȢπςψ - (Vanthoor, 

Stanghelli

ni, et al., 

2011) 

PAR reflection 

coefficient of the 

floor 

Ᵽ╟═╡ȟ►▄█ȟ█■▫▫► 

π ȟρ πȢφυ πȢπςς - (Vanthoor, 

Stanghelli

ni, et al., 

2011) 

 

The parameters described in the table above were sampled and used to calculate 

the power and gas demand. A PCE was subsequently fitted for the gas and power 

demand separately. In the case of the gas demand PCE which had a maximum 

polynomial degree of 5 and a final LOO error estimate of τȢχϽρπ . The gas 

demand prediction errors were found to have a CV of 18%. The PCE generated 

using power demand predictions For the PCE made using the greenhouse power 

demand predictions which had a maximum polynomial degree of 9 and a final 

LOO error estimate of ςȢωϽρπ . The gas demand prediction errors were found 

to have a CV of 18% and the power demand prediction errors had a CV of 24%. 

The first and total order sensitivity indices that were calculated from the gas and 

power PCE are displayed in Fig. 3.6. 

 

 
Fig. 3.6 - First and total order sensitivity indices using the gas demand and 

heating related parameter subset. This figure is presented with a 

logarithmic scale. 
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Fig. 3.6 shows us that the PCE for the power demand attributes almost all of the 

prediction variation to the uncertainty introduced via the parameter for the 

lamps power rating — ȟ . This corroborates the importance of — ȟ  that 

was highlighted in the sensitivity indices and large coefficient of variance found 

in the lamp parameter subset (section 3.1.2) and in the local sensitivity analysis 

in appendix B. For the gas demand PCE, the parameter — ȟ  also had the 

greatest impact. This high sensitivity highlights the influence of the lamps power 

rating on the amount of heat that is transmitted to the air from the lamps. Which 

in turn influences the control of the boiler through the control dynamics and 

rules that references the air temperature. The second most sensitive parameter 

was — ȟ ȟ , this parameter it is used to calculate the amount of heat from 

the sun that is transmitted through the greenhouse glass and into the indoor air, 

which also affects the control of the boiler and CHP. A number of second order 

sensitivity indices were found for the PCE based on the gas demand which are 

displayed in table 3.10.  

 

Table 3.10: Second order sensitivity indices from the 

combined parameter subset on the uncertainty in gas 

demand 

Parameter names Ᵽ Second order indices 

ἜἋἠȟἫἩἶz ἜἋἠȟἺἭἮȟἺἷἷἮ σȢχϽρπ  

ἜἋἠȟἫἩἶz ἜἋἠȟἼἺἩἶἻȟἮἴἷἷἺ ρȢψϽρπ  

ἴἩἵἸȟἵἩὀz ἜἋἠȟἼἺἩἶἻȟἺἷἷἮ ρȢρϽρπ  

ἜἋἠȟἮἴἷἷἺzἜἋἠȟἺἭἮȟἺἷἷἮ ρȢρϽρπ  

 

In the case of the greenhouse gas demand the PCE does identify a number of 

second order interactions and these interactions are comparatively small in 

magnitude. The largest of these combined effects identifies a combined impact 

from variation in ʃ ȟ ȟ  and ʃ ȟ . Both of these parameters influence the 

temperature within the greenhouse as they are used to calculate how much 

radiative heat enters the greenhouse respectively and is absorbed by the crop 

canopy. As such this combined sensitivity indices highlights the impact of the 

heat transferred from the ambient radiation to the air via the crop canopy. 

 

In the case of power demand the PCE found no second order interactions but did 

find very small interactions at higher orders fourth and fifth order. This means 

that the PCE could not attribute variation in the prediction to any group of 2 or 3 

parameters and that there is a high degree of interaction amongst larger groups 

of parameters that accounts for a small fraction of prediction variation. To 
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corroborate the power demand uncertainty results a local one-by-one sensitivity 

analysis of Greenlight was performed and can be seen in appendix B. 

3.4. Discussion 
This study proposed and demonstrated an algorithm to analyse the greenhouse 

energy prediction uncertainty arising from the combined and individual impact 

of errors in the model parameters using a global sensitivity analysis.  

 

The analysis performed on the subset of parameters related to the greenhouse 

structure concluded that the most impactful parameters on power demand 

prediction were total order effects related to the amount of radiation that is 

reflected from the floor and transmitted through the greenhouse glass. This 

result was corroborated by (Vanthoor, van Henten, et al., 2011), which also found 

that the transmissive properties of the glass to incoming PAR and NIR had the 

greatest impact on greenhouse energy demand. This study makes a clear 

departure from previous research by concluding that for the greenhouse 

structure subset of parameters, no first order effect were found and instead 

groups of parameters were responsible for the variation in the prediction. This 

collective impact stems from the compounding of uncertainties as multiple 

equations with uncertain parameters feed into each other and feedback 

propagation where parameters influence states in the model that are self-

referential and iteratively create ever greater uncertainty. This insight offers a 

crucial new perspective from conventional wisdom in the field that has 

considered the impact of pairs of parameters to be sufficient. This study 

demonstrates that the impact of higher order interactions and groups of 

parameters is a central tool to understanding the causes of prediction 

uncertainty. Furthermore, this implies that the tuning of any single or pair or 

parameters will not necessarily reduce prediction uncertainty due to the high 

levels of interaction. As such this study highlights the opportunity and a method 

to consider higher order interactions in greenhouse parametric uncertainty 

analyses. 

 

This study also examined the influence of crop parameters on greenhouse power 

demand prediction. The results from this subset highlighted the parameters 

relating to the amount of radiation absorbed from below and above the canopy 

to be the most influential factors on power demand prediction. This finding is 

corroborated by (Schrevens et al., 2008), who found that parameters related to 

the light use efficiency of the crop also have the greatest impact on energy 
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demand prediction. While this study and Schrevens consider different 

greenhouses using different energy systems. Schrevens concluded that the 

magnitude of power prediction uncertainty from crop parameters was 5.8% and 

is comparable to the 5.1% prediction uncertainty described in section 3.2.3. It 

should also be noted that while these studies provide some comparable insights 

to literature the degree to which any set of parameters influences the energy 

demand of the greenhouse is dependent on the design of the rule set used to 

control the greenhouse. 

 

The analysis of the subset related to lamp parameters found that 99% of the 

variation in greenhouse power demand prediction uncertainty could be 

attributed to a first order effect from the HPS lamp light intensity parameter 

(ʃ ȟ ). This result is understandable as the power demand of the 

greenhouse is almost entirely from operating the lamps and by changing their 

power rating the total demand changes. It should also be noted that ʃ ȟ  also 

influences the air temperature through radiative heat exchange, which in turn 

influences the temperature-based rules that control the lamps themselves. In 

doing so ʃ ȟ  has multiple routes of propagation throughout the model and 

influences a feedback loop between the air temperature and the lamp rules. The 

consistency of this result was corroborated by previous unpublished research 

done using the KASPRO model (de Zwart, 1996; Dieleman et al., 2005) and using 

a local one-by-one sensitivity analysis of Greenlight in appendix B. While we 

assume sufficiency for the other methods this does present an interesting avenue 

for future research whereby multiple methods are applied to the same sets of 

parameters proposed in this study. While this study did highlight the impact of 

lamp light intensity, other parameters were also found to be impactful through 

second order interactions as shown in table 3.4. However, these effects were 

minor, meaning that no large improvement in prediction uncertainty could be 

made by tuning any one of the pairs highlighted in the second order indices.    

 

A further subset of parameters was proposed to investigate the prediction 

uncertainty in gas demand. The analysis of this subset of parameters found that 

the parameters relating to the capacity of the boiler and the lamps to deliver heat 

to the greenhouse is key. Furthermore, this analysis found that the 

parametrisation of the greenhouse structure or air leakage was comparably 

unimportant for gas demand prediction.  

 

The analysis of the combined subset found that the maximum intensity of the 

lamps (ʃ ȟ ) was the most sensitive parameter for power and gas demand 
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prediction accounting for 99 and 90% respectively. In the case of power demand 

this result was already indicated by the high sensitivity of ʃ ȟ  and high 

coefficient of variation for the lamp parameter subset. For the gas demand 

prediction uncertainty, the CV for the combined parameter subset (18%) is 

higher than the initial heating parameter set (12%). This indicates that 

parameters that were added from the sets related to power demand had some 

impact of gas demand prediction uncertainty. Specifically, ʃ ȟ  was found to 

be the most sensitive in the augmented set. The overall importance of ʃ ȟ  

stems directly from the air temperature-based control rules that operate the 

boiler and the lamps. This highlights the importance of the augmented subset 

and the need for a carefully designed selection criteria so that impactful 

parameters like ʃ ȟ  are not overlooked.  

 

The demonstration of the algorithm proposed in this study found that for power 

demand prediction uncertainty variation in crop and structurally related 

parameter caused a coefficient of variation of 5.1% and 5.2% respectively. 

Variation in the subset of parameters related to the HPS lamp lighting resulted in 

a coefficient of variation of 24% for power demand prediction. This outcome 

shows that for the purposes of reducing power demand prediction uncertainty 

the accurate parametrisation of the lamp lighting system are more impactful than 

the greenhouse structure or crop. 

 

A key conclusion that can be drawn from this study is that the greenhouse air 

temperature is a major contributor to uncertainty propagation in both gas and 

power prediction uncertainty. This route for uncertainty propagation is 

facilitated by the way the greenhouse controller is designed. Accordingly, an 

effective way to combat prediction uncertainty of greenhouse power and gas 

demand is to focus first on the attributes used in the rules that control the 

greenhouse lighting before addressing the accuracy of the internal light physics 

of the greenhouse. In a similar way van Henten (2003) concluded that the 

economic optimisation of the greenhouse’s operation were not sensitive to the 

internal climate dynamics of the greenhouse. The reason the parameterisation of 

the greenhouse’s light physics do not have an effect on the control rules that 

respond to light levels is that the rules used to control the lighting in (Katzin et 

al., 2020) do not consider the internal light physics of the greenhouse but instead 

respond to the ambient outdoor radiation. 

 

Despite the benefits of the proposed algorithms, there is potential for 

improvement. For example, due to a lack of available information this study 
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assumed that all of the model parameters have standard error that are defined 

according to Eq. 3.4. It may be that for some of the parameters the standard error 

may differ from this assumed value and may be known very precisely. Despite 

this limitation, the algorithm proposed in this study offer insight as to what 

processes in the model are vulnerable to uncertainty. 

 

A potential limitations of this study’s algorithms is that a PCE is a form of 

regression and as such has an associated error, this may marginally alter the 

sensitivities but not the algorithms main conclusions. While this study has 

addressed the impact of this error on the insight the algorithm produces using a 

validatory local sensitivity analysis (Appendix. B). Future research may assess 

the impact of this PCE error via an analysis where an increasing sample size is 

used to assess the development of PCE error. Furthermore, there is an 

opportunity to conduct conventional sample based Sobol sensitivity indices for 

higher orders of interaction to validate the higher order insights gained from this 

study. It should also be noted that for all of the analyses described in this study a 

number of factors with low total order sensitivities are given a value of zero for 

their first order sensitivity indices. This is an outcome of using the LARS 

algorithm (described in section 3.2.4.1) whose sparce-favouring method sets low 

correlation coefficients from the meta-model to zero to reduce the required 

computation.  

 

A further limitation of this study is that the use of subsets to further subdivide 

the parameter population does preclude the analysis of the effect of interactions 

between all of the parameters within different subsets. Interactions within the 

subsets are included in the augmented subset but only for the parameters that 

were initially found to be most sensitive. This design decision in the proposed 

algorithm does effectively focus the analysis on the most important factors but 

may also remove interactions between the subsets from parameters that initially 

were not found to be sensitive. This does open the opportunity of further analysis 

where all of the preselected parameters might be repeatedly shuffled into new 

subset to explore the impact of all the possible combinations.  

 

While previous studies have analysed the effect of parameter uncertainty in 

greenhouse (Cooman & Schrevens, 2006; Lo pez-Cruz et al., 2013; Schrevens et 

al., 2008) this study progresses the field by proposing an algorithm that 

systematically considers all of the model parameters and ultimately selects and 

analyses the impact of the relevant parameters. Moreover, unlike previous 

studies (Cooman & Schrevens, 2004; Vanthoor, van Henten, et al., 2011) this 

study introduced the use of polynomial chaos expansions for uncertainty and 
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sensitivity analyses in the field of greenhouse horticultural research. In doing so 

this study was able to attribute prediction uncertainty to individual and grouped 

uncertainty sources, ranging in size from 1 to 10 members, allowing for a more 

detailed and targeted analysis of larger groups of parameters. 

 

This study introduces a new form of promising uncertainty analysis in the form 

of polynomial chaos expansions, and while it contains a number of outstanding 

challenges it also opens avenues for furthering the use of uncertainty analysis in 

the field of greenhouse horticultural research. Future research in this field might 

consider if the design of the greenhouse controller influences the sensitivity of 

the model parameters. This could be done by performing a PCE analysis on a 

greenhouse that is controlled by an optimal controller and rule-based controller. 

3.5. Conclusion 
This study introduced an algorithm to investigate the role of parametric 

uncertainty on the prediction uncertainty of greenhouse gas and electrical power 

demand. This algorithm included an pre-screening process to reduce the number 

of relevant parameters considered in the analysis and a Polynomial Chaos 

Expansion based sensitivity analyses. The application of this algorithm 

concluded that parameters related to the greenhouse lighting were the greatest 

contributors to greenhouse power demand prediction uncertainty over crop and 

greenhouse structure related parameters. In particular the power relating to the 

power rating of the lamps was found to be the single greatest contributor to both 

gas and power demand prediction uncertainty. In addition this study made the 

notable finding that larger groups of model parameters were responsible for 

energy demand prediction uncertainty. This novel insight highlights the need for 

future research to consider the impact of higher order parameter interactions on 

prediction uncertainty using the algorithm proposed in this study. 
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Highlights 
• An uncertainty analysis was proposed and demonstrated that considers both 

parametric and weather forecast derived energy demand prediction 

uncertainty. 

• Weather forecast error has a greater contribution than the parameter error 

to energy prediction error. 

• This study found that reductions in weather forecast error had diminishing 

returns with reductions in error in the predicted greenhouse energy demand. 

Abstract 
This study breaks new ground by assessing the influence of individual and 

collective errors in weather forecast variables and errors in model parameters 

on the prediction error of greenhouse power and gas demand. To achieve this a 

sample-based and a Polynomial Chaos based sensitivity analysis using higher 

order sensitivity indices is proposed. This is accompanied by a sensitivity 

analysis of the impact of reducing individual weather forecast errors on 

greenhouse energy demand prediction error. The findings of this study indicate 

that weather forecast errors have a greater role in creating mean gas 

(ςχ 7ϽÍ ) and power (ςτ 7ϽÍ ) prediction uncertainty than parametric 

errors (υȢχ ὡά  and τȢφ 7ϽÍ ). In addition, weather forecast and parameter 

errors were found to be independent factors. Reducing weather forecast error 

exhibited diminishing returns with the reduction in prediction error. For 

instance, a scenario where the forecast error of all variables is reduced by 80-

90% resulted in a 50% decrease in gas and electrical power prediction error. The 

radiation forecast errors emerged as the primary contributor to power demand 

prediction errors, exhibiting the potential to reduce the power demand 

prediction error by approximately 60%. Reductions of forecast errors in wind 

and outdoor air temperature were identified as the predominant contributors, 

offering a respective potential for a 17% reduction in gas demand prediction 

error. 
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4.1. Introduction 
The Dutch greenhouse horticulture sector consumes a large amount of gas and 

electrical power over a growing season. This reliance on importing external 

energy into the greenhouse comes at a cost to the grower, as the financial stability 

of their business is linked to the prices of gas and electrical power. As such the 

efficient use of imported energy is crucial to successful greenhouse operation. To 

ensure efficient operation, the sector uses computerised decision support 

systems to advise how the greenhouse should be operated, how much gas and 

electrical power are required and when it should be bought. This is done by 

predicting the future electrical power and gas demand using a mathematical 

model of the greenhouse system together with forecasted weather data. 

 

Greenhouse operational strategies that use predictions from a model-based 

computer support system are however susceptible to errors. These errors can be 

caused by inaccuracies in the parameter values of the model or through 

disturbances in the weather forecast data. The probability distribution of 

possible inaccuracies in model parameters and weather forecasts results in a 

probability distribution of errors in the model prediction, which constitute 

prediction uncertainty. Prediction uncertainty is undesirable as it can lead to 

strategies that are resource inefficient and as such reducing inaccuracies in the 

model parameter and weather forecasts is a priority. 

 

Improvements in weather forecast and parameter accuracy would in turn create 

more accurate predictions of greenhouse electrical power and gas demand, 

which could lead to more efficient energy buying by the grower. On a societal 

level this gained energy efficiency from greenhouse horticulture would cause a 

decrease in the Dutch national electrical power and gas demand, which in turn 

would result in less total electrical power generation, gas usage and a decrease 

in ὅὕ  emissions. 

 

Within the field of greenhouse horticulture the data-based uncertainty from the 

weather forecasts has been included in previous studies. Sigrimis et al., (2001) 

and Vogler-Finck et al., (2017) analysed how forecast error affected the 

uncertainty in the predicted greenhouse heating demand. Both studies 

concluded that the inclusion of weather forecasts improved greenhouse heating 

performance when compared to using a rudimentary forecast. However Sigrimis 

and Doeswijk et al.,  (2006) also concluded that the presence of weather forecast 

errors increased the costs of heating a greenhouse and a storehouse by 19% and 
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3.1% respectively and that this cost only worsened when using longer forecasts. 

This is corroborated by Tap et al., (1996), who studied how the inclusion of 

weather forecast error affected an optimally controlled greenhouse indoor 

climate. Tap concluded that the optimality of the greenhouse’s #/ , heating 

demand and financial performance dropped by 15% when a one hour lazy-man 

forecast was introduced, and that the performance worsened for longer 

forecasts. The aforementioned research has studied the impact of weather 

forecast uncertainty on greenhouse model prediction but has focussed on the 

predicted heat demand and economics. This presents an opportunity to study the 

impact of weather forecast error on the predicted greenhouse electrical power 

and gas demand. 

 

Previous literature in greenhouse horticulture has considered the role of 

parametric uncertainty in the creation of greenhouse energy prediction 

uncertainty. (Golzar et al., 2018; Vanthoor, van Henten, et al., 2011) both 

considered the influence of a limited number of climate setpoint on greenhouse 

crop growth and energy demand. Golzar found potentially large energy 

reductions at the expense of small reductions crop growth. Vanthoor concluded 

that radiation transmission properties of the glass and the outdoor radiation 

levels have the greatest impact on crop growth and energy predictions. Both of 

these studies consider greenhouses with only a boiler and the overall energy 

usage and do not analyse gas and power demand. An alternative that has not been 

applied in the greenhouse horticultural domain is to use a meta-model based 

approach for parametric sensitivity analysis. One such method called polynomial 

chaos expansion (PCE) can be used to calculate sensitivity indices for the 

individual and combined effect of large groups of parameters (Sudret, 2008). 

These Sobol sensitivity indices are analytically calculated from the coefficients of 

the meta-model (Mara & Becker, 2021). As a result this method only requires 

samples for fitting the meta-model. As such PCE can be used to estimate 

sensitivity indices of a greater number of parameters with far fewer parameters 

samples than would be required for a traditional exhaustive sample based 

sensitivity analysis (Blatman & Sudret, 2011). 

 

While uncertainty resulting from model parameters and weather forecast data 

have been considered separately there is a knowledge gap in how these factors 

interact and impact prediction uncertainty in combination. This issue of 

combined effect is important as it shows the comparative importance of 

addressing errors within the model parameters and weather forecast data and 

where the greatest reduction in prediction uncertainty might be sought. 
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Outside of the field of greenhouse horticulture a number of methods have been 

proposed to analyse the role of multiple sources of input uncertainty on the 

prediction of a model. For example, Ramdani et al., (2006) combined data based 

and parametric uncertainty by assuming that the input data error is constant and 

can be treated as a parameter. This method allows the inclusion of errors with 

time varying variances into simple models analytically using a Volterra series. 

Additionally Ajami et al., (2007) proposes a Bayesian approach (IBUNE) that 

considers parameter, input and structural uncertainty in a model simultaneously. 

This is done using multiple models to perform model averaging and by defining 

an input error distribution to include data-based uncertainty into the analysis. 

This approach does however remove any auto or cross-correlation from the input 

data limiting the approaches relations to real data dynamics. As such there is an 

opportunity in the current research to analyse parameter and weather based 

prediction uncertainty that retains correlative effects within the weather data. 

 

In response to these gaps in the current research identified above we propose an 

algorithm to assess the impact of parameter and input uncertainty on 

greenhouse electrical power and gas demand simultaneously. These algorithms 

combine a Latin hypercube sampling approach, the direct use of input data time 

series, and a Polynomial chaos expansion (PCE) based sensitivity analysis. This 

algorithm allows a computationally tractable analysis of variance of the impact 

of errors in both individual factors and groups of parameters and weather 

forecast variables using higher order sensitivity indices. This study also 

highlights in which areas targeted error reductions would create reduction in 

model prediction error and the possible scale of these reductions. The proposed 

algorithm was applied to a model of a Dutch tomato growing greenhouse.  

 

This study aims to make an important contribution to the field of greenhouse 

horticulture by proposing a novel algorithm to investigate an underexplored 

aspect of the field. The novelty of this study has two aspects. The first point of 

novelty is the application of statistical uncertainty analyses that considers both 

the individual and collective impact of weather forecast and parameters errors 

in the domain of greenhouse horticultural research. The second point of novelty 

is that this study investigates the higher order effects of time series error and 

parametric error on energy demand prediction uncertainty.  
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4.2. Materials and Methods 
The following sections (4.2.1-4.2.2) describe the greenhouse model and the 

recorded and forecast weather data used to demonstrate the algorithm in a case 

study. The steps used for the algorithm described in this study is described in 

section 4.2.3. It should be noted that for the remainder of this study electrical 

power will be referred to as power. Furthermore, for the remainder of the study 

the word energy is used to denote power and gas. 

