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Abstract
Selective logging has emerged as the second leading cause of forest disturbance in West
Papua, Indonesia. Understanding forest recovery is essential in order to support land
management planning and conservation efforts. Studies investigating large-scale forest
recoveries commonly rely on optical sensors, while the potential of radar data remains
understudied. Contrary to optical data, the radar signal is capable of penetrating parts
of the tree foliage, allowing for an improved assessment of the status of the vegetation
structure.
In this study, we investigate the signal recovery of Sentinel-1 (C-band radar) data
for selective logging-related forest disturbances in West Papua, Indonesia. Forest
disturbances were based on the RADD alerts and further manually classified into four
classes (road horizontal, road vertical, large-sized, and small-sized logging events). A
method was developed to assess the signal recovery of backscatter for each disturbance
type, initially focusing on temporal recovery and incorporating spatial analysis. Furthermore,
the recovery process was characterized using three commonly employed recovery metrics
for optical data.
We presented a method capable of assessing the signal recovery of Sentinel-1. Road
verticals exhibit a longer recovery time than road horizontals, which is attributed to
radar shadow effects. Conversely, small logging events demonstrate faster recovery
times than large ones. The findings show that the edge of the logged area recovers
faster than the interior, whether it is a logging road or logging events. Lastly, the
study demonstrates that three spectral recovery metrics, originally applied in optical
imagery, can effectively be used in radar data, providing diverse insights into signal
recovery.
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1 Introduction
1.1 Context and Background
Forest disturbances in Indonesia are predominantly attributed to several processes,
including but not limited to fire occurrences, peatland drainage, deforestation activities,
and the creation of plantations dedicated to palm oil or timber production (Romijn
et al., 2013). These activities contribute to both local and global land cover change,
exacerbating the loss of primary forest cover, which, in turn, accelerates biodiversity
loss and carbon emissions (Aguilar-Amuchastegui et al., 2014). According to data from
GlobalForestWatch (2023), West Papua experienced loss of 55.7 thousand hectares of
humid primary forest between 2018 and 2022. The Teluk Bintuni district is ranked
second in terms of tree cover loss in the province of West Papua, Indonesia.

Logging activities play a crucial role in the loss of the remaining forest in the region
of Papua and Kalimantan (Turubanova et al., 2018). In Papua, from 2001 to 2018,
selective logging emerged as the second most prominent factor contributing to forest
disturbances. This was primarily caused by timber extraction activities, involving
the selective removal of economically valuable trees and resulting in the formation of
small canopy gaps near logging roads. In addition, approximately 12% of the overall
reduction in forest areas has been deforested nearby (within a 1-kilometer radius) to
major roadways since 2000 (Gaveau, 2018).

Monitoring selective-logging related disturbances can provide significant insights for
land-use planning and the development of conservation initiatives. As one of the
components of many conservation efforts, recovery of forests can contribute to the
sequestration of atmospheric carbon, mitigation of carbon emissions, and augmentation
of ecosystem resilience in climate-related disasters (Raharjo et al., 2022).

Remote sensing has proven to be a valuable tool for detecting forest disturbances
and monitoring post-disturbance forest recoveries at large scale (Zhao et al., 2016).
Optical and radar remote sensing sensors are capable of capturing different aspects of
forest recovery due to their different sensitivities towards forest structure (radar) or
photosynthetic activity (optical) (Frolking et al., 2009; Surovỳ and Kuželka, 2019).

1.2 Literature Review
1.2.1 Signal Recovery

Forest recovery refers to the process wherein a forest ecosystem regains its structure,
composition, and ecological functionalities following a disturbance event, such as fire,
logging activities, or natural disasters (Flores et al., 2017). While forest recovery and
signal recovery are connected, understanding their linkages across different sensing
methods is still lacking. Many remote sensing studies have investigated the post-forest
disturbance signal recovery, but only 5% of these studies utilized radar data compared to
80% using optical data (Kurbanov et al., 2022). Often, the signal recovery for optical or
radar data only represents a partial aspect of the recovery process, such as re-greening
in optical data or the structural regrowth of smaller vegetation in radar data. For
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instance, Jones and Schmitz (2009) found that full recovery for forest ecosystems take
approximately 42 years.
Researchers evaluate forest recovery by studying changes in remote sensing signals
over time. One example of this is the study conducted by Chirici et al. (2020), who
utilized remote sensing data to evaluate the rate of spectral signal recovery in clear-cut
areas inside Mediterranean coppice forests. By concentrating on signal recovery, we
can analyze immediate and intermediate changes through remote sensing data. This
approach provides detailed insights into the initial stages and subsequent progression
of recovery after logging activities.

1.2.2 Recovery Metrics

Several studies have explored metrics to characterize and measure signal recovery
(Pickell et al., 2016; Meng et al., 2018; Morresi et al., 2019; De Keersmaecker et al., 2022;
White et al., 2022). Pickell et al. (2016) used the R80p (Ratio of Eighty Percent) metric
on Landsat time-series data and spectral indices, such as NDVI and NBR, to evaluate
forest recovery. Various recovery metrics were also assessed to see a comparison of
recovery metrics on assessing forest recovery, for instance, FRI2 (Forest Recovery Index
2) with Pearson correlation coefficient by Morresi et al. (2019) and De Keersmaecker
et al. (2022) who used three recovery metrics, such as: YrYr (Year on Year Average),
R80p (Ratio of Eighty Percent) and RRI (Relative Recovery Index). These recovery
metrics are useful for characterizing the process of forest recovery. For instance, Chirici
et al. (2020) found that the Y2R metric based on both NBR and NDVI showed similar
characterizations of rapid recovery in the studied coppice-managed areas of forest
management.

