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Abstract
Critical source areas (CSAs) are small areas of a field, farm, or catchment that account

for most contaminant loss by having both a high contaminant availability and trans-

port potential. Most work on CSAs has focused on phosphorus (P), largely through

the work in the 1990s initiated by Dr. Sharpley and colleagues who recognized the

value in targeting mitigation efforts. The CSA concept has been readily grasped by

scientists, farmers, and policymakers across the globe. However, experiences and

success have been mixed, often caused by the variation in where and how CSAs

are defined. For instance, analysis of studies from 1990 to 2023 shows that the pro-

portion of the annual contaminant load coming from a CSA decreases from field to

farm to catchment scale. This finding is consistent with increased buffering of CSAs

and greater contribution of other sources with scale, or variation in the definition

of CSAs. We therefore argue that the best application of CSAs to target mitigation

actions should be at small areas that truly account for most contaminant loss. This

article sheds light on the development and utilization of CSAs, paying tribute to Dr.
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Sharpley’s remarkable contributions to the improvement of water quality, and reflect-

ing upon where the CSA concept has succeeded or not in reducing contaminant

(largely P) loss.

1 INTRODUCTION

The concept of critical source areas (CSAs) has changed over

time. From our experience and interpretation of how CSAs

have developed over time, we define CSAs as “small areas
of a field, farm, or catchment (viz. watershed) that account
for most contaminant loss caused by these areas having a
high contaminant availability and transport potential.” This

definition is intentionally broad so that it captures multiple

contaminants, hydrological flow paths, and spatial and tempo-

ral scales. This definition is also easily understood by experts

and nonexperts alike and allows stakeholders to easily identify

CSAs on their land and have confidence that targeting CSAs

with best management practices (BMPs) is a cost-effective

method to mitigate contaminant losses from land to water

(Arbab et al., 2018).

As a result of the simplicity and applicability of CSAs, dif-

ferent jurisdictions have widely adopted the concept under

voluntary schemes and in policy, globally (Figure 1). Their

implementation has led to practice change by landowners and

associated improvements in water quality (see Section 3). The

development of the CSA concept was a collaborative effort

involving many contributors (e.g., Figure 1) and advances

in science. Dr. Andrew Sharpley was often at the heart of

those collaborations and advances. This paper traces the

development and implementation of CSAs. We pay partic-

ular attention to how the science informed and questioned

how contaminants are lost from land to water and use a range

of case studies from six countries to demonstrate how the

concept has been implemented. Finally, we offer thoughts on

where, or if, CSAs can be further developed and implemented

to improve water quality.

2 DEVELOPMENT

In examining their history, CSAs were first mentioned in the

1970s and 1980s to describe areas and times when and where

pesticides and other nonpoint source pollutants were being

lost from land to water (Maas et al., 1985). Although still

occasionally used to isolate areas of pesticide loss (Doppler

et al., 2014), CSAs have also been applied to sediment, the

fecal indicator bacterium (Escherichia coli), and nitrogen (N),

but mainly to phosphorus (P) (Imani et al., 2019; McDow-

ell & Srinivasan, 2009; Oliver et al., 2010; Wei et al., 2017).

The attention on P in catchments was a symptom of a need

to mitigate P losses—owing to the role of P in controlling

eutrophication globally (McDowell, Noble, et al., 2020), but

also of the concept’s fit to P loss processes, largely focusing

on surface runoff (viz. overland flow; Pionke et al., 2000).

As applied to P, the foundation of the CSA concept is

that surface runoff, that is, the dominant transport mecha-

nism for P in sloping landscapes (or leaching in flat land),

is concentrated to small areas. This aligns with a statistical

concept called the Pareto principle, also known as the 80:20

rule (Pareto, 1897). The Pareto principle describes the prob-

ability distribution of many societal or physical phenomena

such as the size of cities within a country or the ownership of

land among landowners. The rule is intuitive, and it has res-

onated with stakeholders when used as an analogy to justify

CSA-based management.

Indeed, a major motivation for adopting CSA management

is to improve the cost-effectiveness in environmental protec-

tion via targeting of resources to areas offering the greatest

return on remedial investment. This means achieving given

environmental goals with least possible costs or, alternatively,

achieving highest possible environmental quality with avail-

able resources. When pollution sources and their abatement

costs are known, cost-effective allocation equalizes marginal

abatement costs across pollution sources (Baumol & Oates,

1988).

Notably, in using the 80:20 rule to explain CSAs, stake-

holders may be left with the impression that this ratio is

consistent and constant. As evident from Table 1 and Figure 1,

it is not. Variation may be caused by how CSAs are defined

and, in its application to P, dynamic processes influencing

transport and source properties. When defining a CSA, it is

possible to identify a livestock urine patch containing 600–

1000 kg N·ha−1 (Di & Cameron, 2002) covering about 2%

of a grazed grassland field (Lilburne et al., 2012) as a CSA

since these patches account for >95% of N losses (Betteridge

et al., 2010). However, practically, management of such small

patches is problematic, instead resorting to the management

of when stock numbers are likely to be on leaky soils at

a block scale (with a block being a combination of several

fields under similar management) (Beukes et al., 2020). In

addition, at larger farm and catchment scales, CSAs tend

to account for less contaminant load and cover larger areas

as surface runoff processes (dominant at small scales) are

diluted by other flow paths and contaminant sources (Table 1;

