Biology-driven genomic predictions for dry matter intake within and across-breeds using WGS data

Renzo Bonifazi, M Heidaritabar, LD Barlow, AC Bouwman, L Chen, P Stothard, J Basarab, C Li, G Plastow, the BovReg consortium, B Gredler-Grandl

Biology-driven genomic predictions

- WGS: millions of variants → pinpoint causal variants affecting traits of interest
- Key traits: biological efficiency, e.g. feed efficiency
- BovReg: catalogue of functionally active genomic features (GF) in cattle
- Functional GF → SNP prioritization → Biology-driven genomic predictions

3. Aim of the study

Validation of within- and across-breed

biology-driven genomic predictions using genomic features

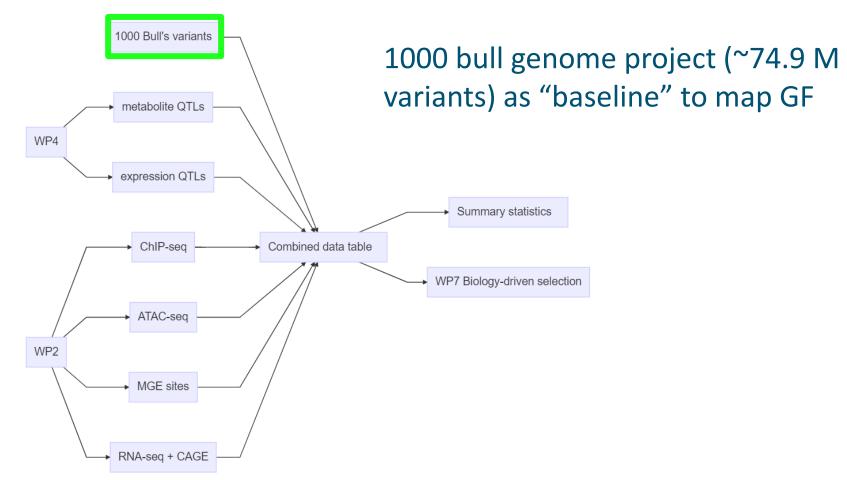
for dry matter intake (feed efficiency)

Data available for genomic predictions

	NLD	CAN 🌞
Breed	Holstein	Beef crosses
Herds	6	14
Dependent variable	DRP on DMI	Pre-corrected DMI
n. animals DMI & geno (training - validation)	~3k (2.2k and 850)	~5.5k (4k and 1.5k)

forward-in-time validation (SE via bootstrapping): accuracy and bias

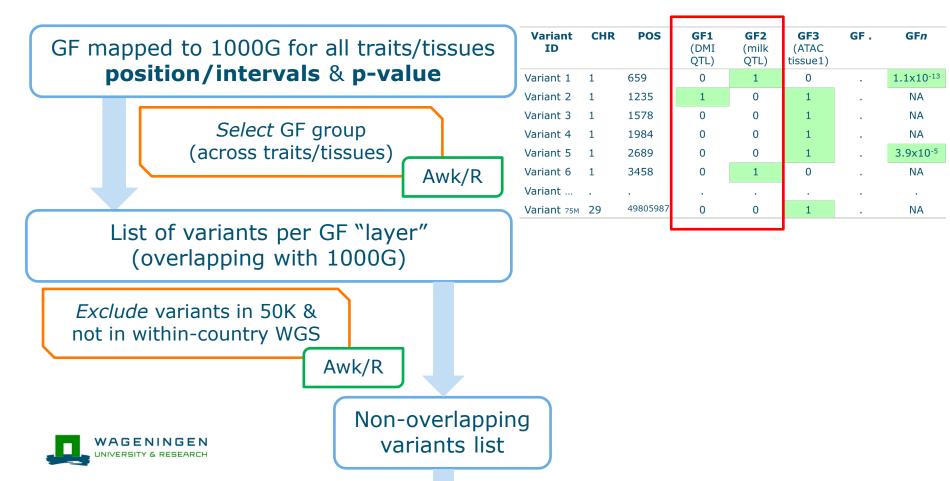
• 50k to imputed WGS (*Beagle*) \rightarrow prioritize variants based on **GF**

