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Abstract

Reliable maps of species distributions are fundamental for biodiversity research and con-
servation. The International Union for Conservation of Nature (IUCN) range maps are
widely recognized as authoritative representations of species’ geographic limits, yet they
might not always align with actual occurrence data. In recent area of habitat (AOH) maps,
areas that are not habitat have been removed from IUCN ranges to reduce commission
errors, but their concordance with actual species occurrence also remains untested. We
tested concordance between occurrences recorded in camera trap surveys and predicted
occurrences from the IUCN and AOH maps for 510 medium- to large-bodied mammalian
species in 80 camera trap sampling areas. Across all areas, cameras detected only 39% of
species expected to occur based on IUCN ranges and AOH maps; 85% of the IUCN only
mismatches occurred within 200 km of range edges. Only 4% of species occurrences were
detected by cameras outside IUCN ranges. The probability of mismatches between cam-
eras and the IUCN range was significantly higher for smaller-bodied mammals and habitat
specialists in the Neotropics and Indomalaya and in areas with shorter canopy forests.
Our findings suggest that range and AOH maps rarely underrepresent areas where species
occur, but they may more often overrepresent ranges by including areas where a species
may be absent, particularly at range edges. We suggest that combining range maps with data
from ground-based biodiversity sensors, such as camera traps, provides a richer knowledge
base for conservation mapping and planning.
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Combinación de censos con fototrampas y mapas de extensión de la UICN para
incrementar el conocimiento sobre la distribución de las especies
Resumen: Los mapas confiables de la distribución de las especies son fundamentales para
la investigación y conservación de la biodiversidad. Los mapas de distribución de la Unión
Internacional para la Conservación de la Naturaleza (UICN) están reconocidos como rep-
resentaciones de autoridad de los límites geográficos de las especies, aunque no siempre se
alinean con los datos actuales de su presencia. En los mapas recientes de área de hábitat
(ADH), las áreas que no son hábitat han sido eliminadas de la distribución de la UICN
para reducir los errores de comisión, pero su concordancia con la presencia actual de las
especies tampoco ha sido analizada. Analizamos la concordancia entre la presencia reg-
istrada por los censos de fototrampas y pronosticamos la presencia a partir de los mapas
de la UICN y de ADH de 510 especies de mamíferos de talla mediana a grande en 80 áreas
de muestreo de fototrampas. Las cámaras detectaron sólo el 39% de las especies esperadas
con base en la distribución de la UICN y los mapas de ADH en todas las áreas; el 85% de
las disparidades con la UICN ocurrieron dentro de los 200 km a partir del borde de la dis-
tribución. Sólo el 4% de la presencia de las especies fue detectada por las cámaras ubicadas
fuera de la distribución de la UICN. La probabilidad de disparidad entre las cámaras y la
UICN fue significativamente mayor para los mamíferos de talla pequeña y para los especial-
istas de hábitat en las regiones Neotropical e Indomalaya y en áreas con doseles forestales
más bajos. Nuestros hallazgos sugieren que los mapas de distribución y ADH pocas veces
subrepresentan las áreas con presencia de las especies, pero con frecuencia pueden sobr-
errepresentar la distribución al incluir áreas en donde las especies pueden estar ausentes, en
particular los bordes de la distribución. Sugerimos que la combinación de los mapas de dis-
tribución con los sensores de biodiversidad en tierra, como las fototrampas, proporciona
una base más rica de conocimiento para el mapeo y la planeación de la conservación.

PALABRAS CLAVE

distribución de especies, distribución de mamíferos, fototrampas, mapa de distribución, presencia de mamíferos,
UICN
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INTRODUCTION

Understanding and predicting species distributions are fun-
damental components of biodiversity conservation and man-
agement. The assessment of species conservation status and

subsequent development of conservation plans often depend
on accurate range maps (Pimm et al., 2014; Zhu et al., 2021).
Similarly, geographic priorities for conservation funding may
be influenced by the use of range maps to delineate areas with
high biodiversity or harboring threatened and endemic species
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(Maxwell et al., 2020). For example, spatial patterns of the inten-
sity of threats driving global biodiversity loss for terrestrial
vertebrates have been identified based on range maps (Har-
foot et al., 2021). Likewise, multiple iterations of global priority
regions for mammalian conservation have been based on the
known or predicted distribution of threatened species (Brum
et al., 2017; Jenkins et al., 2013; Schipper et al., 2008). Inac-
curate distribution maps could lead to erroneous conclusions
regarding patterns of species richness and risk, thereby under-
mining the prioritization of conservation efforts in areas of
high or threatened biodiversity (Hughes et al., 2021; Hurlbert
& Jetz, 2007; Hurlbert & White, 2005) and the management of
individual species (Garshelis et al., 2022; McShea et al., 2022).

Range maps were initially established to illustrate the geo-
graphic limits of species for taxonomic purposes but have been
adapted for use in conservation assessment and macroecology
(Marsh et al., 2022). In particular, range maps compiled by the
International Union for Conservation of Nature (IUCN) are
considered the gold standard for assessing species distributions
and biodiversity trends (Brooks et al., 2019) and are frequently
used to inform conservation efforts (Boitani et al., 2011). For
example, these maps have been used to identify areas of high
terrestrial diversity (Jenkins et al., 2013; Jung et al., 2021; Mason
et al., 2020) and to assess the performance of the global pro-
tected area system in covering vertebrate geographic ranges
(Pimm et al., 2018; Pouzols et al., 2014).

