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A B S T R A C T   

Instruments aiming to avoid illegal logging such as certification chains require data-driven solutions to verify 
timber origin. One approach to timber tracing is dendroprovenancing, which uses the spatial and temporal 
consistency of tree ring width patterns to match unknown samples to reference samples from known locations. 
Best matching reference samples indicate the potential source location of the unknown sample. Gaps in temporal 
and spatial coverage of reference chronologies however currently limit applicability of dendroprovenancing, 
with additional data acquisition being both time-consuming and expensive. This study presents a novel general 
dendroprovenancing framework, aiming to overcome this shortcoming. It relies on modelling and spatially 
exhaustive prediction of reference chronologies using a regression model and gridded high-resolution soil- and 
climate data with global coverage. The presented framework is explored through a case study on Quercus robur 
using 107 tree-ring chronologies from western and central Europe. We tested three scenarios using leave one out 
cross-validation: 1) the dating of the chronology is unknown, 2) the source location of the chronology is un
known, and 3) both the dating and source location of the chronology are unknown, with the latter most closely 
resembling a real-world scenario. We found that tracing accuracy was high, even in the scenario in which both 
the dating and source location of the chronology were unknown. 82.2% of the chronologies were traced to within 
a radius of 250 kilometres from the ground truth and correctly dated. The findings highlight newfound potential 
of dendroprovenancing for timber tracing.   

1. Introduction 

Illegal logging and trade in illegal timber products are ongoing 
global issues, causing harm to the environment, local communities, and 
economies (Khalid et al., 2019). Determining the provenance of timber 
through forensic diagnostic timber identification is broadly recognised 
as an important step toward combatting illegal logging (Dormontt et al., 
2015). This is also demonstrated by recent policy developments in the 
European Union (EU), where member states are set to conduct prove
nance checks to ensure timber products do not contribute to the 
destruction and degradation of forests (European Commission, 2021). 

Instruments aiming to avoid illegal logging include certification 
chains such as the Forest Stewardship Council (FSC), Programme for the 
Endorsement of Forest Certification (PEFC), and the EU’s Forest Law 
Enforcement, Governance and Trade Action Plan (FLEGT) (European 
Commission, 2003). The latter includes bilateral trade agreements 
known as Voluntary Partnership Agreements (VPAs) (Polo Villanueva 
et al., 2023). Should such solutions only rely on the accumulated 

product of trust and agreements during the multiple stages of the timber 
chain, they would be susceptible to fraud. Hence, they partly rely on 
data-driven verification of timber provenance to ensure legality (Forest 
Stewardship Council, 2017). Data-driven approaches provide indepen
dent means of tracking the provenance of timber (Dormontt et al., 
2015). They can be used directly on the timber itself at a late- or final 
stage in the timber chain, circumventing the aforementioned limitations 
of trust and agreements in certification chains. 

Dendroprovenancing uses tree ring growth chronologies to deter
mine the provenance of a wood sample (Bridge, 2012). The premise is 
that a tree-ring series of unknown origin, or a chronology based on such 
samples, can be compared to all available chronologies of the same 
species. The potential regional origin of the unknown wood sample is 
derived based on the strongest match with a chronology of known 
origin. A common approach is to assess the correlations between the 
unknown chronology and reference chronologies and assign the un
known chronology to the location of the reference chronology with 
which it is most strongly correlated, for example judged by the t-value 
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(Bridge and Fowler, 2019). Further approaches include mapping dots 
varying in size in proportion to the level of cross-match between the 
unknown chronology and reference chronologies to indicate provenance 
(Bridge, 2012; Daly, 2007; Daly and Tyers, 2022), or through employing 
a network approach (Visser, 2021; Visser and Vorst; 2022). 

The availability of reference datasets is currently one of the major 
challenges in the effective use of dendroprovenancing, as these 
commonly contain gaps in both spatial and temporal coverage (Pearl 
et al., 2020). The collection of additional data is often time-consuming 
and expensive, owing to the effort needed both during in-situ sam
pling and sample measuring (Pilcher et al., 1990). While other 
data-driven approaches to enhance timber provenancing have been 
developed, such as vessel size analysis (Akhmetzyanov et al., 2019), 
distinguishing between late- and earlywood (Akhmetzyanov et al., 
2020b), isotope analysis (Boeschoten et al., 2023a; D’Andrea et al., 
2023; Van Ham-Meert and Daly, 2023), multi-element analyses 
(Boeschoten et al., 2023b) and DNA analysis (Akhmetzyanov et al., 
2020a), these face the same fundamental challenges. Reference datasets 
with full spatial coverage are necessary to determine the provenance of 
an unlocated sample with confidence, but these currently contain gaps 
that are difficult and/or expensive to fill. 

To address the challenge of incomplete coverage in lacking reference 
datasets, this study proposes a novel approach that creates a set of 
modelled reference chronologies at high spatial resolution, based on 
available climate-growth relationships and gridded meteorological and 
soil data. Such an approach is possible because the driving factors of tree 
ring width (TRW) variation have been well-known for many tree species 
in temperate regions (Schweingruber, 2012) and are used for climate 
modelling and -reconstruction (Hughes, 2002). The most important 
environmental factors affecting TRW variation - temperature, precipi
tation, and soil characteristics - are now available as high-resolution 
global gridded products (Fick and Hijmans, 2017; Harris et al., 2020; 
Poggio et al., 2021). As the available gridded meteorological data goes 
back to the start of the 20th century, this allows modelling tree growth 
variability over large spatial and temporal extents. 

