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Abstract/Summary

This study focuses on cultivated peanuts, Arachis hypogaea. The genetic makeup of
peanuts is complex due to its allotetraploid nature, which was derived from the
hybridization of two wild diploids (4. duranensis and A. ipaensis). A limited number
of elite cultivars has led to reduced genetic diversity, prompting the need for improved
breeding strategies. To analyze the link between genetic and phenotypic information,
analyzing Quantitative Trait Loci (QTL) can provide insights into the genetic factors
underlying variation in complex traits. Advancements in genotyping methods,
including the use of high-density arrays and techniques like genotyping by sequencing
(GBS), have greatly eased the process of identifying QTLs associated with various traits
in different crops. Genome-wide association studies (GWAS) is an important genomics
methodology that can identify QTL associated with complex quantitative traits using
natural population.

In peanuts, most of research employs SNP-based GWAS to identify candidate regions
related to traits of interest, such as yield-related traits, seed-related traits, and disease
resistance. However, the issue of “missing heritability” is commonly observed in SNP-
based GWAS, which means despite the successful identification of genetic variations
associated with various traits and diseases through GWAS, the contribution of identified
genetic variations cannot be fully explained or is limited. This issue may be caused by
various factors, building haploids from adjacent SNPS is one approach to address it.

The use of haplotypes, defined from linked SNPs, has emerged as a methodological
variant for identifying genomic regions from GWAS. In wheat and other crops,
haplotype-based GWAS have already been applied and yielded promising results. But
only limited research on haplotype-based GWAS exists for peanuts. This study initially
aims to establish a general pipeline for haplotype-based GWAS in peanuts, followed by
the investigation and selection of suitable packages for implementation. Finally, we
validated the pipeline of haplotype-based GWAS on peanuts using the phenotypic and
genotypic data from a diverse panel of cultivated peanuts. Four phenotypes associated
with agronomic traits were studied. By investigating general methods for conducting
haplotype-based GWAS, this research has the potential to contribute to future work in
peanut genetics and breeding.



Introduction

Peanut

Peanut (Arachis hypogaea) is an annual legume crop, commonly referred to as
groundnut (Asakura and Kitahora, 2013). It is a crucial crop with diverse applications
worldwide, including food, oil, and seeds. It holds a significant position as one of the
major oilseed and food crops. The market demand for peanuts is steadily growing, with
unique requirements in different regions. A comprehensive understanding of the peanut
genome is essential for breeders to efficiently optimize specific regions based on market
demands (Arya et al., 2016).

The cultivated peanut is taxonomically classified within the Arachis genus based on its
morphological characteristics and cross-compatibility relationships with other species
(Stalker et al., 2016). Arachis species are predominantly found in tropical and
subtropical regions, suggesting a probable origin in tropical wetland areas before
adapting to survive in arid environments (Simpson et al., 2001). The most plausible
place of origin for cultivated peanuts is identified as northern Argentina and southern
Bolivia (Stalker et al., 2016).

The morphological features of peanuts, as per Ikisan.com sourced from Ikisan Agri-
Informatics & Services Division of Nagarjuna Fertilizers and Chemicals Ltd (NFCL)
(2021), include a well-defined main stem with a variable number of lateral branches.
Groundnuts exhibit two recognized growth habits: prostrate and erect. The prostrate
form is characterized by an upright and prominent main stem with procumbent or
decumbent lateral branches. In contrast, the main axis loses its distinction from the
laterals in erect types. (Source : Ikisan.com, https://www.ikisan.com/tn-groundnut-
morphology.html).

During the pre-flowering phase, the arrangement of vegetative branches and
inflorescences in the leaf axils on both the main axis and branches differs between the
two primary botanical sections of A. hypogaea (Ikisan Agri-Informatics & Services
Division of NFCL, 2021). Consequently, two flowering patterns exist in cultivated
peanuts: a sequential pattern and an alternative pattern. In cultivated peanuts, the main
branch (axis) is denoted as 'n', with subsequent branches termed 'n+1', 'n+2', and 'n+3".
Across all species forms, primary vegetative branches (n+1) emerge on the axis of
cotyledons and at various higher nodes on the main axis. In sequential types,
inflorescences develop at the second and several subsequent nodes of primary branches.
The first node on a branch may produce a secondary branch (n+2), but often it bears an
inflorescence, initiating flower development shortly after the n+1 branch. In alternative
types, the first two nodes of the n+1 branch typically yield vegetative branches (n+2),
followed by two nodes with inflorescences, and the pattern repeats with vegetative
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branches and so on. This sequential pattern is mirrored in the n+2 branches(Ikisan Agri-
Informatics & Services Division of NFCL, 2021). Figure 1 shows two plants with these
two flowering patterns in (a) and (b).

Nowadays, the cultivation of peanuts has been extended from South America to over a
hundred countries worldwide (Jati et al., 2013). The steadily growing consumption of
peanuts is due to its unique flavor, high nutritional value, high oil and protein level
seeds and versatile uses (Allen et al., 2013). Peanut oil is considered a premier frying
oil due to its stability at high temperature and a high smoke point compared to other
edible oils, resulting in excellent sensory properties and extended fry life (List ef al.,
2016). It also contains sterols, such as B-sitosterol, known for inhibiting cancer growth
and providing protection against colon, prostate, and breast cancer (Sanders et al.,
2003). Additionally, Rachaputi(2016) also mentioned that peanut and peanut butter in
diet was associated with a 21% reduction in the risk of cardiovascular disease, whereas
a low-fat diet resulted in only a 12% decrease in risk.