These maps are designed to represent the distributional lim-
its of each species while minimizing omission errors (i.e., false
absence of a species) at the cost of commission errors (i.e., false
presence of a species). To create these maps, known occurrences
of the species, expert knowledge of the taxon and its range, and
information about habitat and elevation limits (IUCN, 2021) are
used. However, comprehensive empirical data are limited for
many species; therefore, range maps may be prone to bias and
error (Drescher et al., 2013; Merow et al., 2017). The IUCN
range maps may overestimate species distributions by including
outdated or incorrect assessments of occurrence areas (Boi-
tani et al., 2011; Rondinini et al., 2006). Range overestimation
may result from range maps simply reflecting the extent of
occurrence (EOO), defined as “the area contained within the
shortest continuous imaginary boundary, which can be drawn to
encompass all the known, inferred, or projected sites of present
occurrence of a taxon, excluding cases of vagrancy” (IUCN,
2021). The EOO is often determined using a minimum con-
vex polygon drawn around all known occurrence points (IUCN,
2021). Consequently, the resulting maps may be too liberal in
extent because they include contiguous areas with similar land-
scapes that are uninhabited by the target species (Hurlbert &
White, 2005). Alternatively, IUCN ranges may underestimate
species distributions (Boitani et al., 2011; Rondinini et al., 2006).
For instance, experts may conservatively restrict putative occur-
rences to areas with certain habitat characteristics, presumably,
habitat where the species is known to have occurred rather than
is suspected to occur, or disregard occurrences far beyond con-
firmed occurrence locations (Herkt et al., 2017; Schipper et al.,
2008).

Therefore, reducing commission errors in range maps while
minimizing omission errors is a critical step in accurately assess-
ing species’ distributions. One approach to achieving this is
through the use of deductive modeling as it is applied, for exam-
ple, in the area of habitat (AOH) approach. The AOH is defined
as the habitat in the species’ range and is derived by removing
areas that are not habitat based on habitat and environmental
information, such as land cover and elevation (Brooks et al.,
2019; Lumbierres et al., 2022). Although AOH maps have
recently become available for most mammals (Lumbierres et al.,
2022), their large-scale validation has yet to be conducted (Fice-
tola et al., 2014; Rondinini et al., 2011). Furthermore, it remains
unclear whether the AOH approach reduces commission and
omission errors compared with the original IUCN range maps
used to generate the AOH maps.

Previous researchers have compared IUCN range maps with
species occurrence data derived from point sampling and found
range maps are accurate for amphibians (Ficetola et al., 2014)
but to often overestimate ranges for birds (Hurlbert & Jetz,
2007; Ramesh et al., 2017) and other taxa (Hughes, 2019;
Hughes et al., 2021). However, inaccurate locality data can
adversely affect the accuracy of IUCN maps (e.g., Hjarding et al.,
2015). There is a need for IUCN mapping to take advantage of
extensive high-quality occurrence data generated by the rapidly
increasing use of ground-based biodiversity sensors, such as
camera traps, which have become a prominent method for sur-
veying medium- to large-bodied mammals (Ahumada et al.,
2020; Hughes et al., 2021; Rondinini et al., 2011; Steenweg et al.,
2017). Most studies of mammalian range maps have focused
on underestimation, which can be quantified by documenting
species occurrences outside their estimated range (Ficetola et al.,
2014; Ramesh et al., 2017). By contrast, determining range over-
estimation is more difficult because confirming the absence of
species is challenging and requires a large sampling effort (Dahal
et al., 2021). For example, Li et al. (2020) used camera traps to
document the likely absence of carnivores in several protected
areas in China by surveying all major vegetation types over 3
years (> 5000 camera trap days in each protected area). Camera
traps and other species-level biodiversity sensing technologies
show great promise for faster assessment of potential over- or
underestimation of species distributions (Kissling et al., 2018).

Estimation errors in species ranges may be associated with
species ecology (Hughes, 2019; Jetz et al., 2008) and the extent
of existing research on a given species (Ficetola et al., 2014; Mar-
tin et al., 2012). For example, small-bodied species can have
limited ranges, and administrative boundaries may be used to
delimit their range, especially in cases where ecological data are
lacking. One might thus predict that the discrepancy between
range maps and occurrence data may be higher for small-
bodied than large-bodied species (Hughes, 2019). Additionally,
the range maps more accurately capture the distributions of
generalist species, which have wide ranges and broad habitats
or environmental tolerances, compared to those of specialist
taxa with narrow ranges (Wilson et al., 2004). Furthermore,
the probability of detecting a given species during ecological
field surveys can influence the understanding of its occurrence.
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Whether species are detected by most survey methods, such as
direct observations, tracks, interviewing locals, camera traps, can
be affected by their conspicuousness. The conspicuousness of a
species may be related not only to body mass (Burton, 2012),
but also to diel activity patterns (Davies et al., 2020) and habitat
affinities (Moore et al., 2021). For instance, small, nocturnal, and
semiarboreal species are often more difficult to detect with cam-
era traps. Detection probabilities are also affected by sampling
effort and habitat type. For example, Kays et al. (2020a) found
that at least 840 camera trap days were required to reliably detect
most species in camera trap surveys, whereas Kolowski and For-
rester (2017) found that squirrels were not easily detected by
camera traps in structurally complex forests with high under-
story stem densities. The research effort expended on a species
can also affect the quality of expert knowledge, distribution of
survey effort, and access to occurrence data (Ficetola et al.,
2014), thereby affecting the quality of the IUCN range map
produced. Research effort may also show geographic and tax-
onomic biases. Charismatic species in wealthy counties, for
example, tend to be overrepresented in the peer-reviewed lit-
erature (Donaldson et al., 2017; Martin et al., 2012; Meiri &
Chapple, 2016; Wilson et al., 2016) and might, therefore, have
more accurate range maps.