This study serves as a proof of concept for enhanced den
droprovenancing by modelling reference chronologies covering an 

entire species range using gridded meteorological and soil data. It aims 
to demonstrate the potential of this novel approach as a tool for timber 
provenancing. A general framework is presented, of which the effec
tiveness is judged through a case study using raw TRW data sourced 
from the International Tree-Ring Data Bank (ITRDB) (Grissino-Mayer 
and Fritts, 1997) of one tree species; pedunculate oak (Quercus robur L.), 
combined with gridded data from Soilgrids (Poggio et al., 2021), CRU TS 
(Harris et al., 2020) and Worldclim (Fick and Hijmans, 2017). The aims 
of this study are to (i) assess to what extent interannual tree growth 
variability can be explained from globally available gridded data, and 
(ii) determine the accuracy of dendroprovenancing using the resulting 
modelled reference chronologies. 

2. Material and methods 

2.1. General framework 

Our framework (Fig. 1) is based on reference TRW time series of 
individual trees of a particular tree species, which are locally combined 
into reference chronologies. Thus, TRW measurements of multiple trees 
are detrended and aggregated into a single chronology at a given loca
tion. Traditional approaches would compare a chronology with un
known dating and/or location directly to these reference chronologies. 
Instead, we select gridded data sources containing variables known to 
affect this species’ TRW variation, such as meteorological- or soil data, 
and extract data for the locations of each reference chronology. A 
regression model is then trained using the extracted gridded data as 
features and individual chronology values of the reference chronologies 
as targets. 

The regression model is used to construct modelled reference chro
nologies throughout the entire distribution range of the species using a 
point grid. The undated and/or unlocated chronology is compared to the 
modelled reference chronologies using the coefficient of determination 
(R2) as the evaluation criterion. The greatest R2 denotes the closest 
match of the date and/or location of the unknown chronology. Other 
similarity metrics could also be used but R2 is easily interpreted and in 
contrast to parametric hypothesis testing (e.g. the t-test) it does not rely 

Fig. 1. General flowchart of model framework. Instead of directly comparing and matching an unknown chronology to reference chronologies, a regression model is 
trained using reference chronologies in combination with relevant gridded environmental data. Using the regression model, modelled reference chronologies are 
constructed for all points in a user-specified point grid, which encompasses the species distribution with a given sampling density. Next, the unknown chronology is 
compared to and matched with the modelled reference chronologies. 
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on sampling and distributional assumptions. 
Overall, the approach shows similarities to the work of Babst et al. 

(2018), Practical example 1), but applied to dendroprovenancing. Note 
that this framework is broad and requires specific choices to be made 
regarding the detrending method, the chronology aggregation method, 
the used gridded data and the regression model, which may all depend 
on the specific use case. 

2.2. Case study 

The proposed framework was explored through a case study. The 
species of interest study was pedunculate oak (Quercus robur L.), known 
for its clear TRW response to environmental conditions (Schweingruber, 
1993) and relatively high data availability. The study area encompassed 
the known species’ distribution range (Fig. 2; Caudullo et al., 2017). 

2.2.1. Data 
TRW data was obtained from the ITRDB, querying for raw TRW data 

of pedunculate oak (Quercus robur L.). The ITRDB is the most compre
hensive archive of publicly shared tree-ring data (Zhao et al., 2019). A 
comprehensive list of ITRDB datasets used in this study can be found in 
the supplementary reference section (Appendix A). 

Gridded meteorological data were obtained by combining Climatic 
Research Unit Timeseries (CRU TS) v. 4.06 (Harris et al., 2020) and 
Worldclim (Fick and Hijmans, 2017). Both datasets cover all land areas 
globally for a set of meteorological variables. CRU TS is a widely used 
dataset and provides monthly data at a spatial resolution of 0.5◦. It has 
frequently been used in the domain of dendrochronology (Akhmetzya
nov et al., 2019; Park et al., 2021; Salehnia and Ahn, 2022). While 
Worldclim has a finer spatial resolution of 1 km, it only provides 
long-term (1970–2000), monthly averages of each variable. 

Delta downscaling was used to combine the two, leveraging both the 
high spatial resolution of Worldclim and the monthly data of CRU TS, 
following an approach similar to Moreno and Hasenauer (2016). Uti
lizing inverse distance weighting, we precisely obtained CRU TS data at 
the coordinates of both ITRDB and point grid sites. A correction was then 
implemented using the non-interpolated long-term WorldClim data. 
This involved calculating the difference between the average CRU TS 
and aligned WorldClim data, applying this discrepancy as either a 

subtraction or division, depending on the meteorological variable. When 
evaluating using observed data, downscaling CRU TS using Worldclim 
has been shown to lower the root-mean-square error (RMSE) when 
compared to non-downscaled CRU TS (Salvacion et al., 2018). We made 
use of the meteorological variables mean, minimum, and maximum 
temperature and precipitation, which are available in both CRU TS and 
Worldclim. 

Gridded soil data were obtained from Soilgrids (Poggio et al., 2021), 
a collection of soil property maps of the world at 250 m resolution. We 
used five soil characteristics for this study that were expected to directly 
or indirectly influence TRW: clay-, sand-, silt-, nitrogen- and organic 
carbon content (Eckstein et al., 1990; Schweingruber, 2012). The soil 
data were interpolated for gap filling and consequently masked to 
Worldclim coverage. 

Before analysis, preselection was performed on the TRW data, ac
cording to the following ruleset:  

- Datasets with (nearly) identical coordinates were checked for 
duplicate TRW sequences and combined into one if no duplicates 
were found.  

- Datasets exclusively containing late- or earlywood measurements 
were removed.  

- Datasets with known internal quality issues were removed.  
- Datasets located at sea were removed.  
- Datasets with no temporal overlap with CRU TS were removed. 

