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Abstract/Summary 

This study focuses on cultivated peanuts, Arachis hypogaea. The genetic makeup of 
peanuts is complex due to its allotetraploid nature, which was derived from the 
hybridization of two wild diploids (A. duranensis and A. ipaensis). A limited number 
of elite cultivars has led to reduced genetic diversity, prompting the need for improved 
breeding strategies. To analyze the link between genetic and phenotypic information, 
analyzing Quantitative Trait Loci (QTL) can provide insights into the genetic factors 
underlying variation in complex traits. Advancements in genotyping methods, 
including the use of high-density arrays and techniques like genotyping by sequencing 
(GBS), have greatly eased the process of identifying QTLs associated with various traits 
in different crops. Genome-wide association studies (GWAS) is an important genomics 
methodology that can identify QTL associated with complex quantitative traits using 
natural population.  

In peanuts, most of research employs SNP-based GWAS to identify candidate regions 
related to traits of interest, such as yield-related traits, seed-related traits, and disease 
resistance. However, the issue of “missing heritability” is commonly observed in SNP-
based GWAS, which means despite the successful identification of genetic variations 
associated with various traits and diseases through GWAS, the contribution of identified 
genetic variations cannot be fully explained or is limited. This issue may be caused by 
various factors, building haploids from adjacent SNPS is one approach to address it. 

The use of haplotypes, defined from linked SNPs, has emerged as a methodological 
variant for identifying genomic regions from GWAS. In wheat and other crops, 
haplotype-based GWAS have already been applied and yielded promising results. But 
only limited research on haplotype-based GWAS exists for peanuts. This study initially 
aims to establish a general pipeline for haplotype-based GWAS in peanuts, followed by 
the investigation and selection of suitable packages for implementation.  Finally, we 
validated the pipeline of haplotype-based GWAS on peanuts using the phenotypic and 
genotypic data from a diverse panel of cultivated peanuts. Four phenotypes associated 
with agronomic traits were studied. By investigating general methods for conducting 
haplotype-based GWAS, this research has the potential to contribute to future work in 
peanut genetics and breeding.  



 

 

Introduction 

Peanut  

Peanut (Arachis hypogaea) is an annual legume crop, commonly referred to as 
groundnut (Asakura and Kitahora, 2013). It is a crucial crop with diverse applications 
worldwide, including food, oil, and seeds. It holds a significant position as one of the 
major oilseed and food crops. The market demand for peanuts is steadily growing, with 
unique requirements in different regions. A comprehensive understanding of the peanut 
genome is essential for breeders to efficiently optimize specific regions based on market 
demands (Arya et al., 2016).  

The cultivated peanut is taxonomically classified within the Arachis genus based on its 
morphological characteristics and cross-compatibility relationships with other species 
(Stalker et al., 2016). Arachis species are predominantly found in tropical and 
subtropical regions, suggesting a probable origin in tropical wetland areas before 
adapting to survive in arid environments (Simpson et al., 2001). The most plausible 
place of origin for cultivated peanuts is identified as northern Argentina and southern 
Bolivia (Stalker et al., 2016). 

The morphological features of peanuts, as per Ikisan.com sourced from Ikisan Agri-
Informatics & Services Division of Nagarjuna Fertilizers and Chemicals Ltd (NFCL) 
(2021), include a well-defined main stem with a variable number of lateral branches. 
Groundnuts exhibit two recognized growth habits: prostrate and erect. The prostrate 
form is characterized by an upright and prominent main stem with procumbent or 
decumbent lateral branches. In contrast, the main axis loses its distinction from the 
laterals in erect types. (Source : Ikisan.com, https://www.ikisan.com/tn-groundnut-
morphology.html). 

During the pre-flowering phase, the arrangement of vegetative branches and 
inflorescences in the leaf axils on both the main axis and branches differs between the 
two primary botanical sections of A. hypogaea (Ikisan Agri-Informatics & Services 
Division of NFCL, 2021). Consequently, two flowering patterns exist in cultivated 
peanuts: a sequential pattern and an alternative pattern. In cultivated peanuts, the main 
branch (axis) is denoted as 'n', with subsequent branches termed 'n+1', 'n+2', and 'n+3'. 
Across all species forms, primary vegetative branches (n+1) emerge on the axis of 
cotyledons and at various higher nodes on the main axis. In sequential types, 
inflorescences develop at the second and several subsequent nodes of primary branches. 
The first node on a branch may produce a secondary branch (n+2), but often it bears an 
inflorescence, initiating flower development shortly after the n+1 branch. In alternative 
types, the first two nodes of the n+1 branch typically yield vegetative branches (n+2), 
followed by two nodes with inflorescences, and the pattern repeats with vegetative 
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branches and so on. This sequential pattern is mirrored in the n+2 branches(Ikisan Agri-
Informatics & Services Division of NFCL, 2021). Figure 1 shows  two plants with these 
two flowering patterns in (a) and (b). 

Nowadays, the cultivation of peanuts has been extended from South America to over a 
hundred countries worldwide (Jati et al., 2013). The steadily growing consumption of 
peanuts is due to its unique flavor, high nutritional value, high oil and protein level 
seeds and versatile uses (Allen et al., 2013). Peanut oil is considered a premier frying 
oil due to its stability at high temperature and a high smoke point compared to other 
edible oils, resulting in excellent sensory properties and extended fry life (List et al., 
2016). It also contains sterols, such as β-sitosterol, known for inhibiting cancer growth 
and providing protection against colon, prostate, and breast cancer (Sanders et al., 
2003). Additionally, Rachaputi(2016) also mentioned that peanut and peanut butter in 
diet was associated with a 21% reduction in the risk of cardiovascular disease, whereas 
a low-fat diet resulted in only a 12% decrease in risk. 

