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ABSTRACT:
The study of humpback whale song using passive acoustic monitoring devices requires bioacousticians to manually

review hours of audio recordings to annotate the signals. To vastly reduce the time of manual annotation through

automation, a machine learning model was developed. Convolutional neural networks have made major advances in

the previous decade, leading to a wide range of applications, including the detection of frequency modulated

vocalizations by cetaceans. A large dataset of over 60 000 audio segments of 4 s length is collected from the North

Atlantic and used to fine-tune an existing model for humpback whale song detection in the North Pacific (see Allen,

Harvey, Harrell, Jansen, Merkens, Wall, Cattiau, and Oleson (2021). Front. Mar. Sci. 8, 607321). Furthermore, dif-

ferent data augmentation techniques (time-shift, noise augmentation, and masking) are used to artificially increase

the variability within the training set. Retraining and augmentation yield F-score values of 0.88 on context window

basis and 0.89 on hourly basis with false positive rates of 0.05 on context window basis and 0.01 on hourly basis. If

necessary, usage and retraining of the existing model is made convenient by a framework (AcoDet, acoustic detector)

built during this project. Combining the tools provided by this framework could save researchers hours of manual

annotation time and, thus, accelerate their research.
VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
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I. INTRODUCTION

The rapid absorption of light in water requires organ-

isms living in the marine environment to act on nonvisual

cues. As a result, like many other species, cetaceans rely

heavily on sounds for many vital life functions (Gordon and

Tyack, 2001). Different species have developed advanced

means of sensing and producing sound, enabling them to

use sound in every aspect of their lives (Tyack, 1997;

Mooney et al., 2012). The different forms of sound produc-

tion lead to very unique vocalizations, which can be used to

differentiate species, populations, and, in certain cases, indi-

vidual animals (Aide et al., 2013). Scientists make use of

this by collecting long-term acoustic data using passive

acoustic monitoring (PAM) and classifying different ceta-

cean species based on their vocalizations. Data collected in

this manner can be used to retrieve information on calling

behavior, seasonal presence, migration patterns, as well as,

under certain circumstances, determine relative or absolute

abundance of populations (Parijs et al., 2009; Thomas and

Marques, 2012; Lin et al., 2015).

Humpback whales (Megaptera novaeangliae) produce

vocalizations that can be categorized into social calls and

songs. Social calls can be described as “variable through

time, interrupted by silent periods, apparently unpredictable,

and not showing […] rhythmic, consistent and continuous

temporal pattern[s]” (Saloma et al., 2022). Humpback whale

song, on the other hand, is a deeply hierarchical pattern that

can be subdivided into themes, which are made up of

phrases, which, in turn, are made up of units (Payne and

McVay, 1971; Payne, 1983; Cholewiak et al., 2013). A unit

is a single vocalization separated from its preceding and suc-

ceeding units by an audible pause. Songs are typically

9 to 25 min long and comprised of several hundred units.a)Email: vkather@gmail.com
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Fundamental frequencies of humpback whale vocalizations

typically lie under 1 kHz (Au et al., 2006). When humpback

whales are in their breeding grounds, song sessions
(Cholewiak et al., 2013) are common in which several songs

are sung in repetition.

Humpback whale song, which is thought to be only

sung by males (Clapham, 1996), has been the subject of in-

depth studies for over half a century (Payne and McVay,

1971). Current research suggests that the song primarily

functions in sexual selection (Cholewiak et al., 2013;

Garland and McGregor, 2020; Schulze et al., 2022). A song

is commonly sung by an entire population and reproduced

by individuals within that population, showing forms of cul-

tural transmission (Garland and McGregor, 2020). Although

structurally similar, variations of songs within populations

and between individuals do exist (Cholewiak et al., 2013;

Garland et al., 2017). On some occasions members of one

population copy songs of another (Garland et al., 2011;

Garland and McGregor, 2020), thereby bringing one unique

song with a distinct pattern of themes, phrases, and units

from another population to their own. This copying can

spark a song revolution: a reoccurring (1.5 to 2 years) funda-

mental change of the structure of a song, sung within a pop-

ulation, yielding a new song (Allen et al., 2018; Garland

and McGregor, 2020). These song revolutions feature signif-

icant changes in the pattern of themes, phrases, and units

enabling researchers to uniquely identify different songs

(Allen et al., 2018; Garland and McGregor, 2020). The com-

plexity and spatiotemporal variation in male humpback

whale song has been thoroughly described in several geo-

graphic areas (Hawaii, South Pacific, and Caribbean; Payne

and McVay, 1971; Ryan et al., 2014; Allen et al., 2018, p.

18; Garland and McGregor, 2020; Wenzel et al., 2020;

Narganes Homfeldt et al., 2022; Saloma et al., 2022) but

has yet to be researched in many others.

The west coast of Scotland is situated along the migra-

tory route of North Atlantic humpback whales on their path

from the warm breeding grounds off the Caribbean and west

coast of Africa to their feeding grounds in subpolar and

polar waters (Smith et al., 1999; Wenzel et al., 2009).

Humpback whales and other baleen whale species, such as

minke (Belaenoptera acutorostrata) and fin whales

(Balaenoptera physalus), are sighted in Scottish waters par-

ticularly during spring and summer (Weir et al., 2001).

Humpback whales passing through Irish and Scottish waters

are known to migrate (O’Neil et al., 2019; Berrow et al.,
2021) from the two known breeding grounds which are

located in the wider Caribbean region and near the Cape

Verde Islands (Stevick et al., 2003; Ryan et al., 2014;

Wenzel et al., 2020). On their migratory route, they can be

heard in many locations throughout the North Atlantic, like

the Caribbean, Bermuda, the east coast of the United States

(U.S.), Iceland, and Scotland. Understanding the spatiotem-

poral distribution of humpback whales throughout the year

enables the development of more effective conservation

measures. This is of particular importance for the Cape

Verdian humpback whale population, which has been shown

to be low in numbers with only about 300 animals estimated

for this population (Ryan et al., 2014; Wenzel et al., 2020).

PAM is a nonintrusive method to monitor species of

vocally active marine mammals over periods long enough to

detect meaningful changes in their seasonal distribution

(Davis et al., 2020; Todd et al., 2022; White et al., 2022).