Nevertheless, only a few studies utilized radar signals to evaluate forest recovery, and
none of them have applied the recovery metrics mentioned earlier. Radar signals have
the capability to effectively penetrate cloud cover, thereby enabling the acquisition of
data even under almost all weather conditions. An interesting instance is provided by
Tanase et al. (2011), who conducted a study on post-fire forest regrowth utilizing SAR
and employed Analysis of Variance (ANOVA) as a statistical tool to evaluate the forest
recovery based on mean values of SAR backscatter and coherence.

1.2.3 Sentinel-1 Radar for Forest Disturbance and Regrowth

Many studies have employed radar remote sensing, specifically Sentinel-1, to detect
forest disturbance in tropical forests (Antropov et al., 2016; Reiche et al., 2021; Aquino
et al., 2022; Doblas et al., 2022). Here, Sentinel-1 data has demonstrated its potential
for operational monitoring of fine-scale disturbances in near-real time. For instance,
RADD (Radar for Detecting Deforestation) Alerts was developed (Reiche et al., 2021).
Contrary to forest disturbance detection and characterization based on Sentinel-1 data,
the recovery of fine-scale disturbance (e.g., selective logging) using Sentinel-1 remains
largely understudied. Moreover, the Sentinel-1 satellite employs side-looking radar,
meaning it observes forest disturbance and recovery differently based on the orientation
of linear events. Side-looking radar leads to radiometric and geometric effects. Geometric
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effects include phenomena like radar shadow and foreshortening, which are caused
by the angle of incidence of the radar signal relative to the terrain and objects on
the ground (Bamler, 2000). Shadows, characterized by a sudden drop in backscatter
within the Sentinel-1 time series, are useful for detecting disturbances (Bouvet et al.,
2018). For instance, a study conducted by Bouvet et al. (2018) demonstrated the
utilization of radar shadow analysis, based on patch orientation, to detect deforestation.
Furthermore, observations are also influenced by surface scattering, which involves the
interaction of radar waves with surface features (Park et al., 2014). The interaction
between radar shadow and surface scattering can affect appearance of radar shadows
and effect on detect recovery. This study aims to assess forest recovery and analyze
the impact of radar shadow and foreshortening on this process while also adapting
established recovery metrics from optical remote sensing to the context of Sentinel-1
backscatter data.

1.3 Research Objectives
This research aims to understand the signal recovery, particularly fine-scale selective
logging-related disturbances, including logging roads and logging events detected by
the RADD Alert system in four districts in Teluk Bintuni, West Papua, Indonesia.
Through the analysis of dense Sentinel-1 backscatter time series data, the study seeks
to characterize the temporal patterns and spatial extent of signal recovery in the study
areas.

Research Questions
1. Does the backscatter signal recover to a similar pre-disturbance level, and what

is the recovery duration?

2. How do the side-looking radar geometry and spatial orientation of disturbance
events (e.g., roads) affect signal recovery?

3. Can recovery metrics be used to characterize the spatial and temporal patterns
of signal recovery?

This research defines ’signal recovery’ as the state where the remote sensing signal
reaches the pre-disturbance signal level. The first research question is addressed using a
temporal moving window approach to assess whether the backscatter values at the pixel
level have recovered to their pre-disturbance level and estimate the recovery’s duration.
Then, this study examined the impact of side-looking radar and spatial orientation on
signal recovery in selective logging. Lastly, the characteristics of recovery metrics will
be analyzed for different types of disturbances.
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2 Study Area
The study area of this research is located in four different districts (Biscoop, Dataran
Beimes, Manimeri, Merdey) in Teluk Bintuni regency, West Papua Province, Indonesia
(Figure 1). In West Papua, selective logging activities from 2001 to 2018 led to the loss
of 56,700 hectares (Gaveau, 2018) and were one of the major factors in the decline
of mangrove forest disturbance in Teluk Bintuni (Yudha et al., 2021). The study
area spans 411.642 hectares, located between 1.830°S - 1.347°S latitude and 132.952°E
- 133.650°E longitude. The methodology was developed in the Merdey district and
further tested in the three additional districts.

Figure 1: Study area of four sub-districts in West Papua with a zoom-in showing
selective logging and logging roads in close proximity (blue box).
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3 Data
3.1 Sentinel-1
Sentinel-1A/B is a constellation of two-polar orbiting satellites that operate day and
night, utilizing C-band synthetic aperture radar (SAR) (Filipponi, 2019). However, as
of the end of 2022, only Sentinel-1A remains operational. Sentinel-1 acquires ascending
orbits, which travel from south to north, and descending orbits, which travel from north
to south. The assessment focused on data acquired in Interferometric Wide swath mode.
The C-band SAR equipment on Sentinel-1 provides imagery with a pixel spacing of 10
meters and a spatial resolution of approximately 20 x 22 m. Additionally, the temporal
resolution of Sentinel-1 data, referring to the revisit time, typically ranges from 6 to 12
days in the tropics and can be even faster in Europe. This research utilizes data with
dual polarization (VV+VH) (ESA, 2022).
Sentinel-1 satellite images are the primary data in this research, using Level-1 Ground
Range Data (GRD). All available images from January 2017 to February 2024 were
used. With only Sentinel-1A operating, the temporal resolution was up to 12 days in
the tropics.