Peanut Genome  

Polyploids can be classified into two types based on their different origins: 
allopolyploids and autopolyploid (Soltis et al., 2000). Allopolyploids typically result 
from the hybridization of two different species, and they often exhibit bivalent pairings 
of chromosomes during meiosis, where more similar chromosomes are more likely to 
pair with each other (Xu et al., 2013). Autopolyploid, on the other hand, arise from 
combinations of different genomes within the same species, and during meiosis, 
chromosomes can pair among more than two homologous copies (Xu et al., 2013).  

A cultivated peanut is a self-pollinated species and an allotetraploid (AABB, 2n = 4x = 
40), resulting from a singular hybridization event between two wild diploids (Bertioli 
et al., 2011). Kochert (1996) indicates that Arachis duranensis and Arachis ipaensis are 
the donor of A and B sub genome respectively. As reported by Samoluk et al. (2015), 
the genome sizes of the A. duranensis and A. ipaensis are approximately 1.25 Gb and 
1.56 Gb, respectively. The sum of their genome sizes is close to the total genome size 
of A. hypogaea, which is approximately 2.8 Gb, suggesting that significant changes in 
genome size have not occurred since the polyploidization event (Temsch and Greilhuber, 
2000, Lu et al., 2018). 

In peanut, the utilization of a limited number of elite cultivars has led to a narrow 
genetic basis and a diminished level of germplasm polymorphism (Fonceka et al., 2009). 
When considering the framework of a breeding program for peanut enhancement, three 
foundational components emerge, including germplasm management, research priority 
areas, and breeding strategies (Coulibaly et al., 2022). So, the primary breeding 
objectives of domesticated peanuts involve elevating the genetic potential of both 



 

 

qualitative and quantitative traits, while concurrently enhancing genetic diversity and 
refining trait quality. 

Haplotype 

According to the definition from National Human Genome Research Institute, A 
haplotype refers to a clustered arrangement of genomic variants along a single 
chromosome that are commonly passed down together. It usually represents a distinct 
combination of variants located in proximity on a chromosome 
(https://www.genome.gov/genetics-glossary/haplotype).  

Haplotype can be built based on the phased genotyping marker; genotype phasing 
method varies based on different type of polyploid. Package FitTetra 2.0 (Zych et al., 
2019) can be used for genotype calling for tetraploids, and package Beagle 5.4 
(Browning et al., 2021) can be used for allotetraploid genotyping. PolyHaplotyper is a 
haplotyping tool for polyploid species genetic analysis, based on bi-allelic markers such 
as SNPs (Voorrips et al., 2022). The package Beagle stands as an accurate phasing 
algorithm that is designed to efficiently handle large-scale genetic datasets (Browning 
et al., 2007).  

The GHap software package is used for haplotype extraction (Utsunomiya et al., 2020). 
Specifically designed for haplotype construction, it employs user-defined haplotype 
blocks to identify diverse haplotype alleles within the dataset. The package evaluates 
sample haplotype allele genotypes by considering the haplotype allele dosage (i.e., 0, 
1, or 2 copies in a diploid). The resulting output is not only compatible with analyses 
involving multi-allelic markers but is also conveniently structured for integration into 
existing pipelines designed for bi-allelic markers. Originally introduced by Utsunomiya 
et al. (2016), the GHap software package streamlines haplotype construction from 
phased marker data, providing a robust foundation for subsequent analyses.  

The precision of haplotype construction may vary depending on various factors such as 
sample size, SNP count, allele frequency, proportion of missing data, genotyping error 
rate, and the extent of linkage disequilibrium among these SNPs (Kirk and Cardon, 
2002). Simulating datasets with varying SNP densities to determine the optimal number 
of SNPs within a haplotype should be considered (Zhang, 2004).  

Genome-wide association study 

Genome-wide association studies originated in human genetics, to detect the 
association between common genetic variants and the risk of human disease 
(Hirschhorn and Mark, 2005; Smith et al., 2019). Over time, the application of GWAS 
has become widespread, extending beyond human genetics to include model organisms 
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in both the animal and plant kingdoms, as well as non-model systems (Korte and Farlow, 
2013). For instance, researchers routinely utilize GWAS to identify specific genetic loci 
and underlying genetic structures associated with phenotypes determining various 
agronomically important traits in crops (Korte and Farlow, 2013). As advancements in 
statistical methodologies facilitate GWAS, opportunities arise to identify associations 
between phenotypic traits and specific genetic regions (Uffelmann et al., 2021). 
Examples of GWAS applications include studying flowering time and grain yield traits 
in rice germplasm (Huang et al., 2012), exploring agronomic and morphologic traits in 
barley cultivars (Wang et al., 2012), and investigating disease resistance regions in 
wheat through GWAS (Malosetti et al., 2020). 

Improving genetic tools for peanuts, particularly through SNP-based GWAS, can 
enhance our knowledge of peanut genetic structures and identify specific candidate 
gene regions. SNP stands as one of the most prevalent genetic variations that can be 
regarded as the markers in genetic studies (Bush and Moore, 2012). This method holds 
the potential to facilitate crop improvement and address genetic barriers, contributing 
to the sustainable development of peanut cultivation. Although single-marker-based 
GWAS successfully identifies genetic variations associated with diverse traits and 
diseases, a frequently observed issue in SNP-based GWAS is 'missing heritability,' 
which means the contribution of identified genetic variations cannot be fully explained 
or is limited (Sehgal et al., 2020). Several factors may contribute to this issue, and one 
strategy to address it involves constructing haplotypes from adjacent SNPs (Sehgal et 
al., 2020).  

Nowadays, GWAS has increasingly been employed to investigate the genetic 
foundations of significant characteristics in peanuts (Wang et al., 2019). Despite a 
bunch of research employing SNP-based GWAS to identify candidate SNPs related to 
traits such as yield-related traits (Wang et al., 2019), growth habit-related traits (Li et 
al., 2022), oil content (Wang et al., 2018), sting nematode resistance (Ravelombola et 
al., 2022), and lead spot resistance (Zhang et al., 2020). While several research groups 
have already investigated breeding traits in peanut using haplotype-based GWAS, 
recent studies have shown that haplotype-based GWAS can provide valuable 
supplementary information in diploid species like maize (Wang et al., 2018, Hang et 
al., 2020, Maldonado et al., 2019). However, haplotype-based GWAS is still 
underutilized in peanut research. Establishing a general haplotype based GWAS 
pipeline for peanuts would simplify and enhance the application of this method for 
researchers. 