2.2.2. Data analysis 
From here onwards, we refer to the sample of which we aimed to 

predict the location and/or date as the ‘unknown TRW dataset’, and the 
other samples as the ‘known TRW datasets’. Similarly, we refer to the 
chronology for the unknown TRW dataset as the unknown chronology, 
and the chronologies for the known TRW datasets as the known 
chronologies. 

All TRW sequences were detrended by dividing them by a Gaussian 
kernel smoother, leaving only year-to-year variability. We opted for a 
Gaussian Kernel smoother over alternative detrending functions, as it 
demonstrated superior efficacy in generating robust climate-growth 
relationships. The standard deviation (sigma) of the Gaussian kernel 
was selected as follows. For each known TRW dataset we calculated the 

Fig. 2. Overview of the spatial distribution of the 107 chronologies. Overlay on the distribution range of pedunculate oak (Caudullo et al., 2017).  
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median linear correlation between its TRW sequences and the yearly 
local temperature and precipitation. This was repeated over a range of 
possible sigma’s in the [0.2 – 10] interval with step size 0.2. The cor
relation medians were then averaged across all known TRW datasets, 
resulting in a single performance indicator for each of the possible 
sigma’s. To limit outlier influence, these averaged correlation medians 
were smoothed by a centred rolling mean with a window width of five 
sigma interval steps. The sigma with the greatest smoothed mean me
dian correlation value was used for the detrending all TRW sequences in 
both the known and unknown TRW datasets. 

To remove potential outlier TRW sequences before constructing a 
chronology, the sequence that had the largest p-value when performing 
linear regression against the mean of all other TRW sequences in its TRW 
dataset was removed if that p was >0.01. This process was repeated until 
either the largest p-value was <0.01 or until over half of the sequences in 
the TRW dataset were removed. If over half of the sequences of a TRW 
dataset were removed, that TRW dataset was deemed to contain internal 
quality issues and consequently removed from further analysis. 

Next, the remaining detrended TRW sequences were log-transformed 
and averaged into one chronology for every TRW dataset. Log- 
transformation was applied to transform relative (multiplicative) ef
fects into additive ones and has an impact on the loss function used in 
the below-explained machine learning approach. Through initial 
experimentation (not reported here) the transformation was found to be 
beneficial. 

Gridded data was extracted for the coordinates of each chronology. 
For modelling chronologies, we opted for random forest (RF) regression 
as implemented in Python using the scikit-learn package (Pedregosa 
et al., 2011). A random forest fits a number of regression trees on various 
sub-samples of the dataset and uses averaging to improve the predictive 
accuracy and control over-fitting (Breiman, 2001). RF models are known 
for their high out-of-the-box performance, i.e., without hyperparameter 
tuning. Default scikit-learn hyperparameter settings were applied except 
for n_estimators, controlling the number of trees, which was set to 500. 
This resulted in a bootstrapped RF with 500 trees of maximum depth 
without pruning. 

The RF model was trained using the data from the known chronol
ogies. Features used in the training of the model included the extracted 
monthly meteorological variables from downscaled CRU TS, the 
extracted soil variables from Soilgrids, the year belonging to the chro
nology value, the longitude and latitude belonging to the chronology, 
and a one-hot encoding for each chronology. In addition to the ‘stan
dard’ monthly meteorological variables, we added their 15-year 
monthly average that was centred on the focus month, as well as the 
deviation of the focus month from this average. Particularly, the de
viations from the monthly means were expected to improve fitting the 
regression model. All meteorological features were also added for a time 
lag of one year, allowing the model to use the meteorological conditions 
of the year prior to the tree ring formation. 

Finally, a point grid with a 0.2◦ spatial resolution within the distri
bution range of pedunculate oak and Worldclim coverage was created. 
Feature data were extracted at each grid node and modelled reference 
chronologies were constructed using the random forest models from the 
previous step. Using the modelled reference chronologies, three sce
narios were tested for the unknown chronology: 

1. Year unknown: The correct location of the chronology is known, 
dating the chronology is attempted. Here, dating offsets from − 5 to +5 
years from the ground truth dating were investigated, considering the 
dating and location of the TRW dataset as indicated by the ITRDB as 
ground truth. The coefficient of determination (R2) was used as an 
evaluation criterion, with the offset with the highest R2 used as the 
prediction for the year. Though the focus here is on dating and not 
provenancing, this scenario helps in the interpretation of the results, 
especially regarding the results of scenario 3. 

2. Location unknown: The correct dating of the chronology is 
known, predicting the location is attempted. Here, all points in the point 

grid were investigated, considering the dating and location of the TRW 
dataset as indicated by the ITRDB as ground truth. R2 was used as an 
evaluation criterion, with the point with the highest R2 used as the 
prediction for the location. 

3. Both unknown: The scenario likely closest to a real-world case, 
where the previous two scenarios are combined into one. We attempt to 
predict both the location of the chronology and the correct dating. To 
this end, we investigated all points in the point grid for dating offsets 
from − 5 to 5 years, again considering the dating and location of the TRW 
dataset as indicated by the ITRDB as ground truth. R2 Was used as the 
evaluation criterion, with the result with the highest R2 used as the 
prediction for the combination of year and location. 

We used a leave-one-out cross-validation (LOOCV) approach, each 
time using one of the chronologies as the unknown chronology and using 
the remainder of the chronologies for constructing the modelled refer
ence chronologies. 

All data analysis was conducted in Python. Essential packages used 
in the analysis were astropy, Fiona, GDAL, netCDF4, numpy, pandas, 
rasterio, scipy, shapely, scikit-learn, and statsmodels. For further docu
mentation, methodological details, and non-essential package usage, we 
refer to the documentation accompanying the publicly available code 
for this study, available on GitHub (github.com/mvansluijs/Enhanced- 
Dendroprovenancing) with the DOI: 10.5281/zenodo.10465532. 