3.2 RADD Alerts
RADD alerts, a near real-time alerting system based on Sentinel-1 data, deliver forest
disturbance alerts updated with each new Sentinel-1 observation. This research used the
RADD alerts from Reiche et al. (2021) to detect instances of forest disturbances across
both geographical locations and time periods. Alerts are confirmed within a maximum
90-day period if the probability of forest disturbance is above 97.5%, indicating high
confidence. The current geographic coverage of RADD alerts includes humid tropical
forests in several countries across South America, Central America, Africa, Southeast
Asia, and the Pacific.

3.3 PlanetScope Data
In October 2017, Planet successfully launched three distinct satellite constellations,
offering very high-resolution (VHR) multispectral data with a resolution of 3.7 meters
and high temporal resolution, enabling frequent revisits to the same area for near
real-time monitoring and analysis (PlanetTeam, 2017). The PlanetScope imagery from
these constellations was integrated into the research process to manually distinguish
logging road disturbances.
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4 Methodology
Figure 2 shows an overview of the methodology of this research. This research initially
defined types of selective logging-related forest disturbance using high-resolution Planet
imagery. Then, followed by processing Sentinel-1 time series data. Subsequently,
this study developed a pixel-based method to detect signal recovery using a temporal
moving window approach to address RQ1. Then, it involved the analysis of side-looking
radar data and the spatial orientation to understand the differences in signal recovery
for various disturbance types, addressing RQ 2. Lastly we assessed the potential
characterization of recovery via several recovery metrics, typically applied in optical
imagery, can be utilized in radar imagery.

Figure 2: Overview of the Methodology

4.1 Preparing Data
4.1.1 Defining Types of Logging-related Forest Disturbances

Selective logging-related disturbances include logging roads and smaller disturbance
patches of canopy gaps along logging roads (logging events). In order to assess how the
side-looking radar geometry affects the recovery signal of differently oriented disturbance
events (parallel or perpendicular to the line of sight of the radar sensor), forest disturbance
events were categorized into, such as road horizontal, road vertical, large-sized events,
and small-sized events. Separating vertical and horizontal roads is a simplification, as
the sensor does not fly perfectly from north to south but instead has an inclination
of approximately 11 degrees (Schaufler et al., 2018). Therefore, the look direction is
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not precisely 90 degrees. The division of large and small-sized events to examine the
differences in signal recovery on different sizes of logging events. The methodology for
dividing logging roads and logging events involved the following steps:

1. Manually digitizing horizontal and vertical oriented road segments by examining
high-resolution images (PlanetScope).

2. Calculating the area of RADD alerts in spatial proximity to logging roads. Events
with an area ranging from 0.1 to 0.5 hectares were classified as small-size events,
while those greater than 0.5 hectares were classified as large-sized events.

Subsequently, backscatter values for each pixel were extracted based on the RADD alert
polygons for each disturbance, to be used in the next processes. The division of these
disturbances can be further explored in the table below.

Figure 3: Types of Disturbances

4.1.2 Specifying Period of Time Series

This research assesses the recovery of RADD forest disturbance events that occurred in
2020 and analyzes the backscatter data for every pixel from January 2017 to February
2024. The period from 2017 - 2019 was used as a historical baseline, and the period
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following the disturbance was used to study the signal recovery. Figure 4 provides an
illustration of three periods of time series (pre-disturbance period, disturbance period,
and post-disturbance period). Due to the lengthy processing time, this study simplified
the RADD information (as it was in day-of-year format) to a monthly format. For
example, a polygon with RADD format dates ranging from 20001 to 20031 would have
the 31st of January 2020 assigned as its disturbance date, while a polygon from 20032
to 20061 would have the 29th of February 2020 assigned as its disturbance date, and
so forth.

The period from 2017 up to six months before the disturbance date is referred to as the
pre-disturbance period (refer to Figure 4). This decision was made to ensure that
the pre-disturbance phase accurately represents undisturbed conditions. Including the
time period immediately preceding the disturbance detection might introduce noise or
confounding factors related to the disturbance event itself, as well as potential delays in
detection caused by remaining post-disturbance debris or tree remnants (Balling et al.,
2023). This period is used as the baseline for non-disturbed pixels.

This study defines the post-disturbance period as six months after the detected
disturbance until February 2024 (the end of the monitoring period). This consideration
is crucial because moisture fluctuations may result in high backscatter values after
the detected disturbance date (Harfenmeister et al., 2019), potentially influencing the
interpretation of the ’recovered signal’. The disturbance period refers to the time
when the disturbance began and includes fluctuations that occur after the disturbance.
Therefore, each RADD alert dataset polygon is associated with distinct disturbance
date, pre-disturbance, and post-disturbance period. Figure 4 provides an illustrative
example of these periods for one pixel.

Figure 4: Pre-disturbance, disturbance period, and post-disturbance period based on
a Sentinel-1 backscatter time series. The green boxes show the signal recovered zone
(which is explained in 4.2)

8



4.1.3 Preprocessing Data

Before ingesting Sentinel-1 data into Google Earth Engine (GEE), preprocessing steps
were already conducted to derive the backscatter coefficient in decibels (dB) using
the Sentinel-1 Toolbox. Additional pre-processing steps were applied to generate the
analysis-ready data (ARD) concept, including border noise correction, lee-speckle filtering,
and radiometric terrain normalization (Mullissa et al., 2021).

Planet data was accessed via the Education and Research Program via GEE. Planet
data’s preprocessing includes automatic atmospheric correction and cloud masking
(PlanetTeam, 2017). A six-month rolling mean was employed to reflect the recovery
process to reduce the effect of environmental influences, such as moisture fluctuations.
The resulting smoothed data is then utilized in subsequent processes involving a moving
window.

4.2 Detecting and Mapping Signal Recovery
The primary objective of research question 1 is to assess whether pixels have recovered
to their pre-disturbance levels and then to determine the duration required for this
recovery. We adopt the approach of Tanase et al. (2011) and only used mean values
for each moving window.