The primary aim of this project is to develop a general haplotype-based GWAS pipeline 
for peanuts. The raw genotype data and phenotype data are provided by Henan 
Academy of Agricultural Sciences (HAAS). The first step involves an investigation into 
suitable packages for haplotyping peanuts, elucidating the preprocessing steps required 



 

 

for raw data, and obtaining final haplotype information. Subsequently, GWAS will be 
performed using these haplotypes. Additionally, a comparative analysis with the HAAS 
SNP-based GWAS, conducted on the same peanut population genome, will be 
undertaken. This comparative approach aims to assess whether haplotype based GWAS 
can provide supplementary insights, offering an extra layer of information. 

  



 

 

Materials & Method 

Plant material 

The peanut diversity panel comprises 353 accessions of cultivated tetraploid A. 
hypogaea. phenotypic and genotyping data were collected by the Institute of Crop 
Molecular Breeding at the Henan Academy of Agricultural Sciences.  

Phenotyping traits 

The phenotypic traits under consideration encompass binary and discrete attributes, 
including flowering pattern (alternate or sequential), inner integument color (yellow or 
white), growth habit (erect or prostrate), and the total number of branches. Examples of 
these phenotype traits are depicted in Figure 1. The seeds of each line were sown using 
a randomized complete block design with two replicates within a single environment. 
The phenotype data is provided by HAAS. 

a. 

 

b. 

 

 
 



 

 

c.                                                                       d. 

                    

e.                                                                            f. 

            

Figure 1 : Phenotypic Traits. Illustrative examples of distinct phenotypic traits are presented:  

a) alternate flowering pattern: The green triangles indicate the vegetative branches, the red triangles the nodes with 

inflorescences. b) sequential flowering pattern.c) yellow seed (inner integument). d) white seed. e) prostrate growth 

habit f) erect growth habit.  

Genotyping material 

Whole-genome resequencing was carried out across various Arachis species and then 
aligned against the genome of the peanut cultivar Tifrunner (Li, 2018). Paired end DNA 
libraries were formed with around 300 bp inserts, and subsequently, sequencing was 
conducted using the Illumina HiSeq Xten platform (Illumina, Inc., San Diego, CA, USA) 
with a PE151 configuration. After undergoing quality checks and filtering, the superior 
quality reads were aligned to the genome of cultivated peanut (Arachis hypogaea cv. 
Tifrunner version 1) using the minimap2 (v2.10) software. SNP and INDEL calling 
were performed with the Genome Analysis Toolkit. After applying quality control, a 
total of 864,179 SNPs and 71,052 InDels were identified. The raw genotyping material 
was provided by HAAS. 

Genotyping 

The primary steps of haplotype based GWAS were designed as follows: First, we did 
the genotyping and constructed haplotypes, followed by a construction of a kinship 



 

 

matrix. Finally, we performed GWAS using a mixed linear model, accounting for 
kinship.  

Initially, we employed both updog (Gerard et al., 2018) and beagle 5.4 (Browning et 
al., 2021) for genotyping from read counts, treating genotypes as diploid. Beagle 5.4 
was also utilized for phasing and imputation. Subsequently, we conducted a 
comparative analysis between the outcomes of these two tools.  

Using the R package vcfR, we extracted the 'gt' field from the raw VCF file, facilitating 
the retrieval of total read depth (DP) and reference read counts (AD) per SNP. These 
values were then utilized to construct 'refmat' and 'sizemat.' Following data processing, 
the 'multidog' function in the R package 'updog' was employed to obtain genotyping 
results. The script for updog application can be checked in the appendix. 
Simultaneously, the 'beagle 5.4' package was utilized for genotyping, imputation, and 
phasing, executed through the Java script 'java -jar beagle.22Jul22.46e.jar 
gt=s353.gwas.recode93.vcf out=out.gt' in Linux. The resultant beagle outcomes were 
juxtaposed with those of updog.  

To assess the quality of genotyping data for each SNP, we implemented criteria to 
remove SNPs with low call rates (SNPs with Minor Allele Frequency, MAF < 0.05) 
and high missing data (Missing data > 0.1). The result of beagle was then used to impute 
the missing data in the result of updog. Given the uncertain order of individual parents 
of heterozygotes in updog, this information was filled using beagle's results. 

Haplotyping   

To derive haplotype results, we utilized the R-package GHap, employing essential input 
files draw information from both Beagle and Updog results. According to the 
requirement, the one of input files should be devoid of missing data and accurately 
represent the phased chromosome alleles. To achieve this, we utilize Beagle results to 
impute missing data in the Updog-derived dataset. The GHap package's ghap.blockgen() 
function is subsequently employed to delineate haploblocks, and the ghap.haplotyping() 
function is utilized to generate a matrix of haplotype genotypes. This sequential process 
ensures the creation of a robust and comprehensive dataset suitable for downstream 
haplotype analysis. 

GWAS 

GWAS was conducted to assess the associations between haplotypes and phenotypic 
traits, employing logistic regression models and accounting for potential population 
structure and relatedness. Multiple testing correction methods were applied to ensure 
the robustness of the results. In this case, due to the limited time, the covariate was only 



 

 

set as kinship matrix. The kinship matrix of hapallele was built in r package GHap, 
using ghap.kinship() function.  