Long-term acoustic recordings have often been analyzed

manually by human experts, which is an accurate method to

detect species but is extremely time consuming. In recent

years, with advances of computing power, methods to auto-

mate species detection and classification processes have,

therefore, been developed for many different species

(Gillespie et al., 2009; Baumgartner and Mussoline, 2011;

Bergler et al., 2019; Bermant et al., 2019; Shiu et al., 2020;

Thomas et al., 2020; Zhong et al., 2020; Allen et al., 2021;

Garibbo et al., 2021; Kirsebom et al., 2021; Hildebrand

et al., 2022). These methods include energy-based or gener-

alized power-law detectors (Helble et al., 2012; Frasier

et al., 2017) and are increasingly building on advancements

in machine learning. Examples for this advancement are the

recent successful applications of convolutional neural net-

works (CNNs) to detect marine mammals (Bergler et al.,
2019; Bermant et al., 2019; Shiu et al., 2020; Thomas et al.,
2020, p. 220; Zhong et al., 2020; Allen et al., 2021; Garibbo

et al., 2021; Kirsebom et al., 2021). Whereas conventional

detection algorithms rely on predefined parameters to detect

vocalizations (for example, based on an energy threshold in

a frequency band), deep neural networks models, a subset of

machine learning models, have the capability to learn fea-

tures (and map them to an output/classification) autono-

mously from raw data. A CNN is a deep neural network

with millions of parameters that get tuned in the training

process. This process requires large amounts of training data

and computing power but if successful, yields a model

which is capable of distinguishing specific vocalizations

from other sounds in challenging noise environments.

In their study, Allen et al. (2021) developed a CNN

model, which was trained on humpback whale song data

from the North Pacific, reaching promising performance

metrics of 97% average precision on the level of 3.9 s long

spectrogram images over nine different deployment loca-

tions. When the National Oceanic and Atmospheric

Administration (NOAA)/Google model was applied to

humpback whale song recordings from the North Atlantic,

average precision dropped to 79%. This loss in performance

is most likely a result of different noise environments and

distinct humpback whale song unit structures that vary

across the two ocean basins.

To produce a well performing model for the North

Atlantic humpback whale population, this study describes

the fine tuning of the NOAA/Google model on a dataset

from the North Atlantic. The dataset needed a large varia-

tion in location sites as well as recording dates to be able to

encapsulate different noise environments and different

humpback whale songs (due to song revolutions).

Augmentation techniques (time-shift, noise augmentation,

and masking) were employed during training to artificially
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increase the variability of the training data. Finally, a frame-

work for inference, training, and evaluation of machine

learning models, AcoDet (acoustic detector) was built,

which was used for all trainings and evaluations during this

project. AcoDet is available for use online,1 allowing

researchers to use the model on their own datasets. The

framework features a graphical user interface and outputs

Raven annotation tables (Cornell Laboratory of

Ornithology, 2014), allowing it to be integrated into existing

workflows. AcoDet also allows researchers to train and eval-

uate models themselves. This enables them to apply it on a

dataset of their own or apply the model to a different spe-

cies. The main contributions of this study can be summa-

rized in the two following aspects:

(1) Provide a model for automated humpback whale song

detection in the North Atlantic; and

(2) present a (openly available) framework for inference,

training, and evaluation of machine learning models for

marine mammal vocalizations.

II. MATERIALS AND METHODS

To illustrate the unit level of a humpback whale song,

Fig. 1 displays the hierarchical structure of a song. To train

a CNN for humpback whale vocalizations [Fig. 1(D)], Allen

et al. (2021) defined a fixed length to use for training. This

length, the context window length, corresponds to a 3.9124-s

long spectrogram image. A context window of 3.9124-s

length is large enough to contain an entire unit but not large

enough to contain two units (on average). In this study, a

single manual annotation refers to the annotation of a single

context window. When referring to predictions on context

windows, what is implied is a generation of annotations for

every context window. As can be observed in Fig. 1, the

time scale changes for each of the hierarchical levels: start-

ing with a 10-min excerpt of an entire song [Fig. 1(A)] and

finishing with a single unit depicted in a context window of

3.9124 s length [Fig. 1(D)].

A. Data acquisition

The data used in this study were chosen to span a large

geographic area encompassing many of the known hump-

back whale core habitats in the North Atlantic. In theory,

humpback whales from Caribbean or Cape Verde popula-

tions would be recorded in different parts of the ocean basin,

thereby having similar vocalizations but large variations in

noise environments. The majority of the chosen data was

selected from the month of March because in this month,

North Atlantic humpback whales migrate to their northern

feeding grounds (Vu et al., 2012) and are likely to be heard

in all sites included in the dataset. Furthermore, restrictions

in storage capacity and transfer speeds of large acoustic

datasets limited the size of the dataset in this study.

All data were recorded using stationary PAM devices.

In marine environments, PAM devices typically feature

underwater hydrophones that record for several months to

several years (depending on recording site) either continu-

ously or duty cycled (i.e., recording at defined intervals). All

of the data used for training of the final model originate

from 24 different deployments scattered over more than 15

locations, categorized into 4 regions: Scotland, Caribbean,

the east coast of the United States (U.S.) and Bermuda, and

Iceland. The deployments span a period of 15 years from

2005 to 2020. To ensure that the detector is not limited in its

application to one recording setup, different recording devi-

ces were included in the dataset. The specifications of each

setup can be found in the supplementary material, Table S1)

and respective publications (Davis et al., 2020; Narganes

Homfeldt et al., 2022; van Geel et al., 2022; COMPASS,

2023).

Figure 2 shows the location of each respective deploy-

ment along with the amount of data linked to each deploy-

ment and the respective call to noise ratio. A call (positive)

refers to a context window containing a humpback whale

song unit (or part of one), whereas noise (negative) refers to

a context window containing anything else other than a

humpback whale song unit (can also include vocalizations

from other cetaceans).

FIG. 1. (Color online) Visualization of humpback whale song structure in

spectrograms. Each labeled spectrogram shows a different time scale, where

(A) shows a 10 min excerpt from a humpback whale song. The highlighted

portion of (A) contains a theme, a repeating subsection of a song, which is

shown in spectrogram (B), where a phrase is highlighted, which is a repeat-

ing subsection of a theme. In (C), the highlighted portion shows a unit,

which is the smallest structural element, and displayed in spectrogram (D).
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B. Preprocessing

To create a machine learning model that is trained on

data with varying recording conditions and settings, a stan-

dardized data preprocessing is necessary. Data preprocessing

steps similar to those employed by Allen et al. (2021) were

implemented, however, several parameters were adjusted. All

final datasets were built with a sampling rate of 2 kHz, unlike

the original 10 kHz (as used for the NOAA/Google model), as

reducing the sampling rate from 10 to 2 kHz showed no signif-

icant loss in performance. Moreover, the lower sampling rate

excluded high frequency noise and reduced the file sizes,

allowing for faster processing. The reduced sampling rate

results in a reduction of the context window length from the

original 3.9124 s (39 124 samples at 10 kHz) to 3.8775 s (7755

samples at 2 kHz). Reducing the sampling rate leads to a

change in context window length time as a result of rounding

to the nearest number of time bins.