The concept of a moving window is akin to the rolling mean used in data preprocessing
and is also applied in assessing signal recovery. It involves selecting a subset of data
points within a designated window that moves through the dataset over time. Statistical
measures like mean and standard deviation are calculated for each window, allowing
for data analysis of trends, patterns, and temporal variations. A three-month moving
window with a one-month step size is used in this process.

We calculated the mean and standard deviation of the pre-disturbance period. Then,
the recovery zone was established for each pixel by computing the upper and lower
boundaries as the mean ± the standard deviation, respectively (refer to Figure 4).
Signal recovery was reached when five consecutive mean data points and their standard
deviations within the recovery zone. The pixel is classified as recovered if both the
first and last five consecutive points are within the recovery zone. This approach
accounts for the possibility of fluctuations in signal intensity, ensuring that the recovery
classification is based on a sustained improvement. The choice of five consecutive data
points deviates from the approach used by Decuyper et al. (2022), who employed three
consecutive dates to denote ’regrowth.’ The decision to use five consecutive data points
was made to ensure a more conservative and robust assessment of signal recovery. A
longer duration of consecutive data points allows for a more thorough evaluation of the
stability of the recovered signal.

Signal recovery detection was conducted on a pixel basis, resulting in thousands of
pixels for each type of disturbance, with recovered or non-recovered. Here is an example
of points lying within the recovery zone.
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Figure 5: Points lie within the recovery zone (blue color) classified as recovered, while
red shows no recovery.

The signal recovery mapping aims to illustrate the temporal variability and extent of
recovery per pixel in response to various types of disturbances. We assess the maximum
percentage recovered for each pixel, the duration for each pixel to reach full recovery,
and a comparison of recovery metrics across pixels.

4.3 Characterizing Signal Recovery
Characterizing signal recovery entails understanding its attributes across various time
period and factors affecting it, and comparing or correlating with three spectral recovery
metrics.

4.3.1 Analysing Side-looking Geometry and Spatial Orientation on Signal
Recovery

After determining whether the signal has recovered or not, the next step involves
analyzing factors that affect signal recovery for different disturbances. Two key factors
under consideration are side-looking radar and spatial orientation. Side-looking
radar refers to polarization, orbit and geometry effects such as shadowing and foreshortening.
Furthermore, spatial orientation includes factors such as the layout of logging roads
(including skid roads) and the orientation of logging events and logging roads. Skid
road is a temporary road constructed for timber extraction during selective logging
operations (Sidle et al., 2004). These two factors are not separate from each other
but are interrelated in how they influence the recovery of signals for different types of
disturbances.

4.3.2 Temporal Features of Signal Recovery

After employing a moving window approach to assess the recovery status of each pixel
(explained in 4.2), this study also calculated the percentage recovery and temporal
recovery to illustrate which period that each pixel of disturbance types reached full
recovery. The study identified patterns or differences in the signal recovery process by
comparing recovery across different types of disturbances.
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4.3.3 Comparison of Different Recovery Metrics

This research adopts a similar approach from Frazier et al. (2018) and De Keersmaecker
et al. (2022), which applied three spectral recovery metrics (R80p, RRI and YrYr)
metrics using NBR values and Landsat time series in Canadian boreal forest and
Amazon tropical forest respectively.

The resulting values for these metrics are normalized to the range from 0 to 1. For
RRI, a value of zero indicates no signal recovery, while a value of one indicates equal
amounts of recovery and disturbance. Similarly, R80p values range from zero, indicating
no recovery, to one, indicating backscatter values have recovered to 80% of their
pre-disturbance levels. Lastly, the YrYr metric reflects the average annual change
after disturbance. A YrYr value of zero signifies no signal recovery over the three-year
period, while positive values indicate average backscatter gain over three years. The
equation (which was modified by Frazier et al. (2018)) and description of each metric
can be seen in the figure and table below.

Figure 6: Three recovery metrics

Table 1: Recovery Metrics

Metric Equation Description
R80p

R80p =
Max(dbY 2, Y 3)

0.8 ∗Meandb(pre)

The maximum backscatter value (Max(db Y2,
Y3)) is determined by obtaining the maximum
value during the post-disturbance period, which
occurs in either the second or third year after the
disturbance. Furthermore, compared to the 80%
pre-disturbance average of the backscatter values.

RRI
RRI =

ARI

∆db(pre)

ARI (Absolute Recovery Index) is calculated
as the maximum backscatter value in the
post-disturbance period reduced by the
backscatter value in the disturbance period.
Then, divided by the magnitude of change in the
pre-disturbance period.

YrYr

Y rY r =
db(Y 3)− db(Y 0)

3

Backscatter value in the third year after
disturbance substracted by backscatter value in
the year of disturbance (Y0). Then, divided by
the number of years.
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5 Results
This subsequent outlines the findings of this study. In Section 5.1, the study addressed
whether the signal had recovered or not and its duration. Section 5.2 provided insights
into the characterization of signal recovery, considering factors such as geometry effects
and types of disturbances. Lastly, 5.3 and 5.4 delved into explaining the signal recovery
level and comparing three recovery metrics.

5.1 Signal Recovery Status
As described in 4.2, a method was developed to classify each pixel in selective logging-related
disturbances as ’recovered’ or ’not recovered’. The table below shows the proportion of
pixels recovered without considering the type of disturbance period.