3. Results 

3.1. Data pre-processing 

After the preselection of TRW datasets following the ruleset pre
sented in Section 2.2.1, a total of 109 TRW datasets were retained. Two 
further TRW datasets were removed during chronology formation due to 
internal quality issues, leaving 107 chronologies (Fig. 2, Appendix B) for 
the remainder of the analysis. For an overview of all combined and 
removed TRW datasets, and the reasons for their combination or 
removal, we refer to Appendix C. 

3.2. Dating chronologies 

For the ‘Year unknown’ scenario, in 98 of the 107 test cases the year 
was correctly predicted, implying a 91.6% prediction accuracy. In 6 of 
the remaining cases, the results indicated that the TRW datasets were 
possibly misdated in the ITRDB, shown by a relatively high R2 value for a 
small offset (one to three years) compared to the average R2 value for the 
other years of that TRW dataset (difference of an order of magnitude 10 
or higher). 

3.3. Tracing chronologies 

For the ‘Location unknown’ scenario (see example in Fig. 3), we 
considered a distance under 250 km between the predicted location and 
ground truth location to be a ‘match’. Under that condition, 91 of the 
107 test cases matched, i.e., 85.0% accuracy. Note that the 250 km 
threshold was arbitrarily chosen and does not imply the maximum po
sitional accuracy. Distances between the predicted location and ground 
truth location were concentrated close to zero, with the histogram 
showing an asymptotically decreasing frequency at greater distances 
(Fig. 4). 

3.4. Dating and tracing chronologies 

Finally, for the ‘Both unknown’ scenario, we considered a combi
nation of a temporal offset equal to zero and a distance under 250 km 
between the predicted location and ground truth location to be a match. 

We present the results for this scenario using the top-N accuracy 
metric, which we split into a top-1 accuracy and a top-5 accuracy. Top-1 
accuracy requires the prediction with the highest R2 to precisely match 
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the ground truth, while top-5 accuracy deems a match successful if the 
ground truth aligns with any of the five results possessing the highest R2 

values. To avoid matches from the same spatial cluster to populate the 
entire top-5, the results were filtered such that the top-5 of matches only 
contained results that were more than 250 kilometres apart and/or 
dated in a different year. 

For 88 of the 107 test cases, the first match was within 250 km of the 
ground truth location and correctly dated. For 93 of the 107 test cases, 
these conditions were met by at least one of the top-5 matches. This 
resulted in a top-1 accuracy of 82.2%, and a top-5 accuracy of 87.0%. 

To better understand which minimum chronology length is required 
to apply this method to timber tracing, the experiments were repeated 
for reduced chronology lengths. We created centred subsets of the un
known chronologies for a range of lengths and used them for prediction 
instead of full chronology sequences (Fig. 5). Notably, subsetting the 

unknown chronologies to a length of 30 years in this manner still 
resulted in a top-1 accuracy of 52.3% and a top-5 accuracy of 74.7%. 

3.5. Prediction certainty 

Fig. 6 shows the mean prediction interval (PI) width according to the 
method of quantile regression forests (Meinshausen, 2006) to assess 
spatial patterns of (un)certainty of the modelled reference chronologies. 
If the predicted location of a TRW dataset falls within a region of high 
relative uncertainty, the result is expected to be less trustworthy than 
when it falls in an area of high certainty. Additionally, if there is a 
claimed location for the TRW dataset which falls in an area of high 
relative uncertainty, that location is only weakly supported by the 
reference chronologies, which may limit trust in the claimed 
provenance. 

Fig. 3. Example of a ‘Location unknown’ prediction map (ITRDB code brit4). Every dot represents a modelled reference chronology, with its colour indicating the 
correlation with the brit4 chronology. 

Fig. 4. Histogram of distances between predicted location and ground truth location for the ‘Location unknown’ scenario.  
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Furthermore, our findings suggest that the top-1 R2 value is a pre
dictor for the accuracy of the predicted provenance. Chronologies where 
the ground truth is in the top-5 of predictions have a significantly higher 
top-1 R2 prediction value than chronologies where the ground truth is 
outside the top-5 of predictions (ANOVA, F1,103=23.446, P<0.001) 
(Fig. 7). The value of our ranking metric thus also indicates (un)cer
tainty, and could allow the filtering of results through setting a 
threshold. For instance, a threshold in this case might involve rejecting 
any result with an R2 value below 0.35. 

4. Discussion 

The results of the case study suggest the proposed framework for 
dendroprovenancing to be effective in providing a data-driven approach 
to identify or verify the provenance of timber for 20th and 21st century 
wood chronologies. Additionally, it provides model-based metrics of 
prediction quality. 

4.1. Case study: limitations of the study 

While analysing the ‘Year unknown’ scenario, 92% of the chronol
ogies were correctly dated by our approach. Out of the nine that were 

Fig. 5. Accuracies for reduced chronology lengths (‘Both unknown scenario’).  

Fig. 6. Spatial distribution of mean PI width (unitless as a result of the detrending) of modelled reference chronologies. Areas with insufficiently represented climate 
data in the training set exhibit increased uncertainty. Note that this example uses all chronologies for training the RF, while for the LOOCV in the case study subsets 
are used each iteration. 
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not dated correctly, we suspect that at least some of the TRW datasets 
were misdated in the ITRDB. More specifically, these suspicions concern 
lith042, swit264, one or more from the group czec034, czec035 and 
czec028, and germ011, in descending order of certainty. 