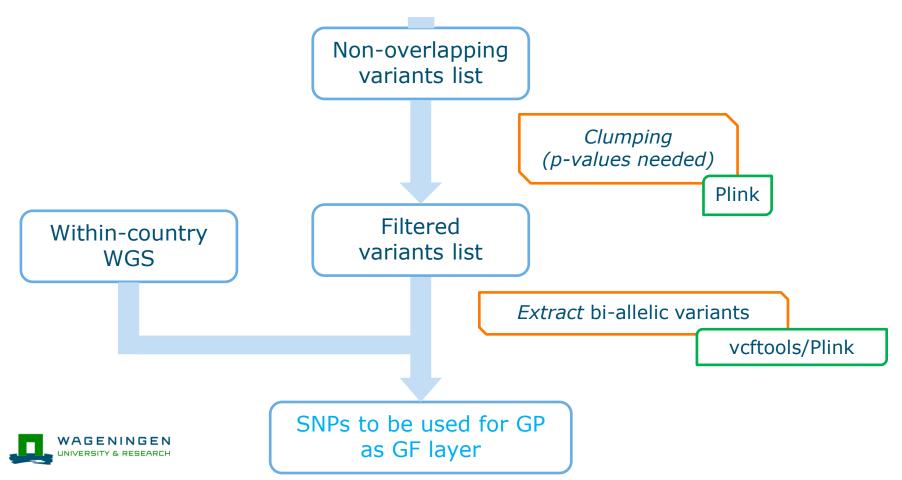


Genomic features available

GF	Work Package
Meta-GWAS QTL (QTL)	WP4
Expression QTL (eQTL)	WP4
Metabolic QTL (mQTL)	WP4
ATAC-seq	WP2
ChIP-seq	WP2
Mobile Genetic Elements (MGE)	WP2

- Different tissues/samples \rightarrow Different formats for different GF
- Many files (~1,000) with large size \rightarrow how to quickly access/query GF information?





Variant ID	CHR	POS	GF1 (DMI QTL)	GF2 (liver eQTL)	GF3 (ATAC tissue1)	GF.	GF <i>n</i>
Variant 1	1	659	0	1	0		1.1x10 ⁻¹³
Variant 2	1	1235	1	0	1		NA
Variant 3	1	1578	0	0	1		NA
Variant 4	1	1984	0	0	1		NA
Variant 5	1	2689	0	0	1		3.9x10 ⁻⁵
Variant 6	1	3458	0	1	0		NA
Variant							
Variant 75M	29	49805987	0	0	1		NA
 Position/Intervals as (0/1 coding) 							

For each GF, store information on:

- *p*-value (if available) as (NA/value)

Genomic features used

GF	Traits / Tissues				
QTL	Meat quality, Growth, Milk production, Morphology, Fertility, Health, Feed efficiency, Methane				
	(Gene, Transcript, Splice)				
eQTL	Jejunum, Blood, Liver, Mammary Gland, Adipose, Muscle, Milk, Rumen				
	Lymph node VCCON lleum Lymph node VCCON lleum Colon Cerebellum Colon Cerebellum Cerebellum Cerebellum Cerebellum Cerebellum Cerebellum Cerebellum Cerebellum Skeletal muscle Subcutaneos fat Thyroid gland Mammary gland Testis				
ATAC-seq From GC Moreira et al., EAAP #939	Pancreas Liver Heart Ratenal gland cortex Kidney Spleen Vorry Uterus Rumen Lung				