4.2.1. Greenhouse model 

The greenhouse climate, tomato crop and energy model used was Greenlight 

(Katzin et al., 2020), which is a calibrated, open source model. Greenlight is a 

dynamic differential equation-based model which emulates a tomato growing 

Venlo type greenhouse. The model receives input from weather data of the 

outside temperature, wind speed, radiation, vapour density and #/  

concentration. The model predicts the greenhouse indoor climate states, which 

are the indoor air temperature, vapour concentration, ambient radiation and ὅὕ  

concentration. In addition, Greenlight predicts the power and gas demand of the 

greenhouse and the growth of the tomato crop within the greenhouse. The 

greenhouse being simulated was parametrised for Bleiswijk in the Netherlands. 

This study used a rule-based control scheme that is based on the current industry 

standard and was originally described by Vanthoor, Stanghellini, et al., (2011).  

4.2.2. Weather data 

The recorded weather data used was taken from a weather recording station in 

Bleiswijk, the Netherlands from 2018-01-01 00:00 to 2019-01-01 00:00 at 5-

minute intervals. The recorded weather data variables are the outside 

temperature ᴈ , wind speed Í Ó , direct solar radiation 7 Í  and 

outside relative humidity (%). 

 

The outdoor ὅπ concentration for both the weather forecast and recordings was 

assumed to be constant at 410ppm. In addition, the cloudiness index (CI) was 

fixed to the average of the period (CI = 0.7) and the sky temperature (Luo, de 

Zwart, et al., 2005) and levels of diffuse radiation (Orgill & Hollands, 1977) were 

estimated using the available climate variables. Any missing entries in the 

datasets were filled with the linearly interpolated values of the adjacent data 

points. 
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The forecasted weather variables used are the hourly outside temperature ᴈ , 

wind speed ÍȢÓ  and direct solar radiation 7ȢÍ  these were generated for 

Bleiswijk, the Netherlands 2018-01-01 00:00:00 to 2019-01-01 00:00:00. The 

time step of the forecasts was regulated to 1 hour and any missing entries in the 

data were filled via linear interpolation. For the purposes of the case study 

demonstrating the algorithms presented in this paper in a way that is 

computationally tractable this study focussed on the simulation period of 2018-

03-01 00:00:00 to 2018-03-14 00:00:00, while using the full period of the dataset 

for estimating weather forecast error. To allow the direct comparison of 

forecasted and recorded weather the forecasts were resampled to 5-minute 

timestep using a zero-order-hold method. 

4.2.3.  An algorithm to assess how weather 

forecast and model parameter uncertainty 

propagates into greenhouse power and gas 

demand prediction uncertainty 

To analyse the impact of weather forecast error and model parameter error on 

the uncertainty of model predictions a sample-based uncertainty analysis was 

done using sampled model parameter values and synthetic weather forecasts 

using sampled weather forecast errors. The steps in the proposed algorithm are 

shown in Fig. 4.1.  
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Fig. 4.1 - The steps in the weather forecast and model parameter 

uncertainty algorithm. Each block represents a step taken in the algorithm, 

the corresponding section in the text and the related variable assignation 

are also denoted. These steps are looped for each forecast error sample ἶ 

until the sample size ἶἵἩὀ is reached. 

 

In addition to the algorithm shown in Fig. 4.1 further scenarios are proposed in 

subsections 4.2.3.4 and 4.2.3.5 that investigate the impact of bias corrected 
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forecast errors and scaled down forecast error variance. These scenarios 

demonstrate the potential change in prediction uncertainty if targeted 

improvements in weather forecast errors were to be made. 

4.2.3.1. Algorithm setup and calculating synthetic 

weather forecasts 

In this study time was defined on an hourly time step which is indexed using the 

variable h. To initialise the algorithm the model parameter distributions 

Ὠ‘ȟ„ȟ—ȟ—) used in this study (table 4.1) were modelled as normal 

distributions that are truncated by an upper and lower limit ʃ and ʃ.  

  

Table 4.1: Definition of model parameter distributions 

Model 

parameter 

name  

Distribution 

range 

ʃȟʃ  

Mean 

ʈ  

Standard 

error ʎ 

Units Reference 

FIR emission 

coefficient of 

the heating 

pipes 

ἭἸἻἜἱἸἭ. 

π ȟρ πȢψψ πȢπςω - (Vanthoor, 

Stanghellini, 

et al., 2011) 

Heat exchange 

coefficient of 

lamp 

ἫἒἭἫἘἩἵἸἋἱἺ. 

π ȟρ πȢπω πȢππσπ ὡϽά Ȣ 

ὑ  

(Kusuma et 

al., 2020) 

PAR extinction 

coefficient of 

the canopy 

ἜἋἠȟἫἩἶ. 

π ȟρ πȢχ πȢπςσ - (Vanthoor, 

Stanghellini, 

et al., 2011) 

PAR extinction 

coefficient of 

the canopy for 

light reflected 

from the floor 

ἜἋἠȟἮἴἷἷἺ. 

π ȟρ  πȢχ πȢπςσ - (Vanthoor, 

Stanghellini, 

et al., 2011) 

Maximum 

intensity of 

lamps 

ἴἩἵἸȟἵἩὀ. 

π ȟÉÎÆ ρρπ σȢχ ὡϽά  (Katzin et 

al., 2020) 
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Emissivity of 

topside of lamp 

ἭἵἱἻȟἼἷἸȟἴἩἵἸ. 

π ȟρ πȢρ σȢσ

Ͻ ρπ  

- (Katzin et 

al., 2020) 

PAR 

transmission 

coefficient of 

the roof 

ἜἋἠȟἼἺἩἶἻȟἺἷἷἮ. 

π ȟρ πȢψυ πȢπςψ - (Vanthoor, 

Stanghellini, 

et al., 2011) 

PAR reflection 

coefficient of 

the floor 

ἜἋἠȟἺἭἮȟἮἴἷἷἺ. 

π ȟρ πȢφυ πȢπςς - (Vanthoor, 

Stanghellini, 

et al., 2011) 

 

 The forecast error (ʀ) was then calculated for the entire dataset length (πρ-πρ-

ςπρψ to πρ-πρ-ςπρω) and was indexed using the time index È where  

 

 ʀ È Õ È Õ È. (4.1) 

 

In which Õ  is the recorded weather and Õ is the forecasted weather. This vector 

of forecast error vector ʀ  was then apportioned into two weeklong periods ʀ  

where 

 

 ʀ ʀ × ρϽÈ Ḋ×ϽÈ ,  (4.2) 

 

These two-week periods were then formed into a set ʀȟȢȢʀ . In this case × 

is the index of the two-week periods and × ρȢȢ×  where × ςφ and 

È  is the number of samples in a two-week period where È ρσττ. For 

each sample iteration (Î a forecast error vector was randomly drawn from the 

set of forecast errors and a parameter value was randomly drawn from each 

parameter distribution using a Latin hypercube sampling method,  

 

 ʃ ͯ $ʃ and ʀ ͯ ʀ  for Î ρ ȢȢȢÎ . (4.3) 

 

For this study, the number of samples used was set to 1000 (ὲ ). The drawing 

of a forecast error and model parameter value was done by including the index 

for the set of forecast errors as a parameter that was sampled. In doing so the 

sample space used in this study is augmented to allow the drawing of parameter 

values and vectors of forecast error data. For each sample Î eq. 4.4 produces a 

vector of forecast errors, whose length is that of the simulation period È . This 
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sampled vector of forecast errors ʀ was then added to the recorded weather 

data Õ  to simulate a representative synthetic weather forecast Õ in the 

following manner  

 

 Õ È Õ È ʀ ÈȢ (4.4) 

 

The synthetic weather forecasts Õ for each sample Î were then collected into a 

set of forecasts where Õ ÕȟÕȢȢÕ .  

4.2.3.2. Calculate power demand prediction error 

In this study greenhouse model energy predictions are referred to as 9 in section 

4.2.1, where 9 is a function of the initial time step È, time (È), model parameter 

values (ʃ) and weather data (Õ). For each sample Î, the prediction error ʀ and 

root mean square error ʀȟ  were then calculated. These were calculated by 

comparing the greenhouse energy demand prediction made using the sampled 

model parameters ʃ , sampled synthetic weather forecast data Õ with the 

energy demand prediction made using the actual weather forecast Õ and the 

nominal parameter values ʃ where,  

 

 ʀ ÈȟÈȟʃȟʃȟÕ È   9ÈȟÈȟʃȟÕ È

9ÈȟÈȟʃȟÕ È  , 

(4.5) 

and 

 ʀȟ ʃȟʃȟÕ

 В ʀ ÈȟÈȟʃȟʃȟÕ È     . 

(4.6) 

 

The nominal parameter values were defined as the mean value of the 

distributions of model parameters $ʃ. This prediction error was used to 

determine the comparative role of the weather forecast errors and model 

parameters. To do this the sampled model parameter ʃ, mean and standard 

deviation of the sampled forecast error ʈʀ  and ʎʀ  and the prediction error 

ʀȟ  were used in an analysis of prediction variance as detailed in the following 

section. 
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4.2.3.3. Analysis of prediction variance 

The analysis of variance within this study was performed using a Polynomial 

Chaos Expansion (PCE) based sensitivity analysis the details of these approaches 

can be found in Blatman & Sudret, (2011) and Sudret (2008). This PCE is made 

of a meta-model ὓ that is regressed based on the  prediction errors ʀȢȢ
ȟ  

response to variations in the sampled model parameter ʃȢ, mean and standard 

deviation of the sampled forecast error ʈʀȢȢ  and ʎʀȢȢ . As such it can be used 

to estimate the prediction error ʀȟ , 

 

 ʀȟ -ʀȢȢ
ȟ ȟʃȢȟʈʀȢȢ ȟʎʀȢȢ . (4.7) 

 

A further analysis of variance was performed to examine the comparative impact 

of these groups by fixing the weather and parameter error in turn. This was done 

using the steps defined in section 4.2.3.1 and 4.2.3.2 and was repeated three 

times. Initially the steps described are applied unaltered. Then the steps are 

performed using the original weather forecast (Õ) in place of the synthetic 

weather forecast (Õ). Subsequently the steps were performed setting the 

parameter values to be fixed on their nominal values. The scenarios proposed in 

the following subsections investigate the prediction uncertainty reduction that 

could be achieved by accounting for forecast error bias and reducing the variance 

of sensitive forecast errors. 

4.2.3.4. Scenario 1 – Greenhouse energy prediction 

demand uncertainty given reductions in forecast error 

variance 

This scenario investigates the degree to which uncertainty reduction could be 

achieved by accounting for forecast error variance reduction in forecast errors. 

To do this a variance reduction factor ʖ  was defined to scale all of the forecast 

variables and for forecast variables individually. By doing this the relative impact 

of targeted improvement of a single forecast variable was investigated. This 

factor was then used to calculate a modified forecast error such that, 

 

 ʀ ʖϽʀ. (4.8) 

 

For this scenario ɻ ranges from 0 to 1 increasing in increments of 0.1, meaning a 

10-100% reduction in error variance. This modified set of forecast errors was 
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then used to calculate the modified prediction error ‐ȟȟ  using the steps 

described in section 4.2.3.2. 

4.2.3.5. Scenario 2 – Greenhouse energy prediction 

demand uncertainty given forecast error bias correction 

To analyse the impact of forecast error biases on prediction uncertainty a bias 

correction was done by adding the product of a correction factor ɼ and a scaling 

factor ɾ to the forecast error described in eq. 4.2 such that 

 

 ʀ ɾϽɼ ʀ. (4.9) 

 

Where the correction factor is defined as the mean of the forecast error of each 

sensitive forecast variables such that ɼ ʈʀ . The scaling factor ɾ was set to 

take a ranges of values from 0 to 0.9 increasing in increments of 0.1. This 

modified set of forecast errors ʀ were then used in the steps described above in 

section 4.2.3.2 to calculate the modified prediction error ‐ȟȟ . Which was in 

turn used to compare the prediction uncertainty with differing degrees of bias 

correction. 

4.3. Results 
The algorithm and scenarios described in section 4.2.3 are applied to a case study 

of a tomato producing Dutch greenhouse  model, , detailed in section 4.2.1. 

Section 4.3.1 shows the results of the case study that demonstrates the 

comparative role of weather data error and parameter derived prediction 

uncertainty. Section 4.3.2 and 4.3.3 show the results of the case study that 

examines how much prediction uncertainty reduction can be achieved through 

targeted improvements in weather forecast error. 

4.3.1. Results from the analysis of the combined 

impact of model parameter and weather 

forecast uncertainty 

This section details the results of a case study demonstrating the algorithm 

described in section 4.2.3. The comparison of the impact of parameters and 

weather forecast error on energy prediction uncertainty can be seen in Fig. 4.2.  
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Fig. 4.2 - Normalised probability density function of power (bottom) and 

gas (top) demand prediction uncertainty given errors introduced from 

weather forecasts (blue), model parameters (cyan) and both in 

combination (pink). 

 

The prediction uncertainty ‐ derived from weather forecasts is far greater than 

that derived from model parameters. Furthermore Fig. 4.2 shows that the 

weather forecast and combined prediction uncertainty distributions are similar. 

This similarity implies that the weather forecasts account for most prediction 

uncertainty and that there is negligible interaction between uncertainty 

introduced from forecast and parameters. This is also confirmed by the 

distribution properties described in table 4.2. Accordingly, parameter and 

weather forecast error can be considered as independent distributions.  

 

Table 4.2: Distribution properties of gas and power prediction 

uncertainty 

   Weather 

forecast only 

 Weather forecast 

and parameter 

 Paramet

er only 

Gas 

demand 

‘  ςχ  ςψ  υȢχ 

„  χȢπ  φȢψ  ρȢρ 

        

Power 

demand 

‘  ςτ  ςυ  τȢφ 

„  ρρ  ρρ  ρȢρ 
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4.3.1.1. Results from the PCE based sensitivity analysis  

To corroborate and elaborate on the conclusions drawn from Fig. 4.1 a PCE 

sensitivity analysis was done on the predicted power demand. This was done 

using the sampled model parameter values and synthetic weather forecasts. The 

PCE was fitted with 9 degrees of freedom and a leave-one-out error of χȢτ Ͻ ρπ . 

This PCE was then used to calculate sensitivity indices, the resulting first and 

total order Sobol sensitivity indices are displayed in Fig. 4.3. 

 

 
Fig. 4.3 - The first (orange) and total (blue) order Sobol sensitivity indices 

for a PCE sensitivity analysis of power demand prediction error Ⱡ▬ given 

errors in model parameters and weather forecast data. 

 

It can be concluded from the PCE that the weather forecasts are the major 

producers of prediction uncertainty for power demand prediction. This 

conclusion confirms the findings displayed in Fig. 4.2. This outcome also 

confirms the conclusion found in Payne et al., (2022) that in the case of power 

demand production uncertainty, the radiation forecast is the greatest 

contributor. Furthermore, the large difference between first and total order 

indices indicates a large influence of higher order effects. The second order 

interactions, specifically between weather forecast variables which can be seen 

in table 4.3. In particular the radiation and temperature forecast have the largest 

role in the second order indices again mirroring the conclusion of Payne et al., 

(2022) and the link between radiative heat from the sun and air temperature. 
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Table 4.3: Second order PCE sensitivity indices  

Parameter names Ἔ Second order indices 

Ȣ
ἐȟἢἭἵἸἭἺἩἼἽἺἭ z Ȣ

ἐȟἠἩἬἱἩἼἱἷἶ πȢσπ 

Ȣ
ἐȟἠἩἬἱἩἼἱἷἶ z Ȣ

ἐȟἠἩἬἱἩἼἱἷἶ πȢσπ 

Ȣ
ἐȟἢἭἵἸἭἺἩἼἽἺἭᶻ Ȣ

ἐȟἢἭἵἸἭἺἩἼἽἺἭ ςȢπϽρπ  

Ȣ
ἐȟἥἱἶἬ ἻἸἭἭἬᶻ Ȣ

ἐȟἢἭἵἸἭἺἩἼἽἺἭ ςȢπϽρπ  

ἴἩἵἸȟἵἩὀz Ȣ
ἐȟἠἩἬἱἩἼἱἷἶ ρȢρϽρπ 

4.3.2. Results of forecast error reduction on 

energy prediction uncertainty from scenario 1 

This section describes the results of the case study demonstrating the methods 

proposed in scenario 1 that is described in section 4.2.3.4. Having concluded that 

the weather forecast error is the major contributor in energy prediction 

uncertainty and is independent from parametric uncertainty, , the potential 

reductions if errors were to be reduced was investigated. First this was done by 

scaling all forecast variables simultaneously and then individually. How the 

modification of all forecasts influences prediction uncertainty is shown the 

figures below. 

 
Fig. 4.4 - Percentage change in gas (blue) and power (orange) prediction 

error (Ⱡ╟ȟ╡╜╢) using an ⱷ scaling coefficient for all weather forecast 

variables..  
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Fig 4.4. shows the percentage reduction in gas and power demand error given 

reductions in weather forecast error. This figure shows that a reduction in the 

error of all forecast variables by 80-90% would yield an approximate 50% 

reduction in the prediction uncertainty of both gas and power. Furthermore, the 

relationship between reduction in prediction uncertainty is approximately linear 

up to a 60% reduction of weather forecast error. After which reductions in power 

demand prediction uncertainty are greater than gas. 

 

 
Fig. 4.5 - Percentage change in gas (blue) and power (orange) prediction 

error (Ⱡ╟ȟ╡╜╢) as a function of the variance reduction scaling coefficient ♪ 

for each weather forecast variable. The dotted lines are associated with a 

reduction in radiation forecast error and the dashed lines with circular 

markers are associated with a reduction in temperature forecast error. 

The solid lines with the square markers are associated with a reduction in 

wind speed forecast error. 

 

Fig. 4.5 shows that in the case of power prediction uncertainty the reduction in 

radiation error resulted in the greatest reduction in prediction uncertainty. This 

reconfirms the conclusions drawn from Fig. 4.2 that radiation forecast is the key 

contributor to power demand prediction uncertainty. Reductions in error in 

temperature and wind speed forecasts do not result in lower power demand 

prediction uncertainty. Gas demand prediction uncertainty is influenced by the 

reduction in the errors within all forecast variables. Reductions in temperature 

and radiation forecast error is accountable for the greatest degree of reduction 

in prediction error, with a variance reduction of 40% in temperature and 
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radiation forecasts resulting in a 9% reduction gas demand prediction 

uncertainty. 

4.3.3. Results of forecast error bias correction 

on energy prediction uncertainty from scenario 

2 

The following section describes the outcome of the case study of the bias 

correction scenario proposed in section 4.2.3.5.  

 
Fig. 4.6 - Percentage change in gas (blue) and power (orange) prediction 

error (Ⱡ╟ȟ╡╜╢) as a function of forecast bias reduction factor ♫ or each 

weather forecast variable individually. The dotted lines are associated 

with a reduction in radiation forecast error and the dashed lines with 

circular markers are associated with a reduction in temperature forecast 

error. The solid lines with the square markers are associated with a 

reduction in wind speed forecast error. 

 

The bias correction of individual forecast variables shown in Fig. 4.6 shows that 

in the case of power demand prediction uncertainty bias correction has a small 

effect on the reduction of prediction uncertainty and no effect that clearly 

increases with an increased bias correction. In the case of gas demand an 

improvement of 1-2% can be made by correcting for bias in temperature and 
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radiation forecast errors. It is key to note that corrections for bias in wind speed 

forecast errors increase prediction uncertainty. 

4.4. Discussion 
This study found that the error introduced from the weather forecasts created 

far greater gas ςχȢτ 7ϽÍ  and power ςτ 7ϽÍ  demand mean prediction 

error than that created by parametric error. Parametric error resulted in mean 

prediction error in gas demand of υȢχ 7ϽÍ  and power demand of τȢφ 7ϽÍ . 

This outcome confirms the emphasis put on mitigating weather forecast error by 

previous studies (Doeswijk, 2007; Kuijpers et al., 2022) This study also breaks 

new ground by proposing a novel algorithm that compares the impact of weather 

forecast and parametric error and their potential interactions. This study aimed 

to analyse the combined errors from weather forecasts and model parameters 

using a higher order indices that are computationally efficient to calculate. As 

such the algorithm detailed in this study is perfectly suited for this purpose. This 

is as the use of a PCE based analysis allows the uncertainty in the model 

predictions to be efficiently attributed to individual and groups of parameters via 

the PCE’s higher order terms (Sudret, 2008). Using this approach this study was 

able to conclude in Fig. 4.3 that higher order interactions between factors has a 

greater impact than the first order effects. Furthermore this study concluded in 

Fig. 4.2 that weather forecast error has a greater impact than parametric error. 

These conclusions challenge the precedent of sensitivity analyses that only 

consider first order effects and the analysis of only model parameter error in 

attributing energy prediction uncertainty in a greenhouse model. This algorithm 

also highlights where the easiest reductions in prediction uncertainty could be 

made. This was done by investigating the degree of difficult posed by reducing 

the amount of prediction uncertainty as a result of reducing weather data and 

parameters errors.  

 

In applying this algorithm this study also found that there was a very small 

difference of ρ 7ϽÍ  in the mean prediction uncertainty created from weather 

forecast error and the combined effect of weather forecast and parametric error. 

This outcome implies little interaction between parametric and weather-based 

errors. As such these sources of uncertainty can be considered as independent 

source of uncertainty in future research. 

