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A B S T R A C T   

Access to reliable and skillful Climate Information Service (CIS) is crucial for smallholder farmers in Bangladesh 
to mitigate the impacts of rainfall variability and extremes. This study aims to systematically evaluate the 
performance of CIS in providing Scientific Forecast (SF) and Local Forecast (LF) to smallholders in Bangladesh. 
The results were then compared with farmers’ perceptions of the forecast accuracy. Additionally, the skill of a 
simple hybrid forecast (HF), which is an integrated system of SF and LF, was assessed using the ERA5 and ground 
observation datasets as benchmarks. The SF and LF data were obtained from the meteoblue hindcast and from 
the interview, respectively. The results indicate that, overall, LF exhibits slightly higher skill compared to SF 
when evaluated against the ERA5 dataset. The forecast performance, however, declines by almost half when the 
ground-based observations are used, associated with high false alarms. Farmers, on the other hand, perceived SF 
to possess superior performance compared to LF. This study demonstrates that combining the SF and LF into a 
simple HF yields higher forecast skill than either individual forecast, highlighting the importance of HF to deliver 
a reliable and trustworthy weather forecast.   

Practical implicationss 

Many farmers worldwide rely heavily on rain for farming and 
rainfed agriculture serves as an important source of food and in-
come for smallholder farmers. Changes in rainfall patterns and 
extreme events due to climate change are significantly impacted 
farmers on their socio-economic conditions. To help farmers fac-
ing these problems, various Weather and Climate Information 
Services (WCIS) have been developed, but they mostly provide 
scientific forecasts (SF), which may not always be accurate for 
specific locations, tailored to the farmers’ needs, and not under-
standable. Because of these reasons, many farmers in the global 
south use local ecological indicators, like observing animals or 
plants, to predict the weather, known as local forecasting (LF) 
knowledge. 

Research has shown that LF can sometimes be more accurate than 
SF, especially in regions like Africa. Moreover, some studies 
recommend combining SF with LF, known as hybrid forecasts (HF) 
for better results. The WATERAPPscale project that was conducted 

in five regions of Bangladesh provided farmers with WCIS derived 
from both the SF and LF. This project also recognizes the value of 
HF in delivering accurate rainfall predictions since a skillful 
rainfall prediction is crucial for farmers in Bangladesh to cope 
with frequent rainfall variability. Moreover, reliable WCIS can 
help farmers in their daily farming activities, such as seeding, 
planting, sowing, and applying fertiliser. This study, therefore, 
aims to document the local indicators used by Bangladeshi 
farmers, evaluate the accuracy of different forecasting methods 
provided by WCIS, and understand farmers’ perceptions of these 
forecasts. 

Based on farmers’ perceptions, WCIS generates a more accurate SF 
than LF in predicting rainfall. Conversely, systematic evaluations 
show that LF actually performs slightly better performance than 
SF, but when ground observations are used instead of ERA5 data, 
LF’s skill decreases due to high false alarm rates. A simple HF 
developed by integrating SF and LF performs better than either SF 
or LF individually when using both ERA5 and rain gauges. This 
highlights the importance of combining scientific and indigenous 
forecasting approaches for effective farm decision-making. We 
suggest continuing documenting forecasts issued by farmers based 
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on their local knowledge (LF), as this can contribute to the 
development of more accurate HF systems. 

Currently, there’s a lack of studies evaluating LF performance over 
longer time periods, which limits the development of skillful HF 
using data-driven approaches like machine learning. Implement-
ing such HF systems could greatly benefit farmers in Bangladesh 
by providing accurate WCIS, improving decision-making pro-
cesses, and unlocking the agricultural potential of the region. By 
combining scientific advancements with local knowledge, farmers 
can better manage the risks associated with climate variability and 
change. 

Data availability 

Data will be made available on request.   

1. Introduction 

The livelihoods and food security of farmers worldwide are under 
threat due to climate variability (FAO, 2019; IPCC, 2014; IPCC, 2022). 
With over 60% of farmers globally practicing rainfed agriculture, this 
sector is vulnerable to climate change (Cooper et al., 2008). This is also 
the case for Bangladesh, where the agricultural sector heavily relies on 
monsoon rainfall during the rainy season (Abedin and Shaw, 2013; 
Kumar et al., 2020b). In Bangladesh, the agricultural sector plays a 
pivotal role in the national economy and contributes to more than 15% 
of the Gross Domestic Product (GDP) and supporting around 43% of the 
population in terms of income and employment (Paparrizos et al., 2020; 
Kumar et al., 2020b). Rainfed agriculture serves as a vital source of food 
and livelihood security for millions of smallholder farmers and rural 
Bangladeshi communities. These farmers rely on weather forecast in-
formation to inform their adaptative farming strategies, including de-
cisions regarding the timing of seeding and prioritization of farming 
practices. However, changes in rainfall variability and extreme high or 
low rainfall leading to flood and drought, respectively, have significant 
socio-economic impact on farmers’ livelihoods and agricultural 
decision-making. Given these challenges, access to reliable and context- 
specific climate information becomes crucial for farmers to adjust their 
short-term operational and long-term strategic farming practices 
accordingly (Prokopy et al., 2013; Rautela and Karki, 2015; Mousumi 
et al., 2023). 

Weather and Climate Information Services (WCIS) have been 
implemented in many countries or regions, demonstrating their poten-
tial to assist farmers in mitigating the impacts of hydroclimatic ex-
tremes, such as flood and drought, and allow them to improve 
agricultural productivity (Phillips et al., 2001; Patt et al., 2005; Roncoli 
et al., 2009). WCIS generally relies on modern numerical weather pre-
diction (NWP) models to generate weather and climate information. 
However, it should be noted that the scientific forecast (SF) information 
derived from NWP models still has limitations in providing daily 
location-specific weather information for smallholder farmers in the 
global south (Kumar et al., 2021). 

Previous studies have extensively documented the various barriers 
that hinder the utilization of SF by smallholder farmers. These barriers 
include issues such as low reliability, limited skills, coarse spatial reso-
lution, and limited accessibility in rural communities (Orlove et al., 
2010; Vaughan and Dessai, 2014; Fitzpatrick et al., 2015; Sultan et al., 
2020). Furthermore, SF’s probabilistic or deterministic nature, coupled 
with inherent uncertainties, poses challenges for comprehension, 
particularly among farmers with limited training and educational 
backgrounds (Ingram et al., 2002; Kumar et al., 2020a). Consequently, 
many smallholders either do not use or have limited access to weather 
information provided by climate services, as its fails to cater to their 
specific context and needs. Instead, they rely on local ecological 

knowledge as a primary source of information for their agricultural 
practices. 

The use of local ecological indicators to forecast weather (referred to 
local forecast, LF) is a more favorable and affordable way of accessing 
weather information for many farmers in low latitude developing 
countries (Haiden et al., 2012; Derbile et al., 2016; Gbangou et al., 
2021). LF involves observing and interpreting local ecological indicators 
derived from meteorology, animals, astronomy, plants, and other sour-
ces, drawing upon intergenerational knowledge and experience (Rautela 
and Karki, 2015; Gwenzi et al., 2016; Balehegn et al., 2019). These in-
dicators, which are specific to local conditions can be categorized into 
three categories, such as atmospheric conditions, celestial elements, and 
flora and fauna (Gbangou et al., 2021). However, LF encounters several 
challenges, such as LF knowledge being lost since it is communicated 
orally, not documented, being replaced by SF steered by western 
knowledge and technologies, or not deemed useful (Codjoe et al., 2014; 
Balehegn et al., 2019; Chowdhooree, 2019; Chowdhooree and Das, 
2021). Furthermore, increasing climate variability may cause a chal-
lenge as LF indicators such as certain insect species, may change or 
disappear due to climate change (Radeny et al., 2019). A recent study 
conducted by Paparrizos et al. (2023) found that more than 1350 local 
indicators have been used by farmers worldwide for weather fore-
casting, especially in Africa where 948 indicators have been identified. 