The model is run with nonoverlapping context windows

to prevent detecting the same unit multiple times. However,

if long units are split in a way in which there is enough in

each of the context windows for the model to detect it as

such, the unit would be counted twice. Table I shows all

parameters relevant for data preprocessing.

The data preprocessing can be grouped into four steps:

(1) Audio recording files are resampled to the model sam-

pling rate. Unlike the original NOAA/Google model

sampling rate of 10 kHz, a sampling rate of 2 kHz was

used;

(2) a standard short-time Fourier transform (STFT) with a

Hann window of 1024 samples length and an output size

fixed to 128 � 64 (time � frequency) bins is applied.

This step is identical to the preprocessing by Allen et al.
(2021);

(3) the matrices from step (2) are transformed into (Mel-)

spectrogram images [STFT magnitudes are binned along

the frequency axis using a triangular Mel filter bank (64

Mel filters) and then squared after binning]. Due to the

change in sampling rate to 2 kHz, the 64 frequency bins

are mapped onto the frequency range between 0 and

1 kHz; and

(4) the spectrogram images are normalized using a per

channel energy normalization (PCEN; Wang et al.,
2017). This, too, is analogous to the preprocessing in the

NOAA/Google model.

For a more detailed description of preprocessing steps

in the paper by Allen et al. (2021), please refer to the section

therein entitled, “Acoustic Front End.”

C. Training progress

1. Training phase 1

Initially, a total of 22.7 h comprised from the

COMPASS (2023) and the SAMOSAS (van Geel et al.,
2022) datasets (all sites located in Scottish waters) were

FIG. 2. (Color online) Map showing

the North Atlantic Ocean alongside the

location of annotated datasets. Sizes of

circles correspond to dataset size. Blue

corresponds to percentage of noise,

and orange corresponds to percentage

of calls. Refer to Secs. II C 1 and II C 2

for more information on the datasets.

TABLE I. Settings used in preprocessing to generate training data and run

model.

Name of setting Value

Sample rate 2000 Hz

Context window length 3.8775 s (7755 samples)

Fast Fourier transform (FFT) size 1024 samples (512 ms)

FFT hop size 53 samples (26.5 ms)

Context window hop size 7755 samples (3.8775 s)

Spectrogram resolution 128� 64 (time � frequency)

Normalization Per channel energy normalization (PCEN)
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annotated (on context windows level) by an experienced

bioacoustic analyst. The annotation protocol demanded only

humpback whale song units to be manually annotated. After

manual annotation was complete, positive context windows

were generated by extracting 3.8775 s of audio starting at

the onset of the manual annotation. A time-shift augmenta-

tion was later introduced to ensure variability of the unit

placement within the context window. Negatives (implicit)

were generated by using the audio between manual annota-

tions. This data were used to fine-tune the pretrained

NOAA/Google model (modified ResNet-50; Allen et al.,
2021), yielding a preliminary North Atlantic model (see

training phase 1 in Fig. 3).

2. Training phase 2

The preliminary North Atlantic model was used to gen-

erate more annotations on the other available datasets across

the North Atlantic and for hard negative mining (Sung and

Poggio, 1995; Fig. 3, training phase 2). From the generated

annotations, files with a high number of predictions (more

than 100 annotations with a value > 0.5) were selected.

From the generated annotations, missed positives were

marked as positives, incorrectly annotated positives were

marked as explicit negatives, and the gaps between positives

and explicit negatives were marked as implicit negatives.

Using this strategy, another 37.2 h of annotated data (context

windows) were generated. Following the generation of the

dataset, augmentation techniques were introduced (detailed

description in Sec. II D). Using the full dataset and the aug-

mentations, the pretrained NOAA/Google model was fine-

tuned to yield the final North Atlantic model.

3. Data splitting

Data were randomly divided into train, validation, and

test sets. When creating train, validation, and test sets, con-

text windows in the train and validation sets originated from

the same files to ensure the same variability. For the test set,

all of the context windows were unseen by the model, but

the majority of the samples were extracted from files that

had been used to previously extract train and validation

data. To better test generalization capabilities of the model,

a small portion of the context windows in the test set were

generated from files that the model had not observed during

training.

Table II shows the specific number of examples for

train, validation, and test sets. As a result of the large avail-

ability data, Scotland is overrepresented in this study.

Except for the unseen test files, data from Scotland are bal-

anced, meaning that there are approximately equal numbers

of positives and negatives in train, validation, and test sets.

Data from the Caribbean, on the other hand, feature an

imbalance toward positives due to the proximity of the

recorders and the humpback whale breeding grounds. Data

from the east coast of the U.S. and Bermuda, as well as

Iceland, feature an imbalance toward the negative as the

majority of the randomly selected files were predominantly

noise. Because the test (unseen) files were also selected at

random in Table II, the column “test (unseen) call” shows

no positives for the Caribbean, U.S. and Bermuda, and

Iceland. Scotland, on the other hand, yields only a single

noise sample as the selected files were mainly filled with

humpback whale song. The bottom two rows show the num-

ber of samples for the hourly and daily level datasets. No

train and validation sets exist for hourly and daily based

annotations. Aggregation metrics (see Sec. II G) are used to

produce hourly and daily level annotations; therefore, the

model is evaluated but not trained on it.

4. Evaluation phase

After the training was completed in the evaluation

phase (Fig. 3, bottom), the test set was used to evaluate the

performance, compare different model versions and identify

the strongest performing one (Fig. 3, bottom). To evaluate

the model’s performance on the time scale of hours and

days, test sets on hourly and daily basis (Fig. 3, green) were

created. These datasets, which were (manually) annotated

on an hourly and daily presence basis, were created for three

sites off of the west coast of Scotland (SAMOSAS S1, N1,

and EL1; see supplementary material, Table S1).

FIG. 3. (Color online) Flowchart showing usage of datasets and models

throughout the project phases. Blue and green represent the context

window-based and hourly/daily based datasets, respectively. Where appli-

cable, the manual review effort (corresponding to the respective dataset) is

displayed in a lighter shade of the same colour. Model versions are shown

in gray. Refer to Secs. II C 1 and II C 2 for more information on the

datasets.
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D. Data augmentation

In machine learning, using complex models (like

CNNs) to solve complex tasks always poses the risk of the

model memorizing the training data instead of learning its

patterns (generalizing from the training data). This issue is

known as overfitting, “the phenomenon when a network

learns a function with very high variance such as to per-

fectly model the training data” (Shorten and Khoshgoftaar,

2019). One way to reduce the risk of overfitting is the use of

data augmentation techniques. Through data augmentation,

copies of the training data are created, which are then artifi-

cially altered.