Misdated datasets in the ITRDB would lead to an underestimation of 
the effectiveness of our approach since we assumed the dating and 
location in the ITRDB to be the ground truth, and not misdated or 
mislocated. If correct data are used greater accuracy can be achieved for 
all three scenarios. This is because the same chronologies were, as to be 
expected, often also mislocated in the ‘Location unknown’ scenario and 
mostly fell outside the top-5 of the ‘Both unknown’ scenario. 

We also note the strong spatial clustering of the 107 TRW dataset 
locations (Fig. 2). An unknown TRW dataset from a location within the 
species distribution but remote from the known TRWs may have a 
smaller chance to be correctly dated/located than one that is located 
closer to the known TRWs. However, this effect depends on the pre
dictive strength of the used features (weather and soil) and on the 
representativeness of the feature space as sampled by the known TRW 
dataset (de Bruin et al., 2022). 

As stated previously, the chosen species pedunculate oak (Quercus 
robur L.) is an optimal example, both in terms of TRW variation response 
to the available gridded data and in terms of TRW dataset availability. 
The method might not work that well for species for which data avail
ability is lower, or climate-growth relationships is weaker, which de
serves further research. In addition, the approach outlined and 
illustrated here may require a chronology of at least >30 years length. 
This requires the availability of timber samples that have a sufficient 
number of countable rings. Additionally, it requires the researched 
timber to not come from a mix of sources; all sampled timber must come 
from the same location and species. If not, it will not be possible to 
construct a usable chronology, or to derive a reliable origin. 

Furthermore, our approach requires some other conditions to be met: 
(1) the species in question must have at least some available reference 
tree-ring chronologies, hence (2) it must form annual growth rings with 
a limited number of double- or missing rings, (3) its TRW variation must 
show a sensitivity to environmental variability, and (4) these environ
mental variables should be available as gridded products with coverage 
for the region and timespan of interest. 

Consequently, our approach may not work well for tropical species 
due to the lower seasonality in some tropical climates (Zuidema et al., 
2022). Here, other provenancing approaches may be more suitable, such 
as DNA-based provenancing, stable isotope analysis and multi-element 
analyses. An additional advantage for DNA-based provenancing in the 
tropics is that the genetic displacement and mixing of specimens are 
likely to be much lower due to the lower influence of genetic material 

displacement by past anthropogenic activities compared to i.e. Europe. 
In general, however, a combination of multiple data-driven timber 

provenancing approaches is likely most effective, as they rely on 
different, independent data and have different strengths and weak
nesses, and the accuracies of combined methods to timber provenancing 
likely exceed those of the methods independently (Dormontt et al., 
2015; Low et al., 2022). 

4.2. General framework: potential areas of improvement and further 
exploration 

Two notable areas of potential improvement in the methods became 
evident during the case study: 1) the use of a finer resolution of the point 
grid, capitalizing the fine resolution of the Soilgrids- and Worldclim 
data, and 2) increasing the number of trees in the random forest model. 
The latter can seem counterintuitive as the number of trees was already 
set to 500, but even small improvements can have compound effects as 
the regression results are combined into long chronologies. Both 
changes are likely to increase regression accuracy and thus improve 
provenancing and dating accuracy. However, both also come at a cost of 
increased computing time and storage capacity. For example, increasing 
the grid spacing by a factor two would quadruple the computation cost 
and data storage requirements. 

The presented framework offers several potential points for further 
exploration, as there are many different possible approaches to various 
steps of the process. Important to note is that the case study only 
highlights one possible approach to the implementation of the general 
framework. For example, the detrending method of TRW sequences can 
be adjusted to any other desired detrending method. The same applies to 
the chosen method for combining individual tree growth time series into 
population-wide growth chronologies, the evaluation metric for 
matching between unknown chronology and modelled reference chro
nologies, and the type of auxiliary gridded data used. For example, al
ternatives to CRU TS can be considered, but also other variables 
available in CRU TS and/or Worldclim, or even adding a completely 
different gridded data source that might influence TRW variation. 

In the case study, we chose random forest for its high out-of-the-box 
performance, and because tuning of hyperparameters was not part of 
this research. However, in the future it could be replaced by a neural 
network approach or a gradient-boosting approach like LightGBM (Ke 
et al., 2017), XGBoost (Chen et al., 2015), or Catboost (Prokhorenkova 
et al., 2018), which generally outperform RF implementations (Bentéjac 
et al., 2021) if well-tuned to the problem. 

Another particularly interesting area for exploration is the potential 
to incorporate data from other species during model training. For 
instance, species within the same family or genus as the unknown 
sample may help improve prediction accuracy, as such closely related 
species may have a common signal with the species of interest. Alter
natively, it could turn out to be more effective to create separate models 
for each individual species as we did here in the case study. This requires 
further research and exploration. 

4.3. General framework: advantages and disadvantages 

Compared to traditional dendroprovenancing, our framework is less 
affected by spatial and temporal data gaps. It uses empirical relation
ships with environmental covariates to achieve spatiotemporal conti
nuity. Other approaches, such as the works of Visser (2021) and Daly 
(2007), also partly address the challenges of spatial and temporal gaps in 
dendroprovenancing. Visser’s approach, leveraging relations between 
chronologies in networks, may introduce additional tree ring width data 
with unknown original provenance into the analysis, which could fill 
spatiotemporal gaps when combined with archaeological interpretation. 
Similarly, Daly’s work explores the benefits of using different levels, 
such as site chronologies and single trees, to overcome these gaps. 
Notably, both previous studies rely on incorporating additional tree ring 

Fig. 7. Boxplot of top-1 R2 values, grouped by whether the ground truth 
location was in the top-5 of results or outside of the top-5. 
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width data to address spatiotemporal gaps, which is not the case for our 
approach. 