Recent available WCISs mainly offer SF (e.g., Chiputwa et al., 2020; 
Gudoshava et al., 2022) and to the authors’ knowledge, only the 
FarmerSupport app integrates both SF and LF (Paparrizos et al., 2023). 
The use of both SF and LF systems is expected to deliver a seamless 
forecasting system, addressing the limitations inherent in single fore-
casting systems, as mentioned in the previous paragraphs. For example, 
LF may yield more accurate forecasts compared to SF in within specific 
regions (Gbangou et al., 2021; Nyadzi et al., 2022). However, LF 
strongly relies on local indicators, which may not always be observable, 
whereas SF provides continuous forecasts. In addition, many WCISs 
forecast weather conditions for nearby cities, which are often far away 
from farming communities. LF, on the other hand, is more applicable to 
specific farming area where indicators are observed. Despite approxi-
mately 314 local indicators were found in Asia (Paparrizos et al., 2023), 
there is a gap in research regarding the utilization of local indicators in 
Bangladesh to forecast weather events, particularly for the agricultural 
sector. 

In Bangladesh, the Bangladesh Meteorological Department (BMD) as 
the national meteorological agency provides SF with a lead time of 7 
days (Kumar et al., 2020a). While the BMD forecasts have a significant 
impact in disseminating warnings related to cyclones and storm surges 
in the Bengal Delta (Habib et al., 2012), they are not specifically tar-
geted at smallholder farmers. Recognizing this gap, the WATERAPPs 
project was initiated in 2016 with the goal of developing tailor-made 
weather and water forecast information designed specifically for 
farmers. One of the study areas is located in Khulna Bangladesh 
(Paparrizos et al., 2020). Since then, the WATERAPPs project has 
brought significant benefits to farmers in the Khulna district of 
Bangladesh, providing them with relevant SF information to support 
their daily farming activities (Kumar et al., 2020b). For instance, based 
on information received through the WATERAPPs WCIS, farmers in 
Khulna were able to take timely measures to protect their crops before 
the Cyclone Jawab hit Bangladesh. This proactive action helped them 
avoid significant losses in harvested rice, as experienced by many 
farmers in the Lower Ganges Delta. Building on the success in Khulna, 
the services have been expanded to five different locations across 
Bangladesh through the WATERAPPscale project, ensuring that farmers 
can access tailored weather information specific to their locations. 
Moreover, the project recognizes the value of local ecological indicators 
(LF) in providing seamless weather forecasts for smallholders in 
Bangladesh, echoing similar findings in Africa (Kalanda-Joshua et al., 
2011; Balehegn et al., 2019; Gbangou et al., 2021; Nyadzi et al., 2021; 
Nyadzi et al., 2022). 
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Research conducted by Mani and Mukherjee (2016) and Paparrizos 
et al. (2020) has assessed the performance of rainfall forecast for the 
Bengal Delta, revealing that SF exhibits low skill during the pre- 
monsoon and monsoon periods. However, these studies focused solely 
on evaluating SF performance. In contrast, LF may offer added value in 
improving forecast performance in Bangladesh. Studies conducted in 
Africa evaluating LF skill have demonstrated that the skill of LF is 

comparable to or even outperforms the SF, depending on the indicators 
used and the number of indicators included in the skill assessment 
(Gbangou et al., 2021; Nyadzi et al., 2022). These studies also highlight 
that the integration of SF and LF, known as hybrid forecast (HF), yields 
higher forecast performance than either SF or LF alone. A skillful 
weather prediction, whether derived from SF, LF, or HF, is crucial for 
farmers in Bangladesh to effectively manage the uncertainties and 

Fig. 1. The map showing five study districts (Khulna, Patuakhali, Rajshahi, Mymensingh, and Sylhet) and locations of the farmers weather schools in Bangladesh 
where the forecast skills were evaluated. 5 schools are located in the Batiaghata Khulna, 1 school in the Dacope Khulna, 2 schools in the Natore Rajshahi, 2 schools in 
Muktagacha Mymensingh, 2 schools in Sunamganj Sylhet, 2 schools in Dumi Patuakhali, and 2 schools in Dashmina Patuakhali. 
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frequent hydroclimatic variability they face. It enables farmers to make 
informed farm decision-making and to prepare for potential extreme 
weather events. 

This study is driven by four primary objectives, which are 1) to 
systematically document the local ecological indicators employed by 
farmers in Bangladesh for short-term rainfall forecasting, 2) to evaluate 
the skills of the rainfall predictions generated by SF and LF in five 
different locations across Bangladesh, 3) to develop a simple HF and 
compare its skill with SF and LF, and 4) to assess farmers’ perception of 
SF and LF performance. This study represents the first comprehensive 
evaluation of SF, LF, and HF forecast skills in Bangladesh. To the au-
thors’ knowledge, only two prior studies have evaluated the perfor-
mance of LF (Gbangou et al., 2021; Nyadzi et al., 2022) and none have 
assessed the performance of LF in Bangladesh. Furthermore, this 
research introduces a simple HF approach that holds the potential to be 
implemented in the WCIS that offers higher skill than any single forecast 
alone. The methodology and findings of this study are applicable else-
where and not only for Bangladesh. As such, this research contributes to 
the broader understanding of integrating traditional and scientific 
weather forecasting approaches to improve decision-making processes 
in agriculture and disaster risk reduction globally. 

2. Material and methods 

2.1. Study area and farmers’ weather schools 

The skill of the forecasts was evaluated in five study locations across 
Bangladesh, which are Khulna, Patuakhali, Rajshahi, Mymensingh, and 
Sunamganj-Sylhet (Fig. 1). Khulna and Patuakhali are situated in the 
Bengal Delta, which is the lower delta plain of the Ganges-Brahmapu-
tra–Meghna (GBM) Delta (Kuehl et al., 2005). This lowland region is one 
of the most densely populated deltas in the world (Kida and Yamazaki, 
2020). The agricultural sectors in these regions are agriculturally 
dominated salt-affected districts in Bangladesh and are often affected by 
tidal surge-related inundation, tropical cyclones, and hydroclimatic 
variabilities (Akter et al., 2020; Al Masud et al., 2020). Rajshahi district, 
located in the Northwest of Bangladesh, is renowned as a significant 
agricultural production center in the country. However, it is character-
ized by low rainfall and high temperature region, making it susceptible 
to drought conditions (Ali et al., 2021; Al Faisal et al., 2021). 
Sunamganj-Sylhet is located in the Haor basin (Surma basin) of North-
east Bangladesh. This region is characterized by large to medium 
floodplain depressions and wetland ecosystems, which provide local 
indicators related to animals that are mostly used by farmers in 
Bangladesh. Like other regions in Bangladesh, the Sylhet district also 
encounters high climate variability, leading to natural hazards, such as 
(flash) floods and drought (Bagchi et al., 2020). All study sites lie within 
the flat terrain across four agro-ecological zones. Khulna and Patuakhali 
are located in the Ganges Tidal Floodplain zone, Rajshahi is located in 
the High Ganges River Floodplain zone, Mymensingh is located in the 
Old Brahmaputra Floodplain zone, and Sunamganj-Sylhet is located in 
the Eastern Surma-Kushiyara Floodplain zone (Rahaman et al., 2019). 
The monthly average precipitation and temperature for these five study 
locations are presented in the Appendix Fig. A.1. 

In general, the study areas are situated in a hot and humid sub-
tropical climate zone, characterized by four distinct hydroclimatic sea-
sons: Winter (December-February), pre-monsoon summer (March- 
June), monsoon (July-September), and post-monsoon (October- 
November) (Shahid, 2010). In these regions, farmers engage in diverse 
crop cultivation throughout three crop seasons: Kharif-I, which takes 
place from mid-March to mid-July; Kharif-II, which occurs from mid- 
July to mid-November; and Rabi, which spans from mid-November to 
mid-March (Kumar et al., 2021). The primary agricultural commodities 
in these areas include rice, fish, and year-round fruit and vegetable crops 
(Kumar et al., 2021). 

A total of 16 farmers’ weather schools were established in the study 

areas to facilitate the training and engagement of farmers. Specifically, 
in the Batiaghata sub-district Khulna, five schools were established, 
along with one school in Dacope sub-district Khulna, two schools in sub- 
district Natore Rajshahi, two schools in sub-district Muktagacha 
Mymensingh, two schools in sub-district Sunamganj Sylhet, two schools 
in sub-district Dumki Patuakhali, and two schools in sub-district Dash-
mina Patuakhali (red circles in Fig. 1). The farmers’ weather schools 
served as places to conduct focus group discussion (FGD) (Kumar et al., 
2021). The participation in these schools was determined based on the 
farmers’ experience in hydroclimatic information services. The schools, 
however, were open to all farmers because they provide an excellent 
opportunity where farmers can discuss their needs, upcoming weather 
events, and foster the engagement process with their peers and local 
agricultural extension officers. 