 

The outcomes of this case study concluded that for the first order sensitivity 

indices of the power demand prediction uncertainty (Fig. 4.3) the mean error of 



 

112 
 

the radiation forecast is the only individual contributor. This is a result of 

uncertainty introduced in the radiation forecast propagating into the lamp 

lighting control rules that are related to the outside radiation level. This outcome 

supports the importance of radiation related processes in energy demand 

prediction that were also found in Bontsema et al., (2011) and Payne et al., 

(2022). Specifically Bontsema et al., (2011) concluded that sensor accuracy was 

key to energy prediction accuracy and Payne et al., (2022) found radiation 

forecast error to be the greatest contributor to power demand prediction 

uncertainty.  

 

Table 4.4 shows the second order interaction found as part of the PCE analysis, 

where uncertainty in the temperature and radiation forecast propagates in 

combination into power demand prediction uncertainty. These forecast variables 

act both on the temperature state, and as a result influence the controls of the 

lamps in combination through the rule set used in the greenhouse controller. This 

outcome invites a change in perspective that design of the climate controller is 

crucial in the mitigation of prediction uncertainty. Despite previous research not 

focussing on predicted power demand, the outcomes of this example reassert the 

conclusion of previous studies in that the introduction of weather forecast errors 

do impact model accuracy (Sigrimis et al., 2001) and greenhouse performance 

(Tap et al., 1996).  

 

This study performed a global variance reduction analysis and found that as the 

variance in weather forecast error decreased, prediction uncertainty reduction 

is initially linear up a 80% error reduction and that over 80-90% error reduction 

is required to see improvements in prediction error of greater than 50%. This 

outcome indicates that potential improvements in prediction uncertainty are 

difficult to achieve through forecast error reduction. However there have been 

improvements in weather forecast accuracy over the last 15 years, for example 

Haiden et al., (2021) found a 2.5% improvement in surface temperature forecast 

error and a 1.5% improvement in wind speed forecast error. If these trends 

continue, in the context of the entire sector these improvements might 

cumulatively equate to substantial amounts of energy. 

 

Given a more detailed individual analysis in section 4.3.2, the radiation forecast 

error is individually the largest power demand uncertainty. The importance of 

the radiation forecast found in this study is corroborated by the results of the 

uncertainty analysis preformed in Payne et al., (2022). The uncertainty analysis 

preformed in Payne et al., (2022) investigated the role of weather forecast error 

on greenhouse energy demand prediction uncertainty. This analysis found that 
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temperature and wind speed forecast error do not influence power demand 

prediction error. This is due to these variables not being included in the rules that 

control the greenhouse lamps, which are responsible for greenhouse power 

demand. This study goes further by showing that while a targeted reduction in 

forecast error is the most effective way to reduce power prediction uncertainty 

there are diminishing returns, in which ever greater improvements in forecast 

error are required for diminishing improvements in prediction uncertainty. In 

the case of gas demand prediction an improvement in all of the forecast variables 

yields an improvement in prediction uncertainty. Furthermore the greatest 

improvements in gas demand prediction accuracy can be made by mitigating the 

temperature and wind speed forecast errors. However, these are smaller overall 

than those seen in the power demand case.  

 

A bias correction analysis was also done and concluded that bias correction has 

little influence on power demand error. This is as the radiation forecast error has 

very low bias and as such correcting this bias has little effect on prediction error. 

Moreover, bias correction can benefit gas demand error if done for radiation and 

temperature forecast error but only accounts for 1-2% reduction in prediction 

error. In fact, for the case of wind speed forecast error, bias correction introduces 

more prediction error. This is due to the correction of the wind forecast’s positive 

error bias of ςȢρ ÍϽÓ  leading to a greater number of wind speed forecast errors 

with a larger negative value, which in turn set more values of the wind speed 

forecast to zero. This in turn introduced an underestimation of the forecast which 

increased prediction uncertainty. This result may imply that there is structural 

information in the forecast error bias and that the error in not purely a form of 

coloured noise in the case of wind speed error. 

 

A limitation of the proposed algorithm is that the parameters that were selected 

to be included in this study. This selection of parameters does not consider that 

different parameters may become impactful through interactive effects with 

weather forecast errors. As such these parameters are relegated from this 

analysis, potentially removing some impactful parameters. It should be noted 

that the parameters that were used in this study were found to be impactful in an 

unpublished global parametric uncertainty analysis related to greenhouse gas 

and power demand. As such they do provide an acceptable guideline for relevant 

parameters for the purpose of greenhouse energy analysis. In addition, this study 

found little to no interaction between any parameters and weather forecast 

variables, as such an interaction from different parameters and forecasts is 

possible but unlikely. Nevertheless, future research might perform a 

confirmatory global sensitivity analysis on all model parameters to investigate 
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any potential interactive effects with weather forecasts variables. A further 

limitation of this study is that its conclusions are limited to the data and models 

used in this analysis and any changes in the model may affect this study’s 

outcomes. To address this limitation further study should include multi-model 

analysis over multiple periods using multiple datasets. A further consideration 

for future research is to run an experimental setup within an operational 

greenhouse. This research would analyse the practical implications of managing 

energy demand with a decision support system that incorporates uncertain 

model parameters and weather forecasts. Such an analysis would be a crucial 

validation with experimental data. 

 

In terms of the impact of this study’s findings it should be noted that 

contemporary literature highlights the past and future potential for 

improvements in weather forecast accuracy (Frnda et al., 2022; Haiden et al., 

2021; Hewson & Pillosu, 2021). As such the potential of the findings of this study 

to impact the energy management of greenhouse horticulture are possible as 

weather forecasts from industry continue to improve in accuracy. This study also 

indicates a clear direction of future research to improve greenhouse energy 

demand predictions by addressing weather forecast errors in particular. Indeed, 

future research may also investigate the use of robust control methods to 

accommodate weather forecast uncertainty in the specific case of gas and power 

demand management as has been partially explored in previous studies (Bennis 

et al., 2008; L. Chen et al., 2018). Overall if these algorithms were adopted by 

future research and industry the greenhouse horticulture sector could improve 

the accuracy of their predicted energy demand and increase the subsequent 

energy and financial efficiency of greenhouses. 

4.5. Conclusion 
To conclude this study investigated the impact of weather forecast and model 

parameter uncertainty on greenhouse power and gas demand. This was done 

using a sample based and Polynomial Chaos based sensitivity analysis. In 

addition, an analysis was done to investigate the potential reductions in energy 

prediction uncertainty if forecast errors were to be corrected for. This study 

found that weather forecast errors have a much greater impact of prediction 

uncertainty than parametric errors. Indeed, this study notably found that 

parameter and weather forecast uncertainty do not have any combined effects 

and as such can be treated separately. However, improvements in weather 

forecast errors were shown to have diminishing return with reductions in 
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prediction error. An 80-90% reduction in the forecast error of all forecast 

variables would yield a 50% reduction in energy prediction error. In the case of 

the power demand uncertainty specifically the radiation forecast was the 

greatest contributor with a potential 60% reduction in power demand prediction 

error. In the case of gas demand wind and outdoor air temperature forecast error 

was the greater contributor with a respective potential for 17% reduction in gas 

demand prediction error. 
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Highlights 
• Model predictive control design of a greenhouse under fluctuating power 

prices. 

• Power trading was a crucial response to fluctuating prices. 

• Price of natural gas largest contributor to managing power price 

fluctuations when compared to forecasted radiation and the size of the 

crop’s assimilate pool. 

Abstract 
The objective of this study was to assess how a receding horizon optimal 

controller would operate a greenhouse  given disturbances from fluctuating 

electrical power prices. This study also explores how fluctuating power prices 

can be managed by an optimal controller through the utilisation of the combined 

heat and power generator, radiation forecasts and the crop’s assimilate pool. This 

study found that in reacts to fluctuating electrical power prices ranging between 

ρȢρϽρπ ΌϽὐ  and σȢρχϽρπ ΌϽὐ  the optimiser decreases the amount of 

bought electrical power by 50%. The power demand was met with an increase in 

electrical power that was generated via the Combined Heat and Power generator, 

which also led to an increase in natural gas usage of 25%. In addition there was 

an increase in electrical power selling during periods of high outdoor radiation 

and power prices leading to an increase of 145% in power selling over the 

simulation period. Despite these large changes in energy strategy the optimiser 

proposed a management strategy that decreased crop yield by 1.4%. This study 

also found that for the examined case study, the mechanism that enables energy 

management under fluctuating power prices was the price of natural gas and the 

use of the combined heat and power generator. Furthermore this study found 

that in this case the crop’s assimilate pool was not an effective energy buffer. 

5.1. Introduction 
The Dutch greenhouse horticultural sector uses a significant 110PJ (Statistics 

Netherlands [Internet], 2021) of electrical power each year, which was 

approximately 4% of the net energy consumption of the Netherlands. This 

demand adds to a growing strain on the Dutch electrical power grid that is in part 
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due to increasing electrification and fossil fuel sources becoming less secure 

(Scheepers et al., 2022). The climate impact of greenhouse electrical power 

demand is particularly severe when it coincides with times of high demand and 

price on the national grid, as often the generation methods that are mobilised to 

meet this temporary demand are fossil fuel based (Powells et al., 2014). If energy 

management in greenhouses prioritised shifting the electrical power demand 

peaks to low demand times on the grid, savings in emissions may be made and 

the electrical power costs growers pay may decrease. This peak shifting of 

electrical power demand could be done by harnessing the as yet underutilised 

robustness within the energy system by postponing the supply of external energy 

during high demand periods and instead relying on energy that is already within 

the greenhouse.  

 

An example of system robustness is presented in previous research, which has 

proposed using the robustness of the crop to mitigate fluctuations in the air 

temperature (Elings et al., 2005; Korner & Challa, 2003; Ko rner & van Straten, 

2008). This proposes using the crop’s ability to integrate temperature 

fluctuations to derive a more energy efficient greenhouse management strategy 

without impacting overall growth. These studies found that energy savings and 

reductions in gas usage could be made using this approach. However, these 

studies did not consider that energy market prices fluctuate, and that electrical 

power demand is a key factor.  

 

Managerial robustness has also been incorporated in previous literature by 

optimizing the hot water buffer within the greenhouse to store and remobilize 

heat energy (Seginer et al., 2017b; van Beveren et al., 2019; van Willigenburg et 

al., 2000). This water is heated using a gas fired boiler or a gas fired combined 

heat and power generator (CHP). If there is hot water generated by the CHP that 

is surplus to the immediate requirements of the greenhouse, it is stored in a 

water tank and is used to heat the greenhouse later instead of heating further 

water. As such it is possible to buffer heat energy within the greenhouse by 

storing hot water. While the studies do provide examples of how the performance 

of the greenhouse can be maintained when exposed to fluctuations in the 

availability of heat energy and gas, these studies do not consider how electrical 

energy might be buffered. 
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A key part of a greenhouse’s energy system are the electrical lamps which 

provide supplementary lighting to the greenhouse crops. These lamps can be 

powered from market bought electricity or from internally generated electricity 

from the CHP. However, unlike heat energy there is no method currently 

employed within greenhouses that allows for the buffering of surplus electrical 

power. As such any electrical power that is bought or generated in surplus is 

wasted or sold back to the grid, potentially at a financial loss. However, it should 

be noted that the capability of the CHP to generate electricity can be used to 

manage fluctuating electrical power prices as explored in previous greenhouse 

horticultural research (Seginer et al., 2018; van Beveren et al., 2019) and in 

broader research (Mitra et al., 2013). The CHP can be used to generate power 

that offsets power demand during high power price times in exchange for an 

increased gas demand as described in (van Beveren et al., 2019). While previous 

research has identified the energy saving potential of the managerial robustness 

provided by CHP trading (van Beveren et al., 2019), trading was also found to be 

less important than running a productive greenhouse (Seginer et al., 2018). 

However, there is a gap in existing research to quantify the potential efficacy of 

using the CHP to provide power to bridge fluctuating electrical power prices 

given, changes in the gas price and seasonal weather. 

 

Previous research has investigated how disturbances introduced by the weather 

forecasts can be incorporated into a receding horizon optimal controller. 

Specifically previous research has investigated how hot water buffers in 

greenhouses might be optimally operated to buffer fluctuations in forecasted 

outdoor air temperature (Keesman et al., 2003; Seginer et al., 2017a; van Beveren 

et al., 2019). A principle of these strategies being to pre-emptively store heat 

energy in the water buffer when the outdoor air temperature is high, and to 

release stored heat energy when outside air temperatures are low. However, 

there is a gap in previous research to assess how a receding horizon optimal 

controller might use the availability of forecasted radiation to manage 

fluctuations in electrical power prices, as electrical power is mostly used to 

power artificial lighting. 

 

An opportunity to manage the impact of fluctuating electrical power prices is 

using the systemic robustness within the crop to store sugars (Elings et al., 2005; 

Korner & Challa, 2003; Ko rner & van Straten, 2008). Previous research has 
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proposed the use of the crops ability to buffer sugars as a potential energy buffer 

(Seginer, 2022). A common conceptualization of crop models in previous 

research (Heuvelink, 1996; Jones et al., 1991) has described the development of 

a crop using sugars generated through photosynthesis that are stored in an 

assimilate pool. These sugars are then modelled as being partitioned from this 

buffer to grow and maintain the crop as well as developing fruits (Heuvelink, 

1995). 

 

This assimilate pool stores sugars in-between photosynthesis and partitioning 

and can be used as an energy buffer by influencing the rates of these two 

processes through the greenhouse climate. Seginer et al, (1994, 2022) did use a 

model of the assimilate pool as an energy buffer to optimise temperature. While 

this study did demonstrate the possibility of managing the assimilate pool by 

changing the air temperature within the greenhouse there are further 

opportunities to consider the influence of flexible lighting and energy prices.  

 

This study aimed to assess how to manage the greenhouse when exposed to 

fluctuating electrical power prices. This is done by examining the managerial 

strategy proposed by a receding horizon optimal economic controller when 

presented with fixed and fluctuating electrical power prices. Furthermore, this 

research goes a level deeper and also investigates how fluctuations in the 

electrical power price may be managed using the assimilate pool as an energy 

buffer, or by using the CHP to generate electricity based on the gas price, or by 

scheduling operations around the availability of outdoor radiation.  

5.2. Materials and Methods 
In this study two experiments were performed. In the first experiment we 

compared how a receding horizon optimal controller (described in section 5.2.2) 

manages the greenhouse climate in response to both fixed and fluctuating 

electrical power prices (explained in section 5.2.3). The second  experiment was 

a sensitivity analysis that assessed if the gas prices, forecasted outdoor radiation 

or crop’s assimilate pool can be used by the optimiser to mitigate the effect of 

fluctuating prices on greenhouse energy and crop management. Throughout the 

rest of this study, we will refer to electrical power as power. 
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5.2.1.  Greenhouse system definition 

 

The greenhouse model used in this study included a climate, energy system and 

tomato crop model. In this study, we used a greenhouse climate and energy 

model that was developed by Kuijpers, Katzin, et al., (2021).  Their model, in turn, 

was based on the one originally described by Kuijpers, Katzin, et al., (2021) and 

Vanthoor et al., (2011). This study used a crop model of a tomato in a generative 

state that was proposed in Kuijpers, Katzin, et al., (2021) that was originally 

derived from the crop model presented in Vanthoor et al., (2011). In this study 

the greenhouse model was described as a dynamic system: 

 

 Ø ÆØÔȟÕÔȟÄÔȟÐ, (5.1) 

 ØÔ Ø. (5.2) 

 

Where: 

Ô Ô Ô is the time vector of the prediction horizon, given that Ô is the initial 

time and Ô is the finishing time, 

Ø is the model state vector, 

Ø are the initial state values, 

Õ is the controllable input vector, 

Ä is the disturbance input vector, 

Ð is the parameter vector. 

 

The model contains 8 states Ø, 11 controlled inputs Õ and 6 disturbances Ä 

used can be found in table 5.1. The parameter values (Ð) used in this study were 

taken form (Kuijpers, Katzin, et al., 2021) unless stated otherwise. 

 

Table 5.1: Greenhouse climate and crop model states (ὀ), controlled 
inputs (Ἵ) and disturbances (Ἤ) 
Model states 

Ø Øȟ4 ȟ60 ȟ#/ȟ ȟ4 ȟ# ȟ# ȟ#  

Name Symbol 

Heat stored in heat Buffer Ø 

Greenhouse air temperature 4  

Greenhouse air vapour density 60  

Greenhouse air #/   concentration #/ȟ  

Daily average greenhouse air temperature 4  
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Crop carbohydrates in the buffer #  

Crop carbohydrates in the leaves #  

Crop carbohydrates in the fruits #  

 

Disturbances 

Ä Ä ȟÄ ȟÄ ȟÄ ȟÄ ȟÄ  

Name Symbol 

Global Radiation Ä  

Outside temperature Ä  

Outside air #/  concentration Ä  

Outside air vapour density Ä  

Outside windspeed Ä  

  

Controlled inputs  

Õ Õ ȟÕ ȟ Õ ȟÕ ȟÕ ȟÕ ȟÕ ȟÕ ȟÕ ȟÕ ȟÕ   

Name Symbol 

Requested heat flux from the CHP Õ  

Requested heat flux from the boiler Õ  

Requested energy for the high pressure 

sodium lamp lighting 

Õ  

Requested buy electrical energy Õ  

Requested sell electrical energy Õ  

Requested #/  injection Õ  

Requested amount of #/  bought Õ  

Requested heat flux to heat buffer Õ  

Requested amount of ventilation Õ  

Requested screen set Õ  

Leaf harvest Õ  

 

The crop’s assimilate pool ὅ  (ὑὫϽά )  dynamics was modelled using the 

following equation; 

 

 # -# -# -# -#

-# Ȣ 

(5.3) 

 

In this equation the crops assimilate level was modelled as the amount of 

assimilate received from photosynthesis (ὓὅ ), the amount assimilates 

partitioned from the buffer to the fruits (ὓὅ ), leaves (ὓὅ ), stem 
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(ὓὅ ) and for the maintenance respiration of the plant (ὓὅ ). For 

further details on the assimilate pool modelling see Vanthoor et al., (2011). 

5.2.2. Greenhouse control problem 

The receding horizon optimal controller used a time step of 15 minutes and a 

prediction horizon of 3 days, this was based on an analysis performed in Kuijpers, 

Katzin, et al., (2021) that balanced the prediction accuracy of the same model 

used in this study and performance loss of different prediction horizon lengths. 

A control horizon of 1 day was used, meaning there was a daily re-optimisation 

of the control problem. This optimiser’s objective was to find a control input 

trajectory (ό) that produced a state trajectory ὼ such that the cost function ὒ 

was maximised. This optimisation problem was assumed to have full state 

information and is mathematically represented by 

 

 
*ØÔ ÍÁØÉÍÉÓÅ ÕÔ ,ØÔȟÕÔȟÄÔȟÐÄÔȟ 

  

 ὛόὦὮὩὧὸ ὸέȡ Ø ÆØÔȟÕÔȟÄÔȟÐ,   

  Õ ÕÔ Õ   ȟÔ Ô Ôȟ  (5.4) 

  Ø ØÔ Ø   ȟÔ Ô Ôȟ   

  ØÔ Ø.   

 

Where ό  and ό  are constraints imposed on each controlled input and ὼ  

and ὼ  are constraints imposed on each model state (as shown in table 5.3) for 

the duration of the simulation (ὸ). ὒ was defined as a balance between the value 

invested in input costs ὒ  and value gained from the revenues ὒ , 

both costs and revenues are in ΌϽά Ͻί , such that 

 

 ,   ,  , . (5.5) 

 

,  was composed of the value derived from the fruits and the sale of power 

and is described as,  

 

 ,  Ã ȟ ȢØ ȟ Ô  Ã ȢÕ Ô. (5.6) 

 

The revenue derived from the harvesting of mature fruits was defined as the 

product of the price of the fruits (Ã ) and the volume of mature fruits 

(Ø ȟ ). The volume of mature fruits was calculated using the fruit 
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development model proposed in Kuijpers, Antunes, et al., (2021). This fruit 

development model contains 8 fruit development stages that tracks the 

development of fruits over a 30-day developmental period. Furthermore 

Kuijpers, Antunes, et al., (2021) designed and validated this fruit development 

for use in optimal control in conjunction with the same greenhouse model used 

in this study. 

 

 The revenue from selling electricity back to the grid was calculated as the 

product of the power price (ὧ ) and the power generated by the CHP that is sold 

to the grid (ό ). The value of operational costs (ὒ ) are hereto defined as, 

 

 , Ã ȢÕ Ô  Ã ȢÕ Ô Ã ȢÕ  Ô 

Ã ȢÕ Ô. 

(5.7) 

 

The terms of Eq. 5.7 define the costs of operating the CHP (ὧ ), boiler (ὧ ), as 

well as the buying of ὅὕ  (ὧ ) and the buying power from the grid (ὧ ). Eq. 

5.7 also includes the degree of utilisation of the CHP (Õ ), boiler (ό ), the 

volume of bought ὅὕ  (ό ) and of bought power (ό ). This study uses both 

fixed and fluctuating prices for the prices of buying and selling power 

(ὧ  and ὧ ). The fixed power prices were defined as the mean Dutch 

imbalance power market price for the simulation period. The fixed values 

associated with the costing of the terms in the cost function are defined in table 

5.2. The fluctuating buying and selling power prices are described in section 5.2.3 

The values used for the cost terms were taken from Kuijpers, Katzin, et al., (2021) 

and Vermeulen (2016). 

 

Table 5.2: The resource and revenue cost terms used in the 
optimisation cost function. 
Ã  πȢχφ (ΌϽËÇ)  Ã  πȢρψ (ΌϽÍ ) 

Ã  ρȢρ Ͻρπ  (ΌϽ* )  Ã  πȢρρ (ΌϽËÇ) 

Ã  πȢρψ (ΌϽÍ )  Ã  ρȢρϽρπ  (ΌϽ* ) 

 

The values from the state and controlled input constraints described in table 5.3 

were taken from Kuijpers, Katzin, et al., (2021). These values were used as the 

greenhouse being modelled by Kuijpers was comparable to a modern industrial 

Dutch greenhouse and as such the values are still relevant. The ventilation rate 

constraint from the greenhouse windows (Ὢ ȟὪ ) were calculated using the 
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model presented in de Jong, (1990) and were dependent on the weather 

conditions. 