Figure 1). For instance, the dynamic processes of surface

runoff flow may expand and contract the areas of runoff that

mobilize, or, in the words of Sharpley, activate, P sources

in the landscape (Sharpley et al., 2008). Further, changing

 15372537, 0, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/jeq2.20551 by W

ageningen U
niversity A

nd R
esearch Facilitair B

edrijf, W
iley O

nline L
ibrary on [08/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



McDOWELL ET AL. 3

management and fate of P sources (soils, fertilizers, manures)

may impact their spatial distribution, thereby affecting their

availability to runoff, over time (Sharpley, 1987). Finally,

as scale increases, the diversity of contaminant sources also

increases, such as greater contribution of nonagricultural

sources, particularly point sources. Therefore, CSA-informed

management of contaminants must balance a variety of fac-

tors if it is to be practical and effective (Kleinman, Sharpley,

Buda, et al., 2011).

2.1 The arrival of CSAs in understanding
and managing P

Major steps in the development of CSAs have focused on our

understanding of the source of contaminants and their trans-

port by hydrological processes. Indeed, many early definitions

of CSAs, including those of Dr. Sharpley and colleagues,

described them as areas where there was a coincidence of a

highly available source of P and active hydrology to move P

(either in dissolved or particulate form) from land to water

either by surface runoff or subsurface flow (also sometimes

incorrectly referred to as “leaching,” which describes the dis-

solution of solutes, but used for simplicity hereon in) (Gburek

& Sharpley, 1998).

Dr. Sharpley pioneered the quantification of P availability

for surface runoff and leaching, initially with P fractiona-

tion techniques in the 1980s that traced the availability of

P to plants in response to inorganic and organic P additions

(Sharpley, 1987). As a forerunner, Dr. Sharpley pioneered

the concept of the “Effective Depth of Interaction” as an

early recognition of the selective nature of the interaction

between source P and flowing water (Sharpley, 1985). With

P enrichment, Dr. Sharpley realized in the 1990s that highly

plant-available P forms were also available to algae in surface

water and went on to develop other tests (e.g., Fe-oxide strips)

that were better correlated to algal biomass (Dils & Heath-

waite, 1998; Robinson et al., 1994). With colleagues in the

2000s, it was found that the risk of P loss increased rapidly

both beyond soil test P concentrations considered optimal for

plant growth and sometimes below this optimal level if the

soil poorly sorbed P or was disproportionately prone to sur-

face runoff (Buda et al., 2009; McDowell & Sharpley, 2001).

These studies have been built upon to isolate where soil chem-

istry controls the risk of P loss, for example, in soils with a low

P sorption capacity and where there is little change in leaching

rates (see also the case study in the Netherlands) (Kleinman,

Sharpley, McDowell, et al., 2011; McDowell & Monaghan,

2015; Thomas et al., 2016).

During the 1990s, attention shifted to hydrology as a con-

trolling factor for both the mobilization of P into flow and as

a mechanism to transport P to streams (Haygarth & Jarvis,

1999). Data were already beginning to show that without

active hydrology, little P would be lost. Indeed, in the late

Core Ideas
∙ Critical source areas (CSAs) are small areas of

a field, farm or catchment that account for most

contaminant loss.

∙ The proportion of the contaminant load com-

ing from a CSA decreases from field to farm to

catchment scale.

∙ The CSA concept was easily understood by scien-

tists, farmers, and policymakers globally.

∙ Targeting CSAs with mitigation strategies has

made those strategies more cost-effective.

∙ Dr. Andrew Sharpley was central to the develop-

ment and implementation of CSAs.

1990s and early 2000s, the definition of CSAs shifted from

merely considering the intersection of source and transport

factors, to being dependent on the product (i.e., multipli-

cation) of these factors (Pionke et al., 2000). To describe

hydrology, Drs. Bill Gburek and Harry Pionke worked with

Dr. Sharpley to incorporate variable source areas (VSAs)

(Dunne & Black, 1970). These VSAs in turn describe the

generation of “saturation-excess” surface runoff from near

stream areas that would expand or contract in response to rain-

fall between and during storms (Gburek & Sharpley, 1998;

Gburek et al., 2002). This advance enabled CSAs to make a

dynamic link to changing soil physical conditions as well as

to climate change (Wagena et al., 2018).

From the 2000s, it was becoming clear that transport

(hydrology) was likely to be more important in many land-

scapes than source factors because the scale and range of

transport (i.e., range of storms causing surface runoff or

leaching) were greater than the range of sources (e.g., P con-

centrations in most topsoils). This was highlighted in one

study in central Pennsylvania (USA) where surface runoff

losses and loads (from small plots) at the foot of a slope

were approximately seven times those halfway up the slope

despite Mehlich-3 P concentration being enriched in upslope

soils relative to soils at the foot of the slope (Buda et al.,

2009). Importantly, the concept of “connectivity” emerged in

describing CSAs—that is, runoff from agricultural fields must

be connected to streams to influence water quality in storm

flow (Haygarth et al., 2000; Heathwaite, Quinn, et al., 2005).

Additional work showed that when P sorbed to sediment from

stormflow settled onto the streambed, P could later dissolve

into baseflow and influence algal growth (McDowell, Depree,

et al., 2020).

