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Abstract

According to the latest IPCC reports heat waves will increase in both intensity and frequency. Due to

the physical nature of cities, they are particularly vulnerable to this increase in heat. Urban heat is-

land (UHI) effect analysis often relies on satellite imagery, which gives a planar representation of often

three-dimensional features. In this study, we propose to integrate street view data to create a large-scale

approximation of local street-level micro-climates in urban environments, using Amsterdam as a case

study. We present a method that incorporates street view images with a semantic segmentation model to

capture finer urban elements from the panoramic images, such as sky, buildings, trees, and pervious and

impervious surfaces. Furthermore, our approach also involves the calculation of view factors derived from

panoramic street view images, employing a hemispherical azimuthal projection technique to accurately

capture the 3D element of the urban environment. This allows us to assess the impact of various envi-

ronmental features on LST, considering elements such as tree view factor (TVF), sky view factor (SVF)

and building view factor (BVF). We then use the extracted features to model the relationship between

these features and LST using machine learning algorithms such as Support Vector Regression, Gradient

Boosting Tree, and a Random Forest. The Random Forest model turned out to be the best-performing

model. To address research questions, these features are analyzed for their correlation with Land Sur-

face Temperature (LST). The study reveals strong correlations between LST and buildings/trees, while

the sky % correlation is surprisingly weak. The SVF-LST relationship is intricate, with larger SVF lead-

ing to increased heat absorption yet potentially diminishing the UHI effect through enhanced airflow.

Application of results in the Amsterdam context demonstrates practical insights for climate adaptation.

Areas with low tree or pervious surface coverage exhibit higher LST values, emphasizing the importance

of urban greening for heat mitigation. Additionally, the study uncovers unexpected hotspots, challeng-

ing existing climate strategies. However, limitations exist, such as LST not directly equating to thermal

comfort, potential exaggeration of cooling effects, and the focus on summertime daytime temperatures.

Keywords – Computer vision, Urban Heat Island, Energy surface balance, Semantic segmentation
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1. INTRODUCTION

1.1. GROWING IMPORTANCE

Heat waves are known as the silent killer among extreme weather events. According to Zhao et al. (2021)

excess heat is responsible for around 100.000 deaths in South Asia between 2000 and 2019. It is also

forecasted that as a result of climate change the deaths that can be attributed to excess heat will increase

(Huang et al., 2011). According to the latest report by the (IPCC, 2021) the effects of anthropogenic

climate change on urban areas will be significant. The report specifically mentions the effects of increased

frequency and intensity of heat waves. As a result of their physical characteristics, Urban areas are

particularly vulnerable to heat waves due to the urban heat island effect. The absorption and retention of

heat, and the low albedo of urban surfaces such as roads, buildings, and pavements can lead to significantly

higher temperatures than the surrounding areas (IPCC, 2021; Kalnay and Cai, 2003). In this IPCC report

the consequences of 1.5 degrees of global warming are set out. However, the growing consensus among the

same authors who wrote the IPCC report, is that 1.5 degrees may no longer be realistic (Mooney, 2023).

This means that the adverse outcomes as described will most likely be even more frequent and at a higher

intensity. Combined with the fact that half of the population of the world currently lives in an urban

environment and that the number of urban inhabitants is predicted to rise by an extra 2.5 billion by 2050

(Massaro et al., 2023). This combination of rapidly increasing heat and a growing urban population means

that the number of people who are exposed to extreme heat is rising rapidly (Tuholske et al., 2021).

1.2. SOCIETAL IMPACT

Exposure to extreme heat has also been linked to several adverse health outcomes. These include heat-

related illnesses, cardiovascular diseases, and respiratory diseases (Heaviside et al., 2017). At one hospital

in Australia, the effect of heat waves on hospital admissions was measured. It was found that tempera-

tures above 30°℃can increase the number of hospital admissions from 2.25 per 10.000 people to 4.92 per

10.000 (Watson et al., 2020). The elderly, children, and people with preexisting conditions are especially

vulnerable to the health risks related to the urban heat island. Factors that contribute to this risk include

housing characteristics and socioeconomic status. Housing with poor insulation or lack of air condition-

ing can result in unhealthy indoor temperatures increasing the risk of the aforementioned health risks

(Loughnan et al., 2012). The growing population that is exposed to heat and the health effects that ac-

company it, therefore, experiences an increasing risk of fatality, as a result of the environment they live

in(Massaro et al., 2023). This shows that environmental factors influence both the physical and psycholog-
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ical health of the people living in that said environment (Raymond et al., 2020). Studies have also shown

that urban thermal comfort can influence human outdoor activity (Li and Ratti, 2018). Huang et al. (2015)

found in their study that during the hot season, there were fewer people in outdoor spaces, and the people

present preferred more static activities. At the same time between 70% and 90% of the world economy is

located in those urban areas (Wei et al., 2023). The combination of these factors means that the additional

warming of the Urban Heat Island (UHI) could bring 2.6 times the economic costs to cities when compared

to lower-density areas (Li and Ratti, 2018). The combination of lower labor productivity due to heat waves

and the amplifying effect of UHI on heat waves result in this higher economic loss (Estrada et al., 2017).

Given that cities are both the economic and population centers of the world the amplifying effect can have

a large impact on the economy(Wei et al., 2023; Massaro et al., 2023). For both the health of the population

and the economic activity in cities, it is important to keep them livable.

1.3. URBAN MORPHOLOGY

In order to investigate the UHI, a temperature dataset is needed. High-resolution air temperature datasets

are difficult to obtain. For this reason, Land Surface Temperature (LST) is commonly used to investigate

UHI. LST is a measurement of the earth’s surface temperature. In many studies, this variable is used as a

representation of urban thermal properties and is commonly used to investigate the relationship between

heat stress and the urban environment (Wei et al., 2023). Currently the most common way the quantify

the relationship between urban morphology and land surface temperature is the use of remote sensing to

map the land cover composition using remote sensing (Khalil et al., 2021; Song et al., 2014). Commonly

associated land cover classes with cooling include water bodies and vegetation, while impervious surfaces

like roads and buildings are associated with warming effect (Khalil et al., 2021; Wei et al., 2023; Song

et al., 2014). However, satellite images present a planar representation of 3-dimensional reality. In recent

studies the importance of the vertical dimension when researching urban LST has been highlighted (Wei

et al., 2023; Zeng et al., 2018). Urban morphology has a significant influence on urban microclimates. Dif-

ferent types of 3D data are often used to model street-level urban morphology. For example, LiDAR data,

3D building data, and Street view images. One common element used as an indicator of urban morphology

and constructed using 3D data is the Sky View Factor (SVF). Several studies have looked at the relation-

ship between SVF and urban heat stress (Zeng et al., 2018; Li et al., 2017). There are several methods to

calculate the SVF. For example, 3D city model-based methods, GPS methods, or using fisheye photos (Zeng

et al., 2018; Li et al., 2017). In the analysis of this vertical space, the vegetation factor is rarely considered.