After getting the kinship matrix, a GWAS was performed utilizing a mixed linear model, 
incorporating kinship matrix as covariate. To enhance the reliability of findings, a 
comprehensive approach that incorporates both TASSEL and GHap software platforms 
was embraced. Visualizing the outcomes was done through Manhattan plots and QQ 
plots. The script of GHap GWAS is shown in the appendix. Due to the large dataset, we 
perform TASSEL 5 in Linux using command line "./run_pipeline.pl -Xms512m -
Xmx10g -fork1 -plink -ped res_pop.ped -map res_pop.map -sortPositions -fork2 -r 
phenotype.txt -fork3 -t traits.txt -fork4 -k res_pop_kinship.txt -combine5 -input1 -
input2 -intersect -combine6 -input5 -input4 -mlm -mlmVarCompEst P3D -
mlmCompressionLevel Optimum -mlmOutputFile gwas_result". 

The result of this haplotype-based GWAS was compared with that of the existing SNP-
based GWAS which uses the same genotyping dataset. We compared the visualization 
of associations using QQ plot and Manhattan plot. QQ plot was used to compare 
statistical significance, overlay the QQ plot from both haplotypes based GWAS and 
SNP-based GWAS to visually compare the distribution of observed p-value. Deviations 
from the expected distribution in one direction (above the diagonal) can indicate a 
higher number of significant associations compared to the other method. Manhattan 
plot was used to compare the candidate genetic region number to explore whether there 
are unique associations detected by either method.  

  



 

 

Result 

Genotyping result 

The raw genetic variations within the peanut gene sequence are stored in the 
's353.gwas.recode93.vcf' file, capturing data from 353 samples, comprising 864,179 
SNPs, and 71,052 indels. The total number of sites under analysis was 935,231. Initially, 
we employed both updog (Gerard et al., 2018) and beagle5.4 (Browning et al., 2021) 
for genotyping based on read counts, treating genotypes as diploid, followed by a 
comparative analysis of the results. 

Compared to the results obtained from the Updog package, we noted occasional 
misclassification of some homozygous genotypes as heterozygous by Beagle, which 
was an unexpected outcome. In contrast, the genotyping accuracy demonstrated by the 
updog outcomes appears superior relative to those obtained with Beagle. However, it's 
important to note that Beagle performed imputation, eliminating missing data, and also 
provided additional phasing information for heterozygous individuals. 

We assessed the quality of genotyping data for each SNP and eliminated SNPs with 
MAF < 0.05 and Missing data > 0.1 in the updog results. Following this quality filter, 
578,088 samples remained. Figure 1 illustrates the dynamic fluctuations in SNP counts 
across chromosomes and demonstrates the impact of filtering. 

 

Figure 2. Portray the dynamic alteration in the number of SNPs per chromosome, encompassing 
both pre- and post-quality filtering stages. The x-axis delineates the chromosomes, while the y-
axis denotes the SNP count. 

We extract the Beagle results specifically for the subset of 578,088 samples from the 
comprehensive Beagle dataset, maintaining consistency with the filtering criteria 
applied to the updog results. Following this, in R, we rectify the inversion of 'alt' and 
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'ref' in the Beagle results by implementing necessary adjustments. Finally, we utilize 
the beagle results to impute missing data in the updog results. Given the uncertain order 
of individual parents of heterozygotes in updog, we incorporate this information from 
beagle's results. 

Haplotype result  

We obtained a total of 115,609 haploblocks, each containing 5 SNPs per block, using the 
GHap package. Subsequently, from these haploblocks, we derived a total of 763,207 
haplotypes. The results of haplotyping revealed that the number of haplotypes per block 
varies from 2 to 19, with the majority falling within the range of 2 to 10. Figure 3 offers a 
concise overview of haplotype distribution across the genome, providing insights into the 
chromosomal variation and diversity captured by the analysis. Additionally, Table 1 presents 
the number of haploblocks and haplotypes per chromosome (Appendix).  

 

Figure 3: Haplotypes. Number of haploblocks and haplotypes per chromosome. Each haploblock 
comprises 5 SNPs. The x-axis represents individual chromosomes, while the y-axis signifies the 
haploblock count. 

Haplotype-based GWAS  

The kinship matrix was obtained using the GHap package and used as input for 
TASSEL. The heatmap of this kinship matrix is depicted in Figure 4 (Appendix). While 
GHap can be directly utilized for haplotype-based GWAS, we explored three methods . 
Method 1 involved GWAS without consider the effect of kinship and permanent 
environmental effect (repeated measurement, rep), Method 2 included setting kinship 
as a covariate but without rep, and the last method comprised performing GWAS only 
with repeated measurements. 

Due to formulation limitations, we could only obtain results when performing GWAS 
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without considering kinship. In the quest for an alternative package that accounts for 
kinship, we turned to the TASSEL package in Linux. The execution of GWAS using the 
mixed linear model took more than one week to yield results for the four phenotypes. 
Figures 3b) and 3d) present the Manhattan plots and QQ plots for the SNP-based GWAS 
of phenotype traits, including the total number of branches and growth habits from 
HAAS. Notably, based on the QQ plot and Manhattan plot, we observed suboptimal 
GWAS results for flowering pattern and inner integument color. 

Due to formulation limitations, we could only obtain results when performing GWAS 
without considering kinship. Seeking an alternative package that accounts for kinship, 
we employed the TASSEL package in Linux. The execution of GWAS using the mixed 
linear model took more than one week to obtain results for the four phenotypes.  

According to the haplotype-based GWAS visualization, in Figure 3a), it is evident that 
chromosomes 13 and 17 contains potential candidate regions with a significant 
association with the total number of branches. Figure 3c) shows that chromosome 3 
may contains the most associated intervals with the growth pattern. We compared our 
results with the HAAS group study, which utilized the same genotype and phenotype 
material to perform SNP-based GWAS. Figures 3b) and 3d) present the Manhattan plots 
and QQ plots for the SNP-based GWAS of phenotype traits, including the total number 
of branches and growth habits from HAAS. In the SNP-based GWAS Manhattan plot, 
the genomic regions which associate with  total number of branches were identified on 
chromosomes 2, 9, 12, 15 and 16. For the growth habit, the associated genomic regions 
were situated chromosomes 3 and 15. We found that haplotype-based result shows some 
different genomic regions which may associate with these two phenotype traits. 