We examined the agreement between IUCN range maps and
occurrences derived from camera trap surveys for medium- to
large-bodied terrestrial mammals across 4 geographical realms
with data from an extensive global data set (Chen et al., 2022).
We quantified the extent of mismatches in species occurrences
estimated from IUCN range maps and camera trap surveys
to determine the potential for over- and underestimation of
species ranges. To assess the potential of AOH maps in reduc-
ing the extent of mismatch between locality data and IUCN
range maps, we repeated our analyses with the AOH maps and
compared the results of the 2 tests. We assumed that species
not detected by camera trap surveys at sites within their IUCN
ranges and AOH maps represented potential cases of range
overestimation, whereas species detected through camera trap
surveys outside the IUCN range and AOH maps represented
potential cases of range underestimation. Occupancy modeling
is often applied to camera trap data to estimate imperfect detec-
tion (Burton et al., 2015), but we could not construct occupancy
models for all of the camera trap surveys we included because
raw-detection history data were not available for all surveys
(details in Appendix S1). We, therefore, applied an occupancy
modeling framework (Burton et al., 2011) in a test case to esti-
mate the likelihood of a false absence for the rarest species in
the lowest-effort survey included in our study. More generally,
we tested the following a priori predictions regarding the agree-
ment between IUCN range maps and camera trap detections:
range maps and camera trap occurrences will be more similar for
diurnal, large-bodied, ground-living habitat generalists and for
species comprehensively and recently assessed by IUCN than
for nocturnal, small, semiarboreal habitat specialists; range maps
will have more overlap with camera trap occurrences in areas or
biomes with extensive ecological research, such as the Nearctic
realm and woodlands (Martin et al., 2012).

METHODS

Camera trap data

We used a previously assembled global data set of cam-
era trap surveys (Chen et al., 2022) supplemented with an
additional data set that included surveys from Southeast Asia
(Mohd-Azlan et al., 2022) to extract a list of species detected
through camera trap surveys from 2005 to 2018 (Chen et al.,
2022) (Appendix S9). The surveys included data from projects
run by coauthors and from publicly available databases (e.g.,
Wildlife Insights [Ahumada et al., 2020], eMammal [Kays et al.,
2020b]). We excluded surveys with < 400 camera days of
total sampling effort and surveys that did not provide precise
coordinates of sampling locations (Kays et al., 2020a; Tobler
et al., 2008). We limited the scope of our inference to mam-
mal species weighing > 500 g based on the average body mass
reported in the PanTHERIA database (Cusack et al., 2015;
Jones et al., 2009). We thus excluded species < 500 g and
other species likely to be inconsistently detected with camera
traps, including the following volant species and other rarely
detected species (i.e., < 2 detections per 10,000 trap days): bats
(Chiroptera); golden moles and tenrecs (Afrosoricida); shrews,
hedgehogs, and moles (Eulipotyphla); tree shrews (Scanden-
tia); sengis (Macroscelidea); shrew opossums (Paucituberculata);
and colugos (Dermoptera). In total, our data set included 80
camera trap surveys (collectively 747,731 camera trap days) con-
ducted across 4 zoogeographic realms: Nearctic, Neotropical,
Afrotropical, and Indomalaya (Figure 1 & Appendix S9). All
occurrence records and species identifications were reviewed by
the data collectors. Questionable records were removed from
further analyses.

IUCN range map and AOH data

For each camera trap survey area, we extracted a list of medium-
and large-bodied mammal species (> 500 g) expected to occur
according to the IUCN range maps. We used the spatial extent
(e.g., shapefile) of a project if provided by the data source; oth-
erwise, we created a minimal convex hull polygon with a 500-m
area around the coordinates of all camera trap locations in each
project. The IUCN range maps for all species were downloaded
from the IUCN Red List website (https://www.iucnredlist.org/
resources/spatial-data-download) in November 2020.

The IUCN classifies species ranges as extant or possibly
extant. Following IUCN recommendations, we included only
extant ranges because possibly extant ranges are areas with no
record of the species but where species may possibly occur
based on the distribution of potential habitat; therefore, they
should not be considered when estimating the EOO (IUCN,
2021). Finally, to ensure comparability between the IUCN
species list and the camera trap species list, we excluded species
inconsistently detected by camera trap surveys by following the
same species-filtering criteria described in the previous section.
The AOH maps were obtained from Lumbierres et al. (2022)
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FIGURE 1 (a) Locations of 80 camera trap surveys and number of species detected, (b) marbled cat (Pardofelis marmorata) detections inside or outside its
International Union for the Conservation of Nature (IUCN) range or not detected by cameras within the IUCN range, (c) striped skunk (Mephitis mephitis) not
detected by some camera trap surveys within its IUCN range, and (d) common opossum (Didelphis marsupialis) detected by all camera trap surveys within its IUCN
range.

and were produced from IUCN range maps (downloaded in
May 2020) by subtracting areas that were not habitat, identified
based on data on each species’ associated habitat and elevation
limits (Lumbierres et al., 2022). The AOH maps have a res-
olution of 100 m at the equator (Lumbierres et al., 2022). To
elucidate the distinction between IUCN range maps and AOH,
we examined the ratio between AOH and the IUCN range area
for each species (as calculated previously in Lumbierres et al.,
2022) (Appendix S13).

Explanatory variables for mismatch

We explored 4 classes of explanatory variables that we hypothe-
sized would influence the mismatch between IUCN range maps
and camera trap detections: species traits, camera trap sampling
effort, research intensity, and habitat complexity (Table 1). For
species traits, we focused on body mass (mean adult body mass
in grams), habitat breadth, nocturnality, foraging stratum, and
IUCN range area (square kilometers) (Appendix S14). Body
mass was extracted from PanTHERIA (Jones et al., 2009),
and the 3 niche traits were extracted from the Elton Traits

database (Wilman et al., 2014). Body mass was included because
it may influence detectability, and IUCN range area was included
because wide-ranging species are often mapped with less detail;
thus, both variables may lead to mismatches between the 2
methods. We included habitat breadth to test whether special-
ist or generalist species are more likely to have mismatches.
Nocturnality and foraging stratum are related to species con-
spicuousness and can affect detection probability. Diurnal and
ground-foraging species are more detectable and thus less likely
to have mismatches. We included binary variables for nocturnal-
ity (1, nocturnal; 0, other) and foraging stratum (1, able to climb
thus defined as semiarboreal; 0, restricted to terrestrial surfaces).
We accounted for variation in camera trap sampling effort by
modeling the total number of camera trap days per project. We
incorporated the intensity of research effort (or knowledge pro-
duction) that could inform IUCN range delineation for each
species: frequency of IUCN Red List assessments per species,
latest assessment year, IUCN extinction risk category (threat-
ened species attract more conservation attention and research
funding and, therefore, may be more extensively studied,
resulting in them being mapped with higher precision), and bio-
logical realm where a camera trap survey was conducted (more
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TABLE 1 Predictor variables included in the mixed-effects binomial models of mismatches between species International Union for the Conservation of
Nature (IUCN) ranges and camera trap detections.