2.2. Weather data 

2.2.1. Scientific weather forecast 
In the previous projects (WATERAPPs and WATERAPPscale), 

hydroclimate information services were provided to smallholder 
farmers in Bangladesh through the co-development of a mobile app 
(Paparrizos et al., 2023). The app utilizes scientific forecasts (SF) issued 
by meteoblue weather provider. meteoblue delivers high-resolution 
local weather information based on the NOAA Environmental Model-
ling System (NEMS) (Black et al., 2009), providing accurate and of high- 
quality data for any point on land worldwide. The model has a hori-
zontal resolution ranging from 4 km to 30 km, and a vertical resolution 
between 100 m and 2 km, depending on the specific region. For Asia and 
Japan, meteoblue uses the NEMS8, which has a spatial resolution of 8 
km. The SF forecasts are updated twice a day at 0:00 and 12:00 UTC. 
Although meteoblue provides hourly forecasts, the app only displays 
daily forecasts with three different lead times i.e. 1-day, 7-day, and 14- 
day. This limitation is in place to reduce the computational resources 
required, considering that farmers often have limited economic re-
sources for mobile internet credits. meteoblue stores hourly hindcast 
rainfall data with a lead time of 1 day in their archive. Thus, hourly 
hindcast rainfall data with a lead time of 1 day is used for analysis in our 
study. These hindcasts have a spatial resolution of 30 km, which is 
coarser compared to the 8 km resolution of the SF forecasts in Asia. In 
the analysis, the hourly hindcast data was aggregated to daily rainfall 
from 9 AM until 8 AM the following day at local time. This aligns with 
the timing of recorded rainfall observations, which were also recorded at 
9 AM. The hindcast data is available from 1st January 1985 to the 
present. It’s important to note that the meteoblue scientific forecasts are 
available for farmers in the study locations while the forecasts from the 
BMD are disseminated via radio and television and not through the app. 
Currently, there are more than 250 registered individuals, including 
farmers and agricultural extension officers in the app database. 

2.2.2. Local weather forecast 
Weather forecasts based on indigenous knowledge are referred as 

local forecasts (LF). The LF is derived from indigenous knowledge and 
observations of biophysical indicators by local people, particularly 
farmers. These indicators can encompass a wide range of components, 
including plant phenology, animal behavior, atmospheric conditions, 
and even astronomy (Roncoli et al., 2002). In many parts of the global 
south, mainly in Africa and Asia, farmers rely on their local knowledge 
and observations to predict the weather (Paparrizos et al., 2023). For 
example, the appearance of ants is an indication of expected or immi-
nent rainfall and a good season (Sarkar et al., 2015; Vervoort et al., 
2016). In the Northern Region of Ghana, farmers predict rain within a 
few hours when the wind moves towards the sun (Gyampoh et al., 
2011). In various African regions, the observation of a halo around the 
moon is associated with rainfall or a good season (Gyampoh et al., 2011; 
Mahoo et al., 2015; Jiri et al., 2015; Gbangou et al., 2020). These local 
forecasting practices demonstrate the deep understanding that local 
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communities have developed over time by closely observing their 
environment and natural phenomena. 

It is interesting to note that in the study locations in Bangladesh, the 
use of LF is not well documented, compared to many countries in Africa. 
The use of SF, on the other hand, has become an essential resource for 
small-scale-farm households in Bangladesh (Kumar et al., 2020b). One 
of the reasons might be due to limited studies conducted in Bangladesh 
concerning the use of LF for agriculture in Bangladesh. During the FGDs, 
it was found that farmers in Bangladesh rely on a limited number of 
indigenous indicators for predicting rainfall, unlike their counterparts in 
Africa who use a broader range of Indicators (Roncoli et al., 2002; Offat 
and Miriam, 2015; Gbangou et al., 2021; Nyadzi et al., 2021). Gbangou 
et al. (2021) found that LF in Ghana had higher skill than SF when 
farmers observed more than three out of total 30 indicators. However, in 
the case of Bangladesh, farmers reported observing a maximum of two 
different indicators per day and often only one indicator was observed. 
This suggests that the skill and effectiveness of LF may vary depending 
on the number and diversity of indicators utilized in a particular region. 
The indicators identified in Bangladesh included ant, dragonfly, frog, 
butterfly, bird, grasshopper, cloud, moon, wind, and hot weather. Ani-
mals were the primary indicators observed by farmers in Bangladesh, 
who documented these indicators solely to predict the onset of rainfall, 
rather than the cessation of rainfall. 

The LF data was collected from October 2021 to August 2022 
through questionaries distributed in the farmers’ weather schools. It is 
important to acknowledge that there were certain limitations in the 
collection of LF data, such as farmers not filling in their observations on 
a daily basis, particularly during the dry season. On average, 85 days of 
LF forecasts were collected. To ensure a diverse representation of LF 
indicators, a purposive sampling approach was employed, selecting 
farmers from different communities who actively relied on local in-
dicators for rainfall forecasting. We also trained the farmers who do not 
have prior knowledge of LF, usually young farmers, together with more 
experienced farmers (usually elderly), with the aim of preserving and 
transmitting local knowledge to future generations. The majority of the 
farmers submitted their daily predictions before 9 AM in the morning by 
observing local indicators from their surroundings. 

2.2.3. In situ observation and ERA5 
For this study, rainfall data were obtained from the Bangladesh 

Meteorological Department (BMD) for five stations: Mymensing (90.4◦E, 
24.7◦N), Khulna (89.5◦E, 22.7◦N), Patuakhali (90.3◦E, 22.3◦N), Raj-
shahi (88.7◦E, 24.3◦N), and Sylhet (91.8◦E, 24.9◦N) (see Fig. 1, blue 
circles). The availability of daily rainfall data varied among the stations, 
and any periods with missing data were removed from the evaluation. 
We obtained in situ observation data up to 2018 for all stations. Hence, 
the assessment of scientific forecast skill was conducted using data 
spanning from 1985 to 2018 for all datasets, including meteoblue 
hindcasts, in situ observation, and European Centre for Medium-range 
Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5). To ensure 
fair evaluation among the datasets, all days with missing values (− 999) 
in the forecast and ERA5 datasets were removed, aligning the evaluation 
of SF versus ERA5 and SF versus in situ observations with the same data 
length. Additionally, ground station data and ERA5 for the period from 
October 2021 to August 2022 were collected to match the LF period, 
enabling a comparative assessment of SF and LF within this timeframe. 

ERA5 is a public dataset generated and hosted by the ECMWF 
(Hersbach et al., 2019). It is a global dataset that can be accessed and 
downloaded from the Copernicus data store (CDS). One should note that 
ERA5 is not a product of direct observations but rather a reanalysis 
product that combines historical observational datasets with advanced 
models to generate weather data on a global scale. Due to the assimi-
lation of a vast amount of observation data, approximately 94.6 billion 
observations, ERA5 is sometimes used as a proxy for observed data in 
situations where actual observational data is not available (Hersbach 
et al., 2019). Many studies utilized ERA5 as a substitute for 

observational data to evaluate the forecast performance (e.g. Rasp et al., 
2020; Bento et al., 2022; Lavers et al., 2022; Paparrizos et al., 2020). 
ERA5 provides hourly temporal resolution and a spatial resolution of 31 
km. In this study, hourly rainfall data from 1985 to August 2022 were 
obtained for the entire country of Bangladesh and subsequently aggre-
gated into daily data by summing the rainfall recorded from 9 AM to 8 
AM on the next day. This temporal aggregation was performed to 
maintain consistency with the in situ data dan both SF and IF forecasts. 
Rainfall values equal to or less than 0.1 mm in a 24-h period were 
considered as no rain event (Xin et al., 2021; Harjupa et al., 2022). Later, 
grid points in the ERA5 dataset that were closest to the locations of the 
study sites were extracted. The inclusion of the ERA5 dataset has an 
objective to facilitate the comparison of forecast skill between the 
meteoblue forecasts and a blended product derived from the assimila-
tion of model simulations and observations, serving as an alternative 
source of observational data. 