Scenarios

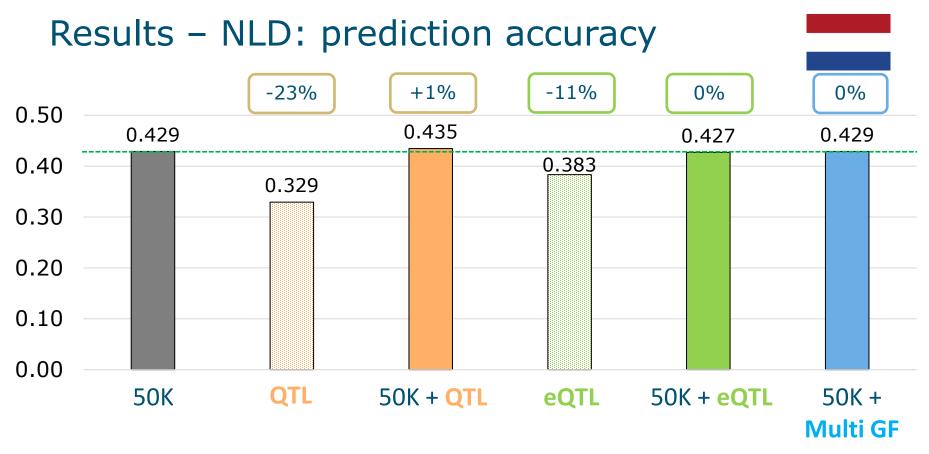
Scenario	NLD	CAN 🌞
50K	48K	46K
50K + QTL	48K + 5,416	46K + 4,222
50K + eQTL	48K + 12,401	46K + 11,884
50K + (QTL, eQTL, ATAC)	48K + 17,796	46K + 16,089

• NextGP.jl¹

- Base 50K: SNPBLUP (BayesC₀) common variance across SNPs
- GF as additional layer \rightarrow SNPBLUP or Bayesian (2 mixture model no advantage)
- ATAC-seq consensus peaks (across all samples and tissues)*
- QTL, eQTL, ATAC \rightarrow Multi-GF \rightarrow overlapping GF

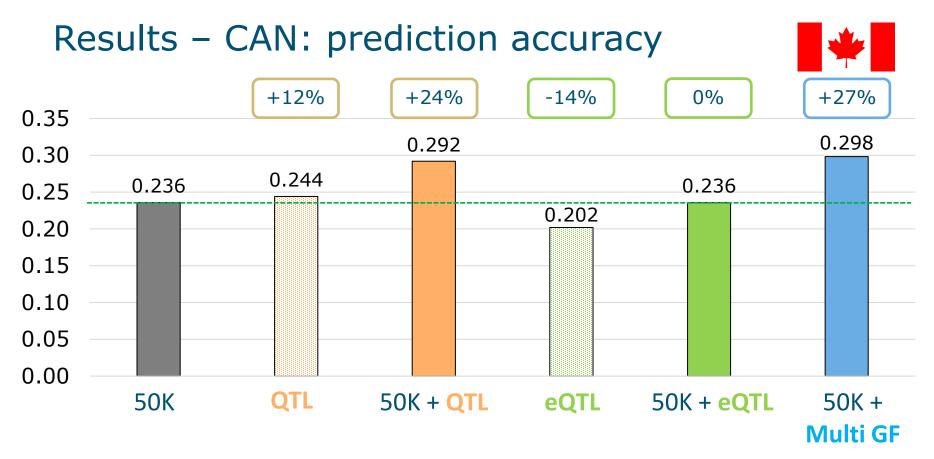
VERSITY & RESEARCH ¹ <u>https://github.com/datasciencetoolkit/NextGP.jl</u>

*GC Moreira et al. 2023, EAAP


Overlapping genomic features

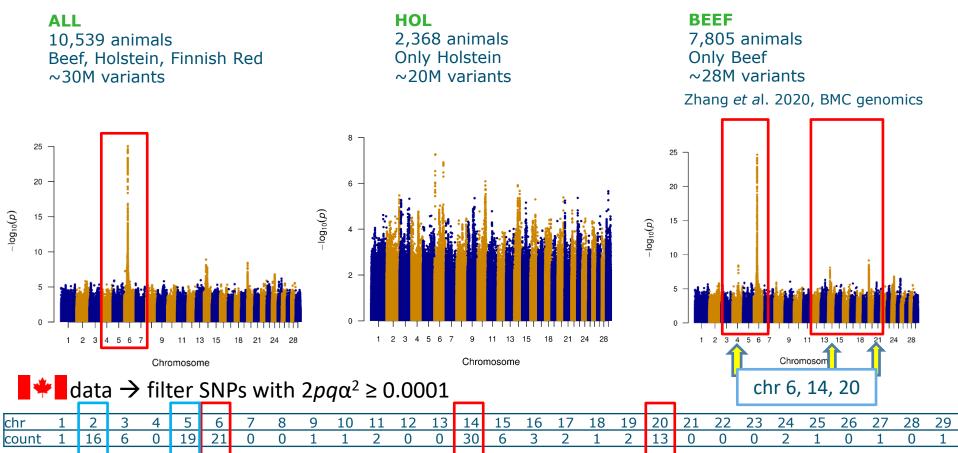
Multi-GF ATAC Variants eQTL % **QTL** 1 1 \mathbf{O} 5 $\mathbf{0}$ 16 0 2,576 0 0 14 2,819 16 1 \mathbf{O} 5,051 28 0 1 $\mathbf{0}$ 7,329 41 $\mathbf{0}$ 17,796 100