Peanut Genome

Polyploids can be classified into two types based on their different origins:
allopolyploids and autopolyploid (Soltis et al., 2000). Allopolyploids typically result
from the hybridization of two different species, and they often exhibit bivalent pairings
of chromosomes during meiosis, where more similar chromosomes are more likely to
pair with each other (Xu et al., 2013). Autopolyploid, on the other hand, arise from
combinations of different genomes within the same species, and during meiosis,
chromosomes can pair among more than two homologous copies (Xu et al., 2013).

A cultivated peanut is a self-pollinated species and an allotetraploid (AABB, 2n = 4x =
40), resulting from a singular hybridization event between two wild diploids (Bertioli
etal., 2011). Kochert (1996) indicates that Arachis duranensis and Arachis ipaensis are
the donor of A and B sub genome respectively. As reported by Samoluk et al. (2015),
the genome sizes of the A. duranensis and A. ipaensis are approximately 1.25 Gb and
1.56 Gb, respectively. The sum of their genome sizes is close to the total genome size
of A. hypogaea, which is approximately 2.8 Gb, suggesting that significant changes in
genome size have not occurred since the polyploidization event (Temsch and Greilhuber,
2000, Lu et al., 2018).

In peanut, the utilization of a limited number of elite cultivars has led to a narrow
genetic basis and a diminished level of germplasm polymorphism (Fonceka et al., 2009).
When considering the framework of a breeding program for peanut enhancement, three
foundational components emerge, including germplasm management, research priority
areas, and breeding strategies (Coulibaly er al., 2022). So, the primary breeding
objectives of domesticated peanuts involve elevating the genetic potential of both



qualitative and quantitative traits, while concurrently enhancing genetic diversity and
refining trait quality.

Haplotype

According to the definition from National Human Genome Research Institute, A
haplotype refers to a clustered arrangement of genomic variants along a single
chromosome that are commonly passed down together. It usually represents a distinct
combination of variants located in proximity on a chromosome
(https://www.genome.gov/genetics-glossary/haplotype).

Haplotype can be built based on the phased genotyping marker; genotype phasing
method varies based on different type of polyploid. Package FitTetra 2.0 (Zych et al.,
2019) can be used for genotype calling for tetraploids, and package Beagle 5.4
(Browning et al., 2021) can be used for allotetraploid genotyping. PolyHaplotyper is a
haplotyping tool for polyploid species genetic analysis, based on bi-allelic markers such
as SNPs (Voorrips et al., 2022). The package Beagle stands as an accurate phasing
algorithm that is designed to efficiently handle large-scale genetic datasets (Browning
et al.,2007).

The GHap software package is used for haplotype extraction (Utsunomiya et al., 2020).
Specifically designed for haplotype construction, it employs user-defined haplotype
blocks to identify diverse haplotype alleles within the dataset. The package evaluates
sample haplotype allele genotypes by considering the haplotype allele dosage (i.e., 0,
1, or 2 copies in a diploid). The resulting output is not only compatible with analyses
involving multi-allelic markers but is also conveniently structured for integration into
existing pipelines designed for bi-allelic markers. Originally introduced by Utsunomiya
et al. (2016), the GHap software package streamlines haplotype construction from
phased marker data, providing a robust foundation for subsequent analyses.

The precision of haplotype construction may vary depending on various factors such as
sample size, SNP count, allele frequency, proportion of missing data, genotyping error
rate, and the extent of linkage disequilibrium among these SNPs (Kirk and Cardon,
2002). Simulating datasets with varying SNP densities to determine the optimal number
of SNPs within a haplotype should be considered (Zhang, 2004).

Genome-wide association study

Genome-wide association studies originated in human genetics, to detect the
association between common genetic variants and the risk of human disease
(Hirschhorn and Mark, 2005; Smith et al., 2019). Over time, the application of GWAS
has become widespread, extending beyond human genetics to include model organisms
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in both the animal and plant kingdoms, as well as non-model systems (Korte and Farlow,
2013). For instance, researchers routinely utilize GWAS to identify specific genetic loci
and underlying genetic structures associated with phenotypes determining various
agronomically important traits in crops (Korte and Farlow, 2013). As advancements in
statistical methodologies facilitate GWAS, opportunities arise to identify associations
between phenotypic traits and specific genetic regions (Uffelmann et al, 2021).
Examples of GWAS applications include studying flowering time and grain yield traits
in rice germplasm (Huang et al., 2012), exploring agronomic and morphologic traits in
barley cultivars (Wang et al., 2012), and investigating disease resistance regions in
wheat through GWAS (Malosetti et al., 2020).

Improving genetic tools for peanuts, particularly through SNP-based GWAS, can
enhance our knowledge of peanut genetic structures and identify specific candidate
gene regions. SNP stands as one of the most prevalent genetic variations that can be
regarded as the markers in genetic studies (Bush and Moore, 2012). This method holds
the potential to facilitate crop improvement and address genetic barriers, contributing
to the sustainable development of peanut cultivation. Although single-marker-based
GWAS successfully identifies genetic variations associated with diverse traits and
diseases, a frequently observed issue in SNP-based GWAS is 'missing heritability,’
which means the contribution of identified genetic variations cannot be fully explained
or is limited (Sehgal et al., 2020). Several factors may contribute to this issue, and one
strategy to address it involves constructing haplotypes from adjacent SNPs (Sehgal et
al., 2020).