However, using LiDAR data research has found that the height of a tree and the height difference between

trees and buildings is very important in LST prediction (Chen et al., 2022). This means that not only the
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SVF but also the Building View Factor (BVF) and the Tree View Factor (TVF) are important 3D aspects of

the urban canyon. One widely available data source that captures the vertical dimension accurately and

provides essential information about street canyons is panoramic street-view images (Wei et al., 2023).

Unlike remote sensing, which only offers a planar view of the environment (Choi et al., 2022). In previous

studies using fisheye imagery, the focus has been on the SVF. However, variations in the BVF and the TVF

could also influence the temperature in the urban canyon (Gong et al., 2018). The effect of trees and build-

ings has been considered in both microclimate modeling on a small scale and remote sensing on a city-wide

scale (Xu et al., 2021; Zhou et al., 2017). Including these factors combines the 3D elements of microclimate

modeling with the city-wide scale of remote sensing. This could also be beneficial for policymakers in their

assessment of the effectiveness of the green infrastructure on a large scale and inform new developments

in a more efficient way than complicated microclimate modeling. This resulted in the following research

questions.

1.4. RESEARCH QUESTION AND METHODOLOGICAL APPROACH

Question: What is the effect of street-level urban morphology on Land Surface Temperature?

Sub-Questions:

• Can street-view be used to create an accurate representation of the street level microclimate?

• To what extent can these features, combined with street-level urban morphology features, be used

to predict street-level LST?

In this paper, a workflow to extract segmentation classes from fisheye images, as well as from the

original panoramic street view images is proposed. The segmentation can then be used to investigate the

effects of the different view factor compositions and street-level urban features on LST. After the images

are collected, a semantic segmentation model will classify the panoramic images using the Ade20k dataset.

In Python a geometric model was then developed using the numpy package, to reproject the segmentation

mask from the panoramic images to an azimuthal hemispherical projection. The extracted features, from

both the panoramic and fisheye images, can then be used in machine or deep learning models to explore

the relationships between the different parameters and LST. This method is in line with current literature

on the use and detection of the SVF, BVF, and TVF, while also using novel methods such as semantic

segmentation for the sky detection, to increase the efficiency of the workflow. The contributions of this

study can be summarized as follows:

• Workflow to extract view factor features at a large scale from panoramic street view images
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• Investigating the effects of the different compositions of sky, tree, and building view factor features

on LST

This methodology can give urban planners and designers insight into the effects of street design on the

temperature. This can help the implementation of mitigation strategies with scientific grounding.
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2. THEORETIC FRAMEWORK

2.1. URBAN HEAT ISLAND FORMATION FACTORS

In this research, The Urban Heat Island is characterized by the spatially averaged temperature difference,

influenced by a spectrum of factors associated with urbanizations, with temperature variations scaling

in relation to the intricate combination of these factors (Stewart, 2011; U.S. Environmental Protection

Agency, 2023). Factors such as low city albedo, high urban fabric heat capacity, heat-trapping through

thermal radiation, and low surface evapotranspiration. Urban areas typically have more built-up surfaces,

such as concrete and asphalt, which have a lower albedo than natural surfaces like vegetation. As a

result, urban areas absorb more solar radiation, leading to higher temperatures. The high heat capacity

of these materials also means that the heat that is absorbed during the day is stored, and still radiated

at night leading to higher nighttime temperatures. The low surface evapotranspiration is the result of the

typically lower level of vegetation and natural surfaces compared to outlying areas (Oke, 1982; van Hove

et al., 2015). As a result of low wind speeds and atmospheric conditions, this heat is also trapped in the

urban area. The UHI is more likely to occur under weather conditions with low wind speeds and high

solar insolation (Oke, 1982; van Hove et al., 2015). Previous studies conducted through crowdsourcing in

the Netherlands revealed that the mean daily maximum UHI for urban areas was 2.3°C, with the 95th

percentile being 5.3°C (Steeneveld et al., 2011). In Amsterdam during the summer of 2015, van Hove et al.

(2015) found an average evening UHI of about 1°C, with a maximum of 4.5°C. However, it is notable that

this study refers to an annual average, and includes some very low-density outlying areas that are within

the city boundaries of Amsterdam.

2.2. ENERGY SURFACE BALANCE

The Urban Heat Island is characterized by the spatially averaged temperature difference, influenced by a

spectrum of factors associated with urbanizations, with temperature variations scaling in relation to the

intricate combination of these factors (Rizwan et al., 2008; U.S. Environmental Protection Agency, 2023).

This means that there is a difference in the energy balance between the surface and the atmosphere in

areas with different degrees of urbanization (Oke, 1982). Generally, higher-density urban areas have a

higher sensible heat, whereas more outlying areas have higher latent heat. Latent heat refers to the heat

that is necessary to conduct a phase change of substance (Wang et al., 2015). While sensible heat refers to

heat that can be felt as it radiates from a surface. A simplified version of the surface energy balance can
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be defined as:

Q = H+LE+G (2.1)

Where Q is the total energy flux. H is the sensible heat flux, the heat that is transferred from the surface

materials to the air, LE is the latent heat flux, or heat that is used for evapotranspiration (the phase change

of liquid water to water vapor) by vegetation, and G is the ground heat flux, which is the heat radiated into

the subsurface(Wang et al., 2015). The height-to-width ratio of the urban canyon, wind speed, roughness

of the surface materials, and canopy all influence the sensible heat flux (Voogt and Grimmond, 2000;

Nazarian and Kleissl, 2015). However, a localized representation of the sensible heat flux can be defined

as the following:

H = (T0 −Ta)∗Ca ∗CH ∗U (2.2)

Here T0 - Ta represents the temperature difference between the surface and the air, Ca is the heat capacity

of the air, CH is the heat transfer coefficient, and U is the wind speed. The urban features that influence

the latent heat flux are mainly the presence (or lack thereof) of impervious surfaces and vegetation (Oke,