 

Table 5.3: Model state and controlled input constraints applied to 
the receding horizon optimal controller 
Model state constraints 

Symbol Unit Lower limit (Ø ) Upper limit (Ø ) 

Ø -*ϽÍ  0 3 

4  Ј# 10 35 

60  ÇϽÍ  5 35 

#/ȟ  ÇϽÍ  0.69 2.79 

4  Ј# 10 35 

#  +ÇϽÍ  0 #  

#  +ÇϽÍ  0 0.12 

#  +ÇϽÍ  0 0.04 

    

Controlled input constraints 

Symbol Unit Lower limit (Õ ) Upper limit (Õ ) 

Õ  7ϽÍ  0 125.28 

Õ  7ϽÍ  0 83.33 

Õ  7ϽÍ  0 100 

Õ  7ϽÍ  0 250 

Õ  7ϽÍ  0 250 

Õ  ÇϽÍ ϽÓ  0 250 

Õ  ÇϽÍ ϽÓ  0 250 

Õ  7ϽÍ  -100 250 

Õ  Í ϽÍ

ϽÓ  
Æ  Æ  

Õ  - 0 1 

Õ  ÇϽÍ ϽÓ  0 0.4e-6 

 

The upper constraint on the crop’s assimilate pool state (ὅ ) reflects the 

capacity of the buffer to store assimilates and as such was key to the outcomes of 

this study. The buffer’s capacity has been the subject of much debate due to its 

changing size over the plant’s lifetime and the challenges inherent in measuring 

it experimentally. While previous work (Vanthoor et al., 2011a) has set the 

capacity as the maximum amount of assimilate that could be generated in a day, 

this study uses the equation proposed by Seginer, (2022),  
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# ȟ

# ȟ

3,!
 Ͻ ɤ 

(5.8) 

 

which uses the maximum fraction of reserve carbohydrates (ὧ), the total dry 

matter of sunlit leaves (Ώ, and the specific leaf area (Ὓὒὃ). Seginer calculated a 

value of 0.014 (ὑὫϽά ) for a mature tomato plant, which was applied in this 

study. It should be noted that the constraints of the crop’s assimilate pool state 

were implemented as constraints within the optimiser’s cost function and not 

within the crop model.  

 

The optimisation problem described in Eq. 5.4 used in this study was computed 

using the Interior Point Optimizer (IPOPT), (Wa chter & Biegler, 2006) 

optimisation algorithm and the MA57 solver from HSL (HSL, 2019) from the 

CasADI framework (Andersson et al., 2019).   

5.2.3. Disturbance data 

The weather data used was taken from a weather recording station in Bleiswijk, 

the Netherlands from 2014-01-11 00:00 to 2014-07-11 00:00 at 5-minute 

intervals. This data was initially collected as part of the experiment detailed in 

Kempkes, Janse, & Hemming, (2014). The weather data variables are the outside 

temperature ᴈ , wind speed ÍϽÓ , global solar radiation 7ϽÍ  and 

outside air vapour density (ὫϽά ) and outdoor ὅπ concentration (ὴὴά). Any 

missing entries in the datasets were filled with the linearly interpolated values 

of the adjacent data points.  

 

This study investigated the impact of fluctuating prices for power when 

compared to fixed prices. The fixed price values were defined as the mean Dutch 

imbalance power market price for the simulation period and are presented in 

table 2. The fluctuating power prices used in this study was based on the Dutch 

imbalance power market‘s buying (ὧ ) and selling (ὧ ) prices from the Tennet 

market data portal (Tennet [Internet], 2019) for the same period as the weather 

data. This market data was then used to propose a standardised fluctuating 

buying and selling price as can be seen in table 5.4. This was used to allow more 

clarity in the results interpretation, while keeping to the prices representative of 

real markets. These standardised fluctuating prices were created by defining the 

buying and selling prices as a square wave that peaks in the middle 8 hours of 

the day (πωȡππ ρφȡππ). The peak prices were defined as the 95th percentile 
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imbalance market prices, while the prices at trough times (ρχȡππ πψȡππ) were 

defined as the mean imbalance market prices. A square wave was chosen to 

represent the simplified price as to reflect a broad trend within real short term 

markets where the price increase with usage during the daytime and decreases 

over night as less power is used, The fixed power purchasing and selling price 

was based on the mean imbalance buying and selling prices for the simulation 

period. 

 

Table 5.4: Fluctuating power buying (Ã ) and 

selling (Ã ) prices 

 Ã  (ΌϽ* ) Ã  (ΌϽ* ) 

ππȡππ πψȡυυ ρȢρτϽρπ  ρȢπω Ͻρπ  

πωȡππ ρφȡυυ σȢρχϽρπ  ςȢχρ Ͻρπ  

ρχȡππ ςσȡυυ ρȢρτ Ͻρπ  ρȢπω Ͻρπ  

 

Although fluctuation in the gas prices can affect the operational strategy of the 

greenhouse, this study consider them to be fixed at 0.17 ΌϽά  based on the 

price used in Kuijpers, Katzin, et al., (2021).  In practice this can represent the 

price paid by a grower whose gas is supplied via a fixed price contract. 

5.2.4. Sensitivity analysis of the mechanisms 
for bridging power price fluctuations 
A sensitivity analysis was performed to assess the relative role of three 

mechanisms in the management of disturbances introduced to the optimisation 

of greenhouse operations by fluctuating power prices. This analysis was 

performed to identify which mechanism offers the largest capacity to bridge 

fluctuating power prices. These three mechanisms were the crop’s ability to store 

sugars in the assimilate pool, the purchasing of natural gas to run the CHP and 

planning greenhouse operation based on the forecast amount of outdoor 

radiation. To analyse the role of these mechanisms, the gas price, outdoor 

radiation levels and assimilate pool maximum were individually increased, and 

for each, the optimisation as described in section 5.2 was repeated. Following 

this the impacts of the increased assimilate pool maximum, gas price and outdoor 

radiation levels were individually assessed by comparing the changes in energy 

usage and crop yield when using the original and increased value for each 
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mechanism. The normal and increased values used for this analysis can be seen 

in table 5.5. 

 

Table 5.5: The original and increased values of the power price 
fluctuating mitigation mechanisms  
 Original value Increased value 
Crop buffer maximum (# ȟ ) πȢπρτ πȢπςψ 

Gas price  πȢρχ πȢστ 
 

Furthermore, the increased levels of radiation (Ὠ ) were double the 

normal levels of radiation (Ὠ ), as such 

 

 Ὠ  Ὠ  Ͻς. (5.9) 

5.3. Results 
The results from two experiments are presented, the first was the comparison of 

the optimisation of greenhouse operations given fluctuating and fixed power 

prices. The second was a sensitivity analysis (section 5.2.4) to assess which 

mechanisms were used by the optimiser to mitigate the effect of fluctuating 

prices on greenhouse energy and crop management.  

5.3.1. Comparison of the optimisation of 
fluctuating and fixed power prices 
In the following section the results from the comparison of the optimisation of 

fixed and fluctuating power prices are displayed. This analysis was conducted 

over a period of 6 months, so to be able break down the outcomes of the study 

clearly the results are presented on two time scales. This approach has been 

taken by previous research where the long-term strategic and short-term 

operational performance of the greenhouse are described and analysed 

separately (Henten & Bontema, 1996; Xu et al., 2018). The long-term perspective 

will observe the net external energy demand and crop development of the entire 

6-month period. The short-term perspective focussed on the operational 

dynamics of the greenhouse on an hourly level over three one day periods 

throughout the season. The following subsections address the results in the short 

term (5.3.1.1) and then in the long term (5.3.1.2). 
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5.3.1.1. Short-term time scale results 

The following results focus on three one-day long periods of the 1st of 

February/April/July. These results include the operation of the amount of power 

being traded, HPS lighting levels, the level of the crops assimilate pool.  

 

 
Fig. 5.1- The bought power demand of the greenhouse for the 1st of 

February (left) /April (middle) /July (right). 

 

Fig. 5.1 shows the amount of power that was bought throughout the simulation 

period. Fig. 5.1 displays the bought power demand using the fixed power prices 

(red) and the bought power demand using the fluctuating power prices (blue). 

Furthermore the fluctuating power price is displayed (grey). This figure shows 

that in the fixed price scenario, power was bought throughout the day in the 

beginning of the season (left), as the season progressed power was only bought 

in the morning (middle and right). In the fluctuating scenario, power was not 

bought during high price times in the beginning of the season (left) and also 

transitions over the season to only being bought in the mornings (middle and 

right). 
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Fig. 5.2 - The CHP utilisation for the 1st of February (left) /April (middle) 

/July (right). 

 

Fig. 5.2 shows the utilisation of the CHP throughout the season for the scenarios 

with fixed (red) and fluctuating (blue) power prices as well as the power 

fluctuating power price itself (grey). Fig. 5.2 shows that for the fluctuating price 

scenario the CHP was used throughout the season. In the early season (left) the 

CHP was operational throughout the day and as the season progressed (middle 

and right) increasingly the CHP was only used during high price periods. It should 

be noted that for the fixed price scenario in the beginning of the growing season 

the CHP was used and was used less and less as the season progresses. 

 



 

132 
 

 
Fig. 5.3 - The operation of the HPS lighting within the greenhouse for the 

1st of February (left) /April (middle) /July (right). 

 

Fig. 5.3 shows that the behaviour of the lamps over the simulation period given 

fluctuating (blue) and fixed (red) power prices. This behaviour mirrors the 

behaviours of the CHP for both scenarios, as seen in Fig. 5.1. Where usage was 

restricted to the morning as the season progresses. A key distinction was that for 

the fluctuating power price scenario, in the early season the lamps were operated 

at half capacity during the peak power price times, during which the power is 

provided by the CHP. 
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Fig. 5.4 - The amount of sold power that is generated from the greenhouse 

CHP on the 1st of February (left) , 1st of April (middle) and the 1st of July 

(right). 

 

Fig. 5.4 shows the levels of sold power when exposed to fixed (red) and 

fluctuating (blue) power prices for three  periods throughout the simulation 

period. This figure shows that as the season progressed, the fluctuating price 

scenario increasingly sells power to the grid during high price periods. Whereas 

the fixed price scenario does not sell power in the early season (Fig. 5.4 (left)) 

but does so increasingly over the season in the midday. 
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Fig. 5.5- The crop assimilate pool level for the 1st of February (left) /April 

(middle) /July (right). 

 

Fig. 5.5 shows the assimilate levels in the assimilate pool, throughout the season 

at three distinct day-long periods as was outlined at the beginning of section 

5.3.1.1. In each panel the response to fixed (red) and fluctuating (blue) power 

price is displayed.  The fluctuating power price is shown in grey. This figure 

shows that the sugars were stored in the buffer in the afternoons and portioned 

overnight. Furthermore, over the season the amount of assimilate stored in the 

buffer increases. 

5.3.1.2. Long-term time scale results 

The breakdown of the energy usage and assimilate pool levels over the entire 

simulation period are described in the following section. This long-term 

perspective gives insights into how the short term behaviours translate over the 

entire simulation period.  The cumulative gas and power demand are shown in 

Fig 5.6. 
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Fig. 5.6 - The cumulative net gas (left) and power (right) demand of the 

greenhouse over the entire simulation period using fixed and fluctuating 

power prices. 

 

Fig. 5.6 shows the cumulative net gas and power demand over the simulation 

period using fixed (red) and fluctuating (blue) power prices. This figure shows 

that until April both simulations have a similar gas demands however the 

simulations diverge in April, after which the fluctuating price scenario has a 

greater gas demand. In the case of power demand fixed price scenario has the 

greater power consumption throughout the season. 
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Fig. 5.7 – The breakdown of the cumulative power buying (left), selling 

(centre) and internal power generation from the CHP (right) of the 

greenhouse over the entire simulation period. 

 

Fig. 5.7 shows the cumulative power buying, selling and internal power 

generation from the CHP using fixed (red) and fluctuating (blue) power prices.  

This figure shows a breakdown of how power was used within the greenhouse. 

Fig. 5.7 shows that when comparing the fixed and fluctuating price scenarios, in 

the fixed price scenario more power was bought (left) and after April less was 

generated internally (right) and sold (middle). This outcome explains the 

divergence in gas demand between the fixed and fluctuating price scenarios seen 

in Fig. 5.6 as the CHP utilisation was less after April in the fixed price scenario.  
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Fig. 5.8 - The breakdown of the weekly total HPS lighting (top), CHP usage, 

power buying and power selling (bottom). 

 

Fig. 5.8 shows the weekly totals of energy used in HPS lighting, generated from 

the CHP, bought, and sold from the market. Each of these variables is displayed 

in its own panel with the responses to both fluctuating (blue) and fixed (red) 

power prices. It shows that for the fixed price scenario more lighting was used 

throughout the season. This increase in lighting was powered using a greater and 

corresponding amount of bought power, when compared to the fluctuating price 

scenario. For the fluctuating price scenario, less lighting was used. This was 

because a larger amount of power generated from the CHP was sold due to the 

higher power prices instead of being used for lighting. The fluctuating price 

scenario shown in Fig. 5.8 sells more power throughout the season, a distinction 

which was made clearer after April. Indeed after April, the fixed price scenario 

buys more power from the market while generating and selling less. 
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Fig. 5.9 - Weekly total assimilate in the assimilate pool (top) and mature 

fruits (bottom) over the growing season. 

 

Fig. 5.9 shows the weekly total amount of assimilates in the buffer and in the 

mature fruits. In both panel each variable is displayed in response to both 

fluctuating (blue) and fixed (red) power prices. This figure shows that early in 

the season the fixed power scenario has a faster development of assimilates 

within the fruits as more assimilate was transferred to the fruits. Fig. 5.9 also 

shows that while the amounts of assimilates in the buffer were comparable 

throughout the season the fixed price scenario delivers more assimilate to the 

buffer in the early season and a large drop in early April. Which coincided with 

when the CHP was turned off, as shown in Fig. 5.7. 

5.3.1.3. Results summary 

The results from the analysis was summarised in the following section. For the 

fixed price scenario shown in Fig. 5.6-5.8 the optimiser buys the most power over 

the season, initially there was some trading, in April there was a change of 

strategy where less power was generated and sold. In contrast to this the 

fluctuating price scenario has a greater focus on trading throughout the season 

where the CHP was used to sell power. Overall, less lighting was used, and the 

power that was generated was used for trading instead. Levels of production 

were comparable between the fluctuating and fixed price scenarios. This midday 

trading and less lighting shown in the fluctuating power price scenario does slow 

development speed but impact to overall production was limited. 
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In more detail, for the fluctuating price scenario, in the early season the CHP was 

used for lamps and selling power. Especially in non-peak times in the morning 

and the evening, the lighting was run with bought power, and during peak price 

times, power from the CHP was running lighting at half power, with some power 

being sold. Over the season this balance shifts more towards selling CHP power 

and less buying power for lighting. In this scenario the long-term growth of the 

crop was prioritised by lighting the greenhouse in the early season despite high 

prices by using the CHP to provide lighting during peak power price times. It 

should be noted that there was no difference in the buffering of sugars as 

displayed in Fig. 9. For the case of fixed power prices all power goes to lighting in 

the early season, and as the outdoor radiation increased over the season the 

amount of bought power decreased as lamps were used less, the CHP was then 

increasingly used for powering the lighting and selling power. The total change 

in the levels and revenues from energy and crop yield are summarised in table 

5.6 as percentage differences between the fixed and fluctuating price scenarios. 

 

Table 5.6: Net energy and crop yield percentage revenue changes from 

the introduction of fluctuating power prices 

    

Net bought power 

change (%) 

Net sold power 

change (%) 

Net gas change 

(%) 

Yield change 

(%) 

-27% +74% +25% -0.34% 

    

Net bought power 

cost change (%) 

Net sold power 

revenue change 

(%) 

Net gas cost 

change (%) 

Yield revenue 

change (%) 

-49% +145% +25% -1.4% 

 

Table 5.6 shows that over the season when the optimiser included fluctuating 

prices, the cost of CHP usage increased hence the increase in revenue from  

power selling and gas buying. In addition, less power was bought and there was 

a small decrease in productivity. 
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5.3.2.  A sensitivity analysis of the mechanisms 
for managing power price fluctuations 
A sensitivity analysis was performed to investigate the potential of gas prices, 

outdoor radiation levels and the crop buffer to mitigate the impact of power price 

fluctuations. In this analysis the crop buffer limit, gas price and outdoor radiation 

levels were individually increased and the corresponding percentage changed in 

the greenhouse yield, power usage and gas usage are displayed in table 5.7. 

 

Table 5.7: Net energy and crop yield percentage revenue changes for 

increases in gas prices, crop buffer size and outdoor radiation levels 

 
      

  Bought power Sold power  Gas usage Crop yield 

Doubled buffer size +17% +3.8% +0.93% -17% 

Doubled gas price  +34% -33% -33% +1.2% 

Doubled radiation 

levels 

-23% +14% +0.80% +5.2% 

              

Table 5.7 shows that an increase in buffer size has the smallest impact on energy 

demand but the largest impact on crop yield. In addition, increases in gas prices 

were found to have the greatest impact on energy management. Specifically 

when the gas price increased the amount of gas that was bought and used to 

generate power in the CHP decreased and the amount of bought power increases. 

Regarding the increase of outdoor radiation, the amount of bought power 

decreased as less artificial lighting was used and more power was sold to the grid. 

Both increased in gas prices and radiation levels have a small impact on the crop 

yield. 

5.4. General discussion 
Given the results outlined in this study the following section discusses the 

relevance of these results given the context of the limitation under which this 

study was performed and the context of previous literature. 
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5.4.1. The influence of fluctuating power price 
results on energy management 
The results show that the fluctuating price scenario has a greater focus on trading 

throughout the season where gas was bought to run the CHP which was then 

used to sell power as seen in table 5.6 and 5.7. As a result, in this scenario less 

lighting was used, as the power that was generated by the CHP was used for 

trading instead. Despite this decrease in lighting it should be noted that the crops 

productivity was only slightly lower in the fluctuating price scenarios (Fig. 5.9) 

with a net decrease of 1.4% (table 5.6). As such the optimiser was able to provide 

a robust strategy to fluctuating power prices that maintains productivity but 

does consume more gas. This in conjunction with the conclusions made in table 

5.7 regarding the role of the crop buffer size and gas price in managing power 

prices tells us that the availability of affordable gas and not the presence of a crop 

buffer provided the necessary robustness to tolerate fluctuating power prices. 

This conclusion was however opposed to the inciting notion of this study that the 

greenhouse sector should reduce its emissions. Indeed, while this study 

highlights the roles of available gas and the gas price, its future affordability is in 

doubt as its sources become more scarce and the drive to sustainable energy 

renders it unavailable. As such this study highlights a key interdependency 

between gas and power in tolerating energy price fluctuations that is provided 

by the CHP. As such future studies that aim to make sector more sustainable 

should penalise gas usage in particular. It should be noted that the sensitivity 

analysis  whose results are shown in section 5.3.2 uses the gas price as a 

parameter that would incentivise the usage of the CHP. Another parameter that 

could also be considered in future research is the capacity CHP itself. By 

investigating the effect of the CHP’s capacity future research could investigate 

how energy management strategy might change if more power full CHPs were to 

be used.   

 

It should also be noted that the strategy that is employed to run the greenhouse 

changed over the season. Indeed, for the fluctuating price scenario, in the early 

season the CHP was used generate power for running the lamps and for selling 

power. Subsequently, over the season this balance shifts more towards trading 

power and less buying power for lighting (Fig. 5.8). This was a reaction to the 

availability of natural light and heat whose levels increase as the year develops. 



 

142 
 

This was also observed in the fixed power price scenario where all power goes to 

lighting in the early season, and as the outdoor radiation increased over the 

season the amount of bought power decreased as lamps were used less as 

corroborated in table 5.7, which also showed that as the radiation levels 

increased, power buying decreased, and more power was sold from the CHP. As 

such these results also indicate that the fluctuating weather, and in particular the 

outside radiation levels was an important factor in defining the power 

management strategies derived by the optimiser. A notable behaviour seen in 

Figs 5.4 and 5.2 are spikes in early morning CHP operations and power selling. 

This peak in selling is caused by the CHP being activated to heat the greenhouse 

before the lights are switched on, as such there is a spike in power generation 

which is sold to the grid. 

 

The results for the increased gas price shown in table 5.7 also represent a 

scenario in which the price of gas has doubled, in a scenario that might become 

reality due to climate change. This analysis confirmed the importance of CHP 

trading to greenhouse energy management highlighted in Seginer et al., (2018) 

and van Beveren et al., (2019). It was found that even with higher gas prices the 

greenhouse was able to maintain yield levels (+1.2%) but reduced the selling of 

CHP derived power (-33%). This indicated that while the greenhouse business 

model may have to adapt in the future, production was still possible with higher 

gas prices if the management strategy adapts. 

 

The potential effect of fluctuating weather and power prices on energy and crop 

dynamics was also examined in a series of unpublished experiments, these 

experiments concluded that weather dynamics were dominant in driving long 

term seasonal variation in energy strategy and power dynamics drive energy 

systems decisions only during high price periods. Furthermore, these 

experiments found that the fluctuating weather dynamics result in less 

productive growth than the fixed weather scenarios which in this case represents 

a perpetual summer. Which indicated that the crop was influenced by weather 

dynamics more than prices over longer periods. Based on these preliminary 

results this investigation into the interrelation between weather and price 

dynamics was a promising frontier for future research. 
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5.4.2. The suitability of the assimilate pool as 
an energy buffer 
The optimisation scenarios described in the above section concluded that the 

assimilate pool was not being used as an energy buffer (Fig. 5.5) to bridge 

fluctuating prices. To investigate this outcome further a number of smaller 

scenarios were performed in appendix C. The analysis performed in appendix C 

investigated the potential capacity of the crop assimilate pool to act as an energy 

buffer. This analysis concluded that for a day in which the greenhouse lighting 

and heating system were operated for 8 hours the crop buffer had a size of 

approximately 3% of the energy required to run the greenhouse. As such, the 

crop buffer represents a comparatively very small energy buffer and as such was 

not used by the optimisations shown in section 5.3.1 and 5.3.2.   