Variable Description (data source) Predictions

Species traits

Body mass (g) mean adult body mass of a species (Cusack et al., 2015; Jones
et al., 2009)

large bodied species more detectable and thus more likely to
have less mismatch

Foraging stratum vertical strata where a species forages; categorical variable: G (1),
species restricted to terrestrial surfaces; S (0), semiarboreal,
species able to climb (Wilman et al., 2014); scansorial
(climbing) and arboreal species

ground-foraging species more detectable, therefore, less
mismatch

Habitat breadth number of IUCN habitat types listed; range 1−35; large numbers
indicate more generality for a species (Wilman et al., 2014)

specialists occupy fewer sites within their geographic range than
generalists; range maps are coarse representations of species
distribution and often include more inaccurate areas for
specialists (more mismatch)

Range area (km2) range area of IUCN range map wide-ranging species often mapped with much less detail and,
therefore, more mismatches

Nocturnality nocturnal (1), other (0) (Wilman et al., 2014) nocturnal species less detectable and thus more likely to have
inaccurate range maps and, therefore, more mismatch

Sampling effort or
intensity of research

Zoogeographical realm zoogeographical realm where a camera trap survey was
conducted; realms include Afrotropics, Indomalaya, Nearctic,
Neotropics

species in realms with more ecological research (e.g., Nearctic)
have less mismatch between IUCN range maps and camera
trap detections than species in other realms

Camera sampling efforts total camera days of a camera trap project camera sampling efforts can increase the probability of species
detection, therefore, there is less mismatch

IUCN year year of latest IUCN assessments of a species recent IUCN range maps have less mismatch between range
maps and camera traps

IUCN frequency total IUCN assessments of a species species assessed more frequently have more accurate range map
than species assessed less frequent, therefore, have less
mismatch between IUCN range maps and camera traps

IUCN category extinction risk of species assessed by IUCN; categories coded as
integers: least concern (LC-1), near threatened (NT-2),
vulnerable (VU-3), endangered (EN-4), and critically
endangered (CR-5)

rare species with limited number of samples may be mapped to
occupy a much larger range than it really occurred, and
therefore, would have less mismatch between range maps and
camera traps

Habitat

Tree height (m) forest canopy height (m) (Simard et al., 2011) species in habitats with tall trees (structurally more complex
environment) may not be easily detected and thus less likely to
have accurate range maps

ecological research is conducted in some regions, e.g., Nearctic).
Finally, species in different habitats (e.g., open area vs. closed
forest) may vary in their probability of detection; therefore, we
included mean canopy height (meters) as a coarse proxy for
habitat type (Simard et al., 2011). All continuous variables were
standardized to have a mean of 0 and a standard deviation of 1.
Body mass data were transformed to log values.

Statistical analyses

We used binomial regression models to explore the relationship
between occurrence mismatches and species traits, sampling
effort, research intensity, and habitat complexity (Table 1). We
developed a categorical match index to quantify mismatches
between the 2 data sources. All species occurrences within
each camera trap survey area were assigned to one of the

following 3 categories (Figure 2): both, locations within the
IUCN-determined range where species were detected by cam-
era trap surveys; camera only, locations where species were
detected by camera trap surveys outside their IUCN range, rep-
resenting potential omission errors in the range delineation; and
IUCN only: camera trap survey areas within a species IUCN
range without detection of the species by the camera traps.
These mismatches could be commission errors, although range
maps are designed to indicate distribution limits but not neces-
sarily fully occupied areas (as discussed above). Both were coded
as 1 (no mismatch) and camera only and IUCN only were coded
as 0. Separate models were run for each type of mismatch. We
then compared camera trap occurrences with AOH maps in the
same manner, with both, camera only, and AOH only categories.

To identify the factors explaining species detection with only
1 method (i.e., mismatch), we ran 2 sets of models. To test
for potential underestimation of the IUCN range, we used

 15231739, 0, D
ow

nloaded from
 https://conbio.onlinelibrary.w

iley.com
/doi/10.1111/cobi.14221 by W

ageningen U
niversity A

nd R
esearch Facilitair B

edrijf, W
iley O

nline L
ibrary on [23/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CONSERVATION BIOLOGY 7 of 17

FIGURE 2 Conception of the 3 categories of species occurrences in each camera trap survey area (camera grid): (a) International Union for the Conservation
of Nature (IUCN) range but not detected by cameras (IUCN only), (b) detected by cameras in IUCN range (both), and (c) detected by cameras outside IUCN range
(camera only) (percentages, percentage of detections in each category across the 510 species from 80 projects).

response data with species occurrences representing camera
only (0) and both (1). To test for potential range overestimation,
we used IUCN only (0) and both (1). We calculated the mini-
mum Euclidean distance from each camera trap to the nearest
edge of a given species’ range to quantify the number of sam-
pling locations outside the IUCN range of that species. For each
analysis, we compared the following 7 candidate models and
a null model: species traits, sampling effort (for camera traps)
or research intensity (for IUCN Red list assessment), model
with habitat variable, models that included combinations of 2
of the abovementioned variables (models 4−6), and full model
(Table 2). We included random intercepts in each model for the
camera trap survey and species to account for potential non-
independence among observations of different species within
the same camera trap survey and of the same species across
different surveys, respectively.

We used Akaike’s information criterion for small sample size
(AICc) (Burnham & Anderson, 2002) to identify the most par-
simonious candidate models that best explained the probability
of species detection by only camera traps or IUCN range maps.
Models with the lowest AICc value and highest AICc weight
were identified as the best model, but all models with ΔAIC
< 2 were considered to have similar support. Furthermore, we
used standardized regression coefficients and their 95% CIs to
assess the direction, magnitude, and statistical significance of
each explanatory variable included in the best model. The good-
ness of fit of the best model was estimated by Nakagawa’s R2

(Nakagawa et al., 2017). We repeated all statistical analyses with
AOH-matching results. All statistical analyses were performed
using the lme4 and MuMIn packages (Barton & Barton, 2015;

Bates et al., 2015) in R 4.1.1 statistical software (R Core Team
2021). The replication data and code for binomial regression
models can be obtained from (https://doi.org/10.5061/dryad.
83bk3j9vp).