BayesRC π (2 classes)

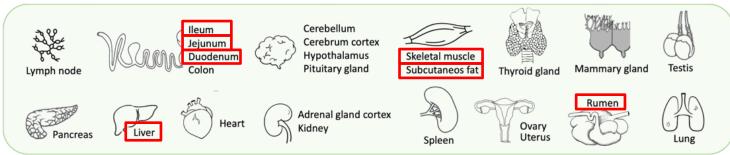

Mollandin et al. 2022, BMC bioinformatics

• SE: ±0.03

No impact on dispersion (slope = 0.68 for 50k)

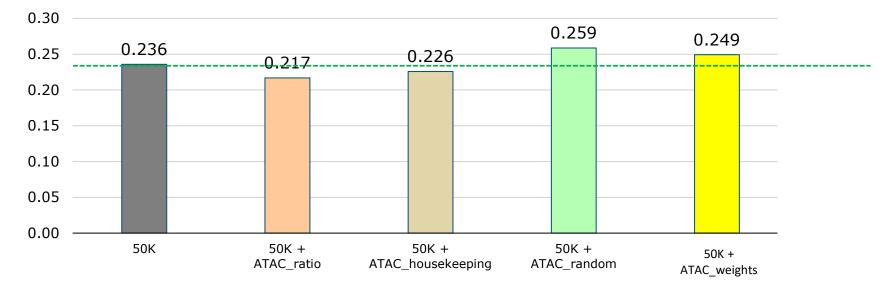

• SE between ± 0.02 and ± 0.03

Similar pattern for dispersion (slope = 0.56 for 50k)


Manhattan plots meta-GWAS QTL for DMI

Gredler-Grandl et al. 2022, WCGALP

Use of narrow-peaks ATAC-seq



Different scenarios implemented using ATAC-seq narrow peaks for selected tissues

Scenario	Description	SNPs
ATAC_ratio	Top 10K variants from narrow peaks ratio (overlaps selected/ total tissues) + adjacent SNPs (200Kb)	210,919 → 19,523 (LD pruning)
ATAC_housekeep	Top 10K variants that overlaps across all narrow peaks ("housekeeping" set)	10,000
ATAC_random	Random selection Segment size: 150K / 200K / 250K Percentile cutoff threshold: top 10% / top 20% / top 30%	3,318
ATAC_weights	Higher weights on less frequent variants (e.g., QTLs) Segment size: 150K / 200K / 250K Percentile cutoff threshold: top 10% / top 20% / top 30%	390

Results (SNPBLUP models)

- Randomly selected variants gave same or higher accuracy (# SNPs)
- ATAC-seq modelled as additional SNP layer → Next: model narrow-peaks as different layers into NextGP
- Narrow-peaks not as useful as consensus-peaks information?
- How did you model/consider ATAC-seq?

- Model as detailed annotation layers trait/tissues-specific into NextGP
- BayesLV using *p*-values (test on implemented scenarios)
- Across-breed (using SNP effects) and multi-breed (combined reference population) GP for NLD-CAN

Conclusions

Inclusion of Genomic Features could increase genomic prediction

accuracies for Dry Matter Intake

- Results may vary across breeds/datasets
- Complex traits: find causal variants
- No advantage using Bayesian (2 mixture model) over SNPBLUP for GF
- ATAC-seq narrow-peaks showed low added value

Acknowledgments

Dr Emre Karaman and Dr Luc Janss

Dr Gabriel Costa M Moreira

The BovReg consortium

This work is carried out within the BovReg project, which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 815668.

renzo.bonifazi@wur.nl

Thanks for your attention

Disclaimer: Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