The dominance of hydrology was also clear at the catch-

ment scale, where instream loads were shown to be propor-

tional to storm size and the extent of surface runoff, where

sources were stable over space and time (Kleinman et al.,
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4 McDOWELL ET AL.

F I G U R E 1 Data showing the cumulative number of publications about critical source areas (CSAs; or variable source area [VSA]) over time

(A) and by country (B), institution (C), and contributing author (D). N = 383; data were sourced from SCOPUS using the search term “critical source

area” in title or abstract.

2006; Ockenden et al., 2016; Sharpley et al., 2008). However,

variation in P losses was also exacerbated by sources where,

for instance, surface runoff quickly followed applications of

readily available P such as manure or water-soluble fertilizers

(Nash et al., 2019; Preedy et al., 2001). Clearly, with a com-

plex array of spatial and temporal interactions, successfully

mitigating P losses from CSAs required a simple framework

that stakeholders could understand—enter the P index.

2.2 How implementation of a decision
support tool drove CSA development

The P index was developed >30 years ago and aimed to iden-

tify parameters that influenced P loss, assess the risk of P loss

from field to freshwaters, and help identify BMPs that would

mitigate P loss (Lemunyon & Gilbert, 1993). Prior to and for

a short time after its development, regulatory authorities were

implementing policy based on thresholds of soil test P to limit

the likelihood of P loss. However, this resulted in some farm-

ers using the threshold as a target to achieve, often increasing

soil test phosphorus in CSAs, while being seen by other farm-

ers and scientists as inflexible and unrepresentative of P loss

processes at a catchment scale (Sharpley et al., 2001).

The original P index was underpinned by a combination of

fundamental science, as well as field and farmer knowledge.

This simplicity and transparency are often cited as key to why

the P index was implemented across most of the United States

and in several other countries including Denmark, Norway,

Sweden, Ireland, and Canada (Andersen & Kronvang, 2006;

Bechmann et al., 2005; Hughes et al., 2005; Nelson & Shober,

2012; Reid, 2011; Ulén et al., 2011). As an example of trans-

parency, studies have shown that areas mapped in P indices

as CSAs highly align (e.g., correlation coefficient = 0.85)

with those considered visually as CSAs by farmers (Djodjic

& Markensten, 2019; Djodjic et al., 2018).

Although based on a field-by-field evaluation of P loss risk

on farm, the location of CSAs often did not coincide with

field boundaries. Moreover, normal farm activities within

CSAs (e.g., tillage) often meant that areas could become

CSAs only temporarily. This variability resulted in many

attempts to define CSAs by modeling. These modeling studies

have downscaled CSAs with fine-resolution spatial data (e.g.,

LIDAR) and combined the results with other hydrologic con-

cepts like the topographic wetness index (Beven & Kirkby,

1979) (or others originating from VSA hydrology), which

showed the likelihood of runoff contributing to contaminant

losses over time and opened the possibility to forecast losses

in the future (Easton et al., 2017). Some have been success-

ful, but often only presented modeled outputs (Babaei et al.,

2019; Huang et al., 2021). Others combined modeling results

with field observations to yield mixed results, often finding
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that either the data or models were insensitive to the isola-

tion of CSAs (Heathwaite, Dils, et al., 2005; Page et al., 2005;

Reaney et al., 2019).

Many of these studies have incorporated CSAs into models

that operate at a field, farm, or catchment scale. However, to be

useful, models should always be connected to empirical data

and management. Some of the earliest attempts at connecting

the modeling of P losses to empirical data and management

were achieved by, or under, the supervision of Dr. Sharpley

(Sharpley, 1980; Sharpley & Smith, 1989; Sharpley et al.,

1982). These studies have been used to drive advice on when

and where to apply fertilizer and manure to avoid P loss. Sub-

sequent work on rates and form (often also in collaboration

with Dr. Sharpley) have formed the basis of the 4Rs of nutri-

ent management (right rate, right form, right time, and right

place).

The identification of CSAs by models or within tools

like the P index was always intended to help target BMPs

(Lane et al., 2006). Targeting, especially via a map, enables a

farmer/landowner to see and concentrate their effort and time

on parts of their farm or field. In an analysis of 14 catchments

in New Zealand, targeting CSAs was estimated to increase

the cost-effectiveness of BMPs by six to seven times com-

pared to a nontarget approach (McDowell, 2014). Some tools

have identified CSAs and linked this to estimates of cost-

effectiveness of BMPs, allowing the user to choose BMPs

based on a desired level of P loss reduction and cost (Davi-

son et al., 2008; Gooday et al., 2014; McDowell et al., 2015;

Strauss et al., 2007). However, as mentioned previously, the

delineation of CSAs remains a problem as it is subjective,

dependent upon your spatial scale of interest and how far you

wish to deviate from the 80:20 rule. While modeling contin-

ues to define CSAs and the cost-effectiveness of BMPs with

ever increasing complexity and precision (Wu et al., 2022),

true to the original intent of CSA and the P index, their suc-

cess in improving water quality will always be tethered to their

applicability and practicality for management (i.e., CSAs can

be so small that some BMPs may no longer be applicable or

practical).