RESULTS

For the camera and IUCN range map comparison, of the 2966
total species× site occurrences, 1169 occurrences of 286 species
(39%) were confirmed by camera detections within IUCN range
(both), 107 occurrences of 65 species (4%) were detected by
cameras outside IUCN range (camera only), and 1690 IUCN-
assumed occurrences of 404 species (57%) were not confirmed
by cameras (IUCN only) (Figure 2; Appendices S9 & S10). A
comparison between camera trap data and AOH maps resulted
in a total of 2875 species × site occurrences. Of these, 1144
occurrences of 283 species (40%) were in the both category,
132 occurrences of 72 species (4%) were camera only, and 1599
of 2875 (56%) were AOH only. Ninety-one IUCN only occur-
rences across 54 species were not validated by AOH and were
subsequently excluded. Moreover, 32 camera occurrences that
were within the IUCN range were not confirmed by AOH. Con-
versely, 7 camera only occurrences fell within the AOH, a result
of the range correction for the crab-eating mongoose (Urva

urva) because Lumbierres et al. (2022) factored in the possible
extent area when creating the AOH for this species. The mean
ratio between the areas covered by AOH and the IUCN range
across all species was 0.80 (SD 0.20), indicating that, in general,
AOH was not much smaller than the IUCN range.

 15231739, 0, D
ow

nloaded from
 https://conbio.onlinelibrary.w

iley.com
/doi/10.1111/cobi.14221 by W

ageningen U
niversity A

nd R
esearch Facilitair B

edrijf, W
iley O

nline L
ibrary on [23/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5061/dryad.83bk3j9vp
https://doi.org/10.5061/dryad.83bk3j9vp


8 of 17 CHEN ET AL.

T
A

B
L

E
2

M
od

el
st

ru
ct

ur
e

fo
r

ca
nd

id
at

e
re

gr
es

si
on

m
od

el
s

of
po

te
nt

ia
lm

is
m

at
ch

of
In

te
rn

at
io

na
lU

ni
on

fo
r

th
e

C
on

se
rv

at
io

n
of

N
at

ur
e

(I
U

C
N

)s
pe

ci
es

’r
an

ge
s

an
d

ca
m

er
a

tr
ap

de
te

ct
io

ns
of

sp
ec

ie
s.*

M
o

d
e
l

B
o

d
y

m
a

ss

(g
)

F
o

ra
g

in
g

st
ra

tu
m

H
a
b

it
a

t

b
re

a
d

th
N

o
c
tu

rn
a

li
ty

R
a

n
g

e
a

re
a

(k
m

2
)

R
e
a

lm

C
a

m
e
ra

d
a

y
s

IU
C

N

ye
a

r

IU
C

N

fr
e
q

u
e
n

c
y

IU
C

N

c
a

te
g

o
ry

T
re

e
h

e
ig

h
t

(m
)

N
ul

l

Fu
ll

X
X

X
X

X
X

X
X

X
X

X

Sp
ec

ie
s

X
X

X
X

X

Sa
m

pl
in

g
X

X
X

X
X

H
ab

ita
t

X

Sp
ec

ie
s
+

sa
m

pl
in

g
X

X
X

X
X

X
X

X
X

X

Sp
ec

ie
s
+

ha
bi

ta
t

X
X

X
X

X
X

Sa
m

pl
in

g
+

ha
bi

ta
t

X
X

X
X

X
X

*C
el

ls
w

ith
an

x
va

ria
bl

e
in

cl
ud

ed
in

th
e

m
od

el
.

TABLE 3 Model selection results and models testing potential
overestimation error of International Union for the Conservation of Nature
mammal ranges based on detections from 80 camera trap studies.

Model K AICc
a ΔAICc

b AICc weightc

Full 16 2791.02 0.00 0.82

Species traits + sampling 15 2794.07 3.04 0.18

Species traits 8 2864.27 73.25 0.00

Species traits + habitat 9 2865.71 74.68 0.00

Sampling + habitat 11 2874.08 83.05 0.00

Sampling 10 2876.13 85.10 0.00

Null 3 2959.58 168.56 0.00

Habitat 4 2961.52 170.50 0.00

aAkaike’s information criterion.
bDifference in AICc scores from the top-ranked model.
cWeight attributed to the model among all candidate models.

Potential range overestimation with IUCN only
and AOH only occurrences

Using a test case of occupancy modeling for a rarely detected
species, we estimated that the probability of false absence
(pfa) for an undetected species in our data set would be low
(per entire survey pfa

< 0.0072 [Appendix S2]). IUCN only
accounted for 57% of the mismatches in species occurrences
between methods (Figure 2). Approximately one-quarter (105
of 404) of the species and one-third (426 of 1264) of the total
occurrences with IUCN only records were classified as threat-
ened (i.e., critically endangered, endangered, vulnerable). The
mismatches between IUCN range maps and camera trap data
were similar for the AOH maps; however, the AOH approach
removed 91 IUCN-assumed occurrences in locations that were
not habitat. The model selection and the estimated effects of
factors explaining species detections by range maps and AOH
maps were similar (Appendices S8−S10). About 85% of the
IUCN only mismatches occurred within 200 km of range edges;
20% of them occurred directly on the edge (i.e., camera trap sur-
veyed areas overlapping the border of the range) (Appendices S6
& S13). This pattern was consistent across all IUCN categories
and for all species (Appendix S6).