2.3. Methods 

2.3.1. Focus Group Discussion (FGD) 
Initially, two FGDs were held in the farmers’ weather schools, with 

an average of 25 participating farmers in each school. However, the 
number of participants decreased significantly due to COVID-19 re-
strictions that were implemented. The FGDs have dual objectives, which 
are to gather the farmers’ perspectives on weather information and LF 
forecasts via semi-structured interview, and to provide advisory services 
related to agricultural decision-making based on the forecasts, with the 
assistance of local agricultural extension officers (Kumar et al., 2020a). 
During the FGDs, various topics were discussed, including SF weather 
forecasts, cropping practices, local knowledge and farming practices, 
and measures to address weather challenges. The onset of rainfall, 
cessation of rainfall, and duration of rainfall season were only briefly 
discussed during the FGDs since they were not the focus of the study. 
Following the lifting of COVID-19 restrictions, five research assistants 
were employed in the five locations to support bi-weekly meetings in the 
FGDs, as well as to collect local forecast data throughout the study 
period. The meetings were arranged twice a month for collecting the 
farmers’ perceptions of the forecasts and administer a bi-weekly inter-
view on the LF indicators (Section 2.3.2). The number of participants in 
these meetings ranged from 10 to 15 farmers in each school because not 
all farmers were able to attend the FGD every two weeks. Farmers, 
however, often shared the outcome of the FGDs with their peers, 
particularly when significant rain events were anticipated. In total, 20 
FGDs were conducted from October 2021 to September 2022, covering 
three crop seasons in Bangladesh. 

We collected in total 65 farmers’ profiles participated in FGD, with 
60% of the participants being male farmers and 40% being female 
farmers. During the FGDs, male and female farmers were not separated. 
Interestingly, a few of female farmers actively engaged in the FGDs, and 
we identified them as key farmers to assist others in disseminating 
forecasts. Among the participants, the majority (49%) had a secondary 
education level, while only 11% had a graduate level of education. It is 
worth nothing that many young farmers with age under 29 years old 
participated in the FGDs. As a result, 51% of the participating farmers 
had less than 10 years’ experience in farming. For further detailed 
farmers’ characteristics, please refer to Appendix Table A.1. 

2.3.2. Semi-structured interviews 
This study employed an exploratory research approach (Maxwell, 

2012) to investigate the perceptions of farmers in Bangladesh regarding 
the skill of SF and LF. To gather this information, an online survey tool 
called Kobotoolbox was utilized, along with semi-structured personal 
interviews conducted during group discussions with farmers in five 
study locations. The purposive sampling method or judgment sampling 
was applied in selecting the farmers for interviews (Guarte and Barrios, 
2006; Etikan et al., 2016). Bi-weekly questionnaires were distributed to 

S.J. Sutanto et al.                                                                                                                                                                                                                               



Climate Services 34 (2024) 100459

6

the farmers’ weather schools and forecast performance data were 
collected from 10 October 2021 to August 2022. The interview and 
questionnaire covered various aspects, including a) the performance of 
scientific forecasts in the previous week, b) the local forecast indicators 
observed by farmers and their performance, and c) the farmers’ forecasts 
of short-term (1–3 days) rainfall events based on local indicators. 
However, it is important to note that the local indicators to forecast 
rainfall with a lead time of more than 1 day were limited and not well 
documented. Therefore, only LF with a 1-day lead time was used, which 
aligns with the available hindcast data from meteoblue. In terms of 
forecast performance, farmers’ perceptions were categorized into five 
classes, which are very accurate (VA), accurate (Acu), acceptable (Ace), 
poor (P), and very poor (VP). All data and information used in this study 
were obtained as part of an endline study conducted after capacity 
building, training on weather forecasts, and frequent discussion had 
been implemented in the five study locations. Kumar et al. (2020a) 
conducted a precursor study to introduce the app and SF but they did not 
collect local indicators. 

2.3.3. Skill evaluation metrics 
The performance of the forecasts was assessed using the categorical 

statistic approach (Woodcock, 1976), which is a commonly used method 
for verifying dichotomous forecasts. This approach involves calculating 
various metrics based on a contingency table (Table 1). A hit is counted 
when a rain event is forecasted and observed. A miss is counted when the 
forecast shows no rainfall event, but it did occur. A false alarm is 
counted when the forecast indicates a rainfall event, but it did not occur. 
Lastly, the correct negative is counted when the forecast predicts no 
rainfall event, and it did not occur. In this study, we utilized the prob-
ability of detection (POD), the false alarm ratio (FAR), and the Hanssen- 
Kuipers discriminant (HK) metrics. POD and FAR are widely recognized 
statistical metrics for evaluating the accuracy of the forecasts (WMO, 
2014). POD measures the proportion of forecasted rain events that 
actually occurred (see Eq. 1), while FAR indicates the proportion of 
forecasted rain events that did not occur (see Eq. 2). In addition, POD 
does not consider false alarms and can be influenced by an increased in 
the number of ’yes’ predictions, and FAR is highly sensitive to false 
alarms. These two metrics, thus, should be used together to interpret 
forecast skill effectively. POD has scores ranging from 0 to 1, with a 
score of 1 indicating a perfect forecast. FAR, on the other hand, shows a 
perfect forecast if the FAR value is zero. The best skill is achieved when 
both POD and FAR exhibit high scores close to 1 and low scores close to 
0, respectively. 

The HK determines to what extent the forecast can discriminate 
between rain and no rain events (see Eq. 3). The HK ranges from − 1 to 1 
and the closer the HK value to 1, the better the forecast discriminates 
between rain and no rain events. Vice versa, the HK value of 0 indicates 
no skill and negative HK means that the misses exceed the number of 
hits. Furthermore, HK has been shown to be an unbiased categorical 
measure as opposed to many other skill scores and universally accept-
able for evaluating yes/no forecasts (Woodcock, 1976). There is no clear 
definition of which HK value is classified as ’bad’ or ’good’ forecast 
found in the literature. However, WMO (2014) and Gbangou et al. 
(2021) classify HK⩽0.15 as ’does not discriminate between yes/no 
events’, 0.15<HK⩽0.35 as ’somewhat discriminate’, and HK>0.35 as 
’discriminate between yes/no event’. In this study, we will use these 

classifications for skill assessment based on the HK metric. All the skill 
metrics used in this study have been widely applied to verify the skill of 
climate predictions (Paparrizos et al., 2020; Gbangou et al., 2021; Jiang 
et al., 2021; Harjupa et al., 2022). The POD, FAR, and HK are calculated 
as follows (see also Table 1): 

POD =
hits

hits + misses
(1)  

FAR =
falsealarms

hits + falsealarms
(2)  

HK =
hits

hits − misses
−

falsealarms
falsealarms − correctnegatives

(3) 

The evaluation of forecast skill was carried out in two distinct pe-
riods, taking into account the availability of LF data. The first period 
used a long-term rainfall time series from January 1985 to December 
2018. This period was exclusively used to assess the skill of SF in com-
parison to in situ observation and ERA5. The long time series employed 
in the skill assessment warrant the reliability and robustness of the 
forecast verification. The second period considered for evaluation 
spanned from October 2021 to August 2022 to match with the LF data 
collection period. Both SF and LF forecasts were evaluated using the 
same period to facilitate a fair comparison and to determine which 
forecast demonstrated greater skill in Bangladesh. It is important to note 
that the evaluation was conducted only for 1 day forecast lead time due 
to hindcast data availability. 

In the Appendix, a Fisher’s statistical significance test (Fisher, 1922) 
was conducted to determine if there are nonrandom associations be-
tween forecast and observed (see Table 1). This test is widely employed 
in the analysis of contingency tables and is particularly suitable when 
the sample is small, which is from October 2021 to August 2022 in our 
case (Fisher, 1922; Fisher, 1954; Agresti, 1992). We applied a signifi-
cance level of 0.05 to determine whether a statistically significant 
relationship exists between forecasted and observed data. The results of 
the test indicate that the SF evaluated using observation data is not 
statistically significant (p>0.005) for Khulna and Rajshahi (Appendix 
Table A.2). Similarly for LF, the forecasts are not significant in 
Mymensingh and Patuakhali. This suggests that there is no relationship 
between SF and observed data in Khulna and Rajshahi and between LF 
and observed data in Mymensingh and Patuakhali. The highest p-value 
of 0.103 was obtained in Patuakhali for LF-OBS, which still falls within 
the 10% significance level range. 