Notably, based on the QQ plot and Manhattan plot in Figure 3e) and 3f), we observed 
suboptimal GWAS results for flowering pattern and inner integument color. In both QQ 
plots, majority of points deviate above the diagonal line, indicating that the observed 
P-values for most sites exceeds the expected values. This observation implies a 
significant association for numerous loci with the flowering pattern and inner 
integument color, a trend that appears incongruent with biological logic. 

 a 
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Figure 3: Haplotype Results and Peanut SNP-based GWAS result from HAAS. a) GWAS 
Manhattan plot and quantile-quantile QQ plot for total number of branches; b) Manhattan plots and 
QQ plots for the SNP-based GWAS of total number of branches from HAAS; c) Manhattan plot 
and quantile-quantile QQ plot for growth habit; d) Manhattan plots and QQ plots for the SNP-based 
GWAS of growth habit from HAAS; e) Manhattan plot and quantile-quantile QQ plot for flowering 
pattern; f) GWAS Manhattan plot and quantile-quantile QQ plot for inner integument color. In the 
haplotype-based GWAS Manhattan plot a), c), e) and f),  the blue line is the threshold for 
suggestiveness of a QTL, the red line denotes the genome wide significance threshold. 
Suggestiveness line defaults to -log10(1e-5) and genome-wide significance line defaults to -
log10(5e-8). In the SNP-based GWAS Manhattan plot b) and d), the green horizontal line indicates 
the threshold for significant association (p<0.05) after the Bonferroni correction. 

  



 

 

Discussion 

The outcomes of the haplotype-based GWAS for two phenotypic traits, flowering 
pattern, and inner integument color, did not align with our initial expectations. The QQ 
plot revealed a considerable number of false positives, indicating potential issues in the 
analysis. Several factors could contribute to this unexpected result, involving 
insufficient population structure analysis, phenotype data and limitation of the method. 

It is important to acknowledge certain limitations in our study. Due to time constraints, 
in the GWAS mixed linear model, we focused only on the impact of kinship matrices, 
without considering population structure analysis. Literature review suggests the 
importance of addressing extra population structure analysis, for which both the 
STRUCTURE (Porras-Hurtado et al., 2013) and TASSEL packages prove valuable in 
calculating suitable K values and conducting Principal Component Analysis (PCA) 
which can also be utilized as covariates in the GWAS mixed linear model.  

Another consideration is the absence of replicated phenotype data and measurements 
taken under different environmental conditions. The limited input of phenotype data 
may impact the results, as environmental effects are sometimes considerable and can 
mask genotypic effects (Zaitlen and Kraft, 2012). Additionally, during the arrangement 
of genotyping results, we employed less accurate beagle results to impute the updog 
results, potentially introducing a negative impact on the overall outcome. 

In regard to the selection of software and package tools throughout the entire pipeline, 
additional experimentation and comparison are needed. There are still many other 
packages that have not been used in this study. Therefore, there is still the possibility of 
finding packages that are more suitable for the entire haplotype-based GWAS, which is 
worth further exploration and experimentation. Additionally, new software packages 
and tools are continually being published in the academic community. Hence, for the 
software packages chosen for each step in the entire workflow, it is worthwhile for us 
to continue to pay attention to and explore. 

Furthermore, during the construction of Haploblocks using GHap, we set the threshold 
at 5 SNPs per block without considering other SNP counts. It's worth noting that the 
number of SNPs is a critical factor that can impact the precision of haplotype 
construction (Kirk and Cardon, 2002; Zhang, 2004). In this study, to explore this, we 
created different haploblocks with 4 and 6 SNPs per chromosome. Unfortunately, due 
to time constraints, we were unable to test these alternatives. Future studies may benefit 
from exploring varying SNP count thresholds to enhance the accuracy of haplotyping 
construction. 

  



 

 

Conclusion 

The overall pipeline for haplotype-based GWAS involves a systematic series of steps, 
encompassing phenotype and genotype data collection, genotyping, genotype quality 
filtering, haplotyping, kinship matrix construction, GWAS execution, and result 
visualization. Throughout the study, a comprehensive set of software tools and 
packages can be strategically employed. For genotyping, the utilization of the updog 
package is recommended, supplemented by phased information and imputation 
obtained through Beagle 5.4. Setting genotyping data quality filter thresholds at MAF 
≤ 0.05 and missing data > 0.1 is advised. GHap package can be used for haplotyping, 
although alternatives like Haploview can also be explored. The different SNP count 
setting per haploblock can be applied. The analysis of kinship matrices can be 
efficiently performed by GHap, with additional options including Haploview, TASSEL, 
and the R-package GAPIT3 (Wang et al., 2021). PCA can also be consider using 
package STRUCTURE and TASSEL.  Subsequently, GWAS can be executed using 
Tassel 5, GHap, and GAPIT3 to identify genomic regions associated with four key 
phenotypic traits. To ensure data format compatibility, file format conversion can be 
accomplished using Plink and Tassel 5. 

In conclusion, this study proposes a powerful haplotype-based GWAS pipeline and 
suggests the need to carefully consider population structure effects and improve the 
accuracy of haplotyping construction, and Continue to explore more suitable packages, 
providing avenues for future research. Further research should further optimize 
parameter selection and explore alternative methods to improve the comprehensiveness 
of genetic association studies.  
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Appendix  

 

Figure 4. kinship heatmap. The kinship matrix, which is utilized to create the heatmap presented 
in Figure 4, was generated using the ghap.kinship() function in the R package GHap. This function 
facilitates the computation of HapAllele-based relationship matrices. Notably, in this case, each 
haploblock comprises 5 SNPs, and the resulting heatmap is based on hapallele. The associated color 
histogram illustrates the distribution of coefficients of coancestry, with intensified red hues 
emphasizing individuals with stronger relational ties. 