Table 2: Percentage of Pixel Recovered

Category Proportion of Pixel Recovered
Descending VV 87.3%
Descending VH 78.9%
Ascending VV 76.3%
Ascending VH 64.4%

Furthermore, refer to 4.3.2, this study has mapped temporal variability to characterize
signal recovery and ascertain the duration required for full signal recovery, as seen in
the figure below.

Figure 7: Signal Recovery measured for both polarizations and orbits. The red line is
the mean, and the blue line is the median.
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Boxplots offer a concise summary of central tendency, spread, and outlier presence,
making them useful for comparing distributions across multiple groups. The box
in boxplot represents the interquartile range (IQR), with the lower and upper edges
indicating the 25th and 75th percentiles, respectively. In Descending VV polarization,
the upper 25% of data fully recovered within four months, while in Descending VH,
the upper data full recovery occurred after two years. However, in both Ascending
polarizations, the majority of pixels only reached a maximum of around 60% recovery.

The red and blue line chart depicting the mean and median signal recovery percentage
respectively, provides a more straightforward visualization of the overall trend in signal
recovery. The median of Descending VV pixels indicates 94% recovery in the last
month of post-disturbance period (36 months after disturbance), and the average trend
across both orbits and polarizations show a maximum signal recovery of only 66%. The
figure below illustrates 92% signal recovery for descending VH in relation to selective
logging-related disturbances over a three-year period from January 2020 to February
2024.

Figure 8: The Signal Recovery Mapping (showing the results of Descending VH).

5.2 Exploring Factors Influencing Signal Recovery
As explained in Section 4.2, the detecting signal recovery was pixel-based for each type
of disturbance. The accumulation of total pixels for the development area (Merdey
district) and the testing areas (Biscoop, Dataran Beimes, and Manimeri districts) is
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presented in the table below.

Table 3: Number of Pixels

Type Total
Pixels

Proportion of
Total Pixels

Road Horizontal 8468 8.7%
Road Vertical 25173 26%
Large-sized logging events 24286 25.1%
Small-sized logging events 38968 40.2%

Small-sized logging events accounted for 40% of the coverage area, with 38968 pixels
calculated. The assessment of the upper 25% data has full recovery for descending
VV or 60% signal recovery for ascending orbits. As shown in Figure 7, the proportion
of small-size logging events is the reason why we observe the top quartile of the data
has complete signal recovery in descending VV. The image below illustrates the signal
recovery for various types of disturbances.

Figure 9: Signal Recovery for various disturbance types for both polarizations and
orbits

As observed in Figure 9, the majority of pixels for all types have not fully recovered
in the Ascending orbit for both polarizations. In the Descending VV orbit, the upper
25% of data for all types have fully recovered after two years, except for road vertical.
Conversely, in Descending VH, only the upper 25% of data for large-sized events have
fully recovered.
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5.2.1 The Effect of Side-Looking Radar and Spatial Orientation

The differences in signal recovery across different orbits and polarizations are seen in
the previous section and are explained in this section. This study assesses why there
is a difference in signal recovery based on how the spatial orientation observed by the
side-looking radar (geometric effects, polarization, and orbit) affects signal recovery.

Geometric Effects in Ascending and Descending

This section elucidates how geometric effects in descending and ascending orbits contribute
to the observed differences in signal recovery. The image below shows the geometric
effects, such as foreshortening and shadowing. Foreshortening can cause features
to appear compressed or shortened along the radar line of sight. In this case, the
white pixels appear as a slope in the area of the vertical road, which suggests that
foreshortening may be distorting the appearance of the road.

The area where the radar signal cannot reach is depicted as a Radar Shadow. The
black pixel, indicated by the dark blue arrow, represents the shadow where the surrounding
forest obstructs the logging events. The figure about how shadow appears in ascending
and descending orbit, modified from the original image from Bouvet et al. (2018). As
the satellite travels from south to north with a right-looking antenna in an Ascending
orbit, the borders between forest and non-forest regions, observed from west to east,
appear as shadow areas. Conversely, in a Descending orbit, as the satellite travels from
north to south, with borders between forest and non-forest regions observed from east
to west, they are perceived as shadow areas (Bouvet et al., 2018).

Figure 10: Geometric Effects on Selective logging-related disturbances. The illustration
radar shadow (bottom) is taken from Bouvet et al. (2018). The image was obtained on
May 5th, 2020, with a range from -20 dB to 0 dB.
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Detailed information on radar shadows for different types of disturbances can be found
in Tables 4 to 7. The illustration focuses on VV polarization to demonstrate the
differences in signal recovery between ascending and descending orbits.

Table 4: Radar Scattering in Road Horizontal

Sketch PlanetScope Ascending-VV Descending-VV

2019-09-24
2019-09-24 2019-09-24

2020-12-13 2020-12-13 2020-12-13

2023-05-23 2023-05-23 2023-05-23

When observing a road horizontally with a side-looking radar, any disturbances along
the road will likely result in a strong signal return because of surface scattering, as the
radar is not obstructed by surrounding forest cover. That is because the orientation of
the logging road is almost perpendicular to the side-looking radar. It is shown in high
backscatter in Ascending and Descending VV on the disturbance period (2020-12-13).