2.3.4. A simple hybrid weather forecast 
Several studies acknowledge the value of LF and suggest the inte-

gration of SF and LF systems, rather than discarding one in favor of the 
other (Janif et al., 2016; Plotz et al., 2017; Balehegn et al., 2019). This 
integration, known as a hybrid forecast (HF), has shown promising re-
sults in terms of forecast skill, as it was shown in Ghana (Gbangou et al., 
2021; Nyadzi et al., 2022). In addition, combining forecasts from mul-
tiple sources tends to be more accurate because of the integration of 
information gleaned from different sources (Wang et al., 2022). Building 
upon this insight, our study developed a simple HF system that combines 
both SF and LF approaches. We then evaluated the skill of the HF to 
prove whether the integration of SF and LF could yield higher forecast 
skill than a single forecasting system, either SF or LF alone. 

The simple HF system was constructed based on the forecasted rain 
events provided by SF or LF. In principle, HF will forecast rain if either 
SF or LF indicates a rain event. Consequently, the HF will only display 
either SF forecasts or LF forecasts if rain is predicted by one of them. 
However, if both SF and LF forecasts predict rain, the HF will prioritize 
displaying the SF forecasts, considering the familiarity of farmers in 
Bangladesh with SF (Kumar et al., 2020a; Kumar et al., 2021). The un-
derlying assumption of this simple HF system is that farmers may not 
observe the local indicators to forecast the rainfall on a daily basis. In 

Table 1 
Contingency table that shows possible combinations of forecasted and observed 
rain events.    

Event observed Total   

Yes No  

Event forecasted Yes Hits False alarms Forecast yes  
No Misses Correct negatives Forecast no 

Total  Observed yes Observed no Total  
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such cases, the SF forecasts can serve as a reliable alternative. On the 
other hand, the LF may exhibit better performance in predicting rainfall 
events than SF, as found in some studies (Gbangou et al., 2021; Nyadzi 
et al., 2021). Thus, the HF will predict rain when LF predicts rain no 
matter if SF predicts rain or not. Based on this assumption, the HF system 
predicts rain when either SF or LF predicts rain. Vice versa, if both SF 
and LF predict no rain event, then the HF will predict no rain event. The 
detailed selection of rain and no rain events for HF is described in 
Table 2. 

3. Results 

3.1. The skill of scientific forecast to predict rainfall events 

Fig. 2 shows the values of the POD, FAR, and HK skill metrics for SF 
forecasts across all study locations, utilizing data from 1985 to 2018. In 
the context of POD and HK, higher values closer to 1 indicate high 
forecast skills. Conversely, in the case of FAR, high forecast skill is ob-
tained if the FAR value is close to 0 (Section 2.3.3). The result demon-
strates that the meteoblue forecast has a high detection rate or hit rate in 
all locations, as indicated by POD values above 0.64. The POD and FAR 
values across all locations, in general, vary within the range of 0.64 to 
0.79 for POD and 0.02 to 0.52 for FAR. Forecast evaluation using the 
ERA5 dataset generates lower POD values (0.69 on average) than the 
observations (0.77 on average). However, in situ observations result in 
significantly higher FAR values (0.41 on average) than ERA5 (0.04 on 
average). The coarse model resolution and ERA5 may minimize the false 
alarm (Gong et al., 2003; Gubler et al., 2020). Overall, the evaluation 
using ERA5 demonstrates higher forecast skills compared to using ob-
servations due to the high number of false alarms in the observations. 
From the user’s perspective, a high number of false alarms can under-
mine the user’s trust, here is farmer, in the reliability and consistency of 
the forecasting system (Walker et al., 2019; Harjupa et al., 2022; Imhoff 
et al., 2022). 

The HK metric provides insight into the forecast performance, with 
ERA-MY achieving the highest score of 0.70 and the lowest is found for 
OBS-KH with a HK score of 0.46 (Fig. 2). A relatively low POD and a high 
FAR lead to a lower HK score and thus to lower forecast performance. 
The HK approach takes into account both the hit rate and the false alarm 
(see Eq. 3). In general, the forecast performance is higher when evalu-
ated using ERA5 data (HK = 0.66) than the evaluation using in situ 
observation data (HK = 0.49). These results indicate that the forecasts in 
all stations are capable of distinguishing rain and no rain events, as 
evidenced by HK values >0.35. 

3.2. Comparison of scientific and local forecast skill 

The previous section evaluates the skill of SF compared to ERA5 and 
ground observations from 1985 to 2018. In this section, we compare the 
performance of SF and LF with data obtained from ERA5 (Section 3.2.1) 
and in situ observations (Section 3.2.2). The skill evaluations were 
conducted from October 2021 to August 2022 to match with LF data. 

3.2.1. Comparison with ERA5 
The skills of SF and LF are evaluated against the ERA5 re-analysis 

data for the five study locations (Fig. 3). The LF yields higher POD 

values on average (0.74) compared to SF (0.62), indicating that LF has a 
higher detection rate for rainfall events. The lowest POD value is ob-
tained in Khulna for SF (0.54). This means that at least more than 54% of 
the SF and LF forecasts correctly predicted the occurrence of rainfall 
events. In terms of false alarm ratio (FAR), both SF and LF show higher 
values in Patuakhali than in other locations, with FAR values of 0.21 and 
0.23, respectively. Interestingly, all rain events forecasted by SF in 
Mymensingh and Sylhet were observed by ERA5 during the study 
period, associated with FAR = 0. 

Fig. 3 also shows the skill of the forecasts assessed using the HK 
metric. The skill of the forecasts varies in each location, with the highest 
skill found in SF-MY (HK = 0.75) and the lowest skill in SF-RA (HK =
0.39). The highest POD value generated by LF in Khulna does not 
necessarily correspond to the highest HK value due to high FAR value. 
Thus, the FAR value for LF in Khulna negatively impacts the perfor-
mance of the forecasts based on HK. On the other hand, zero FAR value 
for SF in Mymensingh yields the highest forecast performance compared 
to others (HK = 0.75). This highlights the importance of considering 
both POD and FAR when evaluating forecast performance, for instance 
using the HK metric instead of only using POD or FAR. Overall, LF has 
similar skills compared to SF, with HK values of 0.55 and 0.54, respec-
tively. This suggests that both forecasting systems perform comparably 
in terms of their ability to differentiate between rain and no rain events, 
taking into account both hits and false alarms. 

3.2.2. Comparison with ground observations 
When ground observation is used as a benchmark for forecast eval-

uation, the performance of both SF and LF decreases by a factor of two in 
some locations, associated with high false alarms (Fig. 4). In general, 
replacing ERA5 with ground observation data leads to higher POD 
values for both SF (0.68) and LF (0.79). The FAR values, however, also 
increase. with SF having an average FAR of 0.47 and LF having an 
average FAR of 0.52. The best forecast performance is obtained with SF 
in Patuakhali, yielding a HK value of 0.52. Conversely, the lowest 
forecast performance is obtained for SF-KH (HK = 0.22). Although the 
performance of the forecasts assessed using observation data is lower, 
the forecasts have some level of skill, as indicated by HK>0.22. 

3.3. Skill of simple hybrid forecast 

In Fig. 5, the skill assessment of the HF is presented using ERA5 and 
ground observation data as benchmarks. The highest POD value of 0.94 
is achieved by the HF in Mymensingh when evaluated against ERA5 
data. The use of in situ observations alleviates the skill of correct pre-
diction of rain events (POD). The HF correctly predicts the occurrences 
of rainfall in Mymensingh (POD = 1), while the lowest POD value is 
obtained in Sylhet (POD = 0.81). Conversely, the use of ground obser-
vations leads to higher FAR values, associated with low skill. Because of 
the high FAR, the HK values of the HF using in situ observation are lower 
compared to using ERA5. These results highlight the impact of using 
different observation sources on the performance evaluation of the HF, 
with ERA5 data generally yielding higher skill scores compared to 
ground observations. 

We summarize the forecast skills of SF, LF, and HF using both ERA5 
and ground stations as observations in Table 3. The results clearly show 
that the integrated forecast (HF) generates higher forecast skills 
compared to SF and LF alone. In terms of correct predicting rain events, 
the HF yields average POD values of 0.88 and 0.91 when compared with 
ERA5 (HF-ERA5) and ground observation (HF-OBS), respectively. For 
the single forecasts, the LF has higher average POD value compared to 
SF. The HF, however, also exhibits high FAR, especially for HF-OBS. 
Similar to SF and LF, the use of ground observation data increases the 
FAR values of HF from 0.13 (HF-ERA5) to 0.53 (HF-OBS). As expected, 
higher FAR values lead to lower forecast skill. Nevertheless, the forecast 
skill obtained from HF is still higher than SF and LF. Here we demon-
strate that integrated or combined forecasts (HF) provides higher skill 

Table 2 
Determination of HF based on rain and no rain occurrences of SF and LF.  