  



 

 

Table 1. Presents the overall count of SNPs per chromosome both before and after the application 
of quality filters. Additionally, it provides information on the number of haploblocks per 
chromosome, as well as the total count of haplotypes per chromosome. 

CHROME Number of SNPs  

raw material 

Number of SNPs  

quality filter 

Number of Haploblocks 

 

Total Number of 
hapallele (haplotype) 

 

Arahy.01  32398 19980 3996 30138 

Arahy.02 34688 14903 2980 22986 

Arahy.03 51575 28115 5623 40825 

Arahy.04 52067 26079 5215 36385 

Arahy.05 43992 21392 4278 31921 

Arahy.06 35628 25655 5131 35772 

Arahy.07 27364 16974 3394 23388 

Arahy.08 15234 11351 2270 16995 

Arahy.09 40551 27003 5400 40373 

Arahy.10 36092 26032 5206 36360 

Arahy.11 53356 25575 5115 36034 

Arahy.12 48438 28592 5718 39861 

Arahy.13 66553 33347 6669 47117 

Arahy.14 55211 36817 7363 50120 

Arahy.15 62189 35624 7124 47442 

Arahy.16 56870 36693 7338 42900 

Arahy.17 52580 40819 8163 45273 

Arahy.18 52800 32803 6560 36147 

Arahy.19 71437 59283 11856 67413 

Arahy.20 46208 31051 6210 35757 

total 935231 578088 115609 763207 

 



 

 

Use of scripts 

1. Genotyping sample using r-package Updog script.  

library(vcfR) 
library(updog) 
vcf <-read.vcfR("RAW/s353.gwas.recode93.vcf")  
#open read counts using vcfR 
fix_sample <- getFIX(vcf) %>% head  
#Get elements from the fixed region of a VCF file 
 
markernames_sample <- paste0(fix_sample[,1],'_',fix_sample[,2])  
markernames_sample 
#[1] "Arahy.01_90561" "Arahy.01_91340" "Arahy.01_93550" "Arahy.01_94281" 
#[5] "Arahy.01_94568" "Arahy.01_94948" 
 
gt_sample <- vcf@gt[1:6, 1:6] 
rownames(gt_sample) <- markernames_sample 
gt_sample1 <- gt_sample[which(gt_sample[,1] %in% 'GT:AD:DP:GQ:PGT:PID:PL'),]  
 
gt_sample1 
#              FORMAT                   JiNong99 ... 
#Arahy.01_90561 "GT:AD:DP:GQ:PGT:PID:PL" "0/0:5,0:5:0:.:.:0,0,112" ... 
#Arahy.01_94948 "GT:AD:DP:GQ:PGT:PID:PL" 
"0/0:34,0:34:93:.:.:0,93,1395" ... 
 
gt_sample2 <- gt_sample[which(!(gt_sample[,1] %in% 'GT:AD:DP:GQ:PGT:PID:PL')),] 
gt_sample2 
#               FORMAT           JiNong99 
#Arahy.01_91340 "GT:AD:DP:GQ:PL" "0/0:7,0:7:21:0,21,269" 
#Arahy.01_93550 "GT:AD:DP:GQ:PL" "0/0:12,0:12:33:0,33,495" 
#Arahy.01_94281 "GT:AD:DP:GQ:PL" "0/0:22,0:22:66:0,66,822" 
#Arahy.01_94568 "GT:AD:DP:GQ:PL" "0/0:17,0:17:51:0,51,591" 
 
col_n_sample <- ncol(gt_sample) 
 
#extract information: total number of read depth 
dp1_sample <- do.call(cbind,lapply(2:col_n_sample,function(j){ 
  as.numeric(gsub('(.+)(:)(.+)(:)(.+)(:)(.+)(:)(.+)(:)(.+)(:)(.+)', 
                  '\\5',gt_sample1[,j])) 
})) 
colnames(dp1_sample) <- colnames(gt_sample1)[2:col_n_sample]  
#index the individuals 



 

 

rownames(dp1_sample) <- rownames(gt_sample1)  
#index the markers (SNPs) 
 
dp2_sample <- do.call(cbind,lapply(2:col_n_sample,function(j){ 
  as.numeric(gsub('(.+)(:)(.+)(:)(.+)(:)(.+)(:)(.+)', 
                  '\\5',gt_sample2[,j])) 
})) 
colnames(dp2_sample) <- colnames(gt_sample2)[2:col_n_sample]  
#index the individuals 
rownames(dp2_sample) <- rownames(gt_sample2)  
#index the markers (SNPs) 
#sizemat 
#A matrix of total number of read counts 
#the columns index the individual  
#the rows index the markers(SNPs) 
 
sizemat_sample <- rbind(dp1_sample,dp2_sample)  
sizemat_sample #sizemat 
#               JiNong99 N401 N402 N404 N405 
#Arahy.01_90561        5   11   12   10   19 
#Arahy.01_94948       34   28   22   22   11 
#Arahy.01_91340        7    9   11   14   14 
#Arahy.01_93550       12   14   23   17   24 
#Arahy.01_94281       22   15   27   15   22 
#Arahy.01_94568       17   24   17   17   17 
 
class(sizemat_sample)  
#check the data type 
#"matrix" "array" 
 
#extract information: refrence read counts "AD" 
ad1_sample <- do.call(cbind,lapply(2:col_n_sample,function(j){ 
  as.numeric(gsub('(.+)(,)(.+)', 
   '\\1', 
                  gsub('(.+)(:)(.+)(:)(.+)(:)(.+)(:)(.+)(:)(.+)(:)(.+)', 
                       '\\3', 
        gt_sample1[,j]))) 
})) 
 
colnames(ad1_sample) <- colnames(gt_sample1)[2:col_n_sample]  
#index the individuals 
rownames(ad1_sample) <- rownames(gt_sample1)  
#index the markers (SNPs) 
 



 