3 CASE STUDIES OF IMPACT

According to a SCOPUS search of the literature, 383 studies

have examined CSAs between 1988 and 2023. The authors of

these studies come from 39 countries, with most publications

from the United States, the United Kingdom, New Zealand,

Canada, and Ireland (Figure 2). This reflects not only where

the science on CSAs has occurred but, moreover, the tailoring

of CSAs for use as a tool to improve water quality in these

jurisdictions. Since the CSA concept was design to facilitate

impact, we chose a subset of these 39 countries to explore how

CSAs have been incorporated into advice or policy and used

by farmers to improve water quality.

3.1 The United States

The importance of CSAs to P management strategies in

the United States can be tied directly to the widespread

adoption of the P index (Sharpley et al., 2003, 2017), a

tool that Dr. Sharpley helped to develop and implement

(Osmond et al., 2023). The adoption of CSA-based man-

agement in the United States emerged from unprecedented

collaboration between federal environmental and agricul-

tural agencies, and an ensuing agreement to allow for

three approaches to P-based management on Concentrated

Animal Farming Operations (CAFOs) regulated under the

Clean Water Act (USDA & USEPA, 1999). Of the three

management options promulgated by the CAFO statute (agro-

nomic or environmental soil threshold vs. CSA), the CSA

approach, embodied by the P index, was considered most

palatable for management and most defensible, scientifically

(McDowell et al., 2001; Sharpley et al., 2003). Dr. Sharp-

ley played a critical role in the development of Maryland’s

P index, the first state policy-mandated P index in the United

States, through Maryland’s Mule Barn process, a collabora-

tive process that engaged experts and stakeholders from the

greater Chesapeake Bay watershed region (Coale et al., 2002;

Osmond et al., 2023).

Phosphorus remains a major cause of eutrophication

in agricultural watersheds of the United States, despite

widespread implementation of the P index. A key critique

of CSA-based management in the United States has been the

extreme variability of the versions of the P index implemented

by different states, manifest in variable CSA identification and

broad differences in nutrient management recommendations

for CSAs from different state P Indices (Osmond, Sharpley,

et al., 2012). Similarly, enforcement of P-based manage-

ment has been inconsistent (Perez, 2015). Other critiques

include the complexity of nutrient management plans, and

resource constraints (cost, time) to implementing CSA man-

agement required by the P index (Ehmke, 2012). Although

curbing eutrophication is profoundly difficult, there have been

notable success stories in watersheds where the P index has

been implemented, including New York City’s drinking water

source watersheds in the Catskill Mountains and the Illi-

nois River Watershed of Arkansas and Oklahoma (Osmond,

Meals, et al., 2012; Sharpley et al., 2012). More recently,

a number of US states have sought to implement dynamic

identification of CSAs to allow managers to adjust daily

applications based upon current conditions and short-term

forecasts (Easton et al., 2017).

It is remarkable to observe that the empirical founda-

tion of the P index is strongly grounded in settings where

Sharpley and select colleagues carried out their science. Rel-

atively few US states have rigorously tested and validated

the P index that they have implemented (Butler et al., 2010;

Harmel et al., 2005; Veith et al., 2005). Following the guid-

ance of Sharpley et al. (2011), some states have validated
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8 McDOWELL ET AL.

F I G U R E 2 Unfilled box plots showing the median, 25th and 75th percentiles, and the 5th and 95th percentiles (as whiskers) for the percentage

area considered to be a critical source area (top) and the percentage loss coming from critical source areas (bottom) for contaminant losses at

different scales and filled boxplots using the same criteria for catchment studies whose data were generated by either modeling (only) or a

combination of modeling and observations. Also given are the number contaminants (n = 8–38), and the output (χ2) from a Kruskal–Wallis one-way

analysis of variance contrasting median percentages (for all contaminants pooled together) at each scale and method. Data are from Table 1.

P indices against modeled field scale P loss (Bolster et al.,

2012). Given the importance of physiographic context and

scale to hydrology and associated inferences related to P trans-

port mechanisms, a consistent challenge to the successful

implementation of CSA-based management in the United

States has been to accurately represent transport factors,

including artificial drainage (tile drains and open ditches) and

VSA hydrology, in the P index (King et al., 2015; Kleinman

et al., 2015; Shober et al., 2017). In addition, some source

factors within the P index have also proven to be problem-

atic to the identification of CSAs, especially the availability

of P (viz. legacy P) in watersheds with large P surpluses and

freeze/thaw processes that can exacerbate dissolved P release

from vegetation (Kleinman, Sharpley, McDowell, et al., 2011;

Liu et al., 2018; Sharpley et al., 2013). Long cognizant of

these challenges, Dr. Sharpley played an active role in sup-

porting research programs across the United States to improve

the P index (Sharpley et al., 2017) and, in later years, became

a strong advocate in the United States for addressing barriers

faced by farmers and other nutrient managers seeking to bal-

ance goals of farm profitability and productivity with goals

of environmental betterment (Dodd & Sharpley, 2015). Dr.