In marine environments, recorders in different condi-

tions can be subject to a multitude of sounds, e.g., the

sounds of boat motors, sonar, or sounds produced by the

recording equipment, such as noise from the spin-up of mag-

netic hard drive platters. Distinguishing calls and noise in

spectrograms is only successful if sufficient data with exam-

ples are provided for the model. Augmentation of training

data increases the amount of data by creating copies con-

taining alterations. In this study, three different types of data

augmentation techniques were employed, all of which have

been applied to machine learning in bioacoustics in the past:

time-shift (Pandeya et al., 2018), noise insertion (Pandeya

et al., 2018), and frequency and time masking (Anderson

and Harte, 2021). Augmentations were implemented on-the-
fly, meaning that they were computed continuously during

the training process, thus, yielding copies with new altera-

tions after every training iteration (epoch). In the following,

the three data augmentation techniques that were employed

in this study are presented.

1. Time-shift augmentation

Time-shift augmentation was used to reduce the risk

of the model only detecting calls when the unit onset coin-

cides with the beginning of the context window. The spec-

trogram training data were time shifted by selecting a

random number of time bins within the first half of the

spectrogram and reordering the image. The matrix in Eq.

(1) shows a spectrogram image with dimensions n�m
(frequency � time):

x ¼

x0;0 x0;1 � � � x0;m

x1;0 x1;1 � � � x1;m

..

. ..
. . .

. ..
.

xn;0 xn;1 � � � xn;m

2
666664

3
777775
: (1)

A value k 2 [0, m/2] is randomly chosen, after which the

spectrogram image is reordered such that values in the kth

and all succeeding columns are moved to the beginning, and

all remaining columns are used to fill up the matrix. Equation

(2) shows the reordered (time-shifted) matrix, ~x tsf g:

~x tsf g ¼

x 0;kf g x 0;kþ1f g � � � x 0;mf g x 0;0f g � � � x 0;k�1f g
x 1;kf g x 1;kþ1f g � � � x 1;mf g x 1;0f g � � � x 1;k�1f g

..

. ..
. . .

. ..
. ..

. . .
. ..

.

x n;kf g x n;kþ1f g � � � x n;mf g x n;0f g � � � x n;k�1f g

2
666664

3
777775
:

(2)

The first column is now the kth column with all succeeding

columns up to the mth column following it. The column after

the mth column is now the first column of the original matrix,

x, with all succeeding columns up to the (k � 1)th column fol-

lowing it. This reordering of the spectrogram image creates an

artificially delayed onset of the humpback whale song unit.

The time-shift augmentation can be observed in the first

row of Fig. 4. The visible down-sweep in the original spec-

trogram image on the left side is delayed in the augmented

spectrogram image on the right.

2. Noise augmentation

As noise environments of different recording sites tend

to vary a lot, noise augmentation provides a possibility to

combine units recorded in one noise environment with those

recorded in other noise environments. Noise is inserted by

combining two spectrogram images into a new artificially

created image:

~xmu ¼ ayþ 1� að Þx: (3)

Equation (3) describes the formula by which two spectro-

gram images are combined, where y is a noise spectrogram,

TABLE II. Number of samples [context windows (c), hours (h), or days (d)] in train, validation, and test sets with respective origin. Call refers to a sample

containing humpback whale song units, whereas noise refers to a sample that does not contain humpback whale song units. The test set is split into samples

that are extracted from files that have been observed during training (seen) and ones that have not (unseen). The total column shows the number of context

windows summarized for all regions, as well as the number of hours.

Origin Train call Train noise Validation call Validation noise Test (seen) call Test (seen) noise Test (unseen) call Test (unseen) noise

Scotland (c) 7535 6588 2263 1884 3223 2658 208 1

Caribbean (c) 5141 188 1546 57 2194 77 0 42

US/Bermuda (c) 656 5994 200 1804 284 2553 0 1655

Iceland (c) 200 5789 56 1737 81 2480 0 0

Total (c)/in h 13 532/14.6 18 559/20 4065/4.4 5482/5.9 5782/6.2 7768/8.4 208/0.2 1698/1.8

Scotland (h) — — — — — — 1358 1954

Scotland (d) — — — — — — 30 108
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x is a call spectrogram, ~xmu is a resulting noise augmented

spectrogram, and a 2 [0,1] is the parameter determining the

ratio between call and noise spectrogram amplitude.

As described in Sec. II D 2, the effectiveness of noise aug-

mentation was increased by only using implicit noise for y
[Eq. (3)] and combining them with explicit noise and calls.

Noise augmentation was, thus, used to either combine hump-

back whale song units or explicit noise of one noise environ-

ment with implicit noise of another noise environment.

An example of noise augmentation can be observed in

the second row in Fig. 4. The spectrogram image on the left

(call) is combined with the spectrogram image in the middle

(noise), yielding the augmented spectrogram image on the

right, which exhibits the slightly weaker down-sweep unit

overlaid with low frequency noise.

3. SpecAugment

The final augmentation technique originates from

machine learning image recognition tasks and is based on

the principle of masking. For this study, time and frequency

masking were used to train recognition of units if parts of

the units are masked and, thus, not visible. These masking

algorithms, summarized under the name SpecAugment,

have proven to be effective in image recognition tasks (Park

et al., 2019). The time warping augmentation employed by

Park et al. (2019) was not used in this study. Figure 4 shows

examples of frequency masking in the third row and time

masking in the fourth row. On the left side, the original

training spectrogram image can be observed and, on the

right, the masked spectrogram images show a dark blue bar

of a randomly chosen width (for time masking, maximum of

10 bins) or height (for frequency masking, maximum of 10

bins) in a randomly chosen location.

Introducing augmentation techniques to the model

reduces the risk of overfitting by increasing the amount and

variability of the data. Further variability is added as all of

the augmentation techniques listed above are constantly

recomputed throughout the training session (on-the-fly).

Each augmentation technique employed in the training was

used on the entire dataset. In summary, the augmentations

used in this study lead to a fivefold increase in the dataset

size. Like the training data, all augmented spectrograms are

subject to PCEN.

E. Model architecture and training parameters

The architecture of the CNN model used is based on the

same modified ResNet-50 architecture as that for the

NOAA/Google model’s architecture. The modified ResNet-

50 diverges from the default ResNet-50 (He et al., 2015) by

having a smaller input spectrogram and, therefore, a stride

of 1 instead of 2 in the first convolutional layer. The NOAA/

Google model’s architecture amounts to 2.3 � 107

parameters.