 

ad2_sample <- do.call(cbind,lapply(2:col_n_sample,function(j){ 
  as.numeric(gsub('(.+)(,)(.+)', 
   '\\1', 
   gsub('(.+)(:)(.+)(:)(.+)(:)(.+)(:)(.+)', 
                       '\\3', 
        gt_sample2[,j]))) 
})) 
colnames(ad2_sample) <- colnames(gt_sample2)[2:col_n_sample]  
#index the individuals 
rownames(ad2_sample) <- rownames(gt_sample2)  
#index the markers (SNPs) 
 
#refmat 
#A matrix of reference read counts 
#the columns index the individual  
#the rows index the markers(SNPs) 
 
refmat_sample <- rbind(ad1_sample, ad2_sample) #refmat 
 
ploidy <- 4 # ploidy of peanut 
 
genotyping_peanut_sample <- multidog(refmat = refmat_sample,  
#utilise multidog to do genotyping 
                          sizemat = sizemat_sample, 
                     ploidy = ploidy, 
                     nc = NA) 
 
    |                                   *.#,% 
   |||                                 *******/ 
 |||||||    (**..#**.                  */   **/ 
|||||||||    */****************************/*% 
   |||    &****..,*.************************/ 
   |||     (....,,,*,...****%********/(****** 
   |||                ,,****%////,,,,./.****/ 
   |||                  /**//         .*///.... 
   |||                  .*/*/%#         .,/   ., 
   |||               , **/   #%         .*    .. 
   |||                               ,,,* 
 
Working on it...Loading required package: foreach 
Loading required package: future 
Loading required package: rngtools 
done!> 

 



 

 

	

2. Genotyping quality filter script 

####Quality filter.............................................................. 
load("/Users/han/Downloads/updog_res.RData") 
nrow(res) #res - updog result ##935231 
 
#missing data <= 0.01 
#filter missing data <= 0.01 
missing_data <- rowMeans(is.na(res)) #NA ratio per line 
res1 <- data.frame(cbind(res,missing_data)) #res1 - updog result with NA ratio per line 
nrow(res1) ## 935231 
res2 <- res1[res1$missing_data <= 0.1, ] #filter res based on missing data <= 0.1 
nrow(res2) ## 935231 
 
#MAF >= 0.05 
#filter res by MAF >= 0.05 
#first calculate MAF 
AA <- apply(res, 1, function(x) sum(x == "0", na.rm = TRUE)) 
sum(is.na(AA)) #0 
Aa <- apply(res, 1, function(x) sum(x == "1", na.rm = TRUE)) 
aa <- apply(res, 1, function(x) sum(x == "2", na.rm = TRUE)) 
 
total_alleles <- (AA+Aa+aa)*2 
A_freq <- round((AA*2+Aa)/total_alleles, 3) 
a_freq <- round((aa*2+Aa)/total_alleles, 3) 
res1 <- data.frame(cbind(AA, Aa, aa, total_alleles, A_freq, a_freq)) 
res1$MAF <- pmin(res1$A_freq,res1$a_freq)  
#Choose the smaller value between A_freq and a_freq) 
res2 <- res1[res1$MAF >= 0.05, ]  
#res2 - filtered res1 based on MAF >= 0.05 
nrow(res2) # 578088 
res2[1:10,] 
snps <- rownames(res2) 
f_res <- res[rownames(res) %in% snps,] 
nrow(f_res) 
f_res[1:10,1:3] 
save(snps, file = "snps.RData") 
save(f_res, file = "f_res.RData") 
 
#linux--beagle result 
library(vcfR) 
beagle <- read.vcfR("out.s353.gt.vcf.gz") 



 

 

chrom <- getCHROM(beagle) 
pos <- getPOS(beagle) 
ref <- getREF(beagle) 
alt <- getALT(beagle) 
id <- getID(beagle) 
gt <- extract.gt(beagle) 
beagle <- data.frame(cbind(chrom, id, pos, ref, alt, gt)) 
beagle$id <- paste(beagle$chrom, beagle$pos, sep = "_") 
f_beagle <- beagle[beagle$id %in% snps,] 
index_order <- match(snps, rownames(f_beagle)) 
f_beagle <- f_beagle[index_order, ] 
save(f_beagle, file = "f_beagle.RData") 
 

  



 

 

3. GHap Haplotyping scripts 

#### TO get .samples file........................................................ 
##resource 
##"f_res.RData"    filtered res > f_res  
load("f_res.RData") 
samples = data.frame(matrix(nrow = ncol(f_res), ncol = 0)) 
samples$population <- seq_len(nrow(samples)) 
samples$ID <- rownames(f_res) 
#save as .samples  
write.table(samples, file = "res.samples", sep = " ", row.names = FALSE, col.names = FALSE) 
 
#### TO get .markers file........................................................ 
##resource: 
##"f_beagle.RData" filrered beagle > f_beagle 
load("f_beagle.RData") 
markers <- f_beagle[,1:5] 
markers <- as.data.frame(markers) 
markers$chrom <- as.numeric(gsub("Arahy\\.(\\d+)", "\\1", markers$chrom)) 
markers$pos <- as.numeric(markers$pos) 
markers <- markers[order(markers$chrom, markers$pos), ] 
 
#save as .markers 
write.table(markers, file = "res.markers", sep = " ", row.names = FALSE, col.names = FALSE) 
 
#### TO get .phase file........................................................ 
##resource 
##"f_res.RData"    filtered res > f_res  
##"f_beagle.RData" filrered beagle > f_beagle 
 
#load data  
load("f_res.RData")    #"f_res" 
load("f_beagle.RData") #"f_beagle" 
 
##check data................................................................... 
#count snps 
nrow(f_res)            #578088 
ncol(f_res)            #353 (individuals) 
nrow(f_beagle)         #578088 
ncol(f_beagle)         #358 (include 5 extra column) 
f_beagle <- f_beagle[, -(1:5)] 
 
#check missing data and position  
sum(is.na(f_res)) #306 



 

 

sum(is.na(f_beagle)) 
mising_data_position <- which(is.na(f_res))  
mising_data_position 
 