The full model of the probability of correspondence between
the IUCN range and AOH maps and camera trap detec-
tions with all explanatory variables had the lowest AICc value
(Table 3) and fit the data well (Nakagawa’s conditional R2

=

0.65). Consistent with our predictions, the probability of cor-
respondence between IUCN range and camera trap detections
(both) was positively associated with body mass (β = 0.65, 95%
confidence intervals [CI] = 0.36−0.94) and habitat breadth (β
= 0.50, 95% CI = 0.18−0.82) (Figure 3). The probability of
detecting a species by camera within its IUCN range was 3 times
greater for large-bodied species (20 kg) than for small-bodied
species (0.5 kg) (Figures 3a & 4a). The regional discrepancy was
strong. Compared with the Afrotropics, detection of species
by cameras within IUCN ranges was significantly lower in the
Indomalaya (β = −1.49, 95% CI = −2.32 to −0.66) and the
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CONSERVATION BIOLOGY 9 of 17

FIGURE 3 Regression coefficients (β) from the top-ranked model for factors associated with the probability of species detected by camera traps in species’
International Union for the Conservation of Nature (IUCN) ranges (narrow bars, 95% confidence interval; wide bars, 90% confidence interval) based on (a) data
from IUCN range (IUCN only) and overlaps between camera trap and IUCN ranges (both) and (b) data from areas exclusively detected by camera traps (outside
IUCN range, camera only) and overlaps (both).
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10 of 17 CHEN ET AL.

FIGURE 4 Relationships among model-predicted probabilities of species occurrences matching between camera trap detections and International Union for
the Conservation of Nature (IUCN) ranges within camera survey areas. Predictions were made based on the best generalized linear model with IUCN only and both
data (defined in legend of Figure 3) for the following variables: (a) species body mass, (b) species habitat breadth, (c) IUCN assessment year, (d) zoogeographical
realm, (e) canopy height, and (f) sampling effort (camera trap days). Other variables were held at their means.
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TABLE 4 Model selection results and models testing potential
underestimation of International Union for the Conservation of Nature ranges
of mammal species compared with mammal species’ detections from 80
camera trap studies.

Model K AICc
a ΔAICc

b AICc weightc

Full 16 520.30 0.00 0.54

Species traits + sampling 15 520.83 0.52 0.42

Species traits + habitat 9 526.96 6.66 0.02

Species traits 8 526.98 6.68 0.02

Sampling + habitat 11 540.77 20.47 0.00

Sampling 10 541.54 21.24 0.00

Habitat 4 547.24 26.94 0.00

Null 3 547.56 27.26 0.00

aAkaike’s information criterion.
bDifference in AICc scores from the top-ranked model.
cWeight attributed to the model among all candidate models.

Neotropics (β = −1.23, 95% CI = −2.24 to −0.22), and signif-
icantly higher in the Nearctic (β = 0.94, 95% CI = 0.03−1.85)
(Figures 3 & 4d). Species were more likely to occur in both
IUCN range maps and camera surveys in areas with tall canopies
(β = 0.27, 95% CI = 0.04−0.50). A mismatch was less likely
when there was more sampling effort by cameras (β= 0.27, 95%
CI = 0.03−0.50) (Figures 1b & 3). Contrary to our hypothesis,
species with more recent IUCN assessments were more likely to
have an IUCN only mismatch (β = −0.54, 95% CI = −0.82 to
−0.26).

Potential range underestimation with camera
only occurrences

In both comparisons (i.e., camera vs. IUCN range and camera
vs. AOH maps), only 4% of mismatches were camera only
(Figure 2). Of the 65 out-of-range species, 22 were threatened
(critically endangered, endangered, vulnerable) and 44 were
nonthreatened (near threat, least concern). Interestingly, 32
occurrence records shifted from both to camera only after
removing areas that were not habitat based on AOH maps.
However, the majority of these records (22 out of 32) were
attributable to red fox (Vulpes vulpes) because the AOH map for
this species did not include the extant and introduced region,
resulting in all red fox occurrences in North America being
categorized as camera only. After excluding the erroneous red
fox records, the AOH comparison yielded only 10 more
camera only occurrences than the IUCN comparison
(Appendix S10). The modeling results for IUCN and AOH
maps were also similar. The full model with all explanatory
variables and the model with species traits plus sampling
variables were favored (Table 4) but explained little overall
variance (R2

< 0.1). The 95% CIs for all parameter coefficients
overlapped 0 (Figure 1b). Out of 108 camera only occurrences,
three-quarters (75%) were detected within 300 km of the
species range border (Appendix S4), see Appendix S7 for an
example of out-of-range records of bearded pig [Sus barbatus].

Ten species occurred beyond 1000 km from the range border:
crab-eating mongoose (Herpestes urva), eastern gray squirrel (Sci-

urus carolinensis), wild boar (Sus scrofa), red deer (Cervus elaphus),
Cape scrub hare (Lepus saxatilis), tapeti (Sylvilagus brasiliensis),
Cape genet (Genetta tigrina), gray brocket (Mazama gouazoubira),
Java mouse-deer (Tragulus javanicus), and Mondolfi’s four-eyed
opossum (Philander mondolfii). These mismatches were due to
incomplete range representation, where, despite their known
wide distributions within their respective regions, the extent
of species range was not represented by IUCN range maps,
such as for Eastern gray squirrel and crab-eating mongoose.
Mismatches may also be due to species misidentification in
camera images (Cape genet, Gray brocket, and Java mouse-
deer), taxonomy change of the species (Cape scrub hare, tapeti),
camera trap data input error (Mondolfi’s four-eyed opossum),
or the introduction of these species beyond their native range,
such as for wild boar in North America (Lewis et al., 2019) and
red deer in South America (Flueck, 2010). We reran models
excluding these outlier species, but the results were qualitatively
unchanged. Seven species were identified as occurring outside
the AOH maps, namely, Cape hare (Lepus capensis), gerenuk
(Litocranius walleri), Thomson’s Gazelle (Eudorcas thomsonii),
olive baboon (Papio Anubis), spectacled langur (Trachypithecus

obscurus), masked palm civet (Paguma larvata), complex-toothed
flying squirrel (Trogopterus xanthipes), in addition to those that
were already identified as outside the IUCN range. Details of
out-of-range records are in Appendix S10.