16



Table 5: Radar Scattering in Road Vertical

Sketch PlanetScope Ascending-VV Descending-VV

2019-09-24
2019-09-24 2019-09-24

2020-12-13
2020-12-13 2020-12-13

2023-05-23
2023-05-23 2023-05-23

During the pre-disturbance period, there is no distinct difference in the effect of observing
the road vertically with radar. The backscatter remains stable before the disturbance
occurs. However, when the side-looking radar observes the road vertically during the
disturbance period, there is a notable decrease in backscatter values due to radar
shadowing caused by surrounding forest obstruction (refer to sketch). In the post-
disturbance period (refer to the third sketch), radar shadow remains as the new growing
vegetation is ’hidden’ or remains obscured by the trees, resulting in a continued low
backscatter value. That is why in Figure 9, the vertical road took longer to recover
compared to the horizontal road.
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Table 6: Radar Scattering in Large-sized Logging Events

Sketch PlanetScope Ascending-VV Descending-VV

2019-09-24
2019-09-24 2019-09-24

2020-12-13 2020-12-13 2020-12-13

2023-05-23 2023-05-23 2023-05-23

Table 7: Radar Scattering in Small-sized Logging Events

Sketch PlanetScope Ascending-VV Descending-VV

2019-09-24
2019-09-24 2019-09-24

2020-12-13 2020-12-13 2020-12-13

2023-05-23 2023-05-23 2023-05-23

It is evident that during the pre-disturbance period, the backscatter values remained
stable or exhibited similarity. However, during the disturbance period, the backscatter
values in Ascending VV and Descending VV displayed heterogeneity among neighboring
pixels, indicating forest disturbance. In the post-disturbance period, while some pixels
still exhibit high backscatter values, others have returned to levels similar to those
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observed before the disturbance for large-sized and small-sized logging events.

Effect on Polarizations

In Figure 9, it is observed that VV polarization recovers faster than VH polarization,
regardless of whether it’s in Ascending or Descending orbit. This is attributed to VV
polarization’s sensitivity to double-bounce scattering, whereas VH polarization is more
sensitive to volume scattering.

Figure 11: Illustration on VV and VH polarization. Road Horizontal on Sentinel-1
backscatter images, with a range from -20 dB to 0 dB for VV and a range from -30db
to -5 db for VH polarization. Illustration of double bounce and volume scattering, is
taken from Zhao et al. (2016).

The figure above shows that in VV polarization, areas exhibiting mostly surface scattering
and partly double bounce scattering, which show increased backscatter intensity, resulting
in brighter regions in the image. Conversely, in VH polarization, the focus shifts towards
volume scattering, especially evident in areas with cut trees, stumps, and debris on the
ground after logging.

Signal Recovery: Skid-roads and Logging Events Orientation

The spatial orientation is also addressed along edge lanes and skid roads. Figure 12
illustrates that road edges recover more quickly in several areas than in the interior,
as shown in a purple box-shaped. This observation aligns with the discussion in
the previous section, where recovery in the interior is ’hidden’ due to radar shadow.
Additionally, refer to Figure 9, it is shown in the figure that road horizontal (orange
box-shaped) recovery is faster than road vertical (purple box-shaped) recovery.

Furthermore, as in the previous section, different orientations of logging roads were
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clearly shown. It turns out that there are also different orientations of logging events.
Figure 12 illustrates large-sized patches (represented by the black line) and small-sized
patches (represented by the blue line). The orientation of logging events, which varies
in shape, such as circular and diagonal (leaning towards vertical), influences the recovery
process. For instance, in the case of large-sized number 1, more pixels remain unrecovered
compared to number 2 due to its vertical shape. This difference further highlights how
the perspective of the side-looking radar affects the recovery patterns.

Figure 12: Signal Recovery Mapping in an example area: Red Indicates Not-recovered
Pixel, Green Indicates Recovered Pixel.

5.3 Analysis of Recovery Levels
The recovery levels consist of spatial patterns of signal recovery, representing the
percentage recovered for each pixel, and temporal patterns of signal recovery, indicating
each pixel’s recovery duration. Figure 13 depicts spatial patterns of signal recovery,
illustrating the percentage of recovery for the entire study area, with a zoom-in detail
focusing closely on Site A and Site B, showing the percentage recovered for different
disturbance types. Site A displays the recovery for road horizontal and road vertical
road disturbances. Site B illustrates recovery following large-sized and small-sized
logging events.

Figure 14 shows a logging event patch (pointed by the arrow) illustrated the recovery
patterns, with logging events starting at the edge and being recovered within one year,
followed by the surrounding area, and the middle being recovered after two years.
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Figure 13: A map of spatial patterns of signal recovery representing percentage
recovered.

Figure 14: Spatial and Temporal Recovery for Disturbance Types (Site a and Site b)
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5.4 Comparison of Different Recovery Metrics
The three metrics are calculated using the equations described in 4.3.3. The figure
below is the calculation of three metrics for all types in Descending orbit and VV
polarization.

Figure 15: Recovery Metrics for Various Disturbances (Descending VV). Median value
shown in a (+) marker.

Figure 16: Mean Value of Three Recovery Metrics for Various Disturbances (Descending
VV).

Figure 15 and Figure 16 display the results of three recovery metrics calculated during
the last months of the post-disturbance period (Year 3). In relation to the developed
method, the R80p metric exhibits similarity, with a value of 1 indicating that a pixel has
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recovered to 80% of its pre-disturbance level. Referring to Figure 9, particularly in the
Descending VV, the results show a similar trend, with only road vertical pixels showing
a lower median and mean, while the upper quartile data of other disturbance types
have recovered at least 70%. Examining the RRI metric, which assesses the magnitude
of recovery in the last post-disturbance period relative to the pre-disturbance period,
reveals that the upper quartile data for all disturbance types, except road vertical,
show equal levels of signal recovery and disturbance occurrence. Lastly, as indicated by
Frazier et al. (2018), YrYr values are typically lower than other metrics. It seems that
for all disturbance types, there is a similar distribution value, indicating that average
backscatter has indeed increased over the three years.