1982; Wang et al., 2015). From these formulas, it can be concluded that the difference in energy balance

between outlying and urban areas is a result of the difference in the partitioning of heat between sensible

and latent heat (Oke, 1982). This difference in heat stems from the morphological differences between ar-

eas with different degrees of urbanization and the factors associated with that as mentioned in 2.1. Three

key elements of urban geometry that give a characterization of the partition between sensible and latent

heat are the view factors, sky view, tree view, and building view (Yıldız et al., 2023). Therefore, these view

factors are often used in urban climate studies, it is a critical geometric factor in the large-scale estimation

of urban microclimates and is used to assess urban thermal comfort and urban heat island effect (Yıldız

et al., 2023; Oke, 1981). The SVF influences the thermal environment of urban areas by shifting the radi-

ant effect, meaning that variations in the SVF in different locations change the amount of irradiance that

is received by each surface, changing the energy surface balance in that location (Yıldız et al., 2023). Apart

from the SVF, the composition of the urban canopy layer is also an important factor in controlling the radi-

ation in the street canyon (Yıldız et al., 2023; Gong et al., 2018). The composition of the urban canopy layer

is a determining factor in the way it influences the surface temperature. Trees, as depicted by the view

factor(TVF), provide shade and cooling through the latent heat used for evapotranspiration. Buildings, as

depicted by the building view factor (BVF), usually store heat and emit heat (sensible heat) as a result of

high heat capacity materials and thermal acceptance of the surface of buildings (Yıldız et al., 2023; Gong

et al., 2018). Examining these properties and the composition of these three factors on a city-wide scale
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could provide valuable information on the interaction between street canyons and urban thermal comfort.

2.3. DATA SCIENCE IN EARTH SCIENCE

2.3.1. CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE

Computer vision can help to extract these features on a city-wide scale from images. It enables us to

process a large amount of images in a relatively short time using semantic segmentation. Semantic seg-

mentation is built on an algorithm called a Convolutional neural network. This is an application of the

neural network architecture specifically tailored to images. The artificial neural network is a computa-

tional model inspired by the human brain. Neural networks are essential to many modern technologies

and have recently been adopted into earth science disciplines (Maskey et al., 2018). A basic version of

the neural network architecture can be described as a set of interconnected nodes known as perceptions

2.1. These nodes take one or more real-valued inputs and output a single real value which they can pass

on to other nodes (Maskey et al., 2018; Albawi et al., 2017). Its output is usually calculated by applying

an activation function to introduce non-linearity f (x) (Albawi et al., 2017; Schmidhuber, 2015). A simple

representation of one node can be found in 2.1. These nodes are part of one or more hidden layers where

the input of each node is s an n-dimensional input vector x⃗ and n-dimensional weight vector w⃗. The value

of that node is the weighted sum of the input x⃗ with the weights w⃗.

x j =
∑

i
oiw ji +bi (2.3)

The output of such a network is calculated by propagating the input through the network. The value

of each node x in layers after the input layer follows from 2.3. Each oi is the output value from a node in

the previous layer and each w ji is the weight corresponding to that output. Typically each layer will have

a bias node bi connected to all the nodes in the following layer with a constant value of 1. The weights of

connections to each bias node are optimized during the training process.

The combination of multiple perceptrons in a network structure can be used to solve complex problems.

The specific type of neural network that is relevant for this research is the convolutional neural network

(CNN). In this chapter, the architecture of this network will be explained (Albawi et al., 2017; Schmid-

huber, 2015). The convolutional neural network combines three different layer types, a fully connected

layer, a convolutional layer, and a pooling layer. This type of network is commonly used for image-related

tasks, such as object identification, classification, and segmentation. The first part of the CNN is the

convolutional layer. This layer was introduced, as can be derived from the name, to keep the number of

parameters in the neural network relatively limited compared to a fully connected layer (Albawi et al.,

11



  
  

  
  

  

  

inputsinputs

xx11

xx22

xxnn

ww11

ww22

wwnn

∑∑

weightedweighted
sumsum

𝜎𝜎

activationactivation
functionfunction

ooii

outputoutput

weightsweights

Application is in readonly mode (no document is saved), as no valid license.Application is in readonly mode (no document is saved), as no valid license. Show Show

Fig. 2.1: The perceptron

2017; Li et al., 2022). Especially in image classification tasks, this is important. As illustrated by the

following example of a modern image with a width and height of 1920x1080. If every pixel is considered

an input parameter, this means that even for a hidden layer with only one neuron there are 1920∗1080∗3

weight connections that need to be calculated for an RGB image. One neuron is also not considered useful

for visual applications. Considering that even the most basic neural network has several layers with tens

of neurons the number of calculations with spiral out of control quickly for modern computers. This prob-

lem of dimensionality resulted in the development of a more efficient approach (Li et al., 2022; O’Shea and

Nash, 2015). Instead of connecting all the layers completely, the next layer is only connected to a subset of

the corresponding image, called a filter. This filter slides over the image to create what is called a feature

map 2.2. It is corresponding to a single value for each of the locations of the filter. After the creation of the

feature map in the convolutional layer.

The dimensionality of the feature map is further reduced in the pooling layer. There are two common

types of pooling layers, max, and mean pooling. For max pooling the maximum value of a region in the

feature map is extracted, these max values combine to create a new smaller feature map. For mean pooling

the mean value of this region is used to create the second feature map (Li et al., 2022; O’Shea and Nash,

2015). Another way to reduce dimensionality in neural networks is shared weights. The regions from the

pooling layers are also used in this method. Neurons for the same region in the image also use the same

weight. So if both of these are combined the number of weights that need to be calculated is drastically

reduced by reducing both the number of connections and by reducing the variability of the weights within

each layer (Li et al., 2022; Albawi et al., 2017; O’Shea and Nash, 2015).
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Fig. 2.2: Represention of sliding a filter over a simple grayscale image to create a feature map from (Kim
and Kim, 2017)

The last layer is the fully connected layer. In this layer, the neuron connections are similar to a tradi-

tional neural network 2.3. Each neuron is fully connected. Meaning that each neuron is fully connected to

both the previous and the next layer. The fully connected layer takes the produced feature maps from the

convolutional layer and the pooling layer as inputs to make the final prediction for the image classification

tasks (Li et al., 2022; O’Shea and Nash, 2015).   
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Fig. 2.3: A fully connected neural network

The activation function φ(x) = o used for calculating the output value of each node in this DPT model

is the Gaussian Error Linear Unit (GeLu) function (Kenton and Toutanova, 2019; Hendrycks and Gimpel,

2016; Ranftl et al., 2021).

gelu(x)= 1
2

x(1+ tanh(
p

2/π(x+0.044715x3))) (2.4)

This activation function is similar to the Rectified Linear Unit (ReLU) activation function.