Sharpley’s continued influence on the evolution of the P index

can be seen in newer P indexes, like Maryland’s Phosphorus

Management Tool v2 (PMT2), which elevated the effect of

management on overall P transport risk. The PMT2 separated

each major P flow pathway into summed components, with

each component calculated as the product of source, trans-

port, and management—rather than just source and transport

(Fiorellino et al., 2017).
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McDOWELL ET AL. 9

3.2 The United Kingdom and Ireland

In the United Kingdom, this work of Dr. Sharpley on CSAs

inspired a series of fundamental frameworks and modeling

approaches that helped develop new thinking and inform

policies for the UK Government. The “phosphorus transfer

continuum” was one example, being a conceptual model that

separated the P transfer processes into four separate tiers:

source, mobilization, delivery, and impact (Haygarth et al.,

2005). Sources represented the inputs of P to the system,

natural, fertilizer, or animal feed. Mobilization represented

the start of P movement from soil and was separated into

three subcomponents, solubilization, physical detachment of

P from soil, and incidental losses of newly spread sources of P

from the soil. Delivery was chosen to represent the hydrologi-

cal transport from the point of mobilization down the hillslope

to the stream (see also the P export and delivery [PEDAL]

modeling projects that follow). At the end of the continuum,

the impact tier recognized the ecological or economic out-

come, which may be a considerable distance and time after

the start of P mobilization.

The strength of the transfer continuum approach has been

its simplicity. It continues to be well-cited, owing credit to Dr.

Sharpley and co-workers’ ideas that separated sources from

transport factors. This conceptualization has certainly had an

impact on educating students and policymakers alike. In the

United Kingdom, the continuum approach has contributed to

informing policy for assessing cost curves for best P miti-

gation approaches (Haygarth et al., 2009) and underpinned

the wider UK diffuse pollution “User Manual” (Cuttle et al.,

2016), which is still used today. The “continuum” has also

been applied in Ireland where it has helped their agricultural

catchments program formulate new understanding for dairy

systems (Murphy et al., 2015) and contributed to framing

issues so that Ireland could evaluate its compliance with Euro-

pean Union policies (Wall et al., 2011). More recently, the

“continuum” approach has been used to focus the attention

on the importance of climate change in relation to the impact

of P transfer (Forber et al., 2018).

A family of modeling approaches also owes credit to Dr.

Sharpley’s work where it aligned with empirical, conceptual,

and modeling research at the time. Examples include the work

of the PEDAL family of projects (Beven et al., 2005; Brazier

et al., 2006; Scholefield et al., 2013; Zhang et al., 2013), the P

indicators tool (PIT) (Heathwaite et al., 2003), and the PSY-

CHIC model (Davison et al., 2008). Much of this research was

stimulated by the need to meet head on the challenges set for

science by the EU Water Framework Directive. These chal-

lenges still exist today. One has only to look at the debacle of

the “nutrient neutrality” debate where a requirement to add

no more nutrients to rivers prevents additional pollution into

rivers by developments. This has halted some housing devel-

opments in the border region between England and Wales

(Warren, 2023).

3.3 New Zealand

There has been a long history of P research in New Zealand

ever since early studies by Dr. Sharpley and colleagues in the

1970s who identified hot spots and hot moments of P loss in

response to superphosphate applications to near stream areas

in wintertime when runoff processes were active (Sharpley &

Syers, 1979). Recognition that water quality was declining in

response to intensive agriculture leads to a resurgence of P

and CSA research from the late 1990s (Gillingham & Thor-

rold, 2000). Initially, this was focused on providing advice

to the fertilizer industry about agronomic and environmen-

tal thresholds for P (McDowell, Monaghan, et al., 2003), but

then on estimating P loss within an existing model (Overseer)

(McDowell et al., 2005). This model was equally owned by the

research, government, and fertilizer sectors and was used by

fertilizer representatives and ∼50% of farmers. However, as

Overseer was not spatial, it was assumed to not capture CSAs

despite estimating farm losses reasonably well (R2
> 0.85)

(Gray et al., 2016).

Work on CSAs in New Zealand has focused on grazed

livestock, which present a unique set of behavioral and man-

agement characteristics compared to row cropping or CAFOs

overseas. These characteristics include year-round rotational

grazing meaning that dung and urine can be applied or

deposited in CSAs in winter (McDowell, 2006); treading that

can lead to soil disturbance in CSAs (McDowell, Drewry,

et al., 2003); the application of dairy shed effluent in early

spring when soils are wet (Monaghan & Smith, 2004); and

the use of forage crops (to supplement pasture) that are sub-

sequently grazed by large numbers of animals—increasing

excretal returns (Burkitt et al., 2017). In addition to the work

confirming CSAs associated with VSAs, research in the 2010s

also identified CSAs as drinking troughs where livestock

camp and laneways that dairy cows use to go to and from the

milking shed (Lucci et al., 2013; McDowell, Daly, et al., 2020;

Monaghan & Smith, 2012).

Importantly, because of these relatively unique character-

istics, New Zealand researchers have created a wide array

of BMPs. Most of these BMPs have been costed and tested

in multiple regions (McDowell & Nash, 2012). Extension of

BMPs has largely relied on farmer-owned co-operatives (e.g.,

fertilizer), industry bodies (e.g., dairy, sheep and beef, deer,

arable, horticultural, and viticultural), or regional authorities.

This advice has taken the form of information bespoke to a

sector, but also tools that extend previous modeling efforts

like Overseer to map CSAs and provide estimates of the cost

and effectiveness of BMPs suitable to the farm and region

(McDowell et al., 2015).
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10 McDOWELL ET AL.