 

A further analysis performed in appendix D, investigated the response of the crop 

yield of mature fruits to fluctuations in the greenhouse climate. These 

fluctuations were in the indoor radiation and temperature levels and were 

represented as two square waves with a range of periods and amplitudes. This 

analysis found that yield fell dramatically when fluctuations had high amplitudes 

and exceeded a one day frequency. This result implies that the crop as modelled 

in this study was unable to buffer heightened fluctuations in climate. Indeed, this 

analysis also showed that for a standard amplitude the crop was able to tolerate 

a fluctuating climate of up to 10 days but with lower levels of mature fruits than 

when a shorter period was used. Given the loss of productivity shown in 

appendix D, it indicated that the crop’s assimilate pool is unsuitable as an energy 

buffer, particularly in the context of the optimisations performed as part of this 

study. This conclusion diverged from the temperature integration schemes 

proposed in previous literature. For example, the scheme proposed by Korner & 

Challa, (2003) and Ko rner & van Straten, (2008) who demonstrated that 

temperature fluctuations within a 6 day period could be tolerated provided that 

the average temperature was consistent. While this approach could be used for 

energy savings, they did not consider the impact of fluctuating lighting and 

temperature. The potential impact of fluctuating light and temperature levels 

was previously explored in Zepeda et al., (2022) who found that fluctuations in 

light and temperature with a period of 2 to 10 days did not have a large influence 

on the levels of assimilates in the crop. While this research does suggest a degree 
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of tolerance to a fluctuating climate, Zepeda considered young plants and this 

study focussed on mature crops. This conclusions in conjunction with the results 

found in this study indicate that the integration of temperature and light levels in 

mature crops was not viable for the model representation used in this study, and 

requires further experimental research. 

 

A further consideration as to why the assimilate pool was not used was the 

influence the design of the cost function might have on the outcomes of this study. 

The cost function used in this study optimises (Eq. 5.6) the harvested fruits, as 

such the cost function does not reward assimilate storage. Indeed, if the 

optimiser only considered mature fruits there was no incentive to manage the 

assimilate pool outside its role in maturing fruits. Furthermore, if the prediction 

horizon was too short the link between stored surplus assimilates and harvested 

fruits was lost. This was the case as the prediction horizon was 3 days and the 

fruit development period was between 36 and 52 days (Kuijpers, Antunes, et al., 

2021). As a result, the optimiser may be unable to assess the benefit of using the 

assimilate pool in the way that this study proposes. This was tested in an 

unpublished analysis that performed an optimisation on an open loop optimal 

controller over the entire simulation period. In doing so the relationship between 

the buffer and mature fruits can be included in the optimisation. However, this 

analysis also found that the assimilate pool was not being used as an energy 

buffer. Indeed, as it takes a long time for the benefits of developing mature fruits 

to appear in the cost function, as a result the optimiser would focus on the short 

term trading of power. 

 

This link between assimilate pooling and harvested fruit in the cost function was 

further complicated as the development of fruit was modelled as being 

dependent on the daily temperature sum, and the main adaptation to power 

price fluctuations was the use of lighting. As such there was also a mechanistic 

disconnect with the motivation to buffer energy from the power price and the 

mechanism to do so which was temperature based. 

5.4.3. Limitations and future research 
Despite the outcomes of this study there are a number of areas where 

improvements might be made in future research. Given that this study found that 

the crop’s assimilate pool was unsuitable for energy buffering, it is worth 
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considering the potential limitations the modelling of the crop and its buffer 

impose on the conclusions of this analysis. An omission from the crop model used 

in all chapters of this thesis was the modelling of the transfer between liquid 

assimilate and starch. This limitation was key for the research proposed in this 

study as the flow of sugars in the crop’s assimilate pool was one of the potential 

energy buffers that are being investigated. Current research suggests that a plant 

with excess sugars will convert them into starch (Gent et al., 2012; Stitt & 

Zeeman, 2012). This mechanism was key as it can provide longer term storage of 

energy, but also implies that there can be a surplus of assimilates that can be 

stored in starch over multiple days. The fact that the crop model used in this 

thesis did not model starch conversion should be addressed in future research as 

previously recommended by (Zepeda et al., 2023). This should be done to assess 

if such a mechanism would allow the crop to function as an effective energy 

buffer.  

 

This study considers the potential of the crop’s assimilate pool being used as an 

energy buffer, however there are still outstanding challenges as to how this pool 

is quantified. For example, there is little experimental data as to the size of the 

assimilate pool and how the pool size may change over time. The parameter 

defining the crop’s assimilate pool maximum capacity is particularly relevant to 

the research performed in this study as it defines the potential size of the energy 

buffer. The value used for the pools maximum capacity was taken from Seginer, 

(2022). The capacity of the assimilate pool proposed by Seginer was one that 

incorporates the crops maturity, which is a more realistic representation. 

However, this approach along with other studies (Heuvelink, 1996; Jones et al., 

1991) have proposed models for the size of the assimilate pool that have not been 

experimentally validated. As such the outcomes of this study may vary depending 

on the defined size of the assimilate pool. This was investigated in table 5.7 in 

which the pool size was doubled. This analysis found that increasing the pool size 

had the smallest influence of the mechanism examined in this study and in this 

case decreased productivity. However the values used for the buffer limit are 

purely theoretical and further research should experimentally quantify the size 

of the assimilate pool and assess whether that influences the applicability of the 

assimilate pool as an energy buffer. 
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One other limitation was that the usage of the crop buffer and its potential 

influence on crop health was not modelled. Previous research has proposed 

models of aspects of the crop’s health. Specifically for the purpose of predicting 

disease in tomato (Verma et al., 2018) and assessing harvest quality (Bertin & 

Ge nard, 2018). However, for the crop model used in this study, the 

aforementioned aspects of crop health and other important indicators such as 

fruit setting and abortion were not included. As such the potentially detrimental 

health influence a particular management strategy would have, would not be 

reflected in the strategies proposed by this analysis. Consequently, the strategies 

proposed in this thesis may have some detrimental effect on the greenhouse 

crops in practice due to this modelling omission. As such further research should 

be done to assess the impacts of these omitted behaviours on greenhouse 

management. 

 

The posing of the control problem in this study may also pose a limitation on the 

conclusions. In this study a RHOC controller was used along with a fruit 

development model. The optimiser’s cost function calculated revenue from 

mature crops and costs from immediate energy expenditure (Eq. 5.6). This 

design can lead to a disconnect where the optimiser cannot link changes in short 

term energy strategy to mature fruit yield. Indeed, this disconnect was 

compounded as crop attenuated fluctuations in photosynthesis through the 

development stages of the fruits. As such a change in management strategy, 

which does result in a fluctuation in photosynthesis was filtered out by the time 

the effects of that fluctuation reach the mature fruit state. As such the optimiser 

cannot observe any managerial impact of short-term climate fluctuations. In this 

case using both mature fruits and instantaneous assimilate levels in the 

optimiser’s cost function may be preferable in future research. This was as 

energy expenditure can be linked to fruit development through the immediate 

creation of assimilates. This suggestion does however remove the optimisers 

incentive to develop mature fruits and as such may be suboptimal.  

 

A further limitation concerning the optimisation used in this study is that the 

constraints that were set for the model states were defined as soft constraints 

within the optimiser. In doing so exceeding these constraints was disincentivised 

but possible. As such, state constraints defined in the optimiser can be 

interpreted as state value limits over which values are tolerable but undesirable 
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or state value limits which we are usure of. Considering the model states that 

were constrained (see table 5.3) the climate variables can be seen as managerial 

guidelines and the constraints of the crop states are founded in previous 

literature but require experimental validation. Having considered this, while it 

was possible it was unlikely that these limits should be exceeded, and such are 

unlikely to impact the overall conclusions that were drawn from this analysis. 

The validity of this setup is further supported as this setup was validated in 

Kuijpers, Katzin, et al., (2021). However, future research should assess the impact 

of this assumption this by incorporating these constraints as hard constraints 

within the model itself. 

 

The study used data from a single season and a single location in the Netherlands, 

the validation and generalisation of the outcomes of this study would require 

multiple datasets. Indeed, this study also used a single model of the greenhouse 

and crop. While this model was validated by Kuijpers, Antunes, et al., (2021), the 

outcomes of this study may be limited in its generalisability due to some nuance 

of the model. As such, this study should be repeated using multiple models. 

 

The power price data (table 5.4) used to simulate this experiment was a square 

wave, being high in the middle 8 hours of the day and low for the 8 hours on 

either side. Using this simplified price signal makes the analysis of the 

greenhouse and crop’s response clear by demarcating times when changes in 

strategy may be observed in the optimiser. While this simplification was based 

on the broad trend of rising daytime prices on short term markets this 

simplification was a departure from reality in that power prices are dynamic and 

proto-stochastic as they can be influenced by sudden unforeseen changes in the 

power grid. For the purposes of this study the assumption of a square wave price 

is sufficient as it demonstrated the optimisers response to regular fluctuations in 

power pricing, but future research should also investigate the impact of real 

power price data.  

5.5. Conclusion 
This study investigated how the energy management of the greenhouse can be 

optimised under fluctuating power prices.  A key outcome was that the optimiser 

proposed an adaptation of the greenhouse power management strategy. This 

strategy focussed on buying far less power (-50%) and using more natural gas 
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(+25%) to generate power in high price times to power the greenhouse lighting 

and selling power to the grid (+145%). This study also found that the fixed gas 

price had the largest role in  managing power price fluctuations when compared 

to the forecasted radiation levels and the crop’s assimilate pool. This study 

investigated the suitability of the assimilate pool as an energy buffer and found 

that in this case the buffer is not suitable due to its small size.  
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General discussion 
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The work set out in this thesis was incited to address two lines of thinking within 

greenhouse horticultural research that were articulated as aims in the general 

introduction. The first aim was to assess how fluctuation within weather data, 

errors in model parameters and power price data influence errors within 

greenhouse energy predictions. This aim was addressed in Chapters 2 to 4 which 

focussed on assessing the individual and combined impact of weather forecast 

and model parameter errors. The second aim of this thesis aim is to assess if the 

crop’s assimilate pool, CHP and radiation forecast can be used to manage 

fluctuating power prices. This second aim was investigated in Chapter 5. 

6.1. Uncertainty vs. precision 
Much of current thinking in greenhouse horticultural research and industry is 

focused towards developing methods and tools with ever greater precision. This 

perspective is grounded in the idea that all things can be known deterministically 

and with ever greater accuracy, if only more data and resources are invested. 

While this approach can often yield improvements it relegates another type of 

insight. That is, the degree to which something can be known, also known as 

quantifying uncertainty. From a practical perspective, this kind of insight is vital 

for assessing risk and planning for possible futures. The pursuit of uncertainty 

exploration sits apart from the pursuit of precision as a perspective that 

highlights areas that require improvement and investigating how system 

dynamics and disturbances can oppose the pursuit of precision. As such the work 

presented in this thesis in relation to the first aim of this thesis, “to investigate 

the improvement in greenhouse energy management that can be made by 

accounting for uncertainty introduced from model parameters, weather forecasts 

and fluctuating energy prices.” should be seen as providing crucial tools that are 

complementary to the pursuit of precision. Allowing from the assessment of a 

desired deterministic outcome and the statistical risk posed by an uncertain 

future. 

6.2. Reflection on findings 
The Dutch horticultural sector is a large producer of horticultural crops and a 

large consumer of energy. This energy demand comes at a cost to the 

environment as fossil fuels are burned as part of the energy mix that provides the 

sector’s required energy, which contributes to climate change. In the face the 
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challenge to reduce the greenhouse horticulture sector’s environmental impact, 

previous research has aimed to balance the production of crops and the usage of 

energy. Chapters 2 to 4 of this thesis was poised address the first aim of this 

thesis by improving greenhouse energy efficiency through managerial 

improvements by identifying and making targeted reductions in sources of 

energy demand prediction uncertainty. 

 

In addressing the first aim of this thesis Chapter 2 found that the improvements 

of energy predictions were relevant for greenhouse management given that 

energy was bought on multiple markets. This was as the prediction errors made 

as a result of weather forecast errors exposed the grower to more volatile power 

prices on shorter term markets. Radiation forecast error had the greatest impact 

on predicted greenhouse power demand errors with a mean relative error of 

φȢρϷ. For gas demand errors the outside wind speed forecast mean relative error 

ρψȢπϷ and temperature forecast error ρχȢςϷ were the most impactful. These 

insights can be understood by observing the processes that create energy 

demand and are related to the weather variables. For example, the lamp lighting 

within the greenhouse is the main source of power demand and is used 

depending on the availability of natural light. As such it is logical that errors in 

the radiation forecasts would impact lamp usage and in turn impact on power 

demand. Given this kind of logical deduction it could also be possible to perform 

rudimentary analysis to identify individual sources of uncertainty purely through 

observation of the equations of the greenhouse model. 

 

 In addition to prediction errors introduced from weather forecasts, errors in the 

value of model parameters can also lead to energy prediction uncertainty. This 

impact was assessed in Chapter 3 which concluded that parameters relating to 

the model of the lamp were the largest contributors to gas and power demand 

prediction uncertainty. In the case of power demand, parameters relating to the 

lamp model were found to have a greater coefficient of variation (ςτϷ) than 

those related to the crop (υϷ) or greenhouse structure (υϷ). Again as in Chapter 

2 the outcomes of this research highlight the role of model design in the 

prorogation of uncertainty and in particular the design of lamp model. But this 

chapter made the significant conclusion that larger groups of parameters are also 

responsible for prediction uncertainty. This insight invites a fundamental change 

in perspective whereby future analysis should consider the impact of larger 

groups of parameters and not only groups of one or two parameters.   

 

When analysing the combined impact of parametric and weather forecast-based 

uncertainty in Chapter 4, it was found that the weather forecast error was by far 
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the larger contributor. Creating a mean gas (ςχ 7Í ) and power (ςτ 7Í ) 

prediction error when compared to parametric errors (υȢχ 7Í  and 

τȢφ 7Í ). Furthermore, for the purposes of energy demand uncertainty 

analysis weather forecast and parametric error could be treated independently. 

This insight was a cornerstone for this uncertainty analysis as it allows for the 

partitioning of the sample space between data and parametric error, making the 

analysis less computationally intensive. While this was very useful for this 

analysis, it should not be overlooked that assessing the combined impact of 

uncertainties from different sources is a powerful tool for deep insights into how 

uncertainty propagates through entire systems. This chapter also concluded that 

improvements in weather forecast error have large diminishing returns with 

prediction error where significant improvements in weather forecasts are 

required for modest reductions in prediction uncertainty. For example, a large 

80-90% reduction in forecast error only resulted in a 50% decrease in gas and 

electrical power prediction error. The methodology proposed in Chapter 4 goes 

a level deeper than a traditional sensitivity analysis by not only identifying how 

much prediction error could be reduced but also how hard that would be to 

achieve. Indeed, the conclusion of this analysis tells us that reductions in weather 

forecast errors would yield improvements in energy predictions, but major 

improvements are not easy to achieve.  

 

In addition to the impact of greenhouse energy consumption directly on the 

climate, climate change itself can have an effect on the availability of energy 

resources. As the globe transitions to more sustainable weather-based energy 

sources, the price of energy may become more volatile as it was increasingly 

based on the availability of ideal weather conditions. As such Chapter 5 of this 

thesis addressed the second aim of this thesis by investigating how a greenhouse 

can be managed under disturbance from fluctuating energy prices by using the 

CHP, the forecasted radiation level or the crop’s assimilate pool as an energy 

buffer. This chapter concluded that the CHP and more specifically the gas price 

was the main mechanism used to manage fluctuating power process. This 

chapter also concluded that the crop’s assimilate pool has limited use as an 

energy buffer. With the assimilate pool only having a small capacity to buffer 

when compared to the greenhouse’s daily energy demand.  

 

An overall conclusion that can be drawn from the work presented in this thesis 

is that the design of the greenhouse controller is a key contributor to how input 

error propagates into energy demand prediction uncertainty. Indeed, this 

conclusion was found in Chapters 2-4 for traditional rule-based controllers that 

are still common in industry. As such a contribution this thesis makes to the 
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progression of the field of greenhouse horticultural research and to industry is 

that rule-based control methods may be used and new control methods may be 

developed, but without the understanding of the interaction of controller design 

and input error, predictions will be uncertain.  

6.3. Limitations from weather data 
Chapters 2, 3 and 4 include demonstrations of the methods they propose using 

historic weather data. The use of this weather data is predicated on a number of 

simplifications and assumptions, which in turn apply limitations on the research 

this data is used for. Firstly, the weather data used in this thesis was augmented 

with synthetic sky temperature and diffuse radiation data. This synthetic data 

was derived from weather variables within the dataset and using formulas from 

literature (Luo, de Zwart, et al., 2005; Orgill & Hollands, 1977). While these 

synthetic variables may be representative, they may contain errors from 

simplifications or assumptions used in these formulas which influence the 

outcomes of the thesis. As such the accuracy of these equations should be 

examined using recorded data of sky temperature and diffuse radiation levels as 

well as different formulas for their estimation. This limitation was previously 

partially addressed in appendix A, which concluded that the assumptions made 

regarding sky temperature and diffuse radiation levels did not affect the 

outcomes of Chapter 2 with regards to the creation of weather forecast derived 

prediction uncertainty of energy demand. Having said this, future research 

should apply the analysis proposed in appendix A to the Chapters 3 and 4 to 

investigate the potential impact on parametric uncertainty and combined 

parametric and weather forecast-based uncertainty. However, given the 

conclusion of Chapter 4 that there is little interaction between parametric 

uncertainty and weather forecast-based uncertainty it would be reasonable to 

generalise the conclusions of appendix A to Chapters 3 and 4. 

 

A further consideration when analyzing weather data is that in reality weather is 

dynamic over the surface of the greenhouse and the data that is used in this thesis 

are sampled from the single point where the weather measurement station was 

located. As such all transient weather dynamics around the greenhouse are 

removed. This has consequences for the analysis presented in this thesis as it may 

introduce a form of spatial uncertainty. Whereby the sample point in the weather 

station is not representative of the average climate around the greenhouse. The 

significance of this simplification was addressed in Balendonck et al., (2010)  
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who concluded experimentally that spatial variation in the greenhouse air 

temperature was high at ρ σᴈ. Despite the impact of spatial variation 

identified by Balendonck little attention has been given as to how this spatial 

variation might influence uncertainty analyses. If spatial variation were to be 

incorporated, they may deepen the insight gained from an uncertainty analysis 

by identifying precise locations in the greenhouse where the influence of weather 

forecasts errors are most impactful. As such future research should consider the 

implications of the removal of temporal and spatial variation in weather data by 

performing an uncertainty analysis with data recorded from multiple locations 

both within and outside the greenhouse or using a 3D model of the greenhouse. 

Despite the potential ramifications of this simplification an aspatial perspective 

is an industry standard and the norm for a large portion of greenhouse 

horticultural research (Katzin et al., 2020; Seginer et al., 2017; van Henten, 

1994). As such the insight set out in this thesis are not compromised by the 

exclusion of spatial variation in terms of their relevance to industry and 

contemporary research, but instead this limitation is an invitation for a new 

challenging dimension in future research in greenhouse uncertainty analysis.  

 

Chapter 2 and 4 perform uncertainty analyses using time series of weather 

forecast data. While these chapters capitalise on the availability of data streams 

as articulated in Opportunity 1, they also must consider the impact of 

correlative effects such as auto-correlation and cross-correlation on an 

uncertainty analysis. These correlatory effects include auto-correlation, which is 

a measure of similarity between samples in a data series. As such, any errors in 

a set of time series data may be influenced by correlation between the data points 

in that time series. These correlatory effects were found to play a large role in 

creating weather forecast errors in Scher & Messori, (2018). If correlatory effects 

then influence forecast error, the analyses in Chapters 2 and 4, which looks at 

the prediction uncertainty caused by forecast errors may also be influenced by 

auto-correlation and cross-correlation. This possibility is further complicated by 

the fact that the analysis in Chapter 2 and 4 segment data streams. This 

apportioning and rearranging of segments of weather data in effects breaks the 

relationship between auto and cross-correlation, error and uncertainty that had 

existed in the original dataset. This was done based on the underlying 

assumption that correlatory effects which segmenting will remove are either 

small or can be partially included using segments of a certain length and as such 

have a limited influence on the uncertain analysis. In Chapter 4 weather data 

was segmented into two week periods, the underlying assumption being that two 
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weeks was a sufficient period to maintain the autocorrelatory effects within the 

weather data. This assumption reflects insight gained by Kuijpers et al., (2022) 

and from an unpublished autocorrelatory analysis performed as part of the 

Flexcrop project which indicated that 7 days was a sufficient period. Indeed, 

studies from outside the domain of greenhouse horticulture such as Polasek & 

C adí k, (2023) concluded that only a period of 5 days of radiation forecasts 

contained sufficient correlative effects to predict the power produce from 

photovoltaic cells. As such previous research choosing shorter periods indicates 

that the segmenting of data into two-week periods in this thesis is unlikely to 

impact its conclusions. It however remains unclear how significant 

autocorrelatory effects are in influencing the propagation of weather forecast 

error in greenhouse models, and indeed whether the two week period could be 

shortened as seen in Polasek & C adí k, (2023) without impacting the outcomes of 

the analysis. If it were possible to shorten the length of data segments, more 

unique samples could be drawn from the same dataset. This would in turn 

increase the density of the weather forecast error sample space and could in turn 

increase the accuracy of the corresponding prediction uncertainty distribution. 