Forecasts 

SF LF HF 

Rain No rain Rain 
No rain Rain Rain 

Rain Rain Rain 
No rain No rain No rain  
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than any single forecast systems. 3.4. Farmers’ perception of forecast performance 

During the study period, farmers in the five locations were surveyed 
about their perception of the quality of SF and LF forecasts. The results 

Fig. 2. Scientific forecast (SF) skills identified using HK, POD, and FAR metrics for the five study locations: Khulna (KH), Mymensingh (MY), Patuakhali (PA), 
Rajshahi (RA), and Sylhet (SY). We analyzed the skills by comparing the meteoblue forecasts with ERA5 (ERA) and in situ observation (OBS). 

Fig. 3. Scientific (SF) and local forecast (LF) skills compared to the ERA5 dataset for the five study locations: Khulna (KH), Mymensingh (MY), Patuakhali (PA), 
Rajshahi (RA), and Sylhet (SY). 

Fig. 4. Scientific (SF) and local forecast (LF) skills compared to in situ observation dataset for the five study locations: Khulna (KH), Mymensingh (MY), Patuakhali 
(PA), Rajshahi (RA), and Sylhet (SY). 
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indicate that the SF forecasts for rainfall and temperature are considered 
very accurate by 28% and 33% of respondents, respectively (Fig. 6). 
However, many farmers consider that the forecasts of rainfall (50% of 
respondents) and temperature (46% of respondents) are accurate. When 
considering both very accurate and accurate forecasts as indicators of 
good forecast quality, the temperature is selected by 79% of respondents 
as the most accurate forecast. Our result shows that rainfall, which is 
considered the most important variable for farm decision-making 
(Kumar et al., 2020a; Sutanto et al., 2022), is selected by 78% of re-
spondents as having good forecast quality, ranking second after tem-
perature. Only 9% of farmers indicate that rainfall forecast has poor 
performance. According to the perceptions of many farmers in 
Bangladesh, LF forecasts are commonly viewed as less accurate when 
compared to SF forecast for weather prediction (Fig. 6). Temperature, a 

weather variable with higher predictability using SF, is not easily pre-
dicted using LF. Around 54% of the farmers indicated that LF predicts 
precipitation events to be very accurate and accurate. However, a low 
number of respondents (18% and 3%) expressed that rainfall prediction 
using LF has poor and very poor quality, respectively. 

4. Discussion 

4.1. Difference in farmers’ perception and systematic evaluation 

According to the perception of farmers in our study areas, the SF is 
perceived to have better performance in predicting weather than the LF. 
Farmers claimed that the SF forecast of precipitation has better skill than 
the LF forecast (Fig. 6). This finding contradicts to algorithm aversion 
introduced by Dietvorst et al. (2015). In algorithm aversion, it is sug-
gested that people tend to lose confidence in algorithmic predictions 
(here is SF) compared to forecasts provided by human experts (here is 
LF). When systematically evaluating the forecast skills for rainfall using 
the dichotomous method, the results show that LF indeed yields slightly 
higher performance than SF (Fig. 3 and 4). These findings align with 
previous studies by Kalanda-Joshua et al. (2011), Mahoo et al. (2015), 
and Nyadzi et al. (2022). In Malawi, farmers believe that their local 
forecast (LF) is more reliable than the SF because it is built on local 

Fig. 5. Hybrid forecast (HF) skill assessment for the five study locations: Khulna (KH), Mymensingh (MY), Patuakhali (PA), Rajshahi (RA), and Sylhet (SY).  

Table 3 
Summary of the forecast skills averaged from five locations.  

Indicator Forecast system  

SF-ERA5 LF-ERA5 SF-OBS LF-OBS HF-ERA5 HF-OBS 

POD 0.62 0.74 0.68 0.79 0.88 0.91 
FAR 0.08 0.13 0.47 0.52 0.13 0.53 
HK 0.54 0.55 0.36 0.36 0.65 0.39  

Fig. 6. Farmers’ perception of the performance of both scientific forecast (SF) and local forecast (LF). Y axis shows the ratio of the number of days that most farmers 
filled in the forecast performance divided by the total observed days in percent. Abbreviation Temp stands for temperature. 

S.J. Sutanto et al.                                                                                                                                                                                                                               



Climate Services 34 (2024) 100459

10

experience and knowledge (Kalanda-Joshua et al., 2011). They further 
highlighted the necessity to tailor weather and climate information 
specifically to their local areas. These are the foremost reasons why the 
LF is more trustworthy than the SF, according to farmers’ perceptions in 
Malawi. In Tanzania, a majority of farmers (>90%) are aware of local 
weather and climate forecasts and rely on LF in planning their agricul-
tural activities (Mahoo et al., 2015). In that study, more than half of 
respondents believed that LF is more reliable compared to SF, while only 
a few claimed that SF is more skillful. Similarly, in a study in northern 
Ghana by Nyadzi et al. (2022), the performance of SF and LF varied each 
month during the rainy season, with LF generating higher overall skill 
compared to SF. 

Indigenous knowledge and local indicators also play a significant 
role in weather forecasting In Asia, as documented in several studies 
(Hiwasaki et al., 2015; Rautela and Karki, 2015; Cuaton and Su, 2020). 
Hiwasaki et al. (2015) found that small island communities in Indonesia, 
Philippines, and Timor-Leste rely on local indicators based on animals 
and trees to forecast extreme weather events, such as strong wind, heavy 
rain, and drought. Similarly, Rautela and Karki (2015) demonstrated the 
dependence of people in the Himalayan region on LF due to limited 
access to scientific weather forecasts. According to Cuaton and Su 
(2020), the Mamanwa people in the Philippines observe some animals 
and celestial bodies to forecast weather and natural hazards. In 
Bangladesh, the use of local indicators to forecast weather is not well 
reported. Paul and Routray (2013) explored the use of local indicators, 
such as animal behavior, water and weather conditions to predict cy-
clones on the coast of Bangladesh. The aforementioned studies in Asia, 
however, primarily focus on the utilization of local indicators and 
traditional knowledge, rather than comparing the forecast performance 
between SF and LF. Therefore, drawing definitive conclusions regarding 
the forecast performance of SF and LF in Asia based solely on these 
studies is challenging. 

There is a possible explanations for the disparity between the 
perceived performance of SF and LF by farmers and evaluation using a 
systematic approach. Farmers in our study locations have easy access to 
SF information through mobile phones (see Kumar et al. (2020b)), 
allowing them to make tactical agricultural decision-making, such as 
when to plant, seed, and apply fertilizer. The training and forum group 
discussion on SF interpretation, uncertainty, and probability of the 
forecasts have also contributed to increased confidence and trust in SF 
among farmers (Kumar et al., 2021). In contrast, indicators used in 
indigenous knowledge-based forecasts may not be observable on a daily 
basis (Nyadzi et al., 2021), leading to uncertainty among farmers about 
the weather conditions that they may encounter if the indicators are not 
observed on a particular day. Due to these factors, farmers perceive SF as 
being more reliable and skillful than their indigenous knowledge of 
weather forecasting. 

4.2. Difference in ERA5 and ground observations 

The use of ERA5 and ground station as a forecast benchmark shows 
higher skill when the ERA5 is used compared to observation measured 
by rain gauges (Fig. 3 and 4). The disparity in skill between using ERA5 
and in situ observations can be attributed to several factors. One possible 
explanation is the spatial variability of rainfall and micro-scale processes 
over the study regions (Tripathi and Dominguez, 2013; Paparrizos et al., 
2020; Nyadzi et al., 2021). These localized weather patterns and pro-
cesses may not be adequately captured by ERA5, leading to differences 
in forecast skill compared to in situ observations. Additionally, the 
presence of high false alarms (FAR) in the observations measured by rain 
gauges could contribute to the discrepancy. Undetected drizzle precip-
itation by the rain gauge may result in inflated FAR values. It is 
important to consider the geographical locations of the rain gauged and 
the farmer communities. The rain gauges are typically installed in or 
near cities or airports, while the farmer communities are situated in peri- 
urban areas or villages, located further away (>10 km, Fig. 1). Given the 

localized nature of weather patterns in the region, the distance between 
the rain gauges and farmer communities may lead to missed recordings 
of local rainfall events, thereby affecting the forecast skill and resulting 
in higher FAR values (see A Fig. A.2). However, it is noteworthy that the 
POD scores of SF-ERA and LF-ERA are similar to SF-OBS and LF-OBS 
(Table 3). Previous studies by Nystuen (1999) and Liu et al. (2019) 
have highlighted the tendency of rain gauges to underestimate very light 
rainfall events (i.e., rainfall < 1 mm). Thus, low-intensity rainfall might 
not be recorded but it is forecasted by the model as a drizzle. To address 
the mismatch between forecasts, ERA5, and observations caused by 
local rainfall occurrences, it is advisable to install simple rain gauges in 
the farmer communities and measure rainfall on a daily basis, particu-
larly during the rainy season, to capture the local rainfall patterns 
accurately (Landman et al., 2020; Nkuba et al., 2023). 