ReLU(x)=max(0, x) (2.5)

However, it has added smoothing compared to the ReLU function. This smoothness makes it well-

suited for image-related tasks because of its benefits related to convergence. The nonlinearity of this

function also enables it to learn more complex relationships which helps it to better understand the long-
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range dependencies in images. It is also more efficient, giving it an edge for large datasets(Kenton and

Toutanova, 2019; Hendrycks and Gimpel, 2016)
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3. METHODOLOGY

3.1. DATA SOURCES

3.1.1. LANDSAT 8 AND 9

Landsat 8 is a satellite mission operated by the United States Geological Survey (USGS) that provides

multispectral data. The data is collected by the Operational Land Imager (OLI) and the Thermal Infrared

Sensor (TIRS) aboard the satellite. The OLI has nine spectral bands, ranging from the visible to the

shortwave infrared. The TIRS collects data in two thermal bands with a spatial resolution of 100 meters,

which is converted to a spatial resolution of 30 meters by using cubic convolution. Landsat 8 has a revisit

time of 16 days, meaning that it captures images of the same location on the Earth’s surface every 16 days.

Landsat 8 and 9 data are widely used in various applications one of which is urban heat island studies.

For this study cloudless images from one of the three hottest months in the Netherlands June, July, and

August in 2018 until 2022 were selected. The values from the selected day were then averaged to get

a representative value for normal summer daytime temperatures in Amsterdam. The retrieved images

are preprocessed with the atmospheric corrections by the USGS and transfer constants are provided to

transform the cell values into degrees Celsius using the following equation.

T(°C)= K2

ln( K1
Tr +1)

−273.15 (3.1)

K1 and K2 are the constants provided by the USGS and Tr is the original raster band value.
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Fig. 3.1: Image of Land Surface Temperature in Amsterdam area prost-temperature transformation

As can be seen in figure 3.1, the large waterbodies have cut out of the temperature data. That was done

because of the street-based nature of the research and the second data source (Street view images). In this

Streetview dataset, the large waterbodies are usually not visible and therefore cannot be detected by the

segmentation. The smaller canals are detectable as they are closely intertwined with the road network in

the inner city. Therefore the canals were incorporated into the LST dataset.

3.1.2. STREETVIEW IMAGES

The dataset consists of Streetview images 3.2 from Amsterdam that have been classified using a semantic

segmentation model. The dataset consists of a 360° degree panoramic street view image every 50 meters

on the entire road network of Amsterdam. In total, this is over 60.000 thousand images. Using semantic

segmentation several categories were extracted from these images such as Sky, Building, Road, Tree,

pervious surface, and impervious surface. It is important to note that street view is limited to roads and

streets. That means that areas that are not directly adjacent to the road are not considered in this analysis.

For the semantic segmentation, a state-of-the-art Dense Prediction Transformer was used (Ranftl et al.,

2021). It has a global perception field and combines traditional CNN architecture with transformers. It

follows an encoder-decoder structure. The encoder is the transformer that learns the long-range depen-

dencies in the image using the attention mechanism and the decoder is the convolutional layer that will

learn the local features. The model used in this paper was pre-trained on the Ade20k dataset (Zhou et al.,

2019). This setup was used to classify the full image dataset and the categories mentioned above were

extracted.
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Fig. 3.2: Segmentation example

3.2. ANALYSIS METHODS

3.2.1. DATA COLLECTION

First, the dataset needs to be created in order to run the analysis. In this case that means adding Land

Surface Temperature to the Streetview image dataset classification. In order to do this the LST for Amster-

dam must first be calculated based on the thermal bands of the Landsat 8 satellite. Next, the classification

data is aggregated to the 30m cell size of the LST dataset. Aggregating the data to larger cell sizes was

not considered because it would increase the chances of incorporating areas that cannot be captured by

Streetview imagery.

With this dataset, an analysis will be done of the impact of different factor compositions on the LST.

This will be done by plotting a single view factor against the temperature while keeping the other two
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factors relatively constant. This way we can isolate the effect of the single-view viewfactor. A second

analysis will combine the view factors and the street view classifications to see if a predictive model can

be created. For this part, several machine learning and deep learning models will be deployed, as well as

feature selection to get insight into the weights the different variables have in determining the outcome.

3.2.2. SEGMENTATION CLASSES CALCULATION

The panoramic images provide the 3D element and therefore a real-world approximation that 2D satel-

lite imagery can not provide. By applying the earlier-mentioned DPT semantic segmentation model pre-

trained on the ade20k dataset we can calculate the proportions of the images in the classes mentioned in

section 3.1.2. After the classification, the number of pixels of the color that corresponds to the classes is

divided by the total amount of pixels in the panorama.

Tree%= PixelsTree

Pixelstotal
(3.2)

This same calculation is done for the different classes to create a table with the class % for each class

and for all images. Table 3.2.2 is a small sample of the total table that was created this way.

Features segmentation results table

Image ID Building Trees Sky Water Impervious Pervious

51 0.15 0.07 0.35 0.0 0.35 0.0

3 0.21 0.07 0.26 0.0 0.24 0.01

53 0.35 0.04 0.24 0.0 0.28 0.0

44 0.1 0.05 0.40 0.0 0.24 0.0

35 0.19 0.1 0.32 0.0 0.22 0.0

3.2.3. VIEW FACTOR CALCULATION

In order to calculate the View factors from the panoramic street view images. The images must be projected

into the hemispherical azimuthal projection with the lower hemisphere of the street view image cut off.

In order to do this each pixel in the upper hemisphere of the panoramic image must be projected into the

hemispherical projection based on the geometric model from (Li and Ratti, 2018). First, we need to cut off

the lower hemisphere of the panoramic image by simply doing H/2 where H is the height of the image.

Then we calculate the center coordinates of the the image and the radius of the resulting fisheye image.
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Cx = W
2π

Cy = W
2π

radius = W
2π

(3.3)

The next step is to calculate the location of the pixels in the new fisheye image by calculating the angle

and the distance from the center of the fisheye image. Where θ is the angle and ρ is the distance.

i f x < Cx,θ = 3
π
−arctan(

y−Cy

x−Cx
) else,θ = π

2
−arctan(

y−Cy

x−Cx
) (3.4)

ρ =
√

(x−Cx)2 + (y−Cy)2 (3.5)

Then we calculate the corresponding pixels from the input image in regards to the resulting fisheye

image with the following formulas.

xp = W
2π

∗θ yp = ρ

radius
∗H (3.6)

The application of these formulas results in a file of fisheye images as shown in figure 3.3.
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Fig. 3.3: Example of fisheye transformation

To calculate the view factors the same set of calculations is performed on the generated segmentation

mask. The resulting fisheye segmentation mask will then be processed in the same way as the original

segmentation masks using the same formula as given in 3.2. The result is a table with the image ID and

the different view factors.
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Fisheye results table

Image ID Building

view

Tree view Sky view

10080 0.24 0.27 0.49

57046 0.16 0.37 0.47

10740 0.32 0.36 0.31

21614 0.0 0.42 0.57

40436 0.02 0.43 0.54

In figure 3.4 a schematic representation is given of the full data pipeline from the raw data input to

the dataset that is used for the prediction models and correlation analysis.