6.4. Limitations in greenhouse 

modelling and control 
The modelling of parametric uncertainty performed in Chapters 2 and 3 

assumed that the parameters were normally distributed. This assumption is a 

simplification as the distribution of these parameters may be alternatively 

shaped, leading to a different profile of sampled values. The parameter 

distributions used in this thesis were defined as having a 4th quartiles with a 

value of ρᴜπϷ of the distribution’s mean value. Again, this assumption is a 

simplification as many parameter may be known with a high degree of accuracy. 

As such values sampled from these parameter distributions may have a larger or 

small range than their true distribution. The potential limitations this poses on 

the conclusions of Chapters 2 and 3 are that the exact sensitivity indices may 

differ from those found in this thesis given different initial parameters 

distributions. This is however unlikely, as if the response of the model predictions 

to changes in a parameters value is approximately linear. This linear relationship 

was found to be the case between power demand prediction error and the 

parameter — ȟ  in unpublished figures included as part of Chapter 3 

section 3.3.4. As such, for this case the ratio of changes in predictions to changes 
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in the parameter value should be comparable in magnitude despite potential 

inaccuracies in the range of parameter used. 

 

As such the conclusions relating to parameters which are not sensitive should 

remain consistent even if the exact sensitivity may change given a more informed 

parameter distributions. It should also be noted that these assumptions while 

imposing limitations as to the insight of these chapters are also practically 

necessary given the lack of previous studies and available information to inform 

these distributions. It would be of great interest for future research to perform a 

large-scale parameter identification analysis with the goal of defining these 

distributions more accurately.  

 

A key outcome of Chapter 3 was that groups of parameters create prediction 

uncertainty through interactive effects. These parameters also create prediction 

uncertainty through feedback loops within the model whereby errors iteratively 

propagate and grow. This considerable insight leads us to a paradigm shift to 

consider uncertainty not as a linear propagation from parameters and input data 

to predictions, but a process that is influenced by the design of the greenhouse 

model and controller. As such the addition of uncertain parameters in models, 

feedback loops and rules within the controller may alter or introduce an equation 

that represents a relationship in the greenhouse system that had previously been 

omitted. In doing so this can produce unforeseen changes in prediction 

uncertainty by mechanistically altering the link between sources of error and 

prediction states. These interactive and iterative effects have been identified in 

the specific case study examined in Chapter 3.  The link between system design 

and prediction uncertainty invites a broader change in methodology to the 

design of models and control systems. A change whereby the designer not only 

considers relevant mechanisms that embody the target system, but how the 

accuracy of the components of these mechanisms will influence overall 

prediction uncertainty. This concept parallels the notion of structural 

uncertainty analysis as described by Hoeting et al., (1999) but should be involved 

in design and not only retrospective analysis. 

 

A rule-based controller was used in Chapters 3 and 4, this controller was based 

on the controller proposed in Katzin et al., (2020) and Vanthoor, Stanghellini, et 

al., (2011). While this controller was designed to represent a consumer grade 

climate controller, there is a great degree of variation in the design and 

calibration of rules sets used across the sector. As such the insight in Chapters 3 

and 4 relating to the design of the controller impacting uncertainty propagation 

may only be linked to the specific controller design used in this thesis and as such 
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may place a limitation on this conclusion. However, this insight is also 

corroborated by previous research, for example van Henten, (2003) concluded 

that parameters related to the control of greenhouse humidity were key in 

creating uncertainty in greenhouse economic performance. Furthermore 

(Vanthoor, van Henten, et al., (2011) also concluded that the addition of a 

controller reduced the impact of weather data error on prediction uncertainty. 

As such there is a foundation in literature that is an affront to this limitation and 

supports the general conclusion that controller design contributes to greenhouse 

prediction uncertainty propagation. 

6.5. Limitations from power market data 
This thesis posits that the economic analysis in greenhouse horticultural 

research should become more advanced and representative to remain impactful. 

Chapter 2 has achieved this by introducing an economic analysis using time 

series prices from multiple power markets. This is done in Chapter 2 using data 

from the Dutch imbalance and day-ahead market to demonstrate how growers 

might trade power using multiple markets. However, given the selection of data, 

the insight from this analysis is specific only to the Netherlands. As such it has 

limited relation to the dynamics in international markets and is only 

approximately related to the trends within power markets within adjacent 

European countries. More broadly the power price data used in this thesis are 

exclusive to the period of time that data represents. As such the economic 

analysis may include dynamics that are not relevant outside of that period of time 

and may become less relevant as long-term market trends develop. Having 

considered this the methodology and intention of Chapter 2 to broaden the 

economic analysis of greenhouse energy demand remains an important 

contribution as the methodology can be applied to any set of markets of varying 

timescale and volatility.  

 

A further limitation is that this analysis does not use data from the intra-day 

market due to a lack of available data. This market is a where trading is done on 

a 15 minute basis and up to 90 minutes before delivery (Chaves-A vila et al., 

2013). As such this market fills an important role in the power trading ecosystem 

that is not met by the day-ahead or imbalance market which were included in 

this thesis. As such the intra-day market is an important market for corrective 

trading and should be included in future research.  However, having considered 

this, the demonstration performed in Chapter 2 retains its value as a 
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demonstration of the risks taken by growers when trading on more volatile 

power markets, regardless of the specific properties of these markets. 

 

The day-ahead market price was used as a continuous market in this thesis, 

where power can be bought from this market at any time. This is a simplification 

of the reality of how this market operates. In reality this market is planned 

whereby orders for the demand, supply and timing of power are collected until 

12:00 every day. At this point supply and demand orders are matched, a contract 

is formed and the power is supplied when specified (Chaves-A vila et al., 2013). 

Given this the inclusion of day-ahead market data does introduce a more detailed 

economic analysis that considers corrective trading. However, the assumption 

that the day-ahead market is a continuous market limits the conclusions of 

Chapter 2 in their relation to real trading dynamics. As such a next step would 

be to construct a more realistic market structure that includes the different 

mechanism power markets use for trading.   

6.6. Recommendations and future 

research 
The outcomes of this thesis have a number of implications for broader society 

and for the greenhouse horticultural sector. This thesis makes strides in 

providing tools to analyse and improve greenhouse energy management through 

prediction uncertainty mitigation. In doing so highlighting how the climate 

impact of the greenhouse sector might be reduced through improved energy 

management. Furthermore, the research performed in Chapters 2 and 5 of this 

thesis investigated ways in which greenhouses can operate in a volatile energy 

markets landscape. In doing so these chapters can aid a wider society by 

stimulating development as to how the food supply from greenhouses can be 

made secure in an increasingly unstable future where climate change drives 

shifts in energy availability. 

 

The research performed in Chapter 2 addressed Challenge 3 in assessing the 

potential risk of increased costs from corrective trading on power markets. This 

chapter concluded that the grower incurs excess costs by trading for 

mispredicted energy on short term markets. In response to this the sector should 

pursue contracts for the provision of power at fixed or banded rates to avoid 

potentially volatile markets (Tanrisever et al., 2015). This proposal is made more 

acute by the potential for increased market volatility as a results of global climate 
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change (Mulder & Scholtens, 2013). In addition, future research might consider 

how the analysis of greenhouse economics can be extended to incorporate the 

contract format upon which revenue is received, with lump payments made after 

delivery of bulk quantities of crops. In doing so the analysis of greenhouse 

economics can become a closer approximation of practice allowing for deeper 

practical insight and more relevant analysis. 

 

A key conclusion of the research within this thesis is that the design of the 

greenhouse controller strongly influences which factors impact the creation of 

energy demand prediction uncertainty. As such a promising avenue for future 

research is to go a level deeper to assess exactly how the composition and design 

of greenhouse climate controllers influences which parameters are impactful. 

For industry this insight should act as a warning to growers. A warning that 

altering rules within their climate controller may diminish the overall prediction 

accuracy of any associated decision support system by introducing new sources 

of prediction error. 

 

Research performed in Chapter 3 and 4 addressed Challenge 1 and highlighted 

the overwhelming importance of lamp model parametrisation in the creation of 

energy demand prediction uncertainty. As such industry should be sure to 

correctly calibrate any lamp light model that is used as part of a decision support 

system.  Furthermore a key part of the research performed in Chapter 4 highlight 

the potential impact of groups of parameters through higher order interactions. 

As such this thesis posits a significant paradigm shift in the application of 

uncertainty analysis in the domain of greenhouse horticultural research by 

including higher order interactions in sensitivity analyses. Indeed, this chapter 

concludes that for any complex system, assessing the combined influence of large 

groups of parameters should become a staple part of uncertainty analysis.  

 

Chapter 5 concluded that for the purposes of buffering electrical energy the 

crop’s assimilate pool as modelled in this thesis has limited potential in industry 

as an energy buffer. This is due to the crop buffer’s small size relative greenhouse 

energy demand. This chapter did conclude that the access to fixed price gas was 

the most effective way to manage fluctuation in power prices. However, this 

solution relies on the availability of cheap fixed price gas, which may not be 

possible in the future given the pressures of climate change.  To avoid the use of 

fossils fuels, the installation of a battery system in the greenhouse would allow 

the greenhouse to buy power at cheap periods, store it and remobilise it during 

peak times. In essence performing the same function that was hypothesised for 
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the crop’s assimilate pool and gas run CHP, but with a larger capacity and the 

potential to use renewable energy which makes a battery a viable solution.  

 

Chapters 2, 3 and 4 make a significant contribution to the cause of uncertainty 

analysis in greenhouse horticulture. These chapters proposed methods of 

uncertainty analysis that are novel for the domain and indeed investigate novel 

aspects of energy demand prediction. Specifically, the work in this thesis 

introduced the method of Polynomial chaos expansions as a method of large scale 

uncertainty analysis to the domain of greenhouse horticultural research. Such a 

tool offers valuable novel insight but also invites a retrospective re-evaluation of 

previous work. Future greenhouse research should embrace the forms of large-

scale uncertainty analysis that PCE offers, to deepen our understanding of 

complex systems. Furthermore, the kind of insight that methods like PCE offers 

invites future research to think about uncertainty propagation not as the 

agitation of a linear system but as a ripple through a complex series of loops, 

webs and buffers in which the design of the system is of paramount concern.  

 

Chapter 4 considers the combined effect of parametric and data derived 

prediction uncertainty. This research introduced a methodology that provides 

the tools for future research and industry to not consider types of uncertainty 

sources separately but to address interactions between different types of 

uncertainty sources. Furthermore, these combined effects can vary with time and 

the status of the system allowing analysis to be more situational and accurate in 

identifying compounding and additive relations that would otherwise have been 

undefined.  
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Appendix 

Appendix A – Cloudiness index and 
ambient #/  level sensitivity analysis 
A Sobol sensitivity analysis (Saltelli et al., 2008) was performed to assess the 

impact of the assumptions made about the weather data used in this study. The 

assumptions that are included are that the cloudiness index (CI) is constant at 

0.7 and that the Outdoor #π level (#π ) is constant at 410 ppm. 

To perform a sensitivity analysis, the parameter #π  has a normal prior 

distribution defined. Its mean is the nominal value used in the study, with a 

standard deviation (ίȢὨ) defined so that the 99th percentile of the prior is 

approximately ±10% of the mean value: 

 

 ÓȢÄ πȢρϽÍÅÁÎȾυ (A.1) 

 

The cloudiness index parameter (CI) has a prior distribution that is defined as a 

uniform distribution. This distribution shape and limits are chosen based on 

expert opinion and the distribution of historical cloudiness index data. The limits 

of this prior are defined as being between 0.4 and 0.8.  

 

Table A.1: Parameter priors used in the assumption sensitivity analysis 

  Normal distribution   Uniform distribution 

  Outdoor #π  

(#π ) 

  Cloudiness index (CI) 

Mean  410  Min 0.4 

Standard 

deviation 

 8.20  Max 0.8 

Assumed value  410   0.7 

 

These parameter distributions are sampled 1000 times using a Monte-Carlo 

method. This set of samples are used to simulate 1000 greenhouse power 

demand predictions using the KASPRO model and recorded weather data setup 

described in section 2.2.1 and 2.2.7.  

 

These simulations when used in the Sobol sensitivity framework concluded that 

the prediction of greenhouse power demand is completely insensitive to 
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variations in the two parameters included in this analysis. This result is logical as 

within KASPRO the greenhouse power demand is derived from the lamp lighting 

power demand and the parameters #π  and CI are not included in the control 

of the lamp lighting. In the case of the CI, this parameter is used to calculate the 

diffuse radiation but a separate data stream, the global radiation, is used to 

control the lighting. This means that while the values used in these assumptions 

should be realistic, their precise value has no impact on the analysis done in this 

study. 

Appendix B – Local one-by-one 
parametric uncertainty analysis  
To corroborate and assess the consistency of the results found in the parametric 

PCE meta-model-based analysis (section 2.2.4.1) a one-by-one local sensitivity 

analysis was done. This uses the power prediction demand calculated using a 

parameter sample set in which each parameter is sampled 20 times individually. 

All the remaining parameters retained their nominal value, as defined in table 

2.3. The sensitivity of each parameter (É) was then defined as the fraction of 

variation in the power demand prediction RMS error made using a parameter set 

with variations in only one parameter  ʀ , over the variation of perturbing all 

of the parameters simultaneously 1000 times, ʀȢ . As such these sensitivity 

indices are defined as follows, 

 

 
3)

ÖÁÒʀ

ÖÁÒʀȢ
Ȣ 

(B.1) 

 

The resulting sensitivity indices are shown in the figure below. 
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Fig. B.1 - The one-by-one sensitivity indices (╢╘░) of the greenhouse’s power 

demand prediction to individual variation in the model parameters. 

 

Fig. B.1 shows that even though this analysis does not consider interaction and 

has a limited sample size the key outcomes mirror that of the total order indices 

of the PCE used in the study. These being that the lamp light intensity has the 

greatest contribution and that remaining parameters do have a limited impact. 

Appendix C – The capacity of the crop 
assimilate pool 
To assess the feasibility of the crop’s assimilate pool as an energy buffer, an 

analysis was performed that compares the scales of the energy buffer with the 

energy demand of a greenhouse over a day. In doing so this analysis shows how 

much energy might be buffered and puts the potential role of the buffer in context 

when compared to the operations of a greenhouse.  
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Concerning the crop, it was assumed that the crop’s assimilate pool has one cycle 

of being filled during the day and emptied during the night. This assumption was 

founded on insight from experimental observations and previous models of the 

assimilate pool (Heuvelink, 1999; Vanthoor, de Visser, et al., 2011). An additional 

assumption made for this analysis is that the assimilate stored in the buffer is 

treated as glucose for the purposes of energy density calculations. Given these 

assumptions the potential energy that can be stored in the crop’s assimilate pool 

("ÕÆÆ ) was defined as the product of the buffer’s capacity (# ȟ ) and the 

energy density of glucose (% ), such that 

 

 "ÕÆÆ# ȟ Ͻ% . 

 

[-*ϽÍ Ͻ$ÁÙ ] (C.1) 

In which the crop’s assimilate pool capacity (# ȟ  was defined as 

ρσȢυ Ç #(/ȢÍ  (Seginer, 2022) and the energy density of glucose (%   was 

set to πȢρυχ -*ȢÇ  (Pielou, 2001).  The energy potential of the buffer is was 

compared to the potential energy demand of the greenhouse heating ((ÅÁÔ ) 

and lighting (,ÉÇÈÔ ) system over a day. It was assumed that the lighting and 

heating was operated for 8 hours during the day. As such the energy potentials of 

heating and lighting can be defined as the product of the energy rating of the 

heating system (ʃ ȟ ) and lamps (ʃ ȟ ) respectively and the period of 

operation, where 

 

 ,ÉÇÈÔ ʃ ȟ Ͻσφππzψ [-*ȢÍ Ȣ$ÁÙ ] (C.2) 

and 

 (ÅÁÔ ʃ ȟ ϽσφππzψȢ 

 

[-*ȢÍ Ȣ$ÁÙ ] (C.3) 

In this case the lighting (ʃ ȟ ) is rated at ρρπ *ϽÍ ϽÓ  (Katzin et al., 2020) 

and the heating system capacity (ʃ ȟ ) at ρσπ *ϽÍ ϽÓ  (Vermeulen, 

2016). Accordingly it is possible to compare the energy potentials of the crop’s 

assimilate pool, greenhouse heating system demand and greenhouse power 

demand. The results of this comparison can be seen in Fig C.2. 
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Fig A.2 - A comparison of the potential energy capacity of the crop 

assimilate pool (║◊██╟▫◄) and the greenhouse energy inputs (╛░▌▐◄▬▫◄Ⱦ

╗▄╪◄▬▫◄). 

Fig. C.2 shows that the crop’s assimilate pool is much smaller than the energy 

demand of the greenhouse, indeed it is 2.95% the size of the combined demand 

of the greenhouse heating and power. As such in this scenario it is not a viable 

buffer for the storage of energy due to its size. 

Appendix D - Analysis of the crop’s ability 
to tolerate a fluctuating climate 
An analysis was performed to investigate the ability of the crop’s assimilate pool 

to buffer fluctuations in the indoor temperature and radiation. By doing this 

analysis it is possible to assess the suitability of the crop to tolerate a fluctuating 

climate. Furthermore the crop’s ability to tolerate a fluctuating climate has 

implications for the crop’s potential as an energy buffer, as the buffering of 

energy is contingent on fluctuations in energy availability which may lead to 

fluctuations in the climate in the greenhouse.  
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As such this analysis used the crop model proposed by (Kuijpers, Antunes, et al., 

2021) which was input with data that represent a synthetic indoor climate over 

a 30 day period. This synthetic climate has fluctuating temperature and radiation 

levels, these fluctuations are represented as two in phase square waves within 

initially high levels whose lower and upper levels are detailed in table D.1. 

 

Table D.1: Fluctuating indoor radiation and air 
temperature. 
 4ÅÍÐÅÒÁÔÕÒÅ Ј# 2ÁÄÉÁÔÉÏÎ ʈÍÏÌϽÍ ς ϽÓρ 
,Ï× ÌÅÖÅÌ ρπ ςππ 
(ÉÇÈ ÌÅÖÅÌ ςυ ψυπ 

 

In addition, the ambient #/  levels were fixed at ςȢψ ὫϽά  and no leaves were 

harvested over the simulation period. To assess the impact of the fluctuating 

climate variables the periods of the fluctuations were increased from 1 to 14 days 

with a step of 1 day, and the amplitudes of the fluctuations were scaled by a factor 

of 0.5 to 1.5 at a step of 0.1. In doing so it is possible to assess the crop’s ability 

to tolerate various climate fluctuations and their impact on yield. The amount of 

assimilate in the mature fruits, given climate fluctuations of various amplitude 

and periods can be seen in Fig D.1. 
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Fig. D.1 – The assimilate content of mature fruits given fluctuating lighting 

and heating and changes in the period and amplitude of these 
fluctuations. 

Fig D.1 shows that the greatest quantity of assimilate in the mature fruits is in a 

fluctuating climate with a period of 1 day and an amplitude scaling factor of 1.2. 

Indeed, as the period of fluctuations increase, the level of assimilates falls away 

rapidly, implying that the yield of mature fruits are not robust to large 

fluctuations in climate. Another observation is that for a climate whose levels 

have an amplitude scaling factor of 0.8 to 1 there is some ability to buffer longer 

periods of fluctuations with the second peak having a period of 10 days. 

However, it should be noted that this buffering is lower than keeping the 

fluctuation period to one day.  
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It should also be noted that the insight drawn from this analysis is dependent on 

the design of the crop model, the completeness of the data used to calibrate it 

and the omission of behaviours which might impact the crop’s ability to buffer 

assimilates. Indeed, future research may investigate the role of model design on 

the crop response to a fluctuating climate. 

  



 

172 
 

References 
 

Ajami, N. K., Duan, Q., & Sorooshian, S. (2007). An integrated hydrologic Bayesian 

multimodel combination framework : Confronting input, parameter, and 

model structural uncertainty in hydrologic prediction. 43, 1–19. 

https://doi.org/10.1029/2005WR004745 
Ali, I. A., & Abdalla, A. M. (1993). A microcomputer-based system for all-year-

round temperature control in greenhouses in dry arid lands. Computer 

and Electronics in Agriculture, 8, 195–210. 

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M. (2019). CasADi: a 

software framework for nonlinear optimization and optimal control. 

Mathematical Programming Computation, 11(1), 1–36. 

https://doi.org/10.1007/s12532-018-0139-4 

Archer, G. E. B., Saltelli, A., & Sobol, I. M. (1997). Sensitivity measures, anova-like 

Techniques and the use of bootstrap. Journal of Statistical Computation 

and Simulation, 58(2), 99–120. 

https://doi.org/10.1080/00949659708811825 

Atia, D. M., & El-madany, H. T. (2016). Analysis and design of greenhouse 

temperature control using adaptive neuro-fuzzy inference system. Journal 

of Electrical Systems and Information Technology, 4(1), 34–48. 

https://doi.org/10.1016/j.jesit.2016.10.014 

Balendonck, J., Os, E. A. Van, Schoor, R. Van Der, & Tuijl, B. A. J. Van. (2010). 

Monitoring Spatial and Temporal Distribution of Temperature and 

Relative Humidity in Greenhouses based on Wireless Sensor Technology. 

Trials, 2000, 1–10. 