Another major advantage is the consistent format that the modelled 
reference chronologies are returned in, all having the same temporal 
range, eliminating issues with evaluation metrics and different overlap 
lengths between target and reference chronologies (Bridge and Fowler, 
2019). A possible disadvantage could be that our modelled reference 
chronologies lose information when compared to non-modelled refer
ence chronologies if the RF models fail to explain all TRW variation. On 
the other hand, one could also argue that the modelled reference chro
nologies are less prone to erroneous values and data artefacts than 
non-modelled reference chronologies. 

Compared to recently emerging technologies, such as DNA-based 
provenancing approaches and stable isotope analysis, the main advan
tages of our approach are (1) the large set of already available reference 
data in the form of TRW datasets, which can be utilised to model proxy 
data across the entire species range, and (2) the temporal depth of 
chronologies, providing a long barcode that can be used to trace origins 
(compared to single point data in isoscapes; e.g. Watkinson et al., 2020). 

For DNA-based provenancing, data is not yet widely available for the 
large majority of traded timber species (Gasson et al., 2021), nor does it 
seem feasible to model DNA to get coverage across the species range. 
Geolocated samples from the entire species range would first need to be 
gathered and analysed to provenance timber of an unknown source 
(Gasson et al., 2021). DNA-based provenancing therefore currently 
mostly seems suitable for confirming a claimed source location, in which 
case both the claimed source location and the timber can be sampled, 
but not (yet) for provenancing timber with a completely unknown 
source. 

Furthermore, DNA-based provenancing could be more prone to 
problems caused by displaced trees and the mixing of genetic material, 
which is potentially an issue, especially in Europe (Bradshaw, 2004). If 
trees have been introduced to a particular site in the past while their 
genetic material originates from a different part of the continent, 
provenancing based on their DNA may point to that other part of the 
continent. The higher the fraction of trees of a species that have been 
displaced in the past, the more this would complicate DNA-based 
provenancing, as making reliable reference datasets becomes difficult 
if not impossible due to the genetic mixing. This is not an issue for 
dendroprovenancing as long as the trees grow their entire lifespan on the 
location they were cut, since TRW patterns are formed locally and are 
mostly dependent on meteorological conditions. 

4.4. General framework: additional applications 

We found that some of the chronologies were likely misdated in the 
ITRDB. This could mean that the framework may also be used as a means 
of database quality assurance, finding misdated or mislocated TRW 
datasets in a database, but also for verifying newly supplied data before 
adding it to a database. 

Additionally, the regression model may also be used for studying 
general tree growth responses to isolated changes, such as the impact of 
an increase in winter temperature for a certain location, for example by 
performing ablation studies or through careful interpretation of RF 
feature importance (Appendix D). 

5. Conclusion 

The proposed framework provides an enhanced approach to den
droprovenancing 20th and 21st century wood samples, allowing veri
fication of the indicated provenance of timber. The framework improves 
spatial and temporal coverage without the need for additional data 
collection, increasing the potential of dendroprovenancing as a useful 
tool for forensic timber identification. The framework is flexible, 
allowing for different approaches in several steps of the process, and also 
has the potential to provide valuable insights into tree growth patterns 
and responses to environmental changes. Further research is required to 
explore the potential application to species beyond the pedunculate oak 
example demonstrated in this work and geographical limitations to 
application of the framework. Further work is also needed for optimising 
components such as data pre-processing, the used similarity metric and 
machine learning approach. The findings of this study are relevant for 
the ongoing efforts to combat illegal logging and trade in illegal timber 
products and contribute to the development of tools that can help to 
control this global issue. 
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Appendix B. TRW dataset overview, including scenario results  

ITRDB code Latitude Longitude First 
year 

Last 
year 

Sigma Usable 
chronology 
length 

Year 
known 
offset 

Location 
unknown 
distance (km) 