3.2.4. PREDICTIVE MODELLING

Before the data is used for predictive modeling a feature selection algorithm is used. This is done to

improve the interoperability of the predictive models and to provide insight into the relationship between

the different features and the LST. In this research, we use an L1 regression or a Lasso regression model.

Fig. 3.5: L1 regression

This regression model is similar to an Ordinary Least Squares (OLS) regression with an added penalty

function highlighted in 3.5. Where:

• Yi is the predicted output (in this case, the predicted LST).

• n is the number of data points

• X i j is the input feature at index j.

• β j is the coefficient that corresponds to the feature

• λ is the added penalty for feature β j

If λ is zero there is no added penalty and the L1 regression will be the same as the OLS regression. If λ

is high then the cost function will penalize the coefficients of the features with the least predictive power.
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This way the model shows which features are actually important and have a strong relationship with the

dependent variable, in this case, the LST. Typically the λ value is chosen through hyperparameter tuning

using cross-validation (Fonti and Belitser, 2017).

The features that show the strongest correlation in the feature selection will then be used to train

several machine learning models to test the predictive performance of environmental features for LST.

In this study the following models were trained and tested: Support vector regression (SVR), Gradient

boosting tree (GBT), and a Random Forest model (RF). On top of that, a deep-learning model was also

trained. In this case a multilayer perception regression (MLP regression). An MLP regression model is a

type of neural network that is often used to perform predictive tasks. The high complexity of the model

allows it to find highly non-linear relationships. The drawback is that it needs a lot of data and can be

computationally intensive.

The dataset for these models was randomly split into a train (80%) and test (20%) set. All models were

fitted using the training data. In the training process, a 5-fold cross-validation was performed to ensure

the adaptability of the model on unseen data. During the training process, hyperparameter tuning was

also performed to prevent overfitting. After the models were trained they were used on the test dataset.

To assess the performance of the trained models the R2 value and the Mean Squared Error (MSE) were

calculated. Equation 3.7 shows an example of a multilayer perceptron.

ŷ= f2

( n2∑
i=1

w(2)
2i f1

( n1∑
j=1

w(1)
ji x j +b(1)

i

)
+b(2)

2

)
(3.7)

Where:

• ŷ is the predicted output (in this case, the predicted LST).

• f1 and f2 are activation functions (e.g. ReLU, sigmoid) applied to the weighted sums of inputs in

the first and second layers, respectively. The best option determined by hyperparameter tuning.

Although typically the ReLU function is used.

• x j is the input feature at index j (e.g. the percentage of road in the cell).

• w(1)
ji and w(2)

2i are the weights of the connections between the input and first layer, and between the

first and second layer, respectively.

• b(1)
i and b(2)

2 are the biases added to the weighted sums of the first and second layer, respectively.

• n1 and n2 are the number of nodes in the first and second layers, respectively.
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These models were all chosen because they are commonly used, and perform well, for regression anal-

ysis on larger datasets, it has also been used in similar studies regarding Urban Heat Island (Choe and

Yom, 2017; Zhou et al., 2010).
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4. RESULTS

4.1. EXPLORATORY DATA ANALYSIS

In this section, the result of the feature selection model will be presented along with some exploratory

analysis. The first step is to examine the correlation between the features that were extracted from the

street view images and the LST that was extracted from satellite imagery. As a first step, the lowest and

highest LST data points and their corresponding panoramic images were looked up. In 4.1 and 4.2 the

results of this are shown.

Fig. 4.1: Example of green area on the outskirts of Amsterdam with a low Land Surface Temperature

Fig. 4.2: Example of industrial area in Amsterdam with a high Land Surface Temperature

In this image, the trend seems clear. In image 4.1 with the lowest temperature, there is no building in

sight. The image is filled with greenery and a small piece of road. In image 4.2 with the highest LST value

in the entire dataset the visuals are reversed. There is no greenery visible at all in the image, which is

completely filled with buildings and pavement. This anecdotal evidence shows a clear trend, in line with
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the literature, where increased green lowers the LST and the presence of buildings increases the LST. The

cold image 4.1 is located in the far northeast of Amsterdam. In 3.1 is also visible that the LST in this

area is generally low. This area has a low degree of urbanization and consists mainly of grassland, trees,

and water. Whereas the second image 4.2 is located in the northwest harbor area of Amsterdam. This is

a highly industrialized area with some heavy industry. It is also very built up, and as can be seen in the

image quite open. This means that the surface receives a lot of direct radiation, contributing to the high

LST in this area. The following analysis of 60,000 street view images will show if this trend holds up

city-wide for Amsterdam.

Fig. 4.3: Spatial distribution of building view factor

For the correlation analysis of the different features with LST, the Spearman correlation coefficient

was used, because of the non-parametric nature of this analysis. In other words, it does not assume a

normal distribution of the data. This is a result of the evaluation of the values based on their rank relative

to the other values in the dataset instead the of absolute value. As most of the features do not follow

a Gaussian distribution the selection of a non-parametric method was necessary. In this analysis, with

the result shown in 4.4, the trees, pervious, and water features were all negatively correlated with LST.

While impervious and building were positively correlated with LST. While sky had a very small negative

correlation with LST. For all of these features, the P-value was very close to zero, meaning that these

results all indicate a significant statistical relationship. The biggest positive correlation with LST is the

buildings. The biggest negative correlation with LST is the presence of pervious surfaces. In ?? this is also
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visible, in general, the LST cold spots in 3.1 in the west and far northeast correspond to the high upper

end of the pervious surface value distribution. There are two notable exceptions, which are the earlier

mentioned western harbor area and a small area in the southeast. This exception is probably the cause of

the high density of industrial activities in both of these areas.