Nowadays, GWAS has increasingly been employed to investigate the genetic
foundations of significant characteristics in peanuts (Wang et al., 2019). Despite a
bunch of research employing SNP-based GWAS to identify candidate SNPs related to
traits such as yield-related traits (Wang et al., 2019), growth habit-related traits (Li et
al., 2022), oil content (Wang et al., 2018), sting nematode resistance (Ravelombola et
al., 2022), and lead spot resistance (Zhang et al., 2020). While several research groups
have already investigated breeding traits in peanut using haplotype-based GWAS,
recent studies have shown that haplotype-based GWAS can provide valuable
supplementary information in diploid species like maize (Wang et al., 2018, Hang et
al., 2020, Maldonado et al, 2019). However, haplotype-based GWAS is still
underutilized in peanut research. Establishing a general haplotype based GWAS
pipeline for peanuts would simplify and enhance the application of this method for
researchers.

The primary aim of this project is to develop a general haplotype-based GWAS pipeline
for peanuts. The raw genotype data and phenotype data are provided by Henan
Academy of Agricultural Sciences (HAAS). The first step involves an investigation into
suitable packages for haplotyping peanuts, elucidating the preprocessing steps required



for raw data, and obtaining final haplotype information. Subsequently, GWAS will be
performed using these haplotypes. Additionally, a comparative analysis with the HAAS
SNP-based GWAS, conducted on the same peanut population genome, will be
undertaken. This comparative approach aims to assess whether haplotype based GWAS
can provide supplementary insights, offering an extra layer of information.



Materials & Method

Plant material

The peanut diversity panel comprises 353 accessions of cultivated tetraploid A.
hypogaea. phenotypic and genotyping data were collected by the Institute of Crop
Molecular Breeding at the Henan Academy of Agricultural Sciences.

Phenotyping traits

The phenotypic traits under consideration encompass binary and discrete attributes,
including flowering pattern (alternate or sequential), inner integument color (yellow or
white), growth habit (erect or prostrate), and the total number of branches. Examples of
these phenotype traits are depicted in Figure 1. The seeds of each line were sown using
a randomized complete block design with two replicates within a single environment.
The phenotype data is provided by HAAS.




Figure 1 : Phenotypic Traits. [llustrative examples of distinct phenotypic traits are presented:

a) alternate flowering pattern: The green triangles indicate the vegetative branches, the red triangles the nodes with
inflorescences. b) sequential flowering pattern. c) yellow seed (inner integument). d) white seed. e) prostrate growth

habit f) erect growth habit.

Genotyping material

Whole-genome resequencing was carried out across various Arachis species and then

aligned against the genome of the peanut cultivar Tifrunner (Li, 2018). Paired end DNA
libraries were formed with around 300 bp inserts, and subsequently, sequencing was

conducted using the [llumina HiSeq Xten platform (Illumina, Inc., San Diego, CA, USA)
with a PE151 configuration. After undergoing quality checks and filtering, the superior

quality reads were aligned to the genome of cultivated peanut (Arachis hypogaea cv.

Tifrunner version 1) using the minimap2 (v2.10) software. SNP and INDEL calling

were performed with the Genome Analysis Toolkit. After applying quality control, a

total of 864,179 SNPs and 71,052 InDels were identified. The raw genotyping material

was provided by HAAS.

Genotyping

The primary steps of haplotype based GWAS were designed as follows: First, we did
the genotyping and constructed haplotypes, followed by a construction of a kinship



matrix. Finally, we performed GWAS using a mixed linear model, accounting for
kinship.

Initially, we employed both updog (Gerard et al., 2018) and beagle 5.4 (Browning et
al., 2021) for genotyping from read counts, treating genotypes as diploid. Beagle 5.4
was also utilized for phasing and imputation. Subsequently, we conducted a
comparative analysis between the outcomes of these two tools.

Using the R package vcfR, we extracted the 'gt' field from the raw VCF file, facilitating
the retrieval of total read depth (DP) and reference read counts (AD) per SNP. These
values were then utilized to construct 'refmat' and 'sizemat.' Following data processing,
the 'multidog' function in the R package 'updog' was employed to obtain genotyping
results. The script for updog application can be checked in the appendix.
Simultaneously, the 'beagle 5.4' package was utilized for genotyping, imputation, and
phasing, executed through the Java script 'java -jar beagle.22Jul22.46e.jar
gt=s353.gwas.recode93.vcf out=out.gt' in Linux. The resultant beagle outcomes were
juxtaposed with those of updog.

To assess the quality of genotyping data for each SNP, we implemented criteria to
remove SNPs with low call rates (SNPs with Minor Allele Frequency, MAF < 0.05)
and high missing data (Missing data > 0.1). The result of beagle was then used to impute
the missing data in the result of updog. Given the uncertain order of individual parents
of heterozygotes in updog, this information was filled using beagle's results.

Haplotyping

To derive haplotype results, we utilized the R-package GHap, employing essential input

files draw information from both Beagle and Updog results. According to the

requirement, the one of input files should be devoid of missing data and accurately

represent the phased chromosome alleles. To achieve this, we utilize Beagle results to

impute missing data in the Updog-derived dataset. The GHap package's ghap.blockgen()
function is subsequently employed to delineate haploblocks, and the ghap.haplotyping()
function is utilized to generate a matrix of haplotype genotypes. This sequential process

ensures the creation of a robust and comprehensive dataset suitable for downstream

haplotype analysis.