The National Policy Statement for Freshwater Management

(NSP-FM) in 2014 has seen water quality thresholds estab-

lished, and, since 2020, freshwater farm plans have been made

mandatory for all farmers who, depending on the production

system, own land >5–20 ha (Ministry for the Environment,

2022). Importantly, CSAs are mentioned in the NPS-FM as

an underpinning concept within freshwater farm plans, and in

at least 77 industry and regional sector advice or policy doc-

uments. They are also recognized by New Zealand farmers

(McDowell et al., 2019).

Beyond raising recognition, the introduction of CSAs and

CSA management has been implicated as a major cause for

why nationally the proportion of total phosphorus concen-

trations at sites dominated by intensively grazed pasture has

improved (41% showing improving trends between 1994 and

2013, increasing to 65% between 2004 and 2018) (McDow-

ell et al., 2019). Recently, a more direct link has been made

between actions to reduce P loss in multiple farms over a

20-year period in five dairy-dominated catchments ranging

in size from 598 to 2480 ha. The decreases in P losses were

attributed to targeting CSAs with BMPs like limiting effluent

applications, removing winter forage crops, or shifting from

flood to spray irrigation (McDowell et al., 2023).

3.4 Australia

Water quality issues, including toxic algal blooms, have been

an enduring and expensive problem in Australia (Verhoeven,

1992) where CSAs have generally been identified through

modeling exercises (Grayson et al., 2001; Hall, 2011; Hall

et al., 2018; McCloskey et al., 2021). One good exam-

ple of where the concept of a CSA has been successfully

implemented is the Gippsland Lakes (Figure 3), an inter-

nationally significant wetland (Australian Site Number 21,

Ramsar Convention on Wetlands of International Importance

Especially as Waterfowl Habitat). Most P enters the Gipps-

land Lakes from the western catchments into Lake Wellington

(Grayson et al., 2001). Of P sources, irrigated agriculture in

the Macalister Irrigation District (MID) is prominent. The

MID comprises <2% (33,500 ha) of the land area and 20%

of the P exports to the Gippsland Lakes (Ladson & Tilleard,

2006). In the late 1990s, the MID was identified as being

“critical” to the health of the Gippsland Lakes, and a 40%

reduction in the 70 t TP·year−1 load was mandated (Victorian

Environment Protection Authority, 1995).

To achieve the 40% reduction, a joint research/

demonstration/extension project titled the Action on

Nutrients for Sustainable Agriculture (ANSA) was initiated.

This award-winning project was built on the scientific

foundation provided by Dr. Andrew Sharpley and received

industry, community, and government support. The extension

messages were simple but effective. For example, advice

such as “When you try to wash fertilizer in, you wash it

off” advised farmers that, as well as adversely affecting

downstream water resources, fertilizer application immedi-

ately before rainfall or irrigation is both unnecessary and

wasteful. In addition to land managers, influencers in the

form of farmer “champions” and service providers (e.g.,

fertilizer spreaders) were also targeted. Research data from

a community research farm and commercial farms were

used to support the extension messages. Given the initial

reluctance of the farming community to engage with the

government on water quality issues, all activities emphasized

high entertainment values and nonthreatening social interac-

tions. For example, one activity promoting the appropriate

management of dairy shed effluent involved a morning bus

ride to a local Air Force base to look over fighter jets, a

farm visit, a and barbeque lunch. Participants then went

home to milk and returned that evening for a bush dance

and floor show. Such innovative approaches were used to

address both source (i.e., incidental) and transport (e.g.,

minimum outwash, tailwater reuse) factors in an environment

of limited regulation. Ultimately, the ANSA project morphed

into more conventional, independent research and extension

activities.

Targeting the MID as a CSA has been successful with the

42 t TP·year−1 target being met in 10 out of 16 years since

2000 (WGCMA, 2018), and there is a clear trend of continued

decreasing P loads into the Gippsland Lakes (EGCMA, 2021).

An additional 7.5 t TP·year−1 (i.e., 18%) reduction in average

annual P loads from irrigation sources in the Lake Welling-

ton catchment by 2030 has now been mandated (Victorian

Environment Protection Authority, 2018). The scientific and

personal contributions of Dr. Sharpley have been seminal to

nutrient export mitigation in Gippsland.

3.5 Finland

Agriculture in Southwest Finland is the last pollution hot

spot in the Nordic countries, as indicated by the Helsinki

Commission, which governs the protection of the Baltic

Sea (https://helcom.fi/action-areas/industrial-municipal-

releases/helcom-hot-spots/). Anthropogenic P loading from

the Baltic Sea’s watershed is 84% (Iho et al., 2023). Southwest

Finland is also the country’s most productive agricultural

region. For decades, P applications have exceeded the crop

uptake, gradually elevating the soil test P values in the region

(Uusitalo et al., 2007). Intensive animal production is one of

the drivers of P accumulation (Sharpley et al., 2001).

The CSA concept brings scientific precision into real-world

P management, but in Finland, few examples of CSA exist.