Fig. 4.4: Scatter plots of the different features including the Pearsons R statistical analysis to determine
the degree of correlation and the P value for statistical significance

The results of this correlation analysis are also consistent with the result from our feature selection

using the L1 regression, as can be seen in 4.1. Water is the exception here. While it was also negatively

correlated in the Spearman analysis, it has a particularly large coefficient in this L1 regression. Even

though the large waterbodies that also have the lowest surface temperature were removed. The IJ River,

the Sloterplas, and the IJ Lake have all been removed as can be seen in 3.1. Then there is also the fact that

water is sparsely visible from the street. With barely any data points with more than 0.15 water cover.

L1 regression results

Feature Coefficient

Trees -4.40

Building 8.28

Sky 0.00

Pervious -5.32

Impervious 3.59

Water -20.15
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4.2. ISOLATE EFFECT OF STREET-FEATURES

In this section variables that were extracted from the panoramic street view images before were analyzed.

In the next section, the calculated view factors will be analyzed and compared to the original panoramic

values. we are interested in the effect of the street canyon composition and specifically in the ratio of

buildings versus trees in the street canyon. This approach in combination with the results of the first

analysis, showed that the sky view factor was only slightly correlated with temperature. This is interesting

because the spatial distribution of sky view factor 4.7 looks similar to that of the pervious surface 4.3. As

a result of the low observed low impact of the SVF it was decided to plot the BVF and TVF against the

temperature while keeping the SVF relatively constant. This was done by splitting the plots into sky view

quantiles.

Fig. 4.5: Plotting tree and building from
the panoramic projection against LST for
each sky% quantile. Including the Spear-
man Rho correlation coefficient

Fig. 4.6: Plotting TVF and BVF from the
fisheye projection against LST for each
SVF quantile. Including the spearman
Rho correlation coefficient

In figure 4.5, the features are directly extracted from the panoramic street view images. In this 4.6

plot, the trend for both trees and buildings is more uniform in the lower quantiles, as represented by the

higher correlation coefficients in the lower quantiles. This trend is especially clear for the trees. While the

correlation with temperature gets weaker as the sky% increases, this decline is less steep in the case of
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the buildings when compared to the features from the original panoramas. This is also represented in a

lower score for the Spearman correlation coefficient. Where the score in the original plot was r =−0.26 for

trees and r = 0.46 for buildings. In the case of tree %, it is almost double in the lowest quantile, while it

is less than half in the highest quantile of sky %. This trend follows a similar pattern in the building %

although less pronounced and with the exception of the highest quantile. Where the presence of buildings

is still strongly positively correlated with higher temperatures. This plot indicates that especially in highly

dense urban environments where the sky is usually more obstructed the amount of tree cover has a larger

cooling effect on surface temperatures.

In figure 4.5 the % of each panoramic image covered by the tree and building class was examined.

However, in the current literature regarding large-scale micro-climate, the features are usually processed

into view factors. Because of the different orientations of the view factors, they are believed to provide a

relatively accurate representation of the, receiving, and trapping of radiation and the airflow in the urban

canyon. For this reason the same analysis as in figure 4.5 has also been done on the TVF and the BVF

in figure 4.6. This plot shows a slightly more pronounced relationship with an increase in Spearman’s

correlation coefficient in every quantile. The increase is slightly higher for the TVF compared to the tree

%, compared to the increase from building % to the BVF. The stronger statistical relationship between the

Building and Tree View Factor and LST indicates that the features extracted from fisheye imagery provide

a better estimation of the local microclimate compared to features extracted directly from the panoramic

images.

From the spatial distribution of the SVF, TVF, and BVF in 4.7 4.9 4.8 it seems that the SVF and TVF

both decrease as we come closer to the city center, while the BVF increases. This seems consistent with

the LST in 3.1 if we consider the highly industrialized areas in the southeast and northwest as outliers.
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Fig. 4.7: Spatial distribution of sky view factor

Fig. 4.8: Spatial distribution of building view factor
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Fig. 4.9: Spatial distribution of tree view factor

4.3. PREDICTIVE PEFORMANCE

In this section, a combination of the features from the original panoramic images and the converted fish

eye images is used to train several machine-learning models. This will do two things, first, it will help

us understand the relationship between these features and LST even better, and secondly, it will help to

test the predictive power of street view features for LST estimation. The models that were trained are A

l1 or Lasso regression, an RF regression, an SVR, a GBT, and the deep learning method MLP regression.

The models vary significantly in performance. The L1 egression has an R2 of 0.24 and an MSE of 6.03.

The RF performance is significantly better with a R2 of 0.52 and an MSE of 3.66. The GBT and SVR are

in between the two with an R2 of 0.39 and 0.27 respectively. The MLP regressor was only evaluated on

MSE as is common with more complex deep learning methods. The complexity of deep learning makes

evaluation by R2 unreliable. After trying different configurations of hidden layers, activation functions,

and nodes per layer. The lowest MSE achieved was 6.02. This MSE is almost twice as high as the MSE

from the RF model. The full results can be found in table 4.3.
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Model Evaluation

Model R2 MSE

L1 regression 0.24 6.03

SVR 0.27 5.76

GBT 0.40 4.72

RF 0.52 3.66

MLP regression – 6.02

From these model results it seems that features extracted from street view at 50m density do not

provide enough information to accurately predict LST. While the random forest performance explains

about half of the variation in the dataset, this is not enough to consistently make accurate predictions.

The other models also perform considerably worse than the RF. With only an R2 of 0.24, 0.27, and 0.4

respectively. It is noticeable that a relatively complex model such as an MLP regressor has a similar

performance to the least complex model, the L1 regression, in this selection. Both scored an MSE of 6.0,

considering the main purpose of the L1 is also feature selection and not prediction makes it more notable.

Previous research indicates that increasing the number of street view images per LST cell could increase

the model performance significantly (Wei et al., 2023). However, this comes as the cost of considerably

higher computational costs.

5. DISCUSSION

The causes of the urban heat island are complex, but it is widely accepted that street-level urban morphol-

ogy has a considerable effect on the shaping of urban thermal properties. In the current literature, the

research’s main focus is, on the 2D representation of the urban environment, with this method large areas

can be covered in the analysis. This large scale is beneficial in getting a wider overview of the situation.

Another common method in current research is microclimate modeling, this method does take into account

3D data and gives an extremely detailed representation of the interplay between the different features at

street-level. However, these studies are often focused on a small area and use a controlled environment.

To answer the main research question it is important to take into account the third dimension, but also

focus on the real urban environment at a spatial scale.