Figure 17: Comparison Three Recovery Metrics for all types in Descending VV

Figure 17 displays three recovery metrics calculated for the same area, indicating that
the majority of pixels of the road have not yet fully recovered compared to the road
horizontal in terms of RRI and R80p. However, for YrYr, it shows that backscatter has
increased for all disturbance types over the course of three years.
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6 Discussions
This section elaborates on the obtained results and how they have been integrated into
the existing literature research. The first subsection addresses RQ1, focusing on the
duration of signal recovery without distinguishing types of disturbance. The second
subsection deals with RQ2, which involves characterizing signal recovery related to
side-looking geometry radar. The final subsection compares the recovery metrics to
each other (RQ3).

6.1 RQ1: Signal Recovery Detected and Its Duration
The analysis reveals that at least the top 25% data of the backscatter signal has
indeed recovered to a level similar to that of the pre-disturbance period for selective
logging-related disturbances (see 5.1). The proportion of recovered pixels varies across
different orbits and polarizations. For instance, the ascending VH polarization shows
the lowest pixel recovery rate, while the descending VV polarization reaches nearly 88%
recovered. It is important to note that not all pixels have fully recovered. This research
does not focus on the recovery of every individual pixel but examines the percentage
of pixels that have recovered, emphasizing the majority of the data. Similarly, the
duration for signal recovery varies depending on the polarization and orbit. Specifically,
in the upper 25% of data in the Descending orbit, signals fully recovered within four
months for VV polarization and two years for VH polarization. Conversely, in the
Ascending orbit, the majority of data indicates a 60% signal recovery for either VV or
VH polarization. These findings suggest that only the median value of Descending VV
polarization reached 94% recovery, while other combinations of orbit and polarization
reached a maximum of 66% recovery.

The developed method for detecting signal recovery utilizes a temporal moving window
approach, classifying a pixel as recovered if five consecutive points lie in the post-disturbance
period, a methodology similar to that described by Decuyper et al. (2022). This
method establishes the pre-disturbance period as a baseline for undisturbed/stable
backscatter values, akin to the approach used by R80p, as demonstrated by (Pickell
et al., 2016; Frazier et al., 2018; Hird et al., 2021; De Keersmaecker et al., 2022) in
assessing forest recovery. However, unlike R80p, which relies on a fixed threshold
(80% of the pre-disturbance period) to classify recovery, this developed method uses
the pre-disturbance period’s mean and standard deviation to establish the recovery
zone’s boundary. This approach is similar to the method described by Frazier et al.
(2015), which utilized mean and standard deviation values to categorize recovery into
five categories.

6.2 RQ2: Influencing Factors on Signal Recovery
This study investigates the variation in signal recovery across different spatial orientations
and examines how side-looking radar observes these differences. The differences observed
in signal recovery based on various polarization and orbit are addressed in the second
research question, while the first research question primarily examines whether general
selective logging-related disturbances have recovered.
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Side-looking Radar

This study specifically focuses on two geometric effects: foreshortening and shadow. All
selective logging-related disturbance types exhibit faster recovery in Descending orbits
compared to Ascending orbits (refer to Figure 9). Regarding logging events, radar
shadows persistently appear regardless of whether the sensor detects large or small
logging events from either the left or right side, in contrast to vertical or horizontal
roads. As a result, areas affected by radar shadowing may exhibit delayed signal
recovery compared to areas with more open canopy cover or less obstructed by surrounding
vegetation (Lavorel and Garnier, 2002; Wu et al., 2014; Coradini et al., 2022). Additionally,
in ascending orbits, where satellites move from south to north, features may be less
affected by foreshortening (refer to Figure 10), and shadows may persist for longer
durations. This might explain why the signal recovery time for ascending orbits is
longer.

In terms of the orbit, this study noted that the signal recovery of VV polarization
was quicker than that of VH polarization. The VV polarization is particularly sensitive
to double bounce scattering, whereas the VH polarization is more sensitive to volume
scattering. This distinction allows for more effective capture of changes in vegetation
density and structure (Baghdadi et al., 2017; El Hajj et al., 2017), potentially leading to
earlier detection of recovery (Nasirzadehdizaji et al., 2019). Additionally, VV polarization
is more sensitive to surface roughness, which leads to higher backscatter returns and
may provide clearer signals of changes in vegetation density and recovery (Jacome et al.,
2013).

Logging roads are often constructed for short-term use during logging operations. After
the logging is completed, these roads are often abandoned and not maintained. Over
time, nature begins to reclaim these areas, leading to a slow recovery process. On the
other hand, skid roads—typically smaller paths situated at the periphery of a forest or
logged area—may experience quicker recovery (Guariguata and Dupuy, 1997). This can
be attributed to factors such as their reduced size and lesser environmental disruption
compared to larger roads (Watkins et al., 2003).

Related to large-sized and small-size logging events, as seen in Figure 12, the large-sized
logging events take longer to recover compared to smaller-scale logging events. This
supported by Milodowski et al. (2021), who used LiDAR technology to assess the
impacts of selective logging on canopy structure across a gradient of logging intensities
and found that the recovery of forest canopy structure from larger-scale logging events
is indeed slower. PurdueUniversity (2024) found that forests with more complex canopy
structures seemed better able to withstand and recover from the disturbances.

6.3 RQ3: Signal Recovery Characterization
In addressing the third research question, we examined the level of recovery and temporal
recovery in selective logging-related activities (as discussed in section 5.3). By integrating
spatial patterns recovery map with temporal recovery, we investigated the relationship
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between recovery levels and durations. We identified pixels that exhibited high levels
of recovery within short time frames, indicating recovery processes. These findings
are pertinent to the effect of spatial orientation, particularly highlighting the quicker
recovery of the edge of logging roads and logging events within one year.