The training of the CNN model was performed on a

graphical processing unit computer using a NVIDIA RTX

3060 TI (Santa Clara, CA). During the training process, a

binary cross-entropy loss function and an Adam optimizer

were used. The final model converged after 43 epochs, each

run for 1000 steps with a batch size of 32. The combination

of batch size, number of epochs, and number of steps per

epoch was determined empirically after running numerous

training runs. The train set, including augmentations, con-

sisted of approximately 150 000 samples. An exponentially

decaying learning rate with an initial learning rate of 4 �
10�4 and a final learning rate of 3 � 10�6 were chosen.

Several models were trained, however, for the results pre-

sented in this study, a single model was evaluated.

F. Comparison by region

To investigate differences in the model’s performance

based on different noise environments and representation

within the training set, the model’s performance was evalu-

ated by region. To do so, the model was trained on the entire

train set and subsequently evaluated with the test set corre-

sponding to one region.

G. Aggregation metrics

Model performance was evaluated on different time

scales: context window, hourly, and daily. Validation on

FIG. 4. (Color online) Different augmentation techniques employed in this

study. Row 1 shows time-shift augmentation, row 2 shows noise augmenta-

tion, row 3 shows frequency masking (part of SpecAugment), and row 4

shows time masking (part of SpecAugment). For each row, the columns dis-

play the original spectrogram and their augmented counterpart.
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hourly basis was performed using the hourly based test set,

which consists of manually annotated hourly presence anno-

tations of each hour for 46 consecutive days and 3 different

sites. This amounts to 3312 samples (24 h for 46 days and 3

sites; see Table II). Additionally, validation on daily basis

was performed using the daily based test set, which consists

of daily presence for 46 days and each of the sites, amount-

ing to 138 samples. The hourly based test set contains binary

values for humpback whale song presence in a given hour,

and correspondingly, the same applies to the daily based

dataset. To automatically produce the same format of binary

presence-based annotations, two different aggregation met-

rics were compared: simple limit and sequence limit.

1. Simple limit

When used for inference, the North Atlantic model out-

puts a prediction value, p 2 [0,1], for each context window

(3.8775 s). Once complete, a threshold is applied to the pre-

dictions, discarding all predictions with values under the

threshold. If the number of remaining predictions in an hour

of data does not exceed a predefined limit, the hour is

marked as 0, which stands for no humpback whale song pre-

sent. If the number of remaining predictions in an hour of

data is exceeded, it is marked with 1, which stands for

humpback whale song present.

To provide an example use case of the simple limit,

consider a file with 120 context windows, each of which

contains a prediction value. If only 12 of the 120 context

windows contain values above 0.9, and the simple limit is

applied with a threshold of 0.9 and a limit of 10, then the

criterion would be met, and for the given hour, the metric

would return the value 1, meaning humpback whale song is

present in the given hour.

2. Sequence limit

Unlike the simple limit, the sequence limit takes into

account that humpback whale songs last at least 9 min and,

thus, contain at least about 130 units, which are sung in

sequence. After applying a threshold to the predictions to

discard lower value predictions, a predefined limit is used

and needs to be exceeded in a string of N consecutive con-

text windows in an hour. If this limit is exceeded at some

point within the hour, the hour is marked with 1 for hump-

back whale song present. If not, it is marked with 0 for no

humpback whale song present.

Considering the above example with 120 context win-

dows, to compute the sequence limit, the order of the predic-

tion values is relevant. If the 12 prediction values exceeding

0.9 are evenly distributed throughout the 120 context win-

dows, we can assume to encounter one prediction value

above 0.9 every 10 context windows. If N is 20 and we

apply a threshold of 0.9 and a limit of 5, the criterion will

not be met as we will never receive 5 predictions exceeding

0.9 in a consecutive string of 20 context windows.

Regardless of which aggregation metric is used for hourly

presence, daily presence is acquired by checking and

compiling hourly presence. If for any of the 24 h, a value of 1

is returned, the daily presence also returns a value of 1. The

aggregation metrics allow users to use the model to provide

automatically generated annotations on hourly and daily levels.

III. RESULTS

A. Data augmentation

To compare augmentations, different instances of mod-

els [all modified ResNet-50 architecture (NOAA/Google)]

were trained using different combinations of augmentations.

All models were trained on the training set and evaluated

using the test set (unseen). By choosing the test set (unseen),

the ResNet-50 models were confronted with data from files

that had not been included in the training. While using the

entire test set would have provided a larger dataset for eval-

uation, the smaller test set (unseen) dataset allowed us to

focus on the different model’s ability to generalize to new

data. Table III shows model performance depending on the

data augmentation techniques used. The first three columns

indicate what augmentations were used in training. Average

precision [area under the curve precision and recall (AUC-

PR)] shows a threshold independent metric, indicating per-

formance at different operating conditions. The final three

columns show precision, recall, and F-score (harmonic

mean of precision and recall) at a threshold of 0.5, thereby

allowing for a comparison at a specific operating condition.

The values of precision, recall, F-score, and false positive

rate (FPR) are defined as specified in Eqs. (4)–(7):

precision ¼ true positives

true positivesþ false positives
; (4)

recall ¼ true positives

true positivesþ false negatives
; (5)

F-score ¼ 2
precision � recall

precisionþ recall
; (6)

FPR ¼ false positives

false positivesþ true negatives
: (7)

TABLE III. Performance metrics of North Atlantic model by augmentation.

The first three columns show values of 0 (augmentation not used) and 1

(augmentation used). The augmentations are time-shift (TS), noise augmen-

tation (NA), and SpecAugment (SA), and applied on the train set. Values

are displayed for area under the curve precision and recall (AUC-PR). P0.5,

R0.5, and F0.5 show precision, recall, and F-score values for a threshold of

0.5.

TS NA SA AUC-PR P0.5 R0.5 F0.5

0 0 0 0.67 0.68 0.85 0.76

1 0 0 0.84 0.77 0.9 0.83

0 1 0 0.72 0.63 0.78 0.7

0 0 1 0.78 0.75 0.82 0.79

1 1 0 0.89 0.77 0.85 0.8

1 0 1 0.84 0.77 0.88 0.82

0 1 1 0.77 0.66 0.85 0.74

1 1 1 0.87 0.8 0.87 0.84
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The first case, employing no augmentation, yields the worst

performance for average precision, thereby justifying the

usage of augmentations. Of all the different models, the two

models yielding the best results achieve average precision

values above 0.85 are the ones using all augmentations (last

row) and all except for SpecAugment (row number five).

When examining the performance by precision and recall,

the model employing all augmentations is slightly better.

This is more obvious when referring to the F-score, which is

the highest for the model employing all augmentations.