In this study, therefore, an estimation of the microclimate at a large spatial scale was conducted using

3D data from street view images. Important 3D elements include the Height/Width ratio of the urban

canyon, the building height, and the tree height. These aspects are represented by the SVF, BVF, and

TVF. With street view images and semantic segmentation, it is possible to extract these features at a large
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scale from these street view images. This method combines both the large-scale associated with remote

sensing approaches and captures detailed information about the street canyon similar to microclimate

modeling.

To answer the research questions these features were then used to investigate the relationship between

the 3D features of the urban canyon and LST. We looked at both the statistical relationship of individual

features and the differences between features using the statistical correlation test Spearman ρ, as well

as predicting the land surface temperature based on a combination of the extracted features using the

following machine learning models: RF, GBT, SVR, and MLP.

5.1. RESULTS IN THE SCIENTIFIC CONTEXT

From our feature analysis, it can be concluded that urban features have a strong correlation with LST.

Especially the buildings and trees appear to be strongly correlated with LST. Surprisingly the correlation

between LST and the sky% was very weak. Based on the literature a higher negative correlation with LST

was expected (Scarano and Sobrino, 2015; Zhang et al., 2019). The relationship between SVF and LST is

complicated. A larger SVF means that the surfaces receive more direct sunlight, allowing these surfaces

to absorb more heat (Huang and Wang, 2019). On the other hand a large SVF also typically corresponds

to increased airflow through the urban canyon, which can diminish the UHI effect (He et al., 2020). There

are also studies that indicate that the cooling effect of the SVF is larger during nighttime (Scarano and

Mancini, 2017; Zhang et al., 2019). This is a result of the balance between increased airflow and higher

radiation acceptance shifting. As the sun goes down this balance shifts to increased airflow, increasing the

cooling effect of the SVF (Scarano and Sobrino, 2015; Zhang et al., 2019). Both of these studies however

still show a small cooling effect during daytime. This small negative correlation for daytime LST was not

observed in this study. It is possible that the reduction of the SVF and its corresponding temperature effect

is also dependent on the property that is responsible for said reduction. For example, SVF reduction from

street trees can have a cooling effect (Li et al., 2017). While SVF reduction as a result of buildings can have

a heating effect (Guo et al., 2016). This analysis is also supported by the statistical analysis conducted in

this research. Examining the view factors extracted from the reprojected fish eye images in 4.6 showed the

same correlation between trees and buildings and LST as in these papers. In the analysis, the SVF was

kept at a relatively constant value by dividing the dataset into sky view quantiles. This was done to fur-

ther isolate the effect of the tree view factor and building view factor, and to analyze how the relationship

changes under different sky openness scenarios. This showed that the LST correlation is strongest accord-

ing to the Spearman ρ test, for both the trees and buildings when the sky is more obstructed. It seems

therefore that at similar view factors, sky obstruction by trees has a cooling effect while sky obstruction by
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buildings has a warming effect and that this effect increases in the lower quantiles of SVF. One possible

explanation for the lack of observed cooling from the SVF is the difference in composition of the obstructed

part between this case study and the areas observed in other studies.

The result of the regression models was also quite positive. The random forest achieves a MSE of 3.81

while being trained on 3D features from street view exclusively. This was the highest performing model

compared to an MSE of 5.76, 4,72, and 6.02 for the SVR, GBT, and MLP respectively. One interesting ob-

servation here is that the most complex model out of the set, the MPL, is also the worst-performing model

for this task. While some different model architectures were tested, due to the computational requirements

for this model it was not within the scope of this study to do extensive hyperparameter tuning. Therefore

it remains possible that with more computational resources to do more extensive hyperparameter tuning

the model performance of this MLP could still improve drastically.

In the current literature, some of the most accurate models are around R2 0.7 (Wei et al., 2023; Li et al.,

2016). These studies also use models similar to the RF model and do not use complex deep learning models

such as an MLP. In this context our RF model achieving a R2 of 0.52 while both of these models in these

papers include significantly more data sources is promising. In Wei et al. (2023), both 2D remote sensing

data and street view data were used. The data was also aggregated here to a 210m cell size. Whereas,

in this study, the data was kept at the highest LST resolution available of 30m. In Li et al. (2016), a

combination of 2D remote sensing data and socio-economic indicators was used to predict LST. Model

performance in this study was also limited because of a low number of street view images per cell used

due to computational constraints. Increasing the number of street view images per cell could potentially

increase the model performance significantly. This could be achieved by utilizing GPU acceleration for the

reprojection of the panoramic images and taking away the computational bottleneck.

5.2. RESULT IN THE CASE STUDY CONTEXT

We can also formulate practical applications of these results by applying them to the Amsterdam context.

Amsterdam has set out a climate adaptation strategy for their future city vision (Amsterdam, 2022). In

this vision, they highlight the benefits of urban greening, such as biodiversity, climate adaptation, and

health. The negative health impacts of heat are also highlighted as one of the major problems. This study

indicates that areas with low tree or pervious surface coverage generally relate to higher LST values.

This is also visible in some interesting cases. In the LST map 3.1 for example, it is visible that the new

boulevard behind the central station next to the IJ River is a hot spot with regards to LST. Looking at the

maps of TVF and pervious surfaces 4.9 4.3, it is visible that both show very low values for this area. At the

same time, the SVF for this area is significantly larger than for the adjacent area more into the city center.
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This hotspot is therefore likely a result of a high degree of openness, meaning that the surface receives a

high amount of radiation, while the surface itself has a high thermal capacity and emissivity. Considering

that this development is quite recent, and the strategy laid out by the Municipality itself in Amsterdam

(2022) this is surprising. Other hotspots around the IJ River have similar problems.

Apart from the industrial areas, it is also visible that from comparing 3.1 and 4.8, that as the density of

the build-up area increases the LST also rises. This is also consistent with the analysis of the relationship

between the BVF and LST in 4.6. In Amsterdam, this means that the richer areas in the central and south

areas of the city actually have higher LST values than less affluent neighborhoods in the southeast, north,

and west of the city. This is interesting as previous research in the US indicates that less affluent areas

often experience higher temperatures (Hsu et al., 2021).