In relation to recovery metrics, many studies have utilized recovery metrics. This study
attempts to apply similar recovery metrics used in optical data to radar data. The
objective of incorporating these additional time series metrics is not to determine their
reliability or superiority, but rather to gain a comprehensive understanding. Each of
the three recovery metrics offers distinct insights into post-disturbance signal recovery.

Optical imagery has been effectively utilized to evaluate forest recovery through three
key metrics: RRI, R80p, and YrYr (Pickell et al., 2016; Frazier et al., 2018; White
et al., 2022; De Keersmaecker et al., 2022). This study adapts and applies these
metrics to radar data, demonstrating their efficacy in capturing temporal dynamics of
signal recovery following forest disturbances. The RRI metric quantitatively measures
recovery intensity, particularly beneficial in areas with diverse and heterogeneous signals
before and after disturbance (Kennedy et al., 2012). Similarly, the R80p metric distinguishes
recovery differences between pre-disturbance and forest recovery processes occurring
over time (Pickell et al., 2016). Additionally, the YrYr metric facilitates the analysis
of temporal recovery patterns over multiple years, capturing annual post-disturbance
growth (Frazier et al., 2018)

The successful application of these metrics in radar data underscores the importance
of exploring innovative methodologies to leverage the full potential of remote sensing
data for environmental monitoring and management.

6.4 SAR for Monitoring Forest Recovery
Upon analyzing signal recovery within three years after disturbance using Sentinel-1
data and our developed method, it becomes evident that while some pixels have shown
signs of recovery, not all areas have experienced the same level of regrowth. Specifically,
our findings reveal that in Descending VV polarization, the top quartile of data pixels
have shown signs of recovery. However, it’s important to note that signal recovery
does not necessarily equate to actual tree regrowth. Despite observing some pixels
that have seemingly recovered to pre-disturbance levels in the Sentinel-1 image within
three years, it’s important to recognize that actual forest recovery is a much more
complex and time-consuming process, often spanning many years. While SAR data,
such as that from Sentinel-1, provides valuable insights into vegetation dynamics and
can detect changes in the radar backscatter signal, it has limitations when it comes to
directly assessing the full extent of vegetation recovery.

One key limitation is that SAR signals primarily reflect changes in vegetation structure
and moisture content rather than directly quantifying vegetation biomass, encompassing
additional factors such as species composition, density, and carbon content. As a
result, the observed signal recovery in radar data may not necessarily correspond to
the actual regrowth of forest vegetation. Furthermore, the recovery process of forests
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involves various stages, including the re-establishment of vegetation cover, structural
development, and ecological succession, which occur over extended timeframes.

Given these limitations, it’s crucial to interpret radar data findings cautiously when
monitoring recovery. While radar data can provide valuable insights into early-stage
recovery dynamics and identify areas showing signs of regrowth, it should be complemented
with other data sources, such as field observations, high-resolution optical imagery, and
ecological models, to comprehensively understand recovery progress. An integrated
approach that combines radar data with other datasets, including L-band radar and
optical imagery, and incorporating ecological knowledge and field observations, is essential
for effective monitoring and managing forest ecosystems over the long term.
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7 Limitations and Recommendations
Several limitations are associated with each of the recommendations provided for assessing
signal recovery using radar data, emphasizing the need for future research to address
these constraints.

1. The study detected signal recovery by averaging the mean of each window in
a temporal moving window approach, relative to the pre-disturbance period.
While using five consecutive points within the recovery zone can provide a general
view of signal recovery, incorporating additional statistical tests such as ANOVA
and T-tests alongside the current method may enhance the robustness of the
assessment. These tests could be employed to evaluate various aspects, such
as comparing mean recovery values between different experimental conditions or
groups (e.g., different regions) using ANOVA and conducting pairwise comparisons
of mean recovery values using T-tests. Additionally, ANOVA can assess overall
recovery trends and variability among groups, while T-tests can identify significant
differences at specific time points or between treatments.

2. While this study focused on utilizing C-band radar data, which is effective for
observing volume scatter with secondary and primary branches, it is important
to consider incorporating L-band radar. L-band radar data, with its longer
wavelength, is more sensitive to changes in biomass, particularly as forest canopies
close. However, it’s essential to acknowledge that L-band radar may encounter
similar challenges as observed for C-band radar in this study, such as issues related
to side-looking radar that can lead to radar shadow, which can impact recovery
assessments. Therefore, given the advantages of L-band radar in penetrating
parts of the canopy and detecting biomass changes, incorporating L-band radar
alongside C-band radar could provide complementary information, particularly
in environments with dense vegetation cover.

3. While this study did not explore testing various parameters for speckle filtering,
noise correction, and terrain flattening, it should be noted that the GRD data
used was already multi-looked, potentially minimizing the influence of these
parameters, as demonstrated in the detection of disturbances (Balling et al.,
2023). Nevertheless, investigating different parameters in future research may
be worth to try to evaluate their potential impact on signal recovery.

4. One consideration regarding spatial orientation is disturbance distribution. For
future research, employing spatial interpolation techniques like kriging could be
valuable for analyzing spatial patterns and heterogeneity associated with selective
logging disturbances. This analysis could help understand the influence of different
logging event sizes on signal recovery.

5. While this study focuses on signal recovery rather than the actual regrowth of
trees within a 2- or 3-year timeframe, it’s important to clarify that the signal
recovery doesn’t necessarily indicate the absence of tree regrowth. Furthermore,
integrating L-band data and comparing it with optical data, which is already
better understood, could provide valuable insights.
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