GWAS

GWAS was conducted to assess the associations between haplotypes and phenotypic
traits, employing logistic regression models and accounting for potential population
structure and relatedness. Multiple testing correction methods were applied to ensure
the robustness of the results. In this case, due to the limited time, the covariate was only



set as kinship matrix. The kinship matrix of hapallele was built in r package GHap,
using ghap.kinship() function.

After getting the kinship matrix, a GWAS was performed utilizing a mixed linear model,
incorporating kinship matrix as covariate. To enhance the reliability of findings, a
comprehensive approach that incorporates both TASSEL and GHap software platforms
was embraced. Visualizing the outcomes was done through Manhattan plots and QQ
plots. The script of GHap GWAS is shown in the appendix. Due to the large dataset, we
perform TASSEL 5 in Linux using command line "./run_pipeline.pl -Xms512m -
Xmx10g -forkl -plink -ped res pop.ped -map res_pop.map -sortPositions -fork2 -r
phenotype.txt -fork3 -t traits.txt -fork4 -k res pop kinship.txt -combine5 -inputl -
input2 -intersect -combine6 -input5 -input4 -mlm -mlmVarCompEst P3D -
mlmCompressionLevel Optimum -mlmOutputFile gwas_result".

The result of this haplotype-based GWAS was compared with that of the existing SNP-
based GWAS which uses the same genotyping dataset. We compared the visualization
of associations using QQ plot and Manhattan plot. QQ plot was used to compare
statistical significance, overlay the QQ plot from both haplotypes based GWAS and
SNP-based GWAS to visually compare the distribution of observed p-value. Deviations
from the expected distribution in one direction (above the diagonal) can indicate a
higher number of significant associations compared to the other method. Manhattan
plot was used to compare the candidate genetic region number to explore whether there
are unique associations detected by either method.



Result

Genotyping result

The raw genetic variations within the peanut gene sequence are stored in the
's353.gwas.recode93.vef' file, capturing data from 353 samples, comprising 864,179
SNPs, and 71,052 indels. The total number of sites under analysis was 935,231. Initially,
we employed both updog (Gerard et al., 2018) and beagle5.4 (Browning et al., 2021)
for genotyping based on read counts, treating genotypes as diploid, followed by a
comparative analysis of the results.

Compared to the results obtained from the Updog package, we noted occasional
misclassification of some homozygous genotypes as heterozygous by Beagle, which
was an unexpected outcome. In contrast, the genotyping accuracy demonstrated by the
updog outcomes appears superior relative to those obtained with Beagle. However, it's
important to note that Beagle performed imputation, eliminating missing data, and also
provided additional phasing information for heterozygous individuals.

We assessed the quality of genotyping data for each SNP and eliminated SNPs with
MAF < 0.05 and Missing data > 0.1 in the updog results. Following this quality filter,
578,088 samples remained. Figure 1 illustrates the dynamic fluctuations in SNP counts
across chromosomes and demonstrates the impact of filtering.
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Figure 2. Portray the dynamic alteration in the number of SNPs per chromosome, encompassing
both pre- and post-quality filtering stages. The x-axis delineates the chromosomes, while the y-

axis denotes the SNP count.

We extract the Beagle results specifically for the subset of 578,088 samples from the
comprehensive Beagle dataset, maintaining consistency with the filtering criteria
applied to the updog results. Following this, in R, we rectify the inversion of 'alt' and



'ref' in the Beagle results by implementing necessary adjustments. Finally, we utilize
the beagle results to impute missing data in the updog results. Given the uncertain order
of individual parents of heterozygotes in updog, we incorporate this information from
beagle's results.

Haplotype result

We obtained a total of 115,609 haploblocks, each containing 5 SNPs per block, using the
GHap package. Subsequently, from these haploblocks, we derived a total of 763,207
haplotypes. The results of haplotyping revealed that the number of haplotypes per block
varies from 2 to 19, with the majority falling within the range of 2 to 10. Figure 3 offers a
concise overview of haplotype distribution across the genome, providing insights into the
chromosomal variation and diversity captured by the analysis. Additionally, Table 1 presents
the number of haploblocks and haplotypes per chromosome (Appendix).
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Figure 3: Haplotypes. Number of haploblocks and haplotypes per chromosome. Each haploblock
comprises 5 SNPs. The x-axis represents individual chromosomes, while the y-axis signifies the
haploblock count.

Haplotype-based GWAS

The kinship matrix was obtained using the GHap package and used as input for
TASSEL. The heatmap of this kinship matrix is depicted in Figure 4 (Appendix). While
GHap can be directly utilized for haplotype-based GWAS, we explored three methods .
Method 1 involved GWAS without consider the effect of kinship and permanent
environmental effect (repeated measurement, rep), Method 2 included setting kinship
as a covariate but without rep, and the last method comprised performing GWAS only
with repeated measurements.

Due to formulation limitations, we could only obtain results when performing GWAS
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without considering kinship. In the quest for an alternative package that accounts for
kinship, we turned to the TASSEL package in Linux. The execution of GWAS using the
mixed linear model took more than one week to yield results for the four phenotypes.
Figures 3b) and 3d) present the Manhattan plots and QQ plots for the SNP-based GWAS
of phenotype traits, including the total number of branches and growth habits from
HAAS. Notably, based on the QQ plot and Manhattan plot, we observed suboptimal
GWAS results for flowering pattern and inner integument color.

Due to formulation limitations, we could only obtain results when performing GWAS
without considering kinship. Seeking an alternative package that accounts for kinship,
we employed the TASSEL package in Linux. The execution of GWAS using the mixed
linear model took more than one week to obtain results for the four phenotypes.