DISCUSSION

Comparison of data from camera trap surveys with IUCN range
maps for medium- and large-bodied mammals revealed that few
species were detected by cameras outside their IUCN range. By
contrast, camera traps detected less than one-half of the species
that were expected to occur in surveyed areas based on IUCN
ranges. This large discrepancy could be due to a combination
of range overestimation by the IUCN range maps and imper-
fect detection in camera trap surveys (false absences). However,
we excluded species expected to be poorly detected by cam-
eras from our analyses, and realistic detection probabilities for
even rare species suggest that sampling effort was adequate in
the camera trap surveys to lead to a low probability of false
absences (Appendix S2). We, therefore, suspect that many of
the observed mismatches reflected actual range overestimation.
Recent instances of local extirpation could also cause range
overestimation. For instance, buffalo, leopard, and giant for-
est hog are likely extirpated in Bwindi Impenetrable National
Park, Uganda (Gorczynski et al., 2021; Rovero et al., 2020) and
thus not detected by cameras even though their IUCN range
overlaps the park. The temporal mismatches between camera
traps and IUCN ranges were in both directions, with approxi-
mately one-half of species occurrences detected prior to IUCN
assessments.

Despite our contention that the probability of false absence
was low, camera trap sampling effort was positively associ-
ated with consistency between the range maps and camera
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12 of 17 CHEN ET AL.

traps in both overestimation and underestimation models. This
emphasizes that adequate sampling effort is critical for esti-
mating species richness for all empirical ecological surveys
(Colwell et al., 2004), including camera trap surveys (Kays et al.,
2020a). Although setting more cameras for longer periods can
increase the probability of species detection, there are diminish-
ing returns. Kays et al. (2020a) suggest that 840−2100 camera
trap days are sufficient to obtain precise estimates of species
richness (i.e., 3−5 weeks across 40−60 sites per camera trap
array). The mean sampling effort for surveys in our study was
10,542 camera trap days (Appendix S9), 5 times greater than
these minimum recommendations of Kays et al. (2020a). Addi-
tionally, the predicted relationship from our IUCN only model
suggests that correspondence between IUCN range maps and
camera traps would not be achieved until levels of sampling
effort far exceed those determined in studies such as Kays et al.’s
(2020a) (Figure 4f). Also, as indicated by our example estimation
of probability of false absence (pfa) for a hypothetical unde-
tected species in the survey with lowest sampling effort (per
entire survey effort pfa

< 0.0072) (Appendix S2), camera trap
surveys included in our analysis would likely have low proba-
bilities of undetected species. Nevertheless, detecting very rare
species with certainty can be difficult (Burton et al., 2011), and
we cannot dismiss the possibility that some IUCN only mis-
matches could be due to cameras failing to detect a species that
was present.

The IUCN range maps are designed to delineate the bound-
aries of a species’ range rather than its internal distribution. As
a result, it is expected that one will find areas within the range
where the species is not detected due to an absence of habitat.
This is particularly true for camera surveys located at the cen-
ter of the species’ range. In our analysis, however, we observed
that the majority of species absences occurred at the fringes
of their ranges (<200 km). This indicates that potential range
overestimation might be widespread for many species. Broad-
scale destruction of natural habitats, overexploitation of natural
resources, competition with or predation by invasive non-native
species, and climate change can contribute to recent range con-
traction. Local population extirpation can also lead to range
overestimation (Faurby & Araújo, 2018; Pacifici et al., 2020; Li
et al., 2020). This information is valuable for IUCN Red List
assessments and underscores the importance of paying closer
attention to the borders of ranges.

Our results showed that AOH maps derived from IUCN
range maps for mammals also exhibited a high potential for
commission errors. This is consistent with previous research
on various taxa (Brooks et al., 2019; Hurlbert & White, 2005;
Jetz et al., 2008; Rondinini et al., 2006; Vale et al., 2017). Even
though AOH removes areas that are not habitat, camera trap
studies were not randomly conducted within the range. Instead,
we believe they were generally conducted in areas anticipated
to contain diverse and abundant wildlife. Our comparison of
camera detections with AOH maps confirms that mismatches
within IUCN ranges were not limited to areas without habitat:
56% of occurrences were AOH only. The AOH was typically
much smaller than the IUCN range map showed (Lumbierres
et al., 2022); however, for the mammal species we analyzed,

the mean ratio between the AOH and the area of the range
was higher (0.8) than the mean across all species (0.4) ana-
lyzed by Lumbierres et al. (2022), indicating that much of the
ranges for these mammals are considered to be in areas with-
out habitat. This is consistent with the minimal difference we
observed between the results of camera occurrences compared
with ranges and AOHs. Nevertheless, AOH maps are also likely
to vary in accuracy and may not account for anthropogenic
factors that reduce suitability, such as habitat fragmentation or
hunting. In general, AOH maps are a valuable tool that apply the
geographic limits of species as a foundation to more accurately
determine the areas genuinely inhabited by a species. Camera
traps provide not only presence data, but also absence data with
a high degree of confidence (Li et al., 2020). Therefore, combin-
ing camera trap surveys and species distribution mapping can be
tremendously valuable in validating the accuracy of AOH maps
(Dahal et al., 2021).

Our results illustrate the advantages of integrating cam-
era trap data and range maps to detect biases and improve
understanding of species distributions. Among the total 2973
occurrences, IUCN only and both accounted for approximately
57% and 40%, respectively, but the degree of mismatch varied
between camera trap survey locations, which may reflect differ-
ences in research intensity among regions. As predicted, camera
trap surveys in the Nearctic were more likely to detect species
listed as extant on IUCN range maps compared with surveys
in other realms, particularly the Neotropics and Indomalaya.
Ecological field sites are disproportionately found in temper-
ate deciduous woodlands (tall forests), and this geographic bias
corresponds to gaps in ecological knowledge elsewhere (Martin
et al., 2012; Nuñez et al., 2021). This suggests that camera trap
surveys performed more poorly in the Neotropics, Indoma-
laya, and areas where forest canopy height was relatively lower,
perhaps because mammal species in these areas may be less
abundant. Consequently, more frequent assessments in these
realms would greatly contribute to an improved understanding
of species distributions and could increase consistency between
range maps and ground-based sampling.