Interestingly, all trainings, including the time-shift augmen-

tation, reach F-score values of 0.8 and above. The results

highlight that the combination of all augmentation techni-

ques forces the model to generalize from the training set

rather than being able to memorize it (less prone to overfit).

All subsequent trainings were, thus, executed with a pipeline

containing all three augmentation techniques: time-shift,

noise augmentation, and SpecAugment.

B. Comparison by region

Table IV shows the model performance for different

regions. For this performance, the test sets of the four

regions, Scotland, Caribbean, the east coast of the U.S. and

Bermuda, and Iceland have been used as well as their com-

bination for the overall North Atlantic performance.

The threshold independent metric average precision

(AUC-PR) is the highest for the Caribbean (0.99); however,

the North Atlantic (overall), Scotland, and the U.S. and

Bermuda also reach high values exceeding 0.93. When com-

paring the precision and recall as well as the F-score at a

threshold of 0.5, the Caribbean reaches the highest values

with a precision of 0.98, a recall of 0.89, and an F-score of

0.93. When considering the precision metric for the

Caribbean, Table II reveals that this region has an imbal-

anced test set in which the majority of the data are calls.

Precision, recall, and F-score values are also displayed for a

threshold of 0.9. At this operating condition, precision val-

ues of all regions increase reaching values of 0.93 and above

while recall values decrease to 0.86 and below. The F-score

values at a threshold of 0.9, ranging from 0.86 to 0.89, are

lower than those at a threshold of 0.5, ranging from 0.86 to

0.93. The performance on the North Atlantic mirrors this,

reaching an F-score of 0.91 at a threshold of 0.5 and a lower

F-score value of 0.88 at a threshold of 0.9. Conversely, the

values of the FPR reduce when increasing the threshold.

Although the values of the regions range from 0 to 0.31 at a

threshold of 0.5, they reduce to a range of 0 to 0.12 at a

threshold of 0.9. For the overall performance, the FPR at 0.5

reaches a value of 0.1, whereas it reduces to a value of 0.05

at a threshold of 0.9.

The precision and recall curve in Fig. 5 shows the

model performance for the four different regions and over-

all. Ideally, a precision and recall curve goes through the

point (1,1), signifying 100% precision and 100% recall.

Recall values are depicted from 0.7 to 1 because the mini-

mum recall for any threshold was 0.7. For low thresholds,

only the Caribbean curve shows high precision values >0.9

while the other curves reach precision values of 0.6 and

lower. At threshold values of 0.5, all curves reach precision

values of 0.8 and higher (also shown in Table IV). The

Iceland curve reaches a recall value of 0.8 while the other

curves reach recall values of 0.88 and higher. When the

threshold is further increased, precision values rise while

recall quickly declines. At a threshold of 0.9, all curves

reach precision values of 0.9 and higher with corresponding

recall values of 0.77 and higher. The overall performance at

a threshold of 0.9 reaches a recall value of 0.82 and a preci-

sion of 0.96 (see Table IV).

C. Aggregation metrics

Figure 6 shows F-score values of the sequence limit for

hourly and daily presence as a function of the limit and

threshold used. The ranges of F-score values differ between

hourly and daily presence due to the improved results on

daily presence. Performance on the three sites included in

the test set (unseen) on hourly and daily levels were aver-

aged for this visualization. The graphs show a very regular

pattern for hourly presence [Fig. 6(B)]. For a threshold of

0.95, the maximum F-score is 0.93 (limit of 2). For lower

thresholds, the F-score values decrease, reaching a maxi-

mum of 0.87 for a threshold of 0.7 (limit of 9). For daily

presence [Fig. 6(A)], the highest F-score value of 0.965 is

reached for a threshold of 0.85 and a limit of 6. For a thresh-

old of 0.95, the curve reaches a maximum F-score value of

0.96 at a limit of 4. For a lower threshold value of 0.7, the

maximum F-score value is 0.925 (limit of 9). When operat-

ing daily and hourly presence at the same conditions, the

threshold of 0.9 with a limit of 4 yields the best combination

of F-scores, 0.93 for hourly presence and 0.945 for daily

presence (the same procedure was repeated for the simple

TABLE IV. Model performances for the four different regions represented in the validation datasets (Table I) and all regions combined [overall North

Atlantic (NA)] are compared. AUC-PR values are used for comparison as well as precision, recall, F-score, and FPR values at fixed thresholds of 0.5 and

0.9.

Region AUC-PR P0.5 R0.5 F0.5 FPR0.5 P0.9 R0.9 F0.9 FPR0.9

Scotland 0.95 0.9 0.89 0.89 0.09 0.95 0.82 0.88 0.06

Caribbean 0.99 0.98 0.89 0.93 0.31 0.99 0.81 0.89 0.12

U.S. and Bermuda 0.93 0.81 0.92 0.86 0.01 0.93 0.86 0.89 < 0.01

Iceland 0.87 0.92 0.80 0.86 < 0.01 0.98 0.77 0.86 < 0.01

NA (overall) 0.96 0.92 0.89 0.91 0.1 0.96 0.82 0.88 0.05
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limit). Although this yields the best performance with regard

to the F-score, taking into account the FPR, limits with

slightly higher values were chosen to ensure more stability

against false positives. For this reason, a limit of 6 was cho-

sen for the sequence limit and a value of 18 was chosen for

the simple limit.

Table V shows model performance by different time

scales. Context window level performance values are com-

pared with hourly and daily performances. Performance by

F-score increases from context window to hourly to daily

basis. Among the hourly presence results, the sequence limit

(SQ) yields a slightly lower F-score with 0.89 compared to

0.9 by the simple limit (SL). Both reach a precision of 0.99.

However, the FPR of the sequence limit is slightly lower

with 0.01 vs 0.02 by the simple limit. The sequence limit is

run with values of N¼ 20 and a limit of 6, whereas the sim-

ple limit is run with a limit of 18. These values were empiri-

cally determined (see below).

For daily presence, the difference between sequence

limit and simple limit is very small. The most prominent dif-

ference is the FPR reaching a value of 0.14 for the simple

limit on daily level and a value of 0.07 for the sequence

limit. Recall values climb from context window level to

hourly and daily starting at 0.82 and reaching 0.98. The pre-

cision values also increase from context window level with

a value of 0.96 to hourly with a value of 0.99. However, for

daily presence, the value drops again to 0.98 for sequence

limit. F-score values climb as well, with all of the values

reaching at least 0.88.

