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 WGS: millions of variants  pinpoint causal variants affecting traits of interest

 Key traits: biological efficiency, e.g. feed efficiency

 BovReg: catalogue of functionally active genomic features (GF) in cattle

 Functional GF  SNP prioritization  Biology-driven genomic predictions

Biology-driven genomic predictions



Validation of within- and across-breed

biology-driven genomic predictions using genomic features

for dry matter intake (feed efficiency)

3. Aim of the study



Data available for genomic predictions

NLD CAN

Breed Holstein Beef crosses

Herds 6 14

Dependent variable DRP on DMI Pre-corrected DMI

n. animals DMI & geno
(training - validation)

~3k
(2.2k and 850)

~5.5k
(4k and 1.5k)

 forward-in-time validation (SE via bootstrapping): accuracy and bias

 50k to imputed WGS (Beagle)  prioritize variants based on GF



Genomic features available

GF Work Package
Meta-GWAS QTL     (QTL) WP4
Expression QTL     (eQTL) WP4
Metabolic QTL      (mQTL) WP4
ATAC-seq WP2
ChIP-seq WP2
Mobile Genetic Elements (MGE) WP2

• Different tissues/samples  Different formats for different GF

• Many files (~1,000) with large size  how to quickly access/query GF information?



Selection of genomic features

1000 bull genome project (~74.9 M 
variants) as “baseline” to map GF



Selection of genomic features
Variant

ID
CHR POS GF1

(DMI 
QTL)

GF2
(liver 
eQTL)

GF3
(ATAC

tissue1)

GF . GFn

Variant 1 1 659 0 1 0 . 1.1x10-13

Variant 2 1 1235 1 0 1 . NA

Variant 3 1 1578 0 0 1 . NA

Variant 4 1 1984 0 0 1 . NA

Variant 5 1 2689 0 0 1 . 3.9x10-5

Variant 6 1 3458 0 1 0 . NA

Variant … . . . . . . .

Variant 75M 29 49805987 0 0 1 . NA

• Position/Intervals as (0/1 coding)
• p-value (if available) as (NA/value)For each GF, store information on:



Selection of genomic features

Select GF group
(across traits/tissues)

Exclude variants in 50K &
not in within-country WGS

GF mapped to 1000G for all traits/tissues
position/intervals & p-value 

Non-overlapping
variants list

List of variants per GF “layer”
(overlapping with 1000G)

Awk/R

Awk/R



Selection of genomic features

Non-overlapping 
variants list

SNPs to be used for GP 
as GF layer

Extract bi-allelic variants

vcftools/Plink

Clumping
(p-values needed)

Plink

Filtered
variants list

Within-country 
WGS



Genomic features used

GF Traits / Tissues

QTL Meat quality, Growth, Milk production, Morphology, 
Fertility, Health, Feed efficiency, Methane 

eQTL

(Gene, Transcript, Splice)

Jejunum, Blood, Liver, Mammary Gland,
Adipose, Muscle, Milk, Rumen

ATAC-seq

From GC Moreira et al., EAAP #939



• NextGP.jl 1

• Base 50K: SNPBLUP (BayesC0) common variance across SNPs
• GF as additional layer  SNPBLUP or Bayesian (2 mixture model – no advantage)
• ATAC-seq consensus peaks (across all samples and tissues)*
• QTL, eQTL, ATAC  Multi-GF  overlapping GF 

Scenarios

Scenario NLD CAN

50K 48K 46K
50K + QTL 48K +   5,416 46K +   4,222

50K + eQTL 48K + 12,401 46K + 11,884
50K + (QTL, eQTL, ATAC) 48K + 17,796 46K + 16,089

*GC Moreira et al. 2023, EAAP1 https://github.com/datasciencetoolkit/NextGP.jl

https://github.com/datasciencetoolkit/NextGP.jl


Overlapping genomic features

QTL eQTL ATAC Variants %

1 1 0 5 0
1 1 1 16 0
1 0 0 2,576 14
1 0 1 2,819 16
0 1 0 5,051 28
0 1 1 7,329 41

17,796 100

BayesRCπ (2 classes)

Mollandin et al. 2022, BMC bioinformatics

Multi-GF



Results – NLD: prediction accuracy

• SE: ±0.03

• No impact on dispersion (slope = 0.68 for 50k)
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• SE between ±0.02 and ±0.03

• Similar pattern for dispersion (slope = 0.56 for 50k)
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Results – CAN: prediction accuracy
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50K QTL 50K + QTL eQTL 50K + eQTL 50K + 
Multi GF



Manhattan plots meta-GWAS QTL for DMI
ALL
10,539 animals
Beef, Holstein, Finnish Red 
~30M variants

HOL
2,368 animals
Only Holstein
~20M variants

Zhang et al. 2020, BMC genomics

BEEF
7,805 animals
Only Beef
~28M variants

Gredler-Grandl et al. 2022, WCGALP

chr 6, 14, 20CAN data filter SNPs with 2pqα2 ≥ 0.0001
chr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
count 1 16 6 0 19 21 0 0 1 1 2 0 0 30 6 3 2 1 2 13 0 0 0 2 1 0 1 0 1



Different scenarios implemented using ATAC-seq narrow peaks for selected tissues

Scenario Description SNPs

ATAC_ratio Top 10K variants from narrow peaks ratio (overlaps selected/ total tissues)
+ adjacent SNPs (200Kb) 

210,919  19,523
(LD pruning)

ATAC_housekeep Top 10K variants that overlaps across all narrow peaks ("housekeeping" set) 10,000

ATAC_random Random selection
Segment size: 150K / 200K / 250K
Percentile cutoff threshold: top 10% / top 20% / top 30%

3,318

ATAC_weights Higher weights on less frequent variants (e.g., QTLs)
Segment size: 150K / 200K / 250K
Percentile cutoff threshold: top 10% / top 20% / top 30%

390

Use of narrow-peaks ATAC-seq



• Randomly selected variants gave same or higher accuracy (# SNPs)
• ATAC-seq modelled as additional SNP layer  Next: model narrow-peaks as different layers 

into NextGP
• Narrow-peaks not as useful as consensus-peaks information?
• How did you model/consider ATAC-seq?
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0.259 0.249

0.00

0.05

0.10

0.15

0.20

0.25

0.30

50K 50K +
ATAC_ratio

50K +
ATAC_housekeeping

50K +
ATAC_random

50K +
ATAC_rare

50K + QTL + eQTL +
3 combined ATAC

(BayesLV)

Results (SNPBLUP models)

50K +
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 Model as detailed annotation layers trait/tissues-specific into 

NextGP

 BayesLV using p-values (test on implemented scenarios)

 Across-breed (using SNP effects) and multi-breed (combined 

reference population) GP for NLD-CAN

Next steps



 Inclusion of Genomic Features could increase genomic prediction 

accuracies for Dry Matter Intake

 Results may vary across breeds/datasets

 Complex traits: find causal variants

 No advantage using Bayesian (2 mixture model) over SNPBLUP for GF

 ATAC-seq narrow-peaks showed low added value

Conclusions
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