Bennis, N., Duplaix, J., Ene a, G., Haloua, M., & Youlal, H. (2008). Greenhouse 

climate modelling and robust control. Computers and Electronics in 

Agriculture, 61(2), 96–107. 

https://doi.org/10.1016/j.compag.2007.09.014 

Bertin, N., & Ge nard, M. (2018). Tomato quality as influenced by preharvest 

factors. Scientia Horticulturae, 233, 264–276. 

https://doi.org/https://doi.org/10.1016/j.scienta.2018.01.056 

Blasco, X., Mart, M., Herrero, J. M., Ramos, C., & Sanchis, J. (2007). Model-based 

Predictive Control of Greenhouse Climate for Reducing Energy and Water 



 

173 
 

Consumption. Computer and Electronics in Agricutlure, 55, 49–70. 

https://doi.org/10.1016/j.compag.2006.12.001 

Blatman, G., & Sudret, B. (2011). Adaptive sparse polynomial chaos expansion 

based on least angle regression. Journal of Computational Physics, 230(6), 

2345–2367. https://doi.org/10.1016/j.jcp.2010.12.021 

Bontsema, J., van Henten, E. J., Gieling, H., & Swinkels, G. (2011). The effect of 

sensor errors on production and energy consumption in greenhouse 

horticulture. Computers and Electronics in Agriculture, 79(1), 63–66. 

https://doi.org/10.1016/j.compag.2011.08.008 

Chalabi, Z. S., Bailey, B. J., & Wilkinson, D. J. (1996). A real-time optimal control 

algorithm for greenhouse heating. Computer and Electronics in Agricutlure, 

15(1), 1–13. https://doi.org/10.1016/0168-1699(95)00053-4 

Chaves-A vila, J. P., Hakvoort, R. A., & Ramos, A. (2013). Short-term strategies for 

Dutch wind power producers to reduce imbalance costs. Energy Policy, 52, 

573–582. https://doi.org/https://doi.org/10.1016/j.enpol.2012.10.011 

Chen, L., Du, S., He, Y., Liang, M., & Xu, D. (2018). Robust model predictive 

control for greenhouse temperature based on particle swarm 

optimization. Information Processing in Agriculture, 5(3), 329–338. 

https://doi.org/10.1016/j.inpa.2018.04.003 

Chen, W., & You, F. (2020). Efficient greenhouse temperature control with data-

driven robust model predictive. American Control Conference (ACC). 

https://doi.org/https://doi.org/10.23919/ACC45564.2020.9147701 

Cook, M. (2021). Chapter 2 - Trends in global energy supply and demand. In M. 

B. T.-D. in P. S. Cook (Ed.), Petroleum Economics and Risk Analysis (Vol. 71, 

pp. 15–42). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-

12-821190-8.00002-2 

Cooman, A., & Schrevens, E. (2004). Sensitivity analyses of TOMGRO output 

variables to variations in climate conditions. Acta Horticulturae, 654, 317–

324. https://doi.org/10.17660/ActaHortic.2004.654.37 

Cooman, A., & Schrevens, E. (2006). A Monte Carlo Approach for estimating the 

Uncertainty of Predictions with the Tomato Plant Growth Model, Tomgro. 

Biosystems Engineering, 94(4), 517–524. 

https://doi.org/10.1016/j.biosystemseng.2006.05.005 

Core, W. T., Pachauri, P., & Meyer, L. (2014). Climate Change 2014: Synthesis 

Report. Contribution of Working Groups I, II and III to the Fifth Assessment 

Report of the Intergovernmental Panel on Climate Change (IPCC). 



 

174 
 

de Jong, T. (1990). Natural ventilation of large multi-span greenhouses. (Ph.D 

Thesis). Wageningen University. 

de Zwart, H. F. (1996). Analysis energy-saving options in greenhouse cultivation 

using a simulation model. (Ph.D Thesis). Landbouwuniversiteit 

Wageningen. 

de Zwart, H. F., Baeza, E., van Breugel, B., Mohammadkhani, V., & Janssen, H. 

(2017). De uitstralingmonitor. 

Dieleman, J. A., & Kempkes, F. L. K. (2006). Energy screens in tomato: 

Determining the optimal opening strategy. Acta Horticulturae, 718, 599–

606. https://doi.org/10.17660/ActaHortic.2006.718.70 

Dieleman, J. A., Meinen, E., Marcelis, L. F. M., de Zwart, H. F., & van Henten, E. J. 

(2005). Optimisation of CO2 and temperature in terms of crop growth and 

energy use. Acta Horticulturae, 691, 149–154. 

https://doi.org/10.17660/ActaHortic.2005.691.16 

Doeswijk, T. (2007). Reducing Prediction Uncertainty of Weather Controlled 

Systems. Doctoral dissertation. Wageningen University. 

Doeswijk, T. G., & Keesman, K. J. (2005). Adaptive weather forecasting using 

local meteorological information. Biosystems Engineering, 91(4), 421–431. 

https://doi.org/10.1016/j.biosystemseng.2005.05.013 

Doeswijk, T., Keesman, K. J., & Van Straten, G. (2006). Impact of weather forecast 

uncertainty in optimal climate control of storehouses. 4th IFAC Workshop 

on Control Applications in Post-Harvest and Processing Technology, 

January, 46–57. 

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least Angle 

Regression. The Annals of Statistics, 32(2), 407–499. 

https://doi.org/10.1214/009053604000000067 

Elings, A., de Zwart, H. F., Janse, J., Marcelis, L. F. M., & Buwalda, F. (2006). 

Multiple-day temperature settings on the basis of the assimilate balance: 

A simulation study. Acta Horticulturae, 718, 219–226. 

https://doi.org/10.17660/ActaHortic.2006.718.24 

Elings, A., Kempkes, F. L. K., Kaarsemaker, R. C., Ruijs, M. N. A., & Braak, N. J. Van 

De. (2005). The energy balance and Energy-Saving Measures in 

Greenhouse Tomato Cultivation. GreenSys, 67–74. 

Faouzi, D., & Bibi-Triki, N. (2016). Modeling, simulation and optimization of 

agricultural greenhouse microclimate by application of artificial 



 

175 
 

intelligence and/or fuzzy logic. Preprints.Org, July. 

https://doi.org/10.20944/preprints201607.0064.v1 

Frnda, J., Durica, M., Rozhon, J., Vojtekova, M., Nedoma, J., & Martinek, R. (2022). 

ECMWF short-term prediction accuracy improvement by deep learning. 

Scientific Reports, 12(1), 1–11. https://doi.org/10.1038/s41598-022-

11936-9 

Gellings, C. W., & Chamberlin, J. H. (1987). Demand-side management: Concepts 

and methods. 

Gent, M., Seginer, I., & Gent, M. (2012). Vegetative growth response to light and 

temperature, interpreted by carbohydrate-pool dynamics. Acta 

Horticulturae, 956(1), 231–238. 

https://doi.org/10.17660/ActaHortic.2012.956.25 

Golzar, F., Heeren, N., Hellweg, S., & Roshandel, R. (2018). A novel integrated 

framework to evaluate greenhouse energy demand and crop yield 

production. Renewable and Sustainable Energy Reviews, 96(November 

2017), 487–501. https://doi.org/10.1016/j.rser.2018.06.046 

Golzar, F., Heeren, N., Hellweg, S., & Roshandel, R. (2021). Optimisation of 

energy-efficient greenhouses based on an integrated energy demand-yield 

production model. Biosystems Engineering, 202, 1–15. 

https://doi.org/10.1016/j.biosystemseng.2020.11.012 

Gonza lez, R., Rodrí guez, F., Guzma n, J. L., & Berenguel, M. (2014). Robust 

constrained economic receding horizon control applied to the two time-

scale dynamics problem of a greenhouse. Optimal Control Applications and 

Methods, 35(4), 435–453. https://doi.org/10.1002/oca.2080 

Gutman, P., Lindberg, P., Ioslovich, I., & Seginer, I. (1993). A non-linear optimal 

greenhouse control problem solved by linear programming. Journal of 

Agricutlural Engineering, 55(4), 335–351. 

https://doi.org/10.1006/jaer.1993.1054 

Guzman-Cruz, R., Castaneda-Miranda, R., Garcia-Escalante, J., Lara-Herrera, A., 

Serroukh, I., & Solis-Sanchez, L. (2010). Genetic algorithm for calibration 

of a greenhouse climate model. Revista Chapingo Serie Horticultura, 16(1), 

23–30. 

Haiden, T., Janousek, M., Vitart, F., Ben-Bouallegue, Z., Ferranti, L., & Prates, F. 

(2021). Evaluation of ECMWF forecasts, including the 2021 upgrade. In 

ECMWF Technical Memoranda (Issue 884). ECMWF. 

https://doi.org/10.21957/90pgicjk4 



 

176 
 

Hasni, A., Taibi, R., Draoui, B., & Boulard, T. (2011). Optimization of Greenhouse 

Climate Model Parameters Using Particle Swarm Optimization and Genetic 

Algorithms. 6, 371–380. https://doi.org/10.1016/j.egypro.2011.05.043 

Henten, E. J. Van, & Bontema, J. (1996). Greenhosue Climate Control: A Two 

Time-Scale Approach. Mathematics and Control Applications in Agricutlure 

and Horticulture, 406. 

Henten, E. J. van, & Bontsema, J. (2009). Time-scale decomposition of an optimal 

control problem in greenhouse climate management. Control Engineering 

Practice, 17, 88–96. https://doi.org/10.1016/j.conengprac.2008.05.008 

Henten, E. J. van, Bontsema, J., Group, F. T., van Henten, E. J., & Bontsema, J. 

(2008). Open-loop optimal temperature control in greenhouses. Acta 

Horticulturae, 801 PART 1, 629–635. 

https://doi.org/10.17660/actahortic.2008.801.72 

Heuvelink, E. (1995). Dry Matter Production in a Tomato Crop: Measurements 

and Simulation. Annals of Botany, 75(4), 369–379. 

Heuvelink, E. (1996). Tomato growth and yield : quantitative analysis and 

synthesis. (PhD Thesis) (p. 325). 

Heuvelink, E. (1999). Evaluation of a Dynamic Simulation Model for Tomato 

Crop Growth and Development. Annals of Botany, 83, 413–422. 

Hewson, T. D., & Pillosu, F. M. (2021). A low-cost post-processing technique 

improves weather forecasts around the world. Communications Earth and 

Environment, 2(1), 1–10. https://doi.org/10.1038/s43247-021-00185-9 

Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model 

averaging: a tutorial. Statistical Science, 14(4), 382 – 417. 

https://doi.org/10.1214/ss/1009212519 

HSL. (2019). HSL, a collection of Fortran codes for large-scale scientific 

computation. http://www.hsl.rl.ac.uk. 

Hu, H., Xu, L., Wei, R., & Zhu, B. (2011). Multi-objective control optimization for 

greenhouse environment using evolutionary algorithms. Sensors, 11(6), 

5792–5807. https://doi.org/10.3390/s110605792 

Hwang, Y., JONES, P., JONES, J. W., Hwang, Y., JONES, P., JONES, J. W., & Hwang, Y. 

(1990). Simulation for Determining Greenhouse Temperature Setpoints. 

Transactions of the Asae, 33(5), 1722–1728. 

https://doi.org/10.13031/2013.31532 

Iliev, O. L., Sazdov, P., & Zakeri, A. (2014). A fuzzy logic-based controller for 

integrated control of protected cultivation. Management of Environmental 



 

177 
 

Quality: An International Journal, 25(1), 75–85. 

https://doi.org/10.1108/MEQ-06-2013-0065 

[Internet], EnergieMarktInformatie. com. (2021). APX day ahead data portal. 

https://www.energiemarktinformatie.nl/beurzen/elektra/ 

[Internet], Investing. com. (2021). TTF market data portal. 

https://www.investing.com/commodities/dutch-ttf-gas-c1-futures-

historical-data 

[Internet], S. N. (2021). Horticulture Underglass Cultivation Census. Statistics 

Netherlands [Electronic Data set]. 

https://opendata.cbs.nl/statline/portal.html?_la=en&_catalog=CBS&table

Id=80783eng&_theme=1107 

Jones, J. W., Dayan, E., Allen, L. H., Keulen, H. Van, & Challa, H. (1991). A dynamic 

tomato growth and yield model (TOMGRO). American Society of 

Agricultural Engineers, 34(2), 663–672. 

Katzin, D. (2021). Energy saving by LED lighting in greenhouses A process-based 

modelling approach. (Ph.D Thesis). 

Katzin, D., van Mourik, S., Kempkes, F., & van Henten, E. J. (2020). GreenLight – 

An open source model for greenhouses with supplemental lighting: 

Evaluation of heat requirements under LED and HPS lamps. Biosystems 

Engineering, 194, 61–81. 

https://doi.org/10.1016/j.biosystemseng.2020.03.010 

Keesman, K. J., Peters, D., & Lukasse, L. J. S. (2003). Optimal climate control of a 

storage facility using local weather forecasts. Control Engineering Practice, 

11(5), 505–516. https://doi.org/10.1016/S0967-0661(02)00144-2 

Kempkes, F., Janse, J., & Hemming, S. (2014). Greenhouse concept with high 

insulating double glass with coatings and new climate control strategies; 

from design to results from tomato experiments. Acta Horticulturae, 

1(1037), 83–92. 

Korner, O. (2003). Crop Based Climate Regimes for Energy Saving in Greenhouse 

Cultivation. Wageningen University. 

Korner, O., & Challa, H. (2003). Design for an improved temperature integration 

concept in greenhouse cultivation. Computer and Electronics in 

Agriculture, 39, 39–59. https://doi.org/10.1016/S0168-1699(03)00006-1 

Ko rner, O., & Challa, H. (2003). Process-based humidity control regime for 

greenhouse crops. Computers and Electronics in Agriculture, 39(3), 173–

192. https://doi.org/https://doi.org/10.1016/S0168-1699(03)00079-6 



 

178 
 

Ko rner, O., & van Straten, G. (2008). Decision support for dynamic greenhouse 

climate control strategies. Computers and Electronics in Agriculture, 60(1), 

18–30. https://doi.org/10.1016/j.compag.2007.05.005 

Kuijpers, W. J. P. (2021). Model Selection and Optimal Control Design for 

Automatic Greenhouse Climate Control (Issue 2021). www.tue.nl/taverne 

Kuijpers, W. J. P., Antunes, D. J., Hemming, S., van Henten, E. J., & van de 

Molengraft, M. J. G. (2021). Fruit development modelling and performance 

analysis of automatic greenhouse control. Biosystems Engineering, 208, 

300–318. https://doi.org/10.1016/j.biosystemseng.2021.06.002 

Kuijpers, W. J. P., Antunes, D. J., van Mourik, S., van Henten, E. J., & van de 

Molengraft, M. J. G. (2022). Weather forecast error modelling and 

performance analysis of automatic greenhouse climate control. Biosystems 

Engineering, 214, 207–229. 

https://doi.org/10.1016/j.biosystemseng.2021.12.014 

Kuijpers, W. J. P., Katzin, D., van Mourik, S., Antunes, D. J., Hemming, S., & van de 

Molengraft, M. J. G. (2021). Lighting systems and strategies compared in 

an optimally controlled greenhouse. Biosystems Engineering, 202, 195–

216. https://doi.org/10.1016/j.biosystemseng.2020.12.006 

Kusuma, P., Pattison, P. M., & Bugbee, B. (2020). From physics to fixtures to food: 

current and potential LED efficacy. Horticulture Research, 7(1). 

https://doi.org/10.1038/s41438-020-0283-7 

Lacroix, R., & Kok, R. (1999). Simulation-Based Control of Enclosed Ecosystems 

- A Case Study: Determination of Greenhouse Heating Setpoints. Canadian 

Agricultural Engineering, 41(3), 175–184. 

Lo pez-Cruz, I. L., Martí nez-Ruiz, A., Ruiz-García , A., & Gallardo, M. (2020). 

Uncertainty analyses of the VegSyst model applied to greenhouse crops. 

Acta Horticulturae, 1271, 199–206. 

https://doi.org/10.17660/ActaHortic.2020.1271.28 

Lo pez-Cruz, I. L., Ruiz-Garcí a, A., Ramí rez-Arias, A., & Va zquez-Pen a, M. (2013). 

Uncertainty analysis of a greenhouse lettuce crop model. Revista 

Chapingo, Serie Horticultura, 19(1), 33–47. 

https://doi.org/10.5154/r.rchsh.2011.09.049 

Luo, W., de Zwart, H. F., DaiI, J., Wang, X., Stanghellini, C., & Bu, C. (2005). 

Simulation of greenhouse management in the subtropics, Part I: Model 

validation and scenario study for the winter season. Biosystems 



 

179 
 

Engineering, 90(3), 307–318. 

https://doi.org/10.1016/j.biosystemseng.2004.11.008 

Luo, W., Stanghellini, C., Dai, J., Wang, X., de Zwart, H., & Bu, C. (2005). 

Simulation of greenhouse management in the subtropics, part II: Scenario 

study for the summer season. Biosystems Engineering, 90(4), 433–441. 

https://doi.org/10.1016/j.biosystemseng.2004.12.002 

Maga, J. J., Ruijs, M. N. A., Vanthoor, B. H. E., Ga, J. C., Baeza, E., Stanghellini, C., 

Henten, E. J. van, & Visser, P. H. B. de. (2012). A methodology for model-

based greenhouse design : Part 4 , economic evaluation of different 

greenhouse designs : A Spanish case. 1. 

https://doi.org/10.1016/j.biosystemseng.2011.12.008 

Mara, T. A., & Becker, W. E. (2021). Polynomial chaos expansion for sensitivity 

analysis of model output with dependent inputs. Reliability Engineering 

and System Safety, 214. https://doi.org/10.1016/j.ress.2021.107795 

Ma rquez-Vera, M. A., Ramos-Ferna ndez, J. C., Cerecero-Natale, L. F., Lafont, F., 

Balmat, J. F., & Esparza-Villanueva, J. I. (2016). Temperature control in a 

MISO greenhouse by inverting its fuzzy model. Computers and Electronics 

in Agriculture, 124, 168–174. 

https://doi.org/10.1016/j.compag.2016.04.005 

Mitra, S., Sun, L., & Grossmann, I. E. (2013). Optimal scheduling of industrial 

combined heat and power plants under time-sensitive electricity prices. 

Energy, 54, 194–211. https://doi.org/10.1016/j.energy.2013.02.030 

Mohamed, S. (2015). A GA-Based Adaptive Neuro-Fuzzy Controller for 

Greenhouse Climate Control System. Alexandria Engineering Journal. 

https://doi.org/10.1016/j.aej.2014.04.009 

Mulder, M., & Scholtens, B. (2013). The impact of renewable energy on 

electricity prices in the Netherlands. Renewable Energy, 57, 94–100. 

https://doi.org/https://doi.org/10.1016/j.renene.2013.01.025 

Nelson, J. A., & Bugbee, B. (2014). Economic analysis of greenhouse lighting: 

light emitting diodes vs. high intensity discharge fixtures. PloS One, 9(6). 

https://doi.org/10.1371/journal.pone.0099010 

Nelson, J., & Bugbee, B. (2015). Analysis of Environmental Effects on Leaf 

Temperature under Sunlight, High Pressure Sodium and Light Emitting 

Diodes. Plos One, 10(10). https://doi.org/10.1371/journal.pone.0138930 

Organisation for Economic Co-operation and Development.International Energy 

Agency. (2012). Energy (NV-1 onl). OECD. 



 

180 
 

Orgill, J., & Hollands, K. (1977). Correlation equation for hourly diffuse radiation 

on a horizontal surface. Solar Energy, 19(4), 357–359. 

https://doi.org/10.1016/0038-092X(77)90006-8 

Pasgianos, G. D., Arvanitis, K. G., Polycarpou, P., & Sigrimis, N. (2003). A 

nonlinear feedback technique for greenhouse environmental control. 

Computers and Electronics in Agriculture, 40(1–3), 153–177. 

https://doi.org/10.1016/S0168-1699(03)00018-8 

Pawlowski, A., Beschi, M., Guzma n, J. L., Visioli, A., Berenguel, M., & Dormido, S. 

(2016). Application of SSOD-PI and PI-SSOD event-based controllers to 

greenhouse climatic control. ISA Transactions, 65, 525–536. 

https://doi.org/10.1016/j.isatra.2016.08.008 

Payne, H. J., Hemming, S., van Rens, B. A. P., van Henten, E. J., & van Mourik, S. 

(2022). Quantifying the role of weather forecast error on the uncertainty 

of greenhouse energy prediction and power market trading. Biosystems 

Engineering, 224, 1–15. 

https://doi.org/10.1016/j.biosystemseng.2022.09.009 

Pielou, E. C. (2001). The Energy of Nature. University of Chicago Press. 

https://doi.org/10.7208/chicago/9780226668055.001.0001 

Pina, A., Silva, C., & Ferra o, P. (2012). The impact of demand side management 

strategies in the penetration of renewable electricity. Energy, 41(1), 128–

137. https://doi.org/https://doi.org/10.1016/j.energy.2011.06.013 

Pohlheim, H., & Heiner, A. (1999). Optimal Control of Greenhouse Climate using 

Real-World Weather Data and Evolutionary Algorithms. Proceedings of the 

Genetic and Evolutionary Computation Conference, San Francisco, CA, 

1672–1677. 

http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=7448B640302

308DEC44C5D876BDD2A01?doi=10.1.1.16.494 

Polasek, T., & C adí k, M. (2023). Predicting photovoltaic power production using 

high-uncertainty weather forecasts. Applied Energy, 339, 120989. 

https://doi.org/https://doi.org/10.1016/j.apenergy.2023.120989 

Powells, G., Bulkeley, H., Bell, S., & Judson, E. (2014). Peak electricity demand 

and the flexibility of everyday life. Geoforum, 55, 43–52. 

https://doi.org/10.1016/j.geoforum.2014.04.014 

Ramdani, N., Candau, Y., Guyon, G., & Dalibart, C. (2006). Sensitivity analysis of 

dynamic models to uncertainties in inputs data with time-varying 



 

181 
 

variances. Technometrics, 48(1), 74–87. 

https://doi.org/10.1198/004017005000000337 

Ramí rez-Arias, A., Rodrí guez, F., Guzma n, J. L., Arahal, M. R., Berenguel, M., & 

Lo pez, J. C. (2005). Improving Efficiency of Greenhouse Heating Systems 

Using Model Predictive Control. In IFAC Proceedings Volumes (Vol. 38, 

Issue 1). IFAC. https://doi.org/10.3182/20050703-6-CZ-1902.02097 

Rijksoverheid. (2019). Klimaatakkoord [Climate agreement]. 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, 

M., & Tarantola, S. (2008). Global Sensitivity Analysis. The Primer. In 

Global Sensitivity Analysis. The Primer. John Wiley & Sons Ltd. 

https://doi.org/10.1002/9780470725184 

Scheepers, M., Palacios, S. G., Jegu, E., Nogueira, L. P., Rutten, L., van Stralen, J., 

Smekens, K., West, K., & van der Zwaan, B. (2022). Towards a climate-

neutral energy system in the Netherlands. Renewable and Sustainable 

Energy Reviews, 158. https://doi.org/10.1016/j.rser.2022.112097 

Scher, S., & Messori, G. (2018). Predicting weather forecast uncertainty with 

machine learning. Quarterly Journal of the Royal Meteorological Society, 

144(717), 2830–2841. https://doi.org/https://doi.org/10.1002/qj.3410 

Schrevens, E., Jancsok, P., & Dieussaert, K. (2008). Uncertainty on estimated 

predictions of energy demand for dehumidification in a closed tomato 

greenhouse. Acta Horticulturae, 801 PART 2, 1347–1354. 

https://doi.org/10.17660/ActaHortic.2008.801.165 

Seginer, I. (1997). Some artificial neural network applications to greenhouse 

environmental control. Computers and Electronics in Agriculture, 18(2–3), 

167–186. https://doi.org/10.1016/S0168-1699(97)00028-8 

Seginer, I. (2022). Sub-optimal control of the greenhouse environment : Crop 

models with and without an assimilates buffer. Biosystems Engineering, 

221, 236–257. https://doi.org/10.1016/j.biosystemseng.2022.06.011 

Seginer, I., Beveren, P. J. M. Van, & Straten, G. Van. (2018). Day-to-night heat 

storage in greenhouses : 3 Co-generation of heat and electricity (CHP). 

