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Multienvironment genomic prediction was applied to tetraploid potato using 147 potato varieties, tested for 2 years, in 3 locations rep-
resentative of 3 distinct regions in Europe. Different prediction scenarios were investigated to help breeders predict genotypic perform-
ance in the regions from one year to the next, for genotypes that were tested this year (scenario 1), as well as new genotypes (scenario 3). 
In scenario 2, we predicted new genotypes for any one of the 6 trials, using all the information that is available. The choice of prediction 
model required assessment of the variance–covariance matrix in a mixed model that takes into account heterogeneity of genetic var-
iances and correlations. This was done for each analyzed trait (tuber weight, tuber length, and dry matter) where examples of both limited 
and higher degrees of heterogeneity was observed. This explains why dry matter did not need complex multienvironment modeling to 
combine environments and increase prediction ability, while prediction in tuber weight, improved only when models were flexible en-
ough to capture the heterogeneous variances and covariances between environments. We also found that the prediction abilities in a 
target trial condition decreased, if trials with a low genetic correlation to the target were included when training the model. Genomic 
prediction in tetraploid potato can work once there is clarity about the prediction scenario, a suitable training set is created, and a multi-
environment prediction model is chosen based on the patterns of G×E indicated by the genetic variances and covariances. 
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Introduction 
Biologically speaking, the traits of an organism are a result of the 
organism’s genetic composition, external environmental stimuli 
and the interactions between these 2 over time. For prediction 
purposes, it is important to identify genotype by environment in-
teractions (G×E), i.e. differences between the genotypic effects of a 
certain trait that depend on the environmental conditions 
(Malosetti et al. 2016; van Eeuwijk FA et al. 2016). Understanding 
G×E is especially important in plant breeding, as breeders may 
be interested in developing varieties for a target population of en-
vironments (Chenu 2015; Bustos-Korts et al. 2021), or in later 
stages of the breeding program, identifying those varieties which 
are stable across different sets of environmental conditions. 

Cultivated potato (Solanum tuberosum L.), is one of the most con-
sumed food crops and is grown in many environments across the 
world (Birch et al. 2012; Zaheer and Akhtar 2016). Studies analyz-
ing the stability/adaptability of potato have been conducted previ-
ously (De Jong et al. 1981; Baril et al. 1995; Cotes et al. 2002; Affleck 
et al. 2008); however, these studies did not incorporate the wealth 
of genotypic information available today. 

Current genotyping technology allows for significant coverage 
of the genome, resulting in thousands (up to millions) of markers. 
Coupled with the advancement of computing power and statistic-
al methodologies, marker-assisted selection has become more 
common in plant breeding programs. Genomic prediction (GP) is 

a type of marker-assisted selection, where known phenotypes 
are regressed against marker profiles to estimate marker effects 
and/or breeding values (Bernardo 1996; Whittaker et al. 2000;  
Meuwissen et al. 2001), which are then used to predict the pheno-
types of new material. Even though GP was developed over 2 dec-
ades ago, it has only been recently applied to potato (Slater et al. 
2016; Sverrisdóttir et al. 2017; Enciso-Rodriguez et al. 2018;  
Endelman et al. 2018; Stich and Van Inghelandt 2018; Wilson 
et al. 2021; Ortiz et al. 2022) and so far only 1 paper has included 
G×E (Ortiz et al. 2022), and 2 others have investigated the inter-
action between genotype and year (Enciso-Rodriguez et al. 2018;  
Endelman et al. 2018). The analysis of Ortiz et al. (2022) showed 
that for tuber weight in particular the inclusion of G×E in multien-
vironment prediction models resulted in more accurate predic-
tions than models that did not include the G×E interaction. In 
that study, varieties were put in classes depending on their tuber 
size and the increase in prediction ability gained from combining 
environments, varied depending on the class for which predic-
tions were being made. In this study, we will also analyze tuber 
weight, but include more traits and multienvironment GP models 
to uncover any trait-specific considerations that should be made 
when performing multienvironment prediction. 

The extent to which G×E interaction can be beneficial to GP of a 
given trait is largely dependent on the genetic correlation between 
environments (van Eeuwijk F et al. 2008; Malosetti et al. 2013). In 
scenarios where there is a high genotypic correlation between 
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environments, meaning that varieties perform similarly in each 
environment and G×E interactions are small, simply using a mod-
el without G×E and only a genotypic main effect will increase pre-
diction ability. In situations with substantially low correlations 
between environments, the combining of information will not 
be beneficial, regardless of the model. When there is moderate 
correlation between environments, we can benefit in combining 
information across them by adding a G×E term to the genotype 
main-effect multienvironment model (Burgueño et al. 2012;  
Windhausen et al. 2012). 

There are various scenarios where multienvironment GP is use-
ful, and in this study, we consider 3 specific scenarios. Scenario 1: 
breeders want to predict for a known region in an upcoming year, 
the performance of current genotypes (Malosetti et al. 2016;  
Enciso-Rodriguez et al. 2018; Endelman et al. 2018). Scenario 2: pre-
dicting the performance of new genotypes for a particular set of 
conditions given all the information collected so far on tested gen-
otypes (Burgueño et al. 2012; Windhausen et al. 2012). Scenario 3: a 
combination of scenarios 1 and 2, where the performance of new 
genotypes for a region in the next year is predicted, using all cur-
rent training information (Malosetti et al. 2016; Enciso-Rodriguez 
et al. 2018; Endelman et al. 2018). How well this can be done largely 
depends on how closely environments are related, which can be 
inferred by the degree of similarity between the ranking of geno-
types in the different environments. The potential for predicting 
the new untested genotypes depends on how related they are to 
tested genotypes. 

Strategies for modeling G×E interactions have been studied 
and reviewed considerably (van Eeuwijk F et al. 2008; van 
Eeuwijk FA et al. 2016). The choice of model largely depends on 
the genetic architecture of the trait, the depth of environmental 
information available and the number of parameters to be esti-
mated. These parametrization considerations must be made 
when incorporating G×E interactions into a GP mixed model, as 
the G×E covariance matrix can become quite large and complex. 
Traits that exhibit simple G×E patterns can be modeled with 
covariance structures that assume homogeneous relationships 
between environments and require less parameters to be esti-
mated. On the other hand, for more complex G×E interactions, 
we use covariance structures that capture a specific relation be-
tween environments, and therefore more parameters need to be 
estimated (Burgueño et al. 2012; Malosetti et al. 2013). Model para-
meters can be estimated via maximum likelihood or Bayesian re-
sampling. Bayesian GP models have grown in popularity and its 
extension to G×E has also seen increased interest (Cuevas et