The coarse spatial resolutions of the models, here are ERA5 (30 km) 
and meteoblue (30 km for hindcast), could attribute to the higher 
forecast skill found when using ERA5 as observational data. The coarse 
datasets tend to increase the prediction accuracy of yes/no precipitation 
events rather than providing detailed information about precipitation 
amount (Gong et al., 2003; Gubler et al., 2020). The use of ERA5, which 
has low model resolution, may lead to missed forecasts and lower POD 
score, particularly for local convective precipitation events occurring in 
neighboring locations just a few kilometers away. In contrast, these 
events might be captured by the meteoblue forecast but not by the 
ground stations, resulting in a higher false alarm ratio as observed in our 
study. While the use of high spatial aggregation improves the forecast 
performance (e.g., meteoblue forecasts used by farmers in Asia has 8 km 
spatial resolution), it limits the practical utility of the forecast for 
smallholder farmers (Bauer et al., 2015; Paparrizos et al., 2020). The 
goal should be to provide location- and time-specific information that is 
accurate and relevant for smallholder farmers. Therefore, the trade-off 
of obtaining higher forecast skill by using coarse resolutions is not 
justified (Robert, 2008). Instead, efforts should be directed toward 
developing forecasting systems that can deliver precise and timely in-
formation tailored to the needs of smallholder farmers. 

Some studies define “a rain day” as one having rainfall > 1 mm 
(Herold et al., 2016; Benestad, 2018; Contractor et al., 2018). Hence, we 
conducted an experiment where rainfall amounts less than 1 mm/d were 
considered as no rain event to explore the impact of low-intensity 
rainfall on forecast skill scores. The experiment was performed with 
the assumption that the model tends to produce drizzle so that the skill 
scores are very dependent on the occurrences of drizzle. By filtering low- 
intensity rainfall in all datasets, we aimed to remove the drizzle pre-
cipitation from the forecasts and ERA5 that might not have been 
observed by ground stations. The result shows that increasing the 
rainfall threshold from 0.1 mm/d to 1 mm/d did not lead to a significant 
reduction in the FAR values for all stations (A Fig. A.3). Instead, we 
observed a decrease in the POD values and a slight increase in the FAR 
values, indicating lower forecast performance (low HK). These findings 
suggest that the high FAR values obtained when using ground obser-
vations are not solely due to the presence of drizzle precipitation events. 
There are two possible explanations for the high FAR values. Firstly, 
human error could contribute to the discrepancy, where e.g., the ob-
servers might have failed to measure rainfall on days with low-intensity 
rainfall (<1 mm/d) because they assumed that no rain occurred. 
Installing automatic rainfall recorder and providing training for rainfall 
observers to account for light rainfall events could help to reduce the 
uncertainty. Secondly, it is also plausible that there is a bias in the 
forecast model and ERA5, leading to an overestimation of light rain 
events (Davis et al., 2006; Hu and Yuan, 2020; Bandhauer et al., 2021). 

4.3. Towards developing an integrated forecasting system 

The integration of local knowledge with scientific knowledge, known 
as hybrid forecast (HF), has been suggested by several previous studies 
as a valuable approach for weather and climate prediction (Kalanda- 
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Joshua et al., 2011; Mahoo et al., 2015; Radeny et al., 2019; Guodaar 
et al., 2021). The HF will generate a seamless forecasting system that is 
more skillful than any single forecast, consistently available on daily 
basis, location-specific, and capable of enhancing the acceptability of 
forecast information among farmers, leading to a trusted system. Our 
findings demonstrate that, overall, the prediction skill of yes/no rain 
events using HF outperforms both SF and LF (Fig. 5, Table 3). However, 
one should note that HF has outstanding performance in terms of pre-
dicting the POD but also exhibits a high FAR, which is influenced by 
either SF or LF (comparison Fig. 3–5). This indicates that HF combines 
not only the strengths of SF and LF but also their weakness, mainly when 
relying on ground observations (Gbangou et al., 2021). The high POD 
alleviates the performance of HF compared to others. The simple HF 
method employed in our study is designed to primarily forecast rain 
events by combining the prediction of rain from SF and LF (Section 
2.4.3). In addition, integrating scientific knowledge with local knowl-
edge will increase farmers’ trust as their indigenous knowledge is not 
disregarded (Ebhuoma, 2020). The participatory process and the level of 
engagement with farmers, which were followed in the current study to 
develop the HF, ensure the uptake of forecast information. Moreover, HF 
also reduces the farmer’s confusion in choosing which forecast should be 
chosen for agricultural decision-making, especially when the prediction 
is contradictory between the two forecasting systems (SF and LF) 
(Nyadzi et al., 2022). 

In this study, we developed a skillful HF by adopting a simple 
approach, wherein rainfall events were predicted if either SF or LF 
forecasted rain (see Section 2.4.3). To the best of our knowledge, only 
two studies have developed and evaluated the skill of HF (Gbangou 
et al., 2021; Nyadzi et al., 2022). Many only suggest the importance of 
integrating SF and LF without providing specific guidance on how this 
should be carried out. Gbangou et al. (2021) applied a statistical inte-
gration technique that optimized both SF and LF based on the number of 
observed indicators. Their study recommends farmers to rely on SF if >2 
local indicators were observed, use either SF or LF if 3 local indicators 
were observed, and solely rely on LF if >3 local indicators were 
observed. This method, however, does not guarantee the success of the 
HF, as in many cases, only 1 or 2 indicators are observed on the same 
day, particularly in our studied regions. Another approach proposed by 
Nyadzi et al. (2022), involved using a weighted average of SF and LF 
forecast probabilities. This method enabled the estimation of the prob-
ability of the HF, providing a unified forecast to eliminate contradictions 
and confusion among farmers. This method, however, cannot be applied 
in our study areas due to the limited availability of farmers’ data to 
derive LF probabilities. As we mentioned earlier, the LF is not widely 
used by farmers in Bangladesh, unlike in Africa. Both the studies by 
Gbangou et al. (2021) and Nyadzi et al. (2022) applied sophisticated 
approaches to build skillful HF that outperformed individual forecast. In 
contrast, our study focused on a simple yet practical approach to develop 
a skillful HF, which proved to be effective. Another approach such as 
machine learning that gains popularity nowadays can be considered for 
developing a skillful HF. Such method has been applied in the devel-
opment of hybrid hydroclimatic forecasting systems that integrate a 
wide variety of predictions from numerical weather prediction, and 
earth system models including climate, land, and hydrology, into a 
hybrid product (Slater et al., 2022). These methods hold potential for 
enhancing the skill and accuracy of HF in the future. 

Given many approaches can be utilized to develop hybrid forecasts 
for smallholder farmers, one of the key challenges is the sustainability of 
local ecological indicators and the availability of long-term weather data 
series based on these indicators. Various factors, such as land use 
change, policies, globalization, and climate change have resulted in a 
decline and the loss of indicators (Fratkin and Roth, 2006; Gilberthorpe 
and Hilson, 2014; Balehegn et al., 2019; Radeny et al., 2019). Many of 
these indicators present shifting patterns due to climate change (e.g. 
migratory animals and extinction of specific flora), rendering them un-
reliable for farmers’ predictions compared to how their ancestors used 

them. Furthermore, local knowledge is subject to skepticism due to the 
peculiar indicators used by the indigenous people, such as the color of 
animal intestines (Ayal et al., 2015; Kagunyu et al., 2016), the gender of 
the newborn (Soropa et al., 2015), or the paint in the joints (Ubisi et al., 
2020). Nevertheless, there are more than 1350 indicators that have been 
documented in numerous locations across the world, mainly in the 
global south, which require systematic documentation (Snoeren, 2020; 
Paparrizos et al., 2023). These local indicators, however, are location- 
specific and not globally applicable, as the occurrence of the same in-
dicators in multiple regions may signify different prediction signals. We 
collected local indicators specifically used by farmers in Bangladesh to 
predict weather since there was no documentation of local indicators in 
Bangladesh. Moreover, a diverse range of indicators observed will in-
crease the temporal resolution of LF, as rainfall event can be predicted 
using different indicators, such as butterfly flying, the sound of frogs, 
and ants carrying eggs. Therefore, continued efforts are needed to 
document indigenous forecast data through questionnaires or other 
methods, as the availability of LF data is often limited. 