Both 
unknown 
result 

Both 
unknown top- 
1 R2 

brit005 54.88 -4.83 1798 1978 4 75 0 92.2 Top-1 0.359 
brit006 53.13 -6.08 1809 1978 4 75 -5 691.2 Not in top-5 0.189 
brit010 52.35 -2.73 1823 1978 4 75 0 240.1 Top-1 0.378 
brit011 52.82 1.22 1717 1979 4 76 0 202.8 Top-1 0.210 
brit053 53.37 -1.5 1759 2003 4 100 0 50.2 Top-1 0.239 
brit071 51.98 -0.59 1613 2003 4 100 0 50.0 Top-1 0.561 
brit072 55.27 -3.43 1706 2003 4 100 0 74.5 Top-1 0.289 
brit4 51.8 -1.12 1847 1978 4 75 0 42.0 Top-1 0.610 
brit7 55.33 -3.5 1824 1975 4 72 0 46.6 Top-1 0.351 
czec028 50.192 16.089 1882 2015 4 112 -1 125.0 Top-1 0.269 
czec029 50.393 14.073 1831 2015 4 112 0 224.9 Top-1 0.213 
czec030 50.431 14.278 1916 2015 4 96 0 48.7 Top-1 0.450 
czec031 50.447 14.293 1823 2015 4 112 0 9.2 Top-1 0.431 
czec032 50.336 14.483 1856 2013 3.8 110 0 10.9 Top-1 0.356 
czec033 50.467 14.327 1900 2015 4 112 0 47.7 Top-1 0.186 
czec034 50.295 16.063 1777 2013 4 110 1 1220.3 Not in top-5 0.291 
czec035 50.093 15.94 1796 2016 4 113 -1 620.4 Not in top-5 0.354 
deu303 52.419444 13.627222 1879 2016 4 113 0 177.4 Top-1 0.473 
deu312 52.443611 13.440278 1959 2017 4 55 0 30.2 Top-1 0.702 
deu314 52.426389 13.424444 1940 2017 3.8 74 0 108.1 Not in top-5 0.331 
deu315 52.485278 13.418333 1791 2017 4 114 0 12.8 Top-1 0.583 
deu316 52.485656 13.420556 1780 2018 4 115 0 12.8 Top-1 0.677 
finl075 60 23.08 1822 2004 4 101 0 108.2 Top-1 0.194 
fran001 47.57 1.5 1732 1979 3.8 76 0 107.8 Top-1 0.425 
fran003 48.45 2.68 1531 1979 4 76 0 70.5 Top-1 0.441 
fran004 50.83 1.85 1828 1979 4 76 0 193.0 Top-1 0.200 
fran005+fran007 49.23 2.57 1719 1979 4 76 0 17.0 Top-1 0.432 
fran050 48.25 -1.7 1751 1998 4 95 -3 825.5 Not in top-5 0.210 
germ001 51.02 7.13 1804 1973 4 70 0 104.5 Top-1 0.466 
germ003 50.92 7.15 1776 1972 4 69 0 27.9 Top-1 0.565 
germ004 52.25 8.9 1847 1972 4 69 0 34.5 Top-1 0.513 
germ005 52.18 9.28 1843 1971 4 68 0 65.9 Top-1 0.540 
germ006 52.12 9.2 1841 1972 4 69 0 31.1 Top-1 0.522 
germ007 52.17 8.97 1787 1972 4 69 0 34.9 Top-1 0.633 
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(continued ) 

ITRDB code Latitude Longitude First 
year 

Last 
year 

Sigma Usable 
chronology 
length 

Year 
known 
offset 

Location 
unknown 
distance (km) 

Both 
unknown 
result 

Both 
unknown top- 
1 R2 

germ008 51.92 9.2 1830 1972 4 69 0 42.0 Top-1 0.399 
germ009 52.32 9.03 1819 1969 4 69 0 107.6 Top-1 0.566 
germ011 54 10 1340 1967 4 64 -3 320.0 Not in top-5 0.297 
germ012 54.5 9.5 1800 1969 4 66 0 193.6 Top-1 0.358 
germ168+germ169 50.6667 7.0333 1829 2005 4 102 0 7.8 Top-1 0.819 
germ170 50.6833 7.0333 1846 2006 4 103 0 15.0 Top-1 0.776 
germ195+germ196 50.9167 6.4167 1749 2005 4 102 0 41.9 Top-1 0.626 
germ199 50.7833 6.8333 1848 2005 4 102 0 25.8 Top-1 0.453 
germ203 51.9 7.8833 1867 2007 4 104 0 211.2 Top-1 0.260 
germ204 51.3 6.7833 1845 2005 4 102 0 35.7 Top-1 0.457 
germ218 53.223 14.13 1850 2009 4 106 0 84.7 Top-1 0.550 
germ220 53.417 13.033 1872 2009 4 106 0 121.4 Top-1 0.277 
germ222 53.485 10.915 1766 2009 4 106 0 100.1 Top-1 0.402 
germ300 51.02 7.15 1806 1972 4 69 0 70.9 Top-1 0.635 
germ6 53 8 1850 1973 3.8 69 0 195.4 Top-1 0.542 
ital019 44.72 9.32 1779 1989 3.8 86 -3 660.7 Not in top-5 0.197 
ital020 45.18 9.12 1875 1989 4 86 0 40.8 Top-1 0.205 
ital021 45.27 9.05 1888 1989 4 86 0 55.8 Top-1 0.269 
lith011 55.07 22.48 1878 2002 4 99 0 49.3 Top-1 0.485 
lith025 55.46 25.23 1838 1994 4 91 0 39.7 Top-1 0.543 
lith026 55.105 23.795 1803 1971 4 68 0 200.6 Top-1 0.576 
lith027 56.245 24.79 1809 1974 4.2 71 0 127.8 Top-1 0.526 
lith028 54.4 23.45 1852 1971 4 68 0 119.0 Top-1 0.365 
lith029 54.84 24.955 1800 1994 4 91 0 133.5 Top-1 0.492 
lith030 55.05 24.745 1800 1971 4 68 0 63.2 Top-1 0.722 
lith031 55.565 22.395 1819 1971 4 68 0 45.5 Top-1 0.662 
lith032 55.32 23.99 1815 1994 4 91 0 29.2 Top-1 0.498 
lith033 55.435 22.93 1833 1971 4 68 0 384.8 Top-5 0.638 
lith034 54.6 23.02 1840 1971 3.8 68 0 147.9 Top-1 0.472 
lith035 54.585 24.55 1749 1969 4 66 0 125.6 Top-1 0.648 
lith036 55.875 22.965 1837 1992 4 69 0 60.1 Top-1 0.560 
lith037 54.535 23.8 1821 1997 4 94 0 29.9 Top-1 0.426 
lith038 55.09 22.95 1841 1971 4 68 0 98.0 Top-1 0.486 
lith039 55.19 21.89 1827 1971 4 68 0 71.4 Top-1 0.651 
lith040 56.08 21.835 1851 1972 4 69 0 90.1 Top-1 0.614 
lith041 55.8015 24.1715 1823 1994 4 91 0 103.2 Top-1 0.423 
lith042 54.565 24.265 1731 1972 4 69 -3 2040.7 Not in top-5 0.465 
lith043 54.195 24.185 1862 1996 4 93 0 58.8 Top-1 0.487 
lith044 55.565 24.8195 1834 1994 4 91 0 64.1 Top-1 0.578 
lith045 55.697 21.4815 1812 1971 4 68 0 38.6 Top-1 0.537 
neth020 51.28 6.18 1883 1986 4 83 0 247.5 Top-1 0.465 
neth026 51.25 5.93 1861 1986 4 83 0 69.2 Top-1 0.604 
neth032 52.27 5.62 1879 1986 4 83 0 338.3 Top-5 0.266 
pola005 54.3 18.55 1762 1986 4 82 0 194.7 Top-1 0.794 
pola006 53.5 16 996 1986 4 82 0 187.3 Top-1 0.785 
pola007 54.35 22.38 1871 1987 4 83 0 120.7 Top-1 0.207 
pola008 52.7 23.65 1720 1985 4 81 0 104.7 Not in top-5 0.192 
pola009 50.65 23.05 1782 1989 4 85 0 165.7 Top-1 0.348 
pola010 54.1 16.15 1782 1987 4 83 0 532.7 Not in top-5 0.277 
pola011 50.05 20.37 1792 1986 4 82 0 34.9 Top-1 0.512 
pola012 52.27 16.8 1836 1987 4 83 0 39.1 Top-1 0.272 
pola013 54.08 23.02 1861 1987 4 83 0 152.6 Top-1 0.409 
pola014 53.08 18.55 1713 1987 4 83 0 58.6 Top-1 0.302 
pola015 52.3 20.98 1690 1985 4 81 0 299.7 Top-5 0.299 
pola016 53.95 14.5 1554 1987 4 83 0 137.3 Top-1 0.300 
pola017 51.25 17.17 1727 1987 4 83 0 156.1 Top-1 0.321 
pola018 51.87 15.57 1774 1987 4 83 0 336.7 Top-5 0.227 
pola039 50.12 20.38 1663 2003 4 100 0 18.0 Top-1 0.373 
rus328 50.7299 46.6695 1908 2008 4 97 0 459.4 Top-5 0.229 
rus341 58.1505 44.4952 1923 2012 4 86 0 345.9 Not in top-5 0.189 
rus353 54.7323 36.0002 1806 2014 4 111 0 232.1 Top-1 0.301 
rus368 52.46 39.69 1816 2014 4 111 0 174.4 Top-1 0.367 
rus377 53.9781 37.1162 1770 2014 4 111 0 88.4 Top-1 0.353 
rus378 50.604055 35.981444 1732 2014 4 111 0 650.4 Not in top-5 0.117 
rus382 53.98837 37.25537 1809 2014 4 111 0 176.7 Top-1 0.407 
russ282 53.91 35.825 1823 2015 4 112 0 64.5 Top-1 0.448 
slov004 46.307071 15.509417 1848 2012 4 109 0 223.6 Not in top-5 0.147 
swit216 47.1333 7.3833 1886 1995 4 92 0 47.1 Top-1 0.510 
swit233 47.3925 8.3986 1927 1995 4 65 0 75.1 Top-1 0.423 
swit243 46.9497 7.1628 1905 1991 4 83 0 33.1 Top-1 0.430 
swit251 47.5828 9.2742 1932 1991 4 56 0 112.8 Top-1 0.386 
swit264 46.2358 6.2669 1916 1998 4 79 -1 2233.1 Not in top-5 0.240 
swit318 46.7844 6.9247 1938 1991 4 50 0 70.6 Top-1 0.437  
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Appendix C. Combined and removed TRW datasets  