Biosystems Engineering, 172, 1–18. 

https://doi.org/10.1016/j.biosystemseng.2018.05.006 

Seginer, I., Gary, C., & Tchamitchian, M. (1994). Optimal temperature regimes for 

a greenhouse crop with a carbohydrate pool : A modelling study. Science 

And Technology, 60, 55–80. https://doi.org/10.3182/20130828-2-SF-

3019.00006 



 

182 
 

Seginer, I., Ioslovich, I., & Albright, L. D. (2006). Improved strategy for a constant 

daily light integral in greenhouses. Biosystems Engineering, 93(1), 69–80. 

https://doi.org/10.1016/j.biosystemseng.2005.09.007 

Seginer, I., & McClendon, R. (1992). Methods for optimal control of the 

greenhouse environment. American Society of Agricultural Engineers, 

35(August), 1299–1307. https://doi.org/10.13031/2013.28733 

Seginer, I., Straten, G. Van, & Beveren, P. J. M. Van. (2017). Day-To-night heat 

storage in greenhouses: A simulation study. Acta Horticulturae, 1182, 119–

127. https://doi.org/10.17660/ActaHortic.2017.1182.14 

Seginer, I., van Beveren, P. J. M., & van Straten, G. (2018). Day-to-night heat 

storage in greenhouses: 3 Co-generation of heat and electricity (CHP). 

Biosystems Engineering, 172, 1–18. 

https://doi.org/10.1016/j.biosystemseng.2018.05.006 

Seginer, I., van Straten, G., & van Beveren, P. (2017a). Day-to-night heat storage 

in greenhouses: 2 Sub-optimal solution for realistic weather. Biosystems 

Engineering, 161, 188–199. 

https://doi.org/10.1016/j.biosystemseng.2017.06.023 

Seginer, I., van Straten, G., & van Beveren, P. J. (2017b). Day-to-night heat storage 

in greenhouses : 1 Optimisation for periodic weather. Biosystems 

Engineering, 161, 174–187. 

https://doi.org/10.1016/j.biosystemseng.2017.06.024 

Seginer, I. (2011). Co-state variables as strategic set-points for environmental 

control of greenhouses: Two state-variables. Acta Horticulturae, 893, 697–

704. https://doi.org/10.17660/ActaHortic.2008.797.7 

Sigrimis, N., Ferentinos, K. P., Arvanitis, K. G., & Anastasiou, A. (2001). A 

comparison of optimal greenhouse heating setpoint generation 

algorithms for energy conservation. IFAC Proceedings Volumes, 34(11), 

61–66. https://doi.org/10.1016/S1474-6670(17)34107-1 

Smith, O., Cattell, O., Farcot, E., O’Dea, R. D., & Hopcraft, K. I. (2022). The effect of 

renewable energy incorporation on power grid stability and resilience. 

Science Advances TA  - TT  -, 8(9), eabj6734. 

https://doi.org/10.1126/sciadv.abj6734 LK  - 

https://wur.on.worldcat.org/oclc/9431568262 

Sobol, I. M. (1993). Sensitivity Estimates for Nonlinear Mathematical Models. 

Math Modeling Computer Exp, 1(4), 407–414. 



 

183 
 

Statistics Netherlands [Internet]. (2021). Horticulture Underglass Cultivation 

Census. Statistics Netherlands [Electronic Data set]. 

https://opendata.cbs.nl/statline/portal.html?_la=en&_catalog=CBS&table

Id=80783eng&_theme=1107 

Stitt, M., & Zeeman, S. C. (2012). Starch turnover: pathways, regulation and role 

in growth. Current Opinion in Plant Biology, 15(3), 282–292. 

https://doi.org/https://doi.org/10.1016/j.pbi.2012.03.016 

Su, Y., Xu, L., & Goodman, E. D. (2017a). Greenhouse climate fuzzy adaptive 

control considering energy saving. International Journal of Control, 

Automation and Systems, 15(4), 1936–1948. 

https://doi.org/10.1007/s12555-016-0220-6 

Su, Y., Xu, L., & Goodman, E. D. (2017b). Nearly dynamic programming NN-

approximation-based optimal control for greenhouse climate: A 

simulation study. Optimal Control Applications and Methods, August, 1–25. 

https://doi.org/10.1002/oca.2370 

Su, Y., Xu, L., & Goodman, E. D. (2021). Multi-layer hierarchical optimisation of 

greenhouse climate setpoints for energy conservation and improvement 

of crop yield. Biosystems Engineering, 205(1180), 212–233. 

https://doi.org/10.1016/j.biosystemseng.2021.03.004 

Sudret, B. (2008). Global sensitivity analysis using polynomial chaos 

expansions. Reliability Engineering and System Safety, 93(7), 964–979. 

https://doi.org/10.1016/j.ress.2007.04.002 

Tanrisever, F., Derinkuyu, K., & Jongen, G. (2015). Organization and functioning 

of liberalized electricity markets: An overview of the Dutch market. 

Renewable and Sustainable Energy Reviews, 51, 1363–1374. 

https://doi.org/https://doi.org/10.1016/j.rser.2015.07.019 

Tap, F., van Willigenburg, L. G., & van Straten, G. (1996). Receding horizon 

optimal control of greenhouse climate based on the lazy man weather 

prediction. Proc. Of 13th IFAC World Congress, San Francisco, 387–392. 

https://doi.org/10.1016/S1474-6670(17)57776-9 

Tennet [Internet]. (2019). Tennet data portal. 

https://www.tennet.org/english/operational_management/export_data.a

spx 

Vadiee, A., & Martin, V. (2012). Energy management in horticultural 

applications through the closed greenhouse concept, state of the art. 



 

184 
 

Renewable and Sustainable Energy Reviews, 16(7), 5087–5100. 

https://doi.org/10.1016/j.rser.2012.04.022 

van Beveren, P. J. M., Bontsema, J., van Straten, G., & van Henten, E. J. (2019). 

Optimal utilization of a boiler, combined heat and power installation, and 

heat buffers in horticultural greenhouses. Computers and Electronics in 

Agriculture, 162(February), 1035–1048. 

https://doi.org/10.1016/j.compag.2019.05.040 

van Beveren, P. J. M., Bontsema, J., van ’t Ooster, A., van Straten, G., & van Henten, 

E. J. (2020). Optimal utilization of energy equipment in a semi-closed 

greenhouse. Computers and Electronics in Agriculture, 179(October). 

https://doi.org/10.1016/j.compag.2020.105800 

van der Meer, D., Wide n, J., & Munkhammar, J. (2018). Review on probabilistic 

forecasting of photovoltaic power production and electricity consumption. 

Renewable and Sustainable Energy Reviews, 81, 1484–1512. 

https://doi.org/10.1016/j.rser.2017.05.212 

van der Velden, N., & Smit, P. (2021). Energiemonitor van de Nederlandse 

glastuinbouw 2020. (Wageningen Economic Research rapport; No. 2021-

127). Wageningen Economic Research. 

https://doi.org/doi:10.18174/505786 

van Henten, E. J. (1994). Greenhouse climate management: an optimal control 

approach. In Agricultural Systems (Vol. 45, Issue 1). 

https://doi.org/10.1016/S0308-521X(94)90280-1 

van Henten, E. J. (2003). Sensitivity analysis of an optimal control problem in 

greenhouse climate management. Biosystems Engineering, 85(3), 355–

364. https://doi.org/10.1016/S1537-5110(03)00068-0 

van Henten, E. J., & Bontsema, J. (2009). Time-scale decomposition of an optimal 

control problem in greenhouse climate mmanagement. Control 

Engineering Practice, 17, 88–96. 

https://doi.org/10.1016/j.conengprac.2008.05.008 

van Ooteghem, R. J. C. C. (2010). Optimal Control Design for a Solar Greenhouse. 

IFAC Proceedings Volumes, 43(26), 304–309. 

https://doi.org/10.3182/20101206-3-JP-3009.00054 

van Straten, G., Willigenburg, L. G. van, & Tap, R. F. (2002). The significance of 

crop co-states for receding horizon optimal control of greenhouse climate. 

Control Engineering Practice, 10, 625–632. 



 

185 
 

van Willigenburg, L. G., van Henten, E. J., & van Meurs, W. M. (2000). Three time-

scale digital optimal receding horizon control of the climate in a 

greenhouse with a heat storage tank. IFAC Proceedings Volumes, 33(19), 

149–154. https://doi.org/10.1016/S1474-6670(17)40904-9 

Vanthoor, B., de Visser, P., Stanghellini, C., & van Henten, E. J. (2011). A 

methodology for model-based greenhouse design: Part 2, description and 

validation of a tomato yield model. Biosystems Engineering, 110(4), 378–

395. https://doi.org/10.1016/j.biosystemseng.2011.08.005 

Vanthoor, B., Stanghellini, C., van Henten, E. J., & de Visser, P. (2011). A 

methodology for model-based greenhouse design : Part 1 , a greenhouse 

climate model for a broad range of designs and climates. Biosystems 

Engineering, 110(4), 363–377. 

https://doi.org/10.1016/j.biosystemseng.2011.06.001 

Vanthoor, B., Stigter, J. D., van Henten, E. J., Stanghellini, C., Visser, P. H. B. de, & 

Hemming, S. (2012). A methodology for model-based greenhouse design : 

Part 5 , greenhouse design optimisation for southern-Spanish and Dutch 

conditions. Biosystems Engineering, 111(4), 350–368. 

https://doi.org/10.1016/j.biosystemseng.2012.01.005 

Vanthoor, B., van Henten, E. J., Stanghellini, C., & de Visser, P. H. B. B. (2011). A 

methodology for model-based greenhouse design: Part 3, sensitivity 

analysis of a combined greenhouse climate-crop yield model. Biosystems 

Engineering, 110(4), 396–412. 

https://doi.org/10.1016/j.biosystemseng.2011.08.006 

Vazquez-Cruz, M. A., Guzman-Cruz, R., Lopez-Cruz, I. L., Cornejo-Perez, O., 

Torres-Pacheco, I., & Guevara-Gonzalez, R. G. (2014). Global sensitivity 

analysis by means of EFAST and Sobol’ methods and calibration of 

reduced state-variable TOMGRO model using genetic algorithms. 

Computers and Electronics in Agriculture, 100, 1–12. 

https://doi.org/10.1016/j.compag.2013.10.006 

Verma, S., Chug, A., & Singh, A. P. (2018). Prediction Models for Identification 

and Diagnosis of Tomato Plant Diseases. 2018 International Conference on 

Advances in Computing, Communications and Informatics (ICACCI), 1557–

1563. https://doi.org/10.1109/ICACCI.2018.8554842 

Vermeulen, P. C. M. (2016). Kwantitatieve informatie voor de glastuinbouw 

2016-2017. In Business Unit Glastuinbouw: Wageningen University & 

Research. 



 

186 
 

Vogler-Finck, P., Bacher, P., & Madsen, H. (2017). Online short-term forecast of 

greenhouse heat load using a weather forecast service. Applied Energy, 

205(September), 1298–1310. 

https://doi.org/10.1016/j.apenergy.2017.08.013 

Wa chter, A., & Biegler, L. T. (2006). On the implementation of an interior-point 

filter line-search algorithm for large-scale nonlinear programming. 

Mathematical Programming, 106(1), 25. 

https://doi.org/https://doi.org/10.1007/s10107-004-0559-y 

Wang, Y., Mao, S., & Nelms, R. (2015). Online algorithms for optimal energy 

distribution in microgrids. Springer. https://doi.org/10.1007/978-3-319-

17133-3 

Xu, D., Du, S., & van Willigenburg, G. (2018). Adaptive two time-scale receding 

horizon optimal control for greenhouse lettuce cultivation. Computers and 

Electronics in Agriculture, 146. 

https://doi.org/10.1016/j.compag.2018.02.001 

Xue, L., Cao, Z., Scherhaufer, S., O stergren, K., Cheng, S., & Liu, G. (2021). Mapping 

the EU tomato supply chain from farm to fork for greenhouse gas emission 

mitigation strategies. Journal of Industrial Ecology, 25(2), 377–389. 

https://doi.org/10.1111/jiec.13080 

Zeng, S., Hu, H., Xu, L., & Li, G. (2012). Nonlinear Adaptive PID Control for 

Greenhouse Environment Based on RBF Network. Sensors, 12(12), 5328–

5348. https://doi.org/10.3390/s120505328 

Zepeda, A. C., Heuvelink, E., & Marcelis, L. F. M. (2022). Non-structural 

carbohydrate dynamics and growth in tomato plants grown at fluctuating 

light and temperature. Frontiers in Plant Science, 13. 

https://doi.org/10.3389/fpls.2022.968881 

Zepeda, A. C., Heuvelink, E., & Marcelis, L. F. M. (2023). Carbon storage in plants: 

a buffer for temporal light and temperature fluctuations. In Silico Plants, 

5(1). https://doi.org/10.1093/insilicoplants/diac020 

  

  



 

187 
 

Acknowledgements 
 

The process of a PhD is a long one and one that cannot be achieved without the 

support of those close to you.  I would like to personally thank my daily 

supervisor Dr. Simon van Mourik for his unwavering support and guidance. 

Throughout the process the constructive discussions and many diagrams were 

key to clarity in my thought process and to the ultimate success of this thesis. I 

would also like to thank Professor Eldert van Henten for his steady wisdom and 

good sense.  I would also like to  express my sincere gratitude for the supportive 

conversations and unwavering support I have had with my colleges in the 

Agricultural Biosystems Engineering  department. I would also like to highlight 

the role of Dr. Silke Hemming and Dr. Bram van Rens in the process of this thesis. 

Your patience and insight have been invaluable for my development as a scientist 

and facilitated a smooth transition for me into greenhouse horticulture as a new 

field of study. To  Cristina I am grateful to have had such an optimistic and 

proactive colleague as part of the Flexcrop project. It is difficult to find a confidant 

who has experiential understanding of the work we do, and as such our 

conversations were truly invaluable. 

  

I would like to also thank my wonderful friends, David, Ambra, Lucy, Jan, Maarten, 

Helena, Andriy, Marijn and Suzette. Whose endless compassion and 

companionship have given me respite and strength through the easy and difficult 

times. To my other friends in the Discussion group, Creative garden and Bike 

repair club, thank you. It is my time with you that has been a most sacred haven 

in times of hardship. My thanks also go out to Anna van de Meer for the wonderful 

art presented as a cover to this thesis. 

 

To my Father, Mother, Sister and Grandfather, Thank you for being there for me. 

Not just over this PhD but my entire life. It is only on reflection that I remember 

that which should never be forgotten, that you are my reason for being. You cared 

for me in true selflessness and with a deepness that I can only hope to emulate. 

You are the people who have known me most truly and despite your better 

judgement continue to take my calls. I love you all.  To my partner Linh, without 

your love and support I don’t think any of this would have been possible, thank 

you.  In you I have found a kindred soul, and my best friend. I also want you to 

know how grateful I am for you listening to my inane ramblings about maths in 

the small hours.  



 

188 
 

About the author 
 

Henry Payne was born in Taunton in the United 

Kingdom on the 22nd December 1994. He 

studied Automated Control and Systems 

Engineering at Sheffield University. During 

which time he received the Lyapunov Award for 

his role in designing an autonomous micro-

submarine and wrote his thesis on the topic on 

the modelling of alcoholism as a behavioural 

contagion. He subsequently graduated in 2018 

with a MEng.  

 

Following a period working at Pine Lodge and Copper Beech farm as a shepherd 

and farm hand he moved to the Netherlands to participate in the Flexcrop Project 

at Wageningen university as a PhD candidate.  

 

During his time in Wageningen Henry participated in the Creative garden 

community project, the Wageningen student bike repair club as well as 

developing a  keen interest in home food preservation.  

  



 

189 
 

List of publications 
 

Peer-reviewed journals 

Payne, H. J., Hemming, S., van Rens, B. A. P., van Henten, E. J., & van Mourik, 

S. (2022). Quantifying the role of weather forecast error on the uncertainty 

of greenhouse energy prediction and power market trading. Biosystems 

Engineering, 224, 1-15. https://doi.org/10.1016/j.biosystemseng.2022.09.009 

 

Payne, H. J., van Henten, E. J., & van Mourik, S. (2024). Prediction uncertainty 

of greenhouse electrical power and gas demand: Part 1, The role of 

parameter uncertainty. Biosystems Engineering (2024), 239, pp 35-48. 

https://doi.org/10.1016/j.biosystemseng.2024.01.006 

 

Payne, H. J., van Henten, E. J., & van Mourik, S. (2024). Prediction uncertainty 

of greenhouse electrical power and gas demand: Part 2, The role of 

parametric and weather forecast error. Biosystems Engineering, 239, 25-34. 

https://doi.org/10.1016/j.biosystemseng.2024.01.007 

Talks and presentations 

Energy management in greenhouses using crop flexibility (Poster 

presentation). Energy system integration workshop, Commit2data NOW meeting 

(Amsterdam; 2018). 

 

The analysis of the combined impact of data based and parametric 

uncertainty on the prediction of greenhouse electricity demand (oral 

presentation). AGENG conference (Berlin; 2022). 

 

Disentangling the roles of uncertain weather forecast variables on 

greenhouse energy demand predictions (Poster presentation). AGRITECH DAY 

conference (Paris; 2022). 

 

 



 

190 
 

PE&RC Training 

and Education 

Statement 
 

With the training and education activities listed below the PhD candidate has 

complied with the requirements set by the C.T. de Wit Graduate School for 

Production Ecology and Resource Conservation (PE&RC) which comprises of a 

minimum total of 32 ECTS (= 22 weeks of activities)  

 

Review/project proposal (4.5 ECTS) 

- A review of adaptive greenhouse energy systems and strategies 

 

Post-graduate courses (4.1 ECTS) 

- Bayesian statistics; PE&RC (2018) 

- Statistical uncertainty analysis of dynamic models; PE&RC (2019) 

- Nonlinear control system; DISC (2022) 

- Multivariate analysis; PE&RC (2022) 

- Introduction to ecological remote sensing in R; Physalia (2022) 

 

Deficiency, refresh, brush-up courses (3 ECTS) 

- Greenhouse technology; WUR (2019) 

 

Invited review of journal manuscripts (1 ECTS) 

- Biosystems engineering: greenhouse energy demand (2023) 

 

Competence, skills and career-oriented activities (4.95 ECTS) 

- Research data management; WGS (2018) 

- Searching and organising literature; WGS (2018) 

- Project and time management; WGS (2018) 

- Supervising BSc and MSc thesis students; WGS (2020) 

- Scientific writing; WGS (2022) 

- Career perspectives; PE&RC (2022) 

 

Scientific integrity/ethics in science activities (0.9 ECTS) 

- Ethics in plant and environmental sciences; WGS (2018) 



 

191 
 

- Scientific integrity; WGS (2019) 

 

PE&RC Annual meetings, seminars and PE&RC weekend/retreat (1.5 ECTS) 

- PE&RC First year weekend (2018) 

- PE&RC Last year weekend (2021) 

 

Discussion groups/local seminars or scientific meetings (4.5 ECTS) 

- Thematic department discussion group (2018-2022) 

- Modelling and simulation discussion group (2019-2020) 

 

International symposia, workshops and conferences (4.2 ECTS) 

- Energy system integration workshop; Amsterdam (2019) 

- AgriTech Day; Paris (2022) 

- AgEng; Berlin (2022) 

 

Societally relevant exposure (0.1 ECTS) 

- Press article related to my research published by platform for the 

information society (2021) 

 

Lecturing/supervision of practicals/tutorials (3 ECTS) 

- Precision farming (2020) 

 

BSc/MSc thesis supervision (3 ECTS) 

- Greenhouse control and modelling 

  



 

192 
 

 

The research described in this thesis was part of the “Flexcrop” of the project 

number 647.003.006, supported by the Netherlands Organization for Scientific 

Research (NWO), Glastuinbouw Nederland, Delphy, B-Mex, Blue radix, 

Agroenergy and letsgrow.com. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover design 

Anna van de Meer 