4.4. Study limitations 

The evaluation of SF and LF in our study, as well as in other literature 
(Gbangou et al., 2021; Nyadzi et al., 2022) comes with important ca-
veats that should be taken into consideration for future studies. The 
evaluation was conducted on dates when farmers observed local in-
dicators. This favorable condition for LF might have influenced the 
evaluation of forecast performance using statistical metrics such as POD, 
FAR, and HK. It should be noted that farmers did not provide forecasts 
based on their local knowledge if no indicator was observed in the field 
(personal communication with field assistants). This might also increase 
the perception of farmers in SF since it always provides weather infor-
mation on a daily basis. Moreover, we collected the LF data for a single 
rainy season, which is insufficient to draw definitive conclusions about 
the overall performance of local weather forecasts in Bangladesh. 
Further data collection over multiple seasons will contribute to a better 
understanding of how these local indicators perform and their potential 
to enhance weather forecasting for smallholder farmers in the 
Bangladesh Delta. These limitations should be acknowledged to ensure a 
fair forecast evaluation. 

5. Conclusions and recommendations 

This research represents the first comprehensive evaluation of both 
scientific (SF) and local forecast (LF) performance in Bangladesh. The 
results of this study demonstrate that, overall, LF exhibits slightly higher 
forecast performance compared to SF. However, when ground obser-
vations are used instead of ERA5, the skill of LF decreases, associated 
with high FAR. The simple HF developed by integrating the SF and LF 
outperforms the individual performance of the SF and LF when using 
both ERA5 and rain gauges. These findings emphasize the importance of 
developing a hybrid forecast that combines scientific and indigenous 
weather forecasting approaches for effective farm decision-making. 
Furthermore, the simple HF approach as demonstrated in our study 
can be easily implemented in the Weather and Climate Information 
Services (WCIS) to provide a seamless rainfall forecast for smallholder 
farmers not only in Bangladesh but also elsewhere in the global south. 
The HF system not only provides a reliable and trustworthy forecast but 
also preserves and incorporates indigenous knowledge that has been 
passed down through generations, fostering trust and confidence among 
farmers. 

We suggest installing rain gauges in close proximity to farmers’ 
weather schools to address the issue of distance between farmer com-
munities and existing rain gauges. This would facilitate more accurate 
and localized rainfall measurements for specific agricultural areas. The 
data, however, need to be collected by the farmers themselves since the 
gauges are not registered in the Bangladesh Meteorological Department 
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(BMD), thus training on the measurement of rainfall is of utmost 
importance. Additionally, the BMD could consider to document the 
rainfall data measured by farmers in their system to increase their 
rainfall network and provide extension services to the communities. 
Furthermore, it is essential to emphasize the continuation and docu-
mentation of forecasts issued by farmers based on their local knowledge. 
This indigenous forecasting knowledge is valuable and can contribute to 
the development of hybrid forecasts (HF) with improved skill and ac-
curacy. Currently, there is a lack of studies evaluating the performance 
of LF using a longer time series spanning more than two years. This 
hampers the potential development of skillful HF using data-driven 
approaches like machine learning. Such HF system can help farmers in 
Bangladesh by providing skillful weather and climate information. This 
system has the potential to improve their decision-making processes, 
enabling better farm planning and unlocking the agricultural potential 
of the region. By combining scientific advancements with local knowl-
edge, farmers can make more informed choices and mitigate the risks 

associated with climate variability and change. 
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Appendix A 

The average monthly temperature and precipitation for the five study locations are similar, with higher temperature and precipitation observed in 
the northeast of Bangladesh (Fig. A.1). Khulna and Patuakhali, which are located in the south have a maximum temperature of around 38 ◦C and 36 ◦C, 
respectively. Maximum precipitation of 150 mm was observed in Khulna in June and 180 mm was observed in Patuakhali for the same month. 
Rajshahi has the highest temperature of 39 ◦C and precipitation amount of 175 mm. Mymensingh has a maximum temperature of 36 ◦C and pre-
cipitation amount of 220 mm. The lowest maximum temperature and highest precipitation amount were observed in Sylhet, with a maximum 
temperature of 33 ◦C and precipitation amount above 400 mm. 
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Fig. A.1. Monthly temperature and precipitation for five study locations averaged from monthly data for the last 30 years. Source: meteoblue.  

The characteristics of farmers in the five locations is presented in Table A.1. Among them, 60% were men and 40% were women farmers. Most 
farmers prefer to cultivate rice and vegetables in the three different crop seasons, the Aus (29%), the Aman (91%), and the Boro (71%). Please keep in 
mind that one farmer can cultivate more than one crop. Education status shows that about half (49%) of farmers had secondary-level education and 
about one-fourth (22%) had primary-level education. The interviewed farmers had substantial farming experience ranging from 1–10 years (51%), 
11–20 years (25%), and above 20 years (2%). Among the respondents, 43% were young farmers between the age group 16–29 years old, 45% were 
mid-age farmers between the age group 30–49 years, and only 12% were old-age farmers between ages 50 and above.  
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Table A.1 
Profile of the smallholder farmers in Bangladesh. For farming practices, one farmer can cultivate for more than one crop.  

Variables Frequency Percentage Variables Frequency Percentage  
(N = 65) (%)  (N = 65) (%) 

Locations Education 
Khulna 16 25 No education 9 14 
Mymensingh 10 15 Primary 14 22 
Rajshahi 16 25 Secondary 32 49 
Patuakhali 11 17 Diploma 3 5 
Sylhet 12 19 Graduate 7 11       

Gender Experience (year) 
Male 39 60 1–10 33 51 
Female 26 40 11–20 16 25  

>20 16 25       

Age group (year) Farming practices 
16–29 28 43 Aus 19 29 
30–39 18 28 Aman 59 91 
40–49 11 17 Boro 46 71 
>50 8 12 Vegetables 50 77  

Fisher’s exact test was employed to test the significance level of the forecasts. This method was applied because it can be used in the analysis of 
contingency tables and for small samples. In our study, we only have 85 days of LF. Forecast evaluations using ERA5 as a benchmark show that all 
forecasts (SF and LF) are statistically significant with p >0.005 (Table A.2). However, the use of ground observation to evaluate the SF skill in Khulna 
and Rajshahi yields high p-values. Similar results are also found in LF if in situ observations are used as a benchmark.  

Table A.2 
Significance test based on Fisher’s exact test for SF and LF in the study locations. Values in red indicates that the 
forecast is not statistically significant (p > 0.005).  

To test the accuracy of ERA5 compared to ground stations, we plotted the number of rain and no rain events in Fig. A.2. Fig. A.2 clearly shows the 
mismatch between ERA5 and observation in predicting rain and no rain events. The highest miss prediction is seen in Rajshahi where ERA5 predicts 
rain and no rain more than double compared to observation. In general, ERA5 simulates higher rain events than observation and consequently affects 
the low no rain prediction of ERA5.

Fig. A.2. Number of rain and no rain events derived from ERA5 and observed by rain gauge in five locations: Khulna (KH), Mymensingh (MY), Patuakhali (PA), 
Rajshahi (RA), and Sylhet (SY) during study period. 

Fig. A.3 shows the SF performance if we raised the threshold of rain event from 0.1 mm/d to 1 mm/d. Increasing the threshold to 1 mm/d does not 
support the previous hypothesis that high FAR found in the observation and not in the ERA5 is caused by the low-intensity rainfall or drizzle. Here, we 
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confirmed that ERA5 tends to simulate more rain events, or the rain was not observed due to e.g., human error.

Fig. A.3. Same as Fig. 2 but for rainfall higher than 1 mm/d.  
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