ITRDB code Action Reason 

brit10 Removed Not located on land 
fran005 & fran007 Combined Geographically very close 
fran048 Removed Temporally too short 
germ012l Removed Contains only early- and/or latewood measurements 
germ168 & germ169 Combined Geographically very close 
germ195 & germ196 Combined Geographically very close 
ital052 Removed Internal quality issues detected during chronology formation 
lith011e Removed Contains only early- and/or latewood measurements 
lith011l Removed Contains only early- and/or latewood measurements 
neth022 Removed Stated in correlation stats that they are not useful; too many problems/flags/misdated samples 
neth023 Removed Stated in correlation stats that they are not useful; too many problems/flags/misdated samples 
neth024 Removed Stated in correlation stats that they are not useful; too many problems/flags/misdated samples 
neth025 Removed Internal quality issues detected during chronology formation 
neth028 Removed Stated in correlation stats that they are not useful; too many problems/flags/misdated samples 
neth029 Removed Stated in correlation stats that they are not useful; too many problems/flags/misdated samples 
neth030 Removed Stated in correlation stats that they are not useful; too many problems/flags/misdated samples  

Appendix D. Feature importances 

Feature importance analysis should be conducted with care as most features are strongly correlated. As such, their importance may be spread 
across multiple correlated features, complicating individual feature importance analysis. Here, we present the total feature importance based on the 
mean decrease in impurity for the large feature groups:    

Total feature importance 

Meteorological data (temperature, precipitation)  0.955 
Soil data  0.021 
Coordinates (latitude, longitude)  0.004 
One-hot encoding  0.018 
Year  0.002 
Total  1  

Similarly, the meteorological data can be grouped into one importance value for each month:   

Previous year January 0.036  

February  0.031  
March  0.037  
April  0.036  
May  0.043  
June  0.039  
July  0.044  
August  0.050  
September  0.037  
October  0.044  
November  0.039  
December  0.032 

Growing year January  0.032  
February  0.039  
March  0.034  
April  0.040  
May  0.048  
June  0.062  
July  0.046  
August  0.049  
September  0.036  
October  0.038  
November  0.032  
December  0.032  
Total  0.955  
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