5.3. LIMITATIONS

5.3.1. PHYSIOLOGICAL ASPECTS OF LST

This study has some limitations. First of all, LST is not directly equivalent to thermal comfort. In general,

LST is accepted as an indicator of urban heat, but an air temperature or radiant temperature is often more

desirable. Mean Radiant Temperature (MRT), which is used as a proxy for the heat exchange between an

individual and their surroundings is often referred to as the best indicator of urban thermal comfort. While

air temperature and LST have a significant positive correlation, research has shown that the hot and cold

spots identified by both temperature variables do not always correspond (Cao et al., 2021; Naserikia et al.,

2023). LST and MRT are both measures of radiation, there are however some key differences. MRT is a

ground-based measure of radiation from a multitude of directions and at a significantly higher resolution,

the resolution can differ but in this paper, 1m was used. Even though MRT provides a much more detailed

picture on a hyper-local level, the general pattern of heat city-wide shows a similar trend compared to LST

(Li et al., 2023). LST is captured by satellites and represents the average heat radiated back into space

from each cell. At a 30m resolution, that means that hyperlocal differences in surface temperature are

not accounted for. On top of that the satellite view takes only one direction of heat radiation into account.

Because it registers heat radiated back into space the only direction that it captures is up.

There are also studies that indicate that the impact on thermal comfort of reducing LST is often over-

stated. For example, reflective pavements increase the albedo and reduce the LST by lowering the solar

radiation absorption, but this solar radiation is then reflected back onto the street. This solar radiation

can then still affect thermal comfort (Schneider et al., 2023). The impact of trees can also be overstated

by LST. Trees absorb radiation and use this energy for evapotranspiration, this cools down the surface

layer but at the same time increases the relative humidity. Higher humidity can have a negative effect on
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thermal comfort. This tradeoff between higher humidity and lower surface temperature is not visible in

surface-based temperature measurements(Chakraborty et al., 2022). Another limitation of the 30m reso-

lution is, that 30m is usually about the size of a street segment, but it can occur that there are parts of a

courtyard or backyard that are within the cell. In this instance, the street view would not be able to detect

the contents of said courtyard or backyard leading to small inaccuracies in the dataset.

In this study, the focus was also on summertime daytime temperatures. However, research on the

health effects of the UHI indicates that high nighttime temperatures are also an important factor in

higher mortality rates as a result of heat (Murage et al., 2017). The focus on the summertime also means

that the potential benefits of the UHI in wintertime are also not accounted for (Macintyre et al., 2021).

5.3.2. PROXIMITY AMPLIFICATION

A second limitation is inherent in the segmentation of street-view images. The vantage point of the street-

view image often dictates the size of the different features in the segmentation. If for example a street

segment is captured with only one tree present close to the location where the image was captured, this can

lead to an overrepresentation of the tree class in this image compared to the ground truth. The other way

around if a feature is far away from the location of the picture it can also lead to underrepresentation of

that class. To compensate for this the model needs additional spatial information such as depth estimation

or the object location (Seiferling et al., 2017).

5.3.3. DATA GAPS IN STREET-VIEW AND SEGMENTATION

The third limitation has to do with the segmentation as well. Most of the pre-trained semantic segmenta-

tion models such as the Ade20k dataset used in this research, but also the cityscapes dataset, are trained

on Chinese or North American cities (Zhou et al., 2019). This means that the results for a complex ur-

ban environment such as Amsterdam are less accurate than they would be for case studies in China, the

United States, or Canada.

On top of that semantic segmentation models can detect general street-level features but can not make

distinctions within a certain feature class. Some of those within class differences however can have a

significant impact on the urban temperatures. Building materials for example can differ both in heat

capacity and radiation emissivity. Both of these material characteristics influence the temperature in

their surroundings through their radiation output, heat capacity by the higher temporal duration of the

output, and emissivity by the higher intensity of the output (Morais et al., 2019). The variations in this

radiation output for both vertical features (building facades) and horizontal features (roads, sidewalks)

are significant. For vertical features, there can be a 70% difference in performance, and for horizontal
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features as much as 30% (Alchapar et al., 2014). The higher difference in vertical features is most likely

due to the higher variation in used materials for facades. The difference in thermal performance, between,

for example, glass and bricks is higher than the difference between asphalt and concrete (Tukiran et al.,

2016; Vijayan et al., 2021). Adding this information to the prediction models could help to explain more of

the variation in the target temperature dataset. However, currently, there are no semantic segmentation

models, or they are not accessible, that can accurately classify material differences in an urban setting.

Another data gap in street view segmentation has to do with the characteristics of street view. This

dataset is inherently a representation of the street network of the city. This means that the parts of a

city that are not adjacent to a street are not taken into account in the analysis. This means that large

green areas such as parks, courtyards, and even backyards are generally not included in the results. Even

though these large green areas can have a significant cooling effect even in areas that are not immediately

next to them (Peng et al., 2021).

6. CONCLUSION

In conclusion, this study delved into the intricate relationship between urban morphology and the urban

heat island (UHI) phenomenon. While existing literature predominantly focused on 2D representations

and microclimate modeling within controlled environments, this research aimed to bridge the gap by con-

ducting a large-scale estimation of microclimate using 3D data extracted from street view images. The

study emphasized the importance of considering the third dimension and maintaining a spatial scale rel-

evant to real urban environments.

The feature analysis revealed compelling insights, highlighting the strong correlation between urban

features, particularly buildings, and trees, with land surface temperature (LST). Contrary to expectations,

the study found a weak correlation between LST and sky percentage, challenging previous assumptions

about sky obstruction and its relationship with LST. The nuanced relationship between sky view factors

(SVF) and LST, influenced by factors such as airflow and radiation, demonstrated the complexity of the

UHI effect, especially during daytime.

Machine learning models, including Random Forest (RF), Support Vector Regression (SVR), Gradient

Boosting Trees (GBT), and Multi-layer Perceptron (MLP), were employed to predict LST based on 3D

features. The RF model emerged as the highest-performing model, showcasing promise with an impressive

Mean Squared Error (MSE) of 3.66. While the MLP model displayed the lowest performance, limitations in

hyperparameter tuning underscored the potential for further improvement with additional computational

resources.

37



In the context of the case study focused on Amsterdam, the practical applications of the research

findings were explored. The study identified areas with low tree or pervious surface coverage as potential

hotspots, aligning with the city’s climate adaptation strategy. Notably, affluent areas exhibited higher

LST values, challenging conventional expectations and emphasizing the need for context-specific urban

planning.

However, the study acknowledged certain limitations, including the reliance on Land Surface Temper-

ature (LST) as an indicator of thermal comfort, potential overestimation of certain features in street-view

segmentation, and data gaps related to the representativeness of pre-trained segmentation models for

complex urban environments like Amsterdam.

In conclusion, this research contributes valuable insights to the understanding of UHI dynamics and

provides a foundation for informed urban planning strategies. The findings underscore the necessity of

considering 3D features at a large spatial scale and emphasize the potential of machine learning models

in predicting and mitigating the impacts of urban heat islands.
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