One reason could be the extensive agri-environmental pol-

icy. Since the EU membership in 1995, the basic measures

in Finland’s agri-environmental scheme under the EU Com-

mon Agricultural Policy (CAP) have been designed to be as

expansive as possible (Lankoski, 2006). In 2015, about 86% of
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McDOWELL ET AL. 11

F I G U R E 3 The Lake Wellington catchment in south-eastern Australia, with the Macalister Irrigation District highlighted.

farmers (90% of farmland) were beneficiaries of the scheme.

The national agri-environmental schemes compensate a pro-

portion of the costs of environmental measures for farmers.

Together with the Czech Republic, Finland has been the only

member state to compensate 100% of the costs. Furthermore,

Finland is the only member state adding a full transaction

cost of 20% to the compensation (Keenleyside et al., 2011).

Hence, the agri-environmental scheme plays a role as an

income support. For a farm incurring lower than average costs

for the environmental measures, the income support may be

substantial. The Finnish agri-environmental policy aims at

extensive coverage, not at spatial precision. This contradicts

the principles of CSA.

Nevertheless, some policies have a clear CSA flavor. First,

soil test P thresholds are used to limit P applications in fields

that are P enriched and likely to produce runoff. Previously,

the limits were a part of the agri-environmental program,

but in 2023, they were made legally binding for all (Gov-

ernment Decree 64/2003). The idea is to bring down the soil

test P values particularly in animal farming regions where the

participation rate in the agri-environmental scheme has been

lower. The environmental and economic gains of basing P

application more precisely on soil test P values are substantial

(Iho & Laukkanen, 2012).

Second, land-use planning carried out in 13 regional gov-

ernmental centers has designed the spatial allocation of buffer

zones on agricultural fields most prone to erosion (Alahuhta

et al., 2010). The wide buffer zones are effective in mitigating

P loading in surface runoff, particularly from conventionally

tilled fields (Uusi-Kämppä & Jauhiainen, 2010). Unfortu-

nately, the CSA principle does not extend to incentives: the

hectare-based subsidy for establishing buffer zones is iden-

tical for all farms. This exemplifies the trade-off between

extensive coverage and precision.

Third, certain projects and pilots operating outside the

CAP have put forth CSA principles in practice. For instance,

a reverse auction pilot conducted in Southern Finland in

2010 had farmers suggesting a parcel-specific compensa-

tion for applying gypsum (Iho et al., 2014). The bids were

ranked according to a compensation P index ratio. The P

index was determined by the soil test P, the erodibility esti-

mate, and the proximity to different types of surface waters.

Essentially, the approach combined the heterogeneity in P

loading risk with the heterogeneity in costs of the measure
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(expressed in the non-coordinated bids of the farmers). The

pilot showed a substantial efficiency potential in applying

CSA principles, compared to the existing, extensive one-size-

fits-all management. The current strategic program of the

Finnish Government commits to further develop and trial

similar mechanisms to improve the spatial precision and the

cost-effectiveness of agri-environmental policies in Finland

(Finnish Government, 2023).

3.6 The Netherlands

The Netherlands has a long history of identifying agricultural

lands that pose a risk of P polluting groundwater and surface

water (Schoumans, 2015). Due to the strong emergence of

intensive livestock farming in the mid-1970s, the vulnerabil-

ity of different soil types in terms of P binding was mapped

(Schoumans, 2015). Since the Netherlands is a flat country

with shallow groundwater levels (<40 cm below surface),

most attention was paid to P leaching through the topsoil and

upper groundwater to local surface waters (trenches, ditches,

brooks, etc.). Variation in leaching rates caused by changes in

soil types can be used to define those soils that leach the most

P as CSAs. An indicator for acid sandy soils was developed

based on total P accumulation and the P binding capacity of

the soil to show the risk of increased groundwater P concen-

trations (van der Zee & van Riemsdijk, 1988). This indicator

was called phosphate saturation degree, and CSA maps of

phosphate saturation degree for the Netherlands were made

based on stratified soil sampling protocols for soils types

(Schoumans & Chardon, 2015).

However, to implement remedial measures in the right

place, information about real P losses was needed instead

of the potential risk. Furthermore, a more direct link with

agronomic parameters (soil test phosphorus) was requested to

bridge the gap between environmental impact and the agro-

nomic P management of a field. Based on a description of

P sorption in soils and hydrological processes, a simplified

P leaching tool, PLEASE, was developed, which predicted P

load from a field to nearby surface water (Schoumans et al.,

2013). The field measurements required were soil P test (water

extractable P), oxalate extractable Al and Fe, information

about groundwater fluctuation, and the distance to trenches

and ditches (Schoumans et al., 2013). In the Schuitenbeek

catchment, where these data were collected, the cumulative

distribution of the P load of the surface water showed that

some of the fields were hot spots of P loss to surface waters

(4–14 kg P·ha−1; Figure 4) and perhaps may have been defined

as CSAs. However, at a catchment scale, these high-loss fields

represented 4% of the area and accounted for 10% of the

load, whereas fields losing a moderate amount of P (about 2–

4 kg P·ha−1) accounted for about 60% of the load (Figure 4)

(Schoumans & Chardon, 2003). This example clearly shows

F I G U R E 4 Cumulative distribution of fields contributing to the P

load discharging from the Schuitenbeek catchment in the Netherlands.

that defining CSAs as the highest P loss fields on a per hectare

basis would be an inefficient method of targeting mitigation

strategies and reducing P loss.