Figure 7 shows the output of the North Atlantic model

using the framework AcoDet if hourly counts [Fig. 7(A)] and

hourly presence [Fig. 7(B)] are generated. Date and time

information are automatically extracted from the timestamps

in the dataset and used to create visualizations that can be

used to investigate diel activity patterns of whales. Both plots

show a high number of vocalizations in the first three weeks

of March 2021 at the recording site. Vocalizations are

FIG. 6. (Color online) Changes in F-score as a result of changes in limit

and threshold of sequence limit for hourly (A) and daily (B) presence.

Variation in threshold is shown by colours over variation of limit values on

x axis.

TABLE V. Performance values for different time scales are compared. The

time scales displayed are context window, hourly, and daily basis. For each

time scale, precision (P), recall (R), F-score (F), and FPR values are shown

along with the threshold that they are operated at. For hourly and daily pres-

ence, two different accumulation metrics, simple limit (SL) and sequence

limit (SQ), are compared. For the aggregation metrics, the respective limits

(number of predictions exceeding the threshold) are shown. For the

sequence limit, the number of consecutive context windows evaluated (N)

is displayed.

Basis of prediction Metric Limit P0.9 R0.9 F0.9 FPR0.9

Context window basis — — 0.96 0.82 0.88 0.05

hourly presence SL 18 0.99 0.82 0.9 0.02

Hourly presence SQ (N¼ 20) 6 0.99 0.81 0.89 0.01

Daily presence SL 18 0.97 0.95 0.96 0.14

Daily presence SQ (N¼ 20) 6 0.98 0.94 0.96 0.07

FIG. 5. (Color online) Precision and recall curve displaying the model per-

formance (context window basis) by region and overall. The curves are gen-

erated by incrementally varying the threshold and calculating performance

for every threshold value. Specific precision/recall values are highlighted

by an “�” for performance at a fixed threshold of 0.5 and a circle at a fixed

threshold of 0.9.
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irregular in the last week of March and decrease in April

2021. The hourly presence[Fig. 7(B)], which is a binary met-

ric, shows that in the second week of April 2021, humpback

whale song vocalizations increase again.

IV. DISCUSSION

In this study, an existing CNN model that was origi-

nally trained on the North Pacific for humpback whale

song detection (Allen et al., 2021) was successfully

adapted for use in the North Atlantic. Using data provided

by researchers from across the North Atlantic, a large rep-

resentative dataset was created and used to fine-tune the

existing NOAA/Google model, yielding the North Atlantic

model. In the process of developing the new model, a user-

friendly framework, AcoDet, was built, allowing research-

ers to apply the model to their own datasets on context

window level as well as on hourly presence and daily pres-

ence level.

A. Preprocessing and augmentation

The reduced sampling rate of 2 kHz showed to be no

hindrance in achieving satisfactory model results. Reducing

the sampling rate from 10 to 2 kHz has little effect on model

performance, most likely because humpback whales tend to

vocalize in lower frequency ranges (humpback whale song

units rarely have fundamental frequencies that exceed

1 kHz; Au et al., 2006). Down-sampling recordings of

humpback whale song can preserve the crucial frequency

components as long as the sampling rate is not below 2 kHz.

A key component of creating a detector capable of gen-

eralizing to new environments is a large variation in

environment-specific data. Model performance will usually

be improved if environment-specific data exist for the envi-

ronment that a model is applied to. If only small amounts of

such data are available, the usage of different data augmen-

tation techniques can increase the variability within the

dataset. Three established data augmentation techniques

(time-shift, noise augmentation, and masking) were used

and compared in this study. Because the majority of the data

is produced in training phase 2 (see Sec. II C 2) through revi-

sion of automatically generated annotations, the context

windows will feature units placed in different positions

within the spectrogram as well as being cut off. This is

likely the cause for the positive impact of the time-shift aug-

mentation on the performance by F-score. Although noise

augmentation and SpecAugment do not show such a clear

pattern, when judging by precision and F-score, the combi-

nation of all three augmentation techniques during training

proved to be the most effective in generalizing to unseen

noise environments.

B. Model performance

The model performance by region emphasizes the dif-

ference in quality, balance, and amount of data for each of

the regions. The strong imbalance between precision and

recall for Iceland, Caribbean, and U.S. and Bermuda (Table

IV) is likely caused by the imbalance between the number

of calls and noise within the datasets (Table II) as well as

their smaller dataset sizes. The comparatively high FPR of

0.31 for a threshold of 0.5 and 0.12 for a threshold of 0.9

reached within the Caribbean is a likely cause of the low

amounts of noise for that region (only 119 noise samples;

see Table II). Although a low number of noise samples does

not directly influence the FPR [see Eq. (7)], it is likely to

yield a smaller variation in noise. In this way, if the detector

fails to correctly identify a specific type of noise within the

dataset due to the low number of negatives, this could affect

a substantial portion of the noise samples. Although the

count of false positives might be low, the FPR would pro-

duce larger values. In the same way, the FPR for the U.S.

and Bermuda region and Iceland aligns with their imbalance

toward negative samples (very high number of negatives,

i.e., likely to have a larger variation in noise). Scotland,

which features a larger and more balanced dataset, yields a

FPR in between the imbalanced datasets with 0.09 for a

threshold of 0.5 and 0.06 for a threshold of 0.9. This is simi-

lar to the even larger and more balanced combined dataset,

reaching a FPR of 0.05 for a threshold of 0.9. The same

FIG. 7. (Color online) Example output of hourly counts and hourly pres-

ence for SAMOSAS site (EL1, located at 57.09847, –8.96888). The hours

of day are depicted on the y axis and the recording dates appear on the x
axis. For every hour and day, the framework (AcoDet) outputs the counted

predictions (A) exceeding the threshold of 0.9 and limit of 6 (within

sequence of N¼ 20 context windows) in a given hour. Alongside the

counted predictions, the framework also outputs the hourly presence (B),

derived from the hourly counts (A) by applying the sequence limit and

yielding a value of 1 if threshold and limit are exceeded.
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similarity can be observed for precision, recall, and F-score

between the combined dataset and Scotland. Both achieve

high precision and recall values of 0.96 and 0.82 for the

combined dataset and 0.95 and 0.82 for Scotland. With

regard to the F-score, both the combined dataset and

Scotland reach a performance of 0.88. These similarities

highlight the importance of the size and balance of datasets

when evaluating performance metrics. Moreover, the results

reflect the large overlap between the Scotland data and the

combined dataset.

To effectively reduce the amount of manual review

necessary when detecting North Atlantic humpback whale

song, the aim of this study was to develop a detector that

produces low amounts of false positives. While reviewing

the generated annotations in training phase 2 (Sec. II C 2),

the main sources of false positives were boat noise and

recording device related noise (especially noise from the

spin-up of magnetic hard drive platters). After incorrect

detections were marked as explicit negatives during train-

ing phase 2, using them in the noise augmentation (Sec.