##check reversal and do adjustment............................................. 
#make a new data.frame shows the 0 and 0|0 percentage per row in f_res and f_beagle 
#calculate the 0 percentage per snp in f_res 
#calcilate the 0|0 percentage per snp in f_beagle 
#Calculate the 0 percent difference for each snp 
#set a threshold: 0.1 
#if the difference larger than 0.1,  
#then i consider the alt and ref is reversal in f_res and do adjustment  
row_names <- rownames(f_res) 
zero_percentage <- data.frame(matrix(nrow = length(row_names), ncol = 0)) 
rownames(zero_percentage) <- row_names 
 
f_res <- as.data.frame(f_res) 
f_beagle <- as.data.frame(f_beagle) 
 
zero_percentage$f_res <- apply(f_res, 1, function(row) sum(row == 0)/353) 
zero_percentage$f_beagle <- apply(f_beagle, 1, function(row) sum(grepl("0\\|0", row))/353) 
zero_percentage$abs_diff <- abs(zero_percentage$f_res - zero_percentage$f_beagle) 
nrow(zero_percentage) #578088 
 
f_zero_percentage <- subset(zero_percentage, abs_diff > 0.1) 
nrow(f_zero_percentage) #27 
matching_rows <- rownames(f_zero_percentage) 
for (row_name in matching_rows) { 
  row_index <- which(rownames(f_res) == row_name) 
  f_res[row_index, f_res[row_index, ] == 0] <- 2 
  f_res[row_index, f_res[row_index, ] == 2] <- 0 
} 
 
##adjust f_res rest content.................................................... 
#change 0 to 0|0 
#change 2 to 1|1 
#Replace <NA> in f_res with the content in the corresponding position of f beagle 
#Replace 1 with the content in the corresponding position of f beagle 1|0 or 0|1 
f_res[f_res == 0] <- "0|0" 
f_res[f_res == 2] <- "1|1" 
for(i in seq_along(f_res)) { 
  . <- is.na(f_res[[i]]) 
  f_res[[i]][.] <- f_beagle[[i]][.] 
} 



 

 

sum(is.na(f_res)) #ckeck NAs in f_res #0 
 
for (i in seq_along(f_res)) { 
  . <- f_res[[i]] == 1 
  f_res[[i]][.] <- f_beagle[[i]][.] 
} 
 
##create matrix m*2n, two column per individual................................. 
#separate the columns in f_res  
library(tidyr) 
phase <- f_res 
for(i in colnames(phase)) { 
  phase <- separate(phase, col = i, into = c(paste0(i, "_1"), paste0(i, "_2"))) 
} 
 
#order 
phase <- phase[row.names(markers),] 
 
##save as .phase file 
write.table(phase, file = "res.phase", sep = " ", row.names = FALSE, col.names = FALSE) 
 
#### run GHap................................................................... 
library(GHap) 
# Compress phase data using file names 
ghap.compress(samples.file = "res.samples", 
              markers.file = "res.markers", 
              phase.file = "res.phase", 
              out.file = "res") 
 
# Load data using file names 
phase <- ghap.loadphase(samples.file = "res.samples", 
                        markers.file = "res.markers", 
                        phaseb.file = "res.phaseb") 
 
# Generate blocks of 5 markers sliding 5 markers at a time 
blocks.mkr <- ghap.blockgen(phase, windowsize = 5, slide = 5, unit = "marker") 

# Generate matrix of haplotype genotypes 
ghap.haplotyping(object = phase, blocks = blocks.mkr, 
                 outfile = "res_pop", binary = TRUE) 
 
ghap.haplotyping(object = phase, blocks = blocks.mkr, 
                 outfile = "res_pop_nb", binary = FALS 



 

 

4. GHap GWAS script 

#####1. Perform res_pop, which have 5snps per haplo blocks>>>>>>>>>>>>>>>>>>>>>>> 
##Manipulating haplo objects 
# Load haplotype genotypes using prefix 
haplo <- ghap.loadhaplo("res_pop") 
# Convert to plink 
ghap.hap2plink(haplo, outfile = "res_pop") 
## Association analysis 
#loads plink data 
plink <- ghap.loadplink("res_pop") 
#load phenotype data 
df <- read.table(file = "res.phenotype.txt", header = T) 
#cpmpute genomix relationship matrix 
#introduce sparsity to hlpe with matrix inversion  
K <- ghap.kinship(plink, sparsity = 0.01, type = 1) 
K1 <- ghap.kinship(plink, sparsity = NULL, type = 1) 
#perform GWAS 
#Method 1....................................................................... 
#without kinship and rep 
gwas_pop_1 <- ghap.assoc(object = plink, 
                         formula = pheno ~ 1 +(1|id), 
                         data = df, 
                         covmat = NULL, 
                         ngamma = 100, nlambda = 100, recalibrate = 0.01) 
ghap.manhattan(data = gwas_pop_1, chr = "CHR", bp = "BP", y = "LOGP") 
#method 2....................................................................... 
#without rep  
gwas_pop_2 <- ghap.assoc(object = plink, 
                         formula = pheno ~ 1 +(1|id), 
                         data = df, 
                         covmat = list(id = K), 
                         ngamma = 100, nlambda = 100, recalibrate = 0.01) 
ghap.manhattan(data = gwas_pop_2, chr = "CHR", bp = "BP", y = "LOGP") 
#method 3....................................................................... 
# Perform GWAS on repeated measures 
# Use grammar-gama approximation 
# Recalibrate top 1 percent variants 
df$rep <- df$id 
gwas_pop_3 <- ghap.assoc(object = plink, 
                    formula = pheno ~ 1 + (1|id) + (1|rep), 
                    data = df, 
                    covmat = list(id = K, rep = NULL), 
                    ngamma = 100, nlambda = 1000, recalibrate = 0.01) 



 

 

ghap.manhattan(data = gwas_pop_3, chr = "CHR", bp = "BP", y = "LOGP") 