According to the haplotype-based GWAS visualization, in Figure 3a), it is evident that
chromosomes 13 and 17 contains potential candidate regions with a significant
association with the total number of branches. Figure 3c¢) shows that chromosome 3
may contains the most associated intervals with the growth pattern. We compared our
results with the HAAS group study, which utilized the same genotype and phenotype
material to perform SNP-based GWAS. Figures 3b) and 3d) present the Manhattan plots
and QQ plots for the SNP-based GWAS of phenotype traits, including the total number
of branches and growth habits from HAAS. In the SNP-based GWAS Manhattan plot,
the genomic regions which associate with total number of branches were identified on
chromosomes 2, 9, 12, 15 and 16. For the growth habit, the associated genomic regions
were situated chromosomes 3 and 15. We found that haplotype-based result shows some
different genomic regions which may associate with these two phenotype traits.

Notably, based on the QQ plot and Manhattan plot in Figure 3e) and 3f), we observed
suboptimal GWAS results for flowering pattern and inner integument color. In both QQ
plots, majority of points deviate above the diagonal line, indicating that the observed
P-values for most sites exceeds the expected values. This observation implies a
significant association for numerous loci with the flowering pattern and inner
integument color, a trend that appears incongruent with biological logic.
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Figure 3: Haplotype Results and Peanut SNP-based GWAS result from HAAS. a) GWAS
Manhattan plot and quantile-quantile QQ _plot for total number of branches; b) Manhattan plots and
QQ plots for the SNP-based GWAS of total number of branches from HAAS; ¢) Manhattan plot
and quantile-quantile QQ plot for growth habit; d) Manhattan plots and QQ plots for the SNP-based
GWAS of growth habit from HAAS; ¢) Manhattan plot and quantile-quantile QQ plot for flowering
pattern; f) GWAS Manhattan plot and quantile-quantile QQ plot for inner integument color. In the
haplotype-based GWAS Manhattan plot a), c), ¢) and f), the blue line is the threshold for
suggestiveness of a QTL, the red line denotes the genome wide significance threshold.
Suggestiveness line defaults to -loglO(le-5) and genome-wide significance line defaults to -
log10(5e-8). In the SNP-based GWAS Manhattan plot b) and d), the green horizontal line indicates
the threshold for significant association (p<0.05) after the Bonferroni correction.



Discussion

The outcomes of the haplotype-based GWAS for two phenotypic traits, flowering
pattern, and inner integument color, did not align with our initial expectations. The QQ
plot revealed a considerable number of false positives, indicating potential issues in the
analysis. Several factors could contribute to this unexpected result, involving
insufficient population structure analysis, phenotype data and limitation of the method.

It is important to acknowledge certain limitations in our study. Due to time constraints,
in the GWAS mixed linear model, we focused only on the impact of kinship matrices,
without considering population structure analysis. Literature review suggests the
importance of addressing extra population structure analysis, for which both the
STRUCTURE (Porras-Hurtado et al., 2013) and TASSEL packages prove valuable in
calculating suitable K values and conducting Principal Component Analysis (PCA)
which can also be utilized as covariates in the GWAS mixed linear model.

Another consideration is the absence of replicated phenotype data and measurements
taken under different environmental conditions. The limited input of phenotype data
may impact the results, as environmental effects are sometimes considerable and can
mask genotypic effects (Zaitlen and Kraft, 2012). Additionally, during the arrangement
of genotyping results, we employed less accurate beagle results to impute the updog
results, potentially introducing a negative impact on the overall outcome.

In regard to the selection of software and package tools throughout the entire pipeline,
additional experimentation and comparison are needed. There are still many other
packages that have not been used in this study. Therefore, there is still the possibility of
finding packages that are more suitable for the entire haplotype-based GWAS, which is
worth further exploration and experimentation. Additionally, new software packages
and tools are continually being published in the academic community. Hence, for the
software packages chosen for each step in the entire workflow, it is worthwhile for us
to continue to pay attention to and explore.

Furthermore, during the construction of Haploblocks using GHap, we set the threshold
at 5 SNPs per block without considering other SNP counts. It's worth noting that the
number of SNPs is a critical factor that can impact the precision of haplotype
construction (Kirk and Cardon, 2002; Zhang, 2004). In this study, to explore this, we
created different haploblocks with 4 and 6 SNPs per chromosome. Unfortunately, due
to time constraints, we were unable to test these alternatives. Future studies may benefit
from exploring varying SNP count thresholds to enhance the accuracy of haplotyping
construction.



Conclusion

The overall pipeline for haplotype-based GWAS involves a systematic series of steps,
encompassing phenotype and genotype data collection, genotyping, genotype quality
filtering, haplotyping, kinship matrix construction, GWAS execution, and result
visualization. Throughout the study, a comprehensive set of software tools and
packages can be strategically employed. For genotyping, the utilization of the updog
package is recommended, supplemented by phased information and imputation
obtained through Beagle 5.4. Setting genotyping data quality filter thresholds at MAF
< 0.05 and missing data > 0.1 is advised. GHap package can be used for haplotyping,
although alternatives like Haploview can also be explored. The different SNP count
setting per haploblock can be applied. The analysis of kinship matrices can be
efficiently performed by GHap, with additional options including Haploview, TASSEL,
and the R-package GAPIT3 (Wang et al., 2021). PCA can also be consider using
package STRUCTURE and TASSEL. Subsequently, GWAS can be executed using
Tassel 5, GHap, and GAPIT3 to identify genomic regions associated with four key
phenotypic traits. To ensure data format compatibility, file format conversion can be
accomplished using Plink and Tassel 5.

In conclusion, this study proposes a powerful haplotype-based GWAS pipeline and
suggests the need to carefully consider population structure effects and improve the
accuracy of haplotyping construction, and Continue to explore more suitable packages,
providing avenues for future research. Further research should further optimize
parameter selection and explore alternative methods to improve the comprehensiveness
of genetic association studies.
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Appendix

Figure 4. kinship heatmap. The kinship matrix, which is utilized to create the heatmap presented
in Figure 4, was generated using the ghap.kinship() function in the R package GHap. This function
facilitates the computation of HapAllele-based relationship matrices. Notably, in this case, each
haploblock comprises 5 SNPs, and the resulting heatmap is based on hapallele. The associated color
histogram illustrates the distribution of coefficients of coancestry, with intensified red hues

emphasizing individuals with stronger relational ties.



Table 1. Presents the overall count of SNPs per chromosome both before and after the application
of quality filters. Additionally, it provides information on the number of haploblocks per
chromosome, as well as the total count of haplotypes per chromosome.

CHROME Number of SNPs  Number of SNPs Number of Haploblocks  Total Number of

hapallele (haplotype)
raw material quality filter
Arahy.01 32398 19980 3996 30138
Arahy.02 34688 14903 2980 22986
Arahy.03 51575 28115 5623 40825
Arahy.04 52067 26079 5215 36385
Arahy.05 43992 21392 4278 31921
Arahy.06 35628 25655 5131 35772
Arahy.07 27364 16974 3394 23388
Arahy.08 15234 11351 2270 16995
Arahy.09 40551 27003 5400 40373
Arahy.10 36092 26032 5206 36360
Arahy.11 53356 25575 5115 36034
Arahy.12 48438 28592 5718 39861
Arahy.13 66553 33347 6669 47117
Arahy.14 55211 36817 7363 50120
Arahy.15 62189 35624 7124 47442
Arahy.16 56870 36693 7338 42900
Arahy.17 52580 40819 8163 45273
Arahy.18 52800 32803 6560 36147
Arahy.19 71437 59283 11856 67413
Arahy.20 46208 31051 6210 35757

total 935231 578088 115609 763207




Use of scripts

1. Genotyping sample using r-package Updog script.

library(vcfR)

library(updog)

vef <-read.vefR("RAW/s353.gwas.recode93.vef")
#open read counts using vefR

fix_sample <- getFIX(vcf) %>% head

#Get elements from the fixed region of a VCF file

markernames_sample <- pasteO(fix_sample[,1],' '.fix_sample[,2])
markernames_sample

#[1] "Arahy.01 90561" "Arahy.01 91340" "Arahy.01 93550" "Arahy.01 94281"
#[5] "Arahy.01 94568" "Arahy.01 94948"

gt_sample <- vef@gt[1:6, 1:6]
rownames(gt_sample) <- markernames_sample
gt samplel <- gt sample[which(gt sample[,1] %in% 'GT:AD:DP:GQ:PGT:PID:PL"),]

gt samplel

# FORMAT JiNong99 ...

#Arahy.01 90561 "GT:AD:DP:GQ:PGT:PID:PL" "0/0:5,0:5:0:.:.:0,0,112" ...
#Arahy.01 94948 "GT:AD:DP:GQ:PGT:PID:PL"

gt_sample2 <- gt sample[which(!(gt_sample[,1] %in% 'GT:AD:DP:GQ:PGT:PID:PL")),]
gt sample2

# FORMAT JiNong99

#Arahy.01 91340 "GT:AD:DP:GQ:PL" "0/0:7,0:7:21:0,21,269"

#Arahy.01 93550 "GT:AD:DP:GQ:PL" "0/0:12,0:12:33:0,33,495"

#Arahy.01 94281 "GT:AD:DP:GQ:PL" "0/0:22,0:22:66:0,66,822"

#Arahy.01 94568 "GT:AD:DP:GQ:PL" "0/0:17,0:17:51:0,51,591"

col n_sample <- ncol(gt sample)

#extract information: total number of read depth
dpl_sample <- do.call(cbind,lapply(2:col n_sample,function(j){
as.numeric(gsub('(.H)(:)(.-H)()(H)OHEOEHEOEHEH)'s
"\5',gt samplel[,j]))
)
colnames(dpl_sample) <- colnames(gt samplel)[2:col n_sample]

#index the individuals



rownames(dpl_sample) <- rownames(gt_samplel)
#index the markers (SNPs)

dp2_sample <- do.call(cbind,lapply(2:col_n_sample,function(j){
as.numeric(gsub('(.H)()(H)CO)HEOEHE)H),
"\5',gt sample2[,j]))
1))
colnames(dp2_sample) <- colnames(gt _sample2)[2:col n_sample]
#index the individuals
rownames(dp2_sample) <- rownames(gt_sample2)
#index the markers (SNPs)
#sizemat
#A matrix of total number of read counts
#the columns index the individual
#the rows index the markers(SNPs)

sizemat sample <- rbind(dp1 sample,dp2_sample)
sizemat sample #sizemat

# JiNong99 N401 N402 N404 N405
#Arahy.01 90561 5 11 12 10 19
#Arahy.01 94948 34 28 22 22 11
#Arahy.01 91340 7 9 11 14 14
#Arahy.01 93550 12 14 23 17 24
#Arahy.01 94281 22 15 27 15 22
#Arahy.01 94568 17 24 17 17 17

class(sizemat_sample)
#check the data type

nn

#"matrix" "array"
#extract information: refrence read counts "AD"
adl_sample <- do.call(cbind,lapply(2:col n_sample,function(j){
as.numeric(gsub('(.+)(,)(.1)',
"\,
gsub('(H) (DA,
"\3',
gt_samplel[j])))
1))

colnames(adl_sample) <- colnames(gt_samplel)[2:col n_sample]
#index the individuals

rownames(adl_sample) <- rownames(gt_samplel)

#index the markers (SNPs)



ad2_sample <- do.call(cbind,lapply(2:col n_sample,function(j){
as.numeric(gsub('(.+)(,)(.1)',
"\,
gsub('(H)O(HEOCHOCHEH),
"\3',
gt_sample2[,j])))
)

colnames(ad2_sample) <- colnames(gt_sample2)[2:col n_sample]
#index the individuals

rownames(ad2_sample) <- rownames(gt_sample2)

#index the markers (SNPs)

#refmat

#A matrix of reference read counts
#the columns index the individual
#the rows index the markers(SNPs)

refmat_sample <- rbind(ad1l_sample, ad2_sample) #refmat

ploidy <- 4 # ploidy of peanut

genotyping peanut_sample <- multidog(refmat = refmat_sample,
#utilise multidog to do genotyping

sizemat = sizemat_sample,

ploidy = ploidy,

nc =NA)
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2. Genotyping quality filter script

HHHHQuUAlILY fIILer....oveeieeieieeee e
load("/Users/han/Downloads/updog_res.RData")
nrow(res) #res - updog result ##935231

#missing data <= 0.01

#filter missing data <=0.01

missing_data <- rowMeans(is.na(res)) #NA ratio per line

resl <- data.frame(cbind(res,missing_data)) #resl - updog result with NA ratio per line
nrow(res1) ## 935231

res2 <- res1[res1$missing_data <= 0.1, ] #filter res based on missing data <= 0.1
nrow(res2) ## 935231

#MAF >= 0.05

#filter res by MAF >= 0.05

#first calculate MAF

AA <- apply(res, 1, function(x) sum(x =="0", na.rm = TRUE))
sum(is.na(AA)) #0

Aa <- apply(res, 1, function(x) sum(x =="1", na.rm = TRUE))
aa <- apply(res, 1, function(x) sum(x == "2", na.rm = TRUE))

total_alleles <- (AA+Aa+aa)*2

A _freq <- round((AA*2+Aa)/total alleles, 3)

a_freq <- round((aa*2+Aa)/total alleles, 3)

resl <- data.frame(cbind(AA, Aa, aa, total_alleles, A freq, a_freq))
resI $SMAF <- pmin(res1$A_freq,res1$a_freq)

#Choose the smaller value between A freq and a_freq)
res2 <- res1[res1I$SMAF >= 0.05, ]

#res2 - filtered resl based on MAF >= 0.05

nrow(res2) # 578088

res2[1:10,]

snps <- rownames(res2)

f res <- res[rownames(res) %in% snps, |

nrow(f res)

f res[1:10,1:3]

save(snps, file = "snps.RData")

save(f res, file="1 res.RData")

#linux--beagle result
library(vcfR)
beagle <- read.vcfR("out.s353.gt.vctf.gz")



chrom <- getCHROM(beagle)

pos <- getPOS(beagle)

ref <- getREF(beagle)

alt <- getALT(beagle)

id <- getID(beagle)

gt <- extract.gt(beagle)

beagle <- data.frame(cbind(chrom, id, pos, ref, alt, gt))
beagle$id <- paste(beagle$Schrom, beagle$pos, sep="_")
f beagle <- beagle[beagle$id %in% snps,]
index_order <- match(snps, rownames(f beagle))

f beagle <- f beagle[index_order, ]

save(f beagle, file ="f beagle.RData")



3. GHap Haplotyping scripts

#HH# TO get .samples file.....oooovieiiiiiiiiie
##resource

##"f res.RData" filtered res > f res

load("f res.RData")

samples = data.frame(matrix(nrow = ncol(f_res), ncol = 0))
samples$population <- seq_len(nrow(samples))

samples$ID <- rownames(f res)

#save as .samples

write.table(samples, file = "res.samples", sep =" ", row.names = FALSE, col.names = FALSE)

#### TO get .markers file.........oocveviiiiiiniieieee e,

##resource:

##"f beagle.RData" filrered beagle > f beagle

load("f beagle.RData")

markers <- f beagle[,1:5]

markers <- as.data.frame(markers)

markers$chrom <- as.numeric(gsub("Arahy\\.(\\d+)", "\\1", markers$chrom))
markers$pos <- as.numeric(markers$pos)

markers <- markers[order(markers$chrom, markers$pos), ]

#save as .markers

write.table(markers, file = "res.markers", sep =" ", row.names = FALSE, col.names = FALSE)

#iHH# TO get .phase file.....ccoooevieiiiiiie
##resource

##"f res.RData" filtered res > f res

##"f beagle.RData" filrered beagle > f beagle

#load data
load("f res.RData") #"f res"
load("f beagle.RData") #"'f beagle"

#Hcheck data..........cveviieiiiiieceeee e
#count snps

nrow(f res) #578088

ncol(f _res) #353 (individuals)

nrow(f beagle) #578088
ncol(f_beagle) #358 (include 5 extra column)
f beagle <- f beagle[, -(1:5)]

#check missing data and position
sum(is.na(f_res)) #306



sum(is.na(f beagle))
mising_data position <- which(is.na(f_res))

mising_data_position

##check reversal and do adjustment............ccccccveeeieecieenieeniieennn.

#make a new data.frame shows the 0 and 0|0 percentage per row in f res and f beagle
#calculate the 0 percentage per snp in f res

#calcilate the 0|0 percentage per snp in f beagle

#Calculate the 0 percent difference for each snp

#set a threshold: 0.1

#if the difference larger than 0.1,

#then 1 consider the alt and ref is reversal in f res and do adjustment

row_names <- rownames(f res)

zero_percentage <- data.frame(matrix(nrow = length(row_names), ncol = 0))

rownames(zero_percentage) <- row_names

f res <- as.data.frame(f res)
f beagle <- as.data.frame(f beagle)

zero_percentage$f res <- apply(f res, 1, function(row) sum(row == 0)/353)
zero_percentage$f beagle <- apply(f beagle, 1, function(row) sum(grepl("0\\|0", row))/353)
zero_percentage$abs_diff <- abs(zero percentage$f res - zero percentage$f beagle)
nrow(zero_percentage) #578088

f zero_ percentage <- subset(zero percentage, abs_diff > 0.1)
nrow(f zero percentage) #27
matching_rows <- rownames(f zero_ percentage)
for (row_name in matching_rows) {
row_index <- which(rownames(f res) == row_name)
f res[row_index, f res[row_index, | == 0] <- 2
f res[row_index, f res[row_index, | == 2] <-0

}

#i#adjust £ res rest content.........ccvvevveecveerieenie e,
#change 0 to 0/0
#change 2 to 1]1
#Replace <NA> in f res with the content in the corresponding position of f beagle
#Replace 1 with the content in the corresponding position of f beagle 1|0 or 0|1
f res[f res==0] <-"0/0"
f res[f res==2]<-"1|1"
for(i in seq_along(f res)) {
. <-1is.na(f _res[[i]])
f res[[i]][.] <- f beagle[[i]][.]
}



sum(is.na(f res)) #ckeck NAs in f res #0

for (i in seq_along(f res)) {
.<-f res[[i]] =1
f res[[i]][.] <- f beagle[[i]][.]
H

##create matrix m*2n, two column per individual.............cccoevvvennnnnne.
#separate the columns in f res
library(tidyr)
phase <- f res
for(i in colnames(phase)) {
phase <- separate(phase, col =1, into = c(pasteO(i, " 1"), paste0(i, " 2")))

}

#order

phase <- phase[row.names(markers),]

##save as .phase file
write.table(phase, file = "res.phase", sep =" ", row.names = FALSE, col.names = FALSE)

HHAH TUN GHAP...ccvieee e

library(GHap)

# Compress phase data using file names

ghap.compress(samples.file = "res.samples",
markers.file = "res.markers",

_n

phase.file = "res.phase",

out.file = "res")

# Load data using file names
phase <- ghap.loadphase(samples.file = "res.samples",
markers.file = "res.markers",

phaseb.file = "res.phaseb")

# Generate blocks of 5 markers sliding 5 markers at a time

blocks.mkr <- ghap.blockgen(phase, windowsize = 5, slide = 5, unit = "marker")

# Generate matrix of haplotype genotypes
ghap.haplotyping(object = phase, blocks = blocks.mkr,
outfile = "res_pop", binary = TRUE)

ghap.haplotyping(object = phase, blocks = blocks.mkr,
outfile = "res_pop nb", binary = FALS



4. GHap GWAS script

######1. Perform res_pop, which have Ssnps per haplo blocks>>>>>>>>>>5555555>>>>>>
##Manipulating haplo objects
# Load haplotype genotypes using prefix
haplo <- ghap.loadhaplo("res_pop")
# Convert to plink
ghap.hap2plink(haplo, outfile = "res_pop")
## Association analysis
#loads plink data
plink <- ghap.loadplink("res pop")
#load phenotype data
df <- read.table(file = "res.phenotype.txt", header = T)
#cpmpute genomix relationship matrix
#introduce sparsity to hlpe with matrix inversion
K <- ghap.kinship(plink, sparsity = 0.01, type = 1)
K1 <- ghap.kinship(plink, sparsity = NULL, type = 1)
#perform GWAS
HMeEthod 1...oooooeiiiiie e
#without kinship and rep
gwas_pop_1 <- ghap.assoc(object = plink,
formula = pheno ~ 1 +(1[id),
data = df,
covmat = NULL,
ngamma = 100, nlambda = 100, recalibrate = 0.01)
ghap.manhattan(data = gwas_pop_1, chr ="CHR", bp = "BP", y = "LOGP")
HMEhOd 2.
#without rep
gwas_pop_2 <- ghap.assoc(object = plink,
formula = pheno ~ 1 +(1[id),
data = df,
covmat = list(id = K),
ngamma = 100, nlambda = 100, recalibrate = 0.01)
ghap.manhattan(data = gwas_pop_2, chr = "CHR", bp = "BP", y = "LOGP")
HMEthOd 3.
# Perform GWAS on repeated measures
# Use grammar-gama approximation
# Recalibrate top 1 percent variants
df$rep <- df$id
gwas_pop_3 <- ghap.assoc(object = plink,
formula = pheno ~ 1 + (1/id) + (1]rep),
data = df,
covmat = list(id = K, rep = NULL),
ngamma = 100, nlambda = 1000, recalibrate = 0.01)



ghap.manhattan(data = gwas_pop_ 3, chr="CHR", bp="BP", y ="LOGP")