II D 2) made it possible to present the negatives in the con-

text of different noise environments, thereby increasing

their variability and occurrence in the dataset in an effort

to train the model not to mistake them again. Furthermore,

an operating threshold of 0.9 was set to further reduce the

number of false positives. At this operating threshold, a

FPR of 0.05 on context window level shows that in the

areas included in the dataset, the model is able to yield

only a small number of false positives. The use of aggre-

gation metrics further improves this performance and

allows using the model on hourly and daily levels.

Figure 6 shows the effects that threshold and limit have on

the F-score on hourly and daily levels when using the

sequence limit. The hourly presence plot highlights this by

showing a very uniform pattern for each of the F-score tra-

jectories corresponding to unique thresholds. Thereby,

threshold and limit of the sequence limit aggregation met-

ric can be tuned to site-specific conditions. F-score values

on hourly and daily bases (Table V) reach promising val-

ues with 0.93 on hourly basis and 0.94 on daily basis.

Simultaneously, FPR values reach 0.01 on hourly and 0.07

on daily level when using the sequence limit. The drop of

FPR values from context window (0.05) to hourly (0.01)

highlights the aggregation metric’s ability to filter noise

while not increasing false negatives (recall only changes

from 0.82 to 0.81 from context window level to hourly

level). The increase in FPR from 0.01 to 0.07 when aggre-

gating from hourly to daily level can be attributed to the

simple aggregation (from hourly to daily as explained in

Sec. II G) and its susceptibility to false positives if a single

hour is a false positive. This effect is amplified because of

the far lower (24 times less) number of samples for the

daily vs hourly bases (Table II), increasing the negative

effect of a single false positive. The increase in FPR is,

furthermore, countered by an improvement in F-score

from 0.9 to 0.96, showing that the overall performance

does not decrease.

In the comparison between the two aggregation metrics,

the sequence limit reached slightly better performance val-

ues than the simple limit when considering the FPR (0.01 vs

0.02 on hourly level and 0.07 vs 0.14 on daily level). An

anthropogenic noise source, e.g., a vessel, might cause occa-

sional prediction values to exceed the threshold. If this

occurs to an extent that exceeds the limit set in the simple

limit, the model will predict the presence of humpback

whale song. The sequence limit, however, is more robust to

infrequent high value predictions. This feature makes the

sequence limit less prone to be triggered by infrequent

anthropogenic sounds or vocalizations of other cetaceans.

Two known challenges for autonomous detection algo-

rithms of humpback whale song are: In high latitude North

Atlantic waters, bowhead whales are known to produce

complex songs with units, which are likely to be mistaken

for humpback whale song units (Erbs et al., 2021).

Similarly, on the east coast of the U.S., North Atlantic right

whales are known to produce upsweeps similar to some of

the humpback whale song unit upsweeps (Davis et al.,
2017). Whereas the sequence limit should prove helpful to

filter infrequent vocalizations by other cetaceans, a retrain-

ing of the detector might be necessary. To provide a tool

that can assist in addressing these challenges, AcoDet
includes functionalities to retrain the North Atlantic model,

thereby encouraging researchers to fine-tune the model to

environmental conditions of a specific site or population if

performance is unsatisfactory.

Whereas the framework AcoDet can be used for training

and evaluation of new models, its main purpose is inference.

Using the graphical user interface, a dataset is selected as

input, parameters are specified, and once the computation is

complete, Raven annotation tables (Cornell Laboratory of

Ornithology, 2014) are generated, which can be directly

imported into the Raven software for analysis of annotated

spectrograms. Furthermore, the user can choose to generate

hourly (or daily) counts as well as presence spreadsheets

and visualizations to analyze diel activity patterns through-

out the dataset. Figure 7 shows an example of hourly counts

and hourly presence visualizations generated by AcoDet
using the sequence limit. The same output is generated using

the simple limit, allowing the user to choose the preferred

aggregation metric.

Ease of use was the main driver in the development of

AcoDet, requiring little to no prior coding experience to use

the functionalities. In the past, novel machine learning mod-

els have produced promising results, however, the technical

skillset required to apply and use the models on new datasets

have left their potential unmet. Existing python frameworks,

like ketos (Kirsebom et al., 2021), koogu (Madhusudhana,

2022), or vak (Nicholson and Cohen, 2022), provide similar

functionalities, yet at the time of writing the incorporation

of custom models, such as the NOAA/Google model, into

ketos, koogu, or vak proved more complicated than the crea-

tion of a custom framework. At the time of writing,

researchers from Ireland, Scotland, and the U.S. have suc-

cessfully used AcoDet on their datasets and vastly reduced
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the time necessary to process large datasets. Furthermore,

the North Atlantic model for humpback whale song detec-

tion can be used with the audio detection software

PAMGuard (Gillespie et al., 2009).

In summary, the framework AcoDet can be used to

build training datasets from annotated files, train different

model architectures on the training data, and evaluate the

models. Furthermore, sample rate, context window length,

and spectrogram resolution can be set by the user. By com-

bining these functionalities, AcoDet is not limited to hump-

back whale song but can be applied to other species

detection tasks. All necessary code and explanations for

implementation can be found online.1

V. CONCLUSION

In this study, an existing machine learning model for

North Pacific humpback whale song is successfully

adapted to the North Atlantic to provide researchers with

a model for automated detection. A dataset spanning a

large spatial and temporal variation was collated, com-

prised of approximately 60 000 samples from throughout

the North Atlantic Ocean, which was used to fine-tune the

existing North Pacific model. The resulting North Atlantic

model was enhanced by the implementation of three dif-

ferent augmentation techniques [time-shift (Sec. II D 1),

noise augmentation (Sec. II D 2), and SpecAugment (Sec.

II D 3)], leading to promising performance results on data

from the North Atlantic with F-score values of 0.88 on

context window level and 0.96 on daily level and FPR

values of 0.05 on context window level and 0.07 on daily

level. Annotations are generated on context window level

by default and can be generated on hourly and daily levels

through the use of aggregation metrics. The newly devel-

oped North Atlantic model can be used for inference,

training, and evaluation using the open-source framework

AcoDet.
Countless hours of audio recordings containing hump-

back whale song have been recorded in the North Atlantic

in previous decades. Automated detection algorithms that

yield low FPRs have the potential of unfolding the infor-

mation within archived datasets and datasets currently

being built. This study aims to contribute to our under-

standing of North Atlantic humpback whale communica-

tion and behavior.

SUPPLEMENTARY MATERIAL

See the supplementary material for dataset metadata.

Table S1 includes locations, recording equipment details,

recording dates, and reference for the respective recording

sites included in the dataset.
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