4 FUTURE THOUGHTS

There are some instances where the management of CSAs

may fail to improve water quality. These are caused by spa-

tial and temporal variability that influence how a CSA is

defined and managed. An example here is where CSAs are

unclear and hence unlikely to account for most contaminant

losses. This may arise where there is a lack of slope inhibiting

VSA hydrology, or where there is no contrast in the leaching

potential (or sorption capacity) of soil types. Another example

occurs under high rainfall where CSAs are overwhelmed by

runoff across all the catchment (Lane et al., 2006; Ockenden

et al., 2017). With the likelihood of high-intensity storms

becoming more frequent in many parts of the globe (Wagena

et al., 2018), we may see the benefit of their management

decline, that is, non-CSAs are likely to become more impor-

tant sources of catchment P loss. Alternatively, the location

of CSAs may change as crop and livestock production sys-

tems adapt to increasing pressure from climatic variation and

the need for more food (Bock et al., 2018; Mogollón et al.,

2021). However, even where CSAs are well defined, and, for

example, contribute 80% of contaminant loss, if the catchment

is nutrient rich, then in mitigating this loss, the remaining

20% may still breach water quality thresholds: the “legacy

P” conundrum, another concept advanced by Dr. Sharpley

(Sharpley et al., 2013).

Moving beyond the definition of CSAs, their management

is also impaired because CSAs are often subjectively defined

across a spatial and temporal continuum; hence, while a CSA

may be spatially defined at a field scale, at a catchment scale

the same field may not be a CSA. An obvious example is rill
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McDOWELL ET AL. 13

erosion and P loss from parts of a field that are inconsequen-

tial in catchment loads dominated by bank erosion (Hayes

et al., 2023; Margenot et al., 2023). In addition, CSAs are often

active temporarily and may contribute contaminants at a time

that is, for example, seasonally insignificant or inconsequen-

tial compared to legacy P inputs from soils and sediments.

An example is the loss of P from CSAs during winter that

is swept downstream and therefore unlikely to cause periphy-

ton growth locally in summer, or inputs during summer that

fail to influence periphyton growth because sediment has been

deposited locally in winter from a site upstream with a legacy

of eroding low-P- and high-P-sorbing soil.

As a management tool, CSAs do reinforce and promote

cost-effective mitigation of diffuse pollution. How the CSAs

of a region are eventually determined should reflect their

net benefits. There are costs to being temporally and spa-

tially more precise in tracking pollution. These should be

outweighed by the benefits in terms of lower environmental

pressure or management costs. The Finnish and the Nether-

lands case studies illustrate that broad coverage of existing

policies may hinder targeting spatially differentiated measures

in practice. Their systems can handle differentiated fertiliza-

tion limits based upon soil test P, but, without more spatially

refined data, more precisely planned measures could not be

implemented. These case studies also convey a general les-

son: were the agri-environmental policies results based, it

would be in everyone’s interest to develop and utilize tools

that support precise allocation of environmental management

efforts.

In reiterating the intent of Dr. Sharpley, the purpose of

CSAs was to provide a framework to focus management

efforts on improving water quality outcomes, consistent with

observations from select watershed related to the diffuse,

agricultural sources of P. While there is merit in continu-

ing to develop the science behind what is a CSA, this must

always be linked to what is practical to do by the farmer. For

instance, while the technology may exist to manage disjunct,

small areas of a field with bespoke mitigations, intuitively this

would be difficult to convince a farmer to do manually. In

contrast, some potential exists under automated systems, more

common in flat land that is easy to mechanize or modify exist-

ing infrastructure. Already we see large-scale uniform-rate

irrigation systems being changed to variable-rate irrigation

systems that account for the water-holding potential of dif-

ferent soil types (reducing leaching) but are also able to apply

fertilizers through irrigation water so that small areas (e.g.,

5 m2) only have the nutrient they need (McDowell, 2017).

Some progress has been made on sloping land with the use of

variable-rate topdressing either by plane or by drone (White

et al., 2017), but mitigations outside of changing the 4Rs of

fertilizer practice on sloping land are rare.

In conclusion, work over the last 30 years has revealed

the significant potential to mitigate contaminant losses from

land to water. Because CSAs are easy to explain and, in

many landscapes, easy to define, they have also been imple-

mented resulting in material water quality improvement. With

increasing pressure on our water resources from primary pro-

duction and expectation from the public that our waters are

clean, there is a clear role for expanding the implementation

of CSAs beyond the case studies outlined in this review. How-

ever, we also recognize that managing CSAs at some scales

may not be appropriate. The modeled and observational data

summarized here, and our cases studies, suggest that defin-

ing CSAs is simplest and costs lowest at the field scale, where

CSAs are most obvious, but considerably more difficult at the

catchment scale. In addition, mitigating contaminant losses

from CSAs may not be enough to reach water quality objec-

tives. In this scenario, deeper change may be required. In

some cases, this may mean the complete removal of nutrient

inputs from one catchment to another (e.g., manure) (Spie-

gal et al., 2020), but land-use change in others (McDowell

et al., 2021). Whichever option is taken, it is inevitable that

new CSAs will arise, securing the legacy of Dr. Sharpley and

those who worked with him to develop and champion the

concept.
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