Species traits predicted the degree of potential range overes-
timation in the IUCN maps. Consistent with Jetz et al. (2008),
generalists were more likely to be detected by both methods.
An explanation is that specialists tend to occupy fewer sites
within their geographic range than generalists (Grinnell, 1917).
We similarly found niche breadth was positively associated with
range map accuracy, as in Slatyer et al. (2013) Range maps
thus tend to overestimate the geographical distribution of niche
specialists. We found that range overestimation was positively
related to body size but not to range area. Jetz et al. (2008)
did not report a significant relationship with body size in birds,
perhaps because mammals are in general more dispersal lim-
ited. Birds may, therefore, occupy more habitats than mammals
of similar sizes because of their higher vagility. Likewise, Jetz
et al. (2008) also reported a positive correlation between high
habitat specificity and small range size in birds, but no such
correlation was found in mammals. Foraging stratum and activ-
ity pattern were not significant predictors of the probability
of species detected within the IUCN range, suggesting that
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CONSERVATION BIOLOGY 13 of 17

camera traps can effectively detect ground and semiarboreal
species during the day- or nighttime.

Few species were detected only in camera trap studies (4%
of the total detections), and most out-of-range records were
close to the IUCN range border. This indicates that IUCN
range maps rarely underestimate the known distribution of most
mid- to large-sized mammals. Although out-of-range records
are infrequent, they provide valuable information, particularly
for threatened species. A slight range extension for a species
that is not threatened is unlikely to require a change in the
IUCN Red List category or significantly alter the accuracy of
species accounts. However, a legitimate range extension for
a threatened species could significantly expand understanding
of the species’ distribution or habitat use, even resulting in
a change in category. Such information is also beneficial for
data-deficient species to help move them into data-sufficient
categories. Additional studies are required to further investi-
gate these out-of-range records, and increased sampling in these
areas may be necessary.

Previous studies that used Global Biodiversity Information
Facility (GBIF) occurrence data show that approximately 30%
of mammal occurrences are outside their corresponding range
map (Hughes, 2019; Hughes et al., 2021). This could be due
to bias and taxonomic error in GBIF occurrences: over 25%
of mammal occurrences were museum records (e.g., preserved
specimens) that may no longer represent current ranges or were
not properly curated and so contain taxonomic errors (e.g.,
Hjarding et al., 2015). Only approximately 10% represent recent
observations (Wieczorek et al., 2012; Gbif.Org, 2018). Surpris-
ingly, in our study, species more recently assessed by the IUCN
were less likely to be detected by camera. We speculate that this
is because recent IUCN assessments include a greater propor-
tion of rare events not captured by camera trap surveys, such
as recent local extirpation. Nonetheless, there could be tem-
poral mismatches between camera survey years and the IUCN
assessment year for some species.

A lack of comprehensive occurrence data can lead to inac-
curate range maps influencing wildlife conservation efforts. To
date, IUCN range maps are considered the most authoritative
source for global conservation initiatives (Mason et al., 2020;
Moran & Kanemoto, 2017) and site-scale conservation plan-
ning (Betts et al., 2020; Schipper et al., 2008). For instance,
Mason et al. (2020) developed the index of transboundary
conservation, which employs range maps of birds, mammals,
and amphibians as a tool to identify country boundaries that
require prioritization for animal conservation. Because IUCN
range maps are derived from known species occurrence loca-
tions, IUCN species status is often determined from multiple
data sources, including systematic surveys and expert opinion
(Hayward, 2009). However, the quality of such data may vary
substantially, depending on the level of individual expertise or
survey method (Martin et al., 2012) and the frequency at which
maps are updated. The IUCN assessments are typically updated
every 5−20 years (except birds every 4 years) due to limited
availability of occurrence data. Also, new occurrence records
may not immediately be reflected in the assessment; conse-
quently, expert maps can quickly become outdated (Merow

et al., 2017). Camera traps, in contrast, can generate high-quality
real-time data. Moreover, camera traps not only estimate the
presence or absence of multiple species simultaneously, but also
capture their abundance and behavior (Burton et al., 2022). The
use of camera trap monitoring networks is rapidly expanding,
with great potential to collect occurrence data across diverse
habitat types. Furthermore, researchers may consider incor-
porating the use of other tools, such as species distribution
modeling (Fourcade et al., 2013; Guisan & Thuiller, 2005), citi-
zen science data (Ramesh et al., 2017), and other georeferenced
data from GBIF (Hughes, 2019; Hughes et al., 2021), which can
all help verify the accuracy of and, ultimately, improve IUCN
range maps.

The use of IUCN range maps remains a central part of con-
servation planning, in part, because empirical occurrence data
for many species are not always available. Camera trap data
along with other new data sources such as acoustic and eDNA
surveys can help fill this gap, and data-driven, automated, stan-
dardized alternatives for assessing and improving understanding
of species distributions should be developed (Kissling et al.,
2018). Promising alternatives include using habitat and eleva-
tion data to remove areas that are not habitat within species
range and map species’ AOH (Brooks et al., 2019); using species
distribution models to combine species occurrences with eco-
geographic information (Jetz et al., 2012); mapping not only
simple binary predictions, but also species occurrence prob-
abilities informed by rapidly accumulating camera trap data;
and incorporating complementary data on important spatial
heterogeneity within species ranges (Harris et al., 2022). New
camera trap surveys could be targeted toward areas with greater
uncertainty in predicted occurrence probabilities. Although it
is challenging to harmonize and standardize biodiversity data
from disparate sources, our results demonstrate that it is possi-
ble to compile and use camera trap data sets to yield insight into
the distribution and conservation status of many larger-bodied
mammal species (Ke & Luskin, 2019; Rostro-García et al.,
2016). We echo previous calls for standardized camera trap data
to facilitate data synthesis (Forrester et al., 2016), and we recom-
mend open access to full data sets (e.g., Wildlife Insights) and
specifically species occurrences (e.g., GBIF) whenever possible
to improve wildlife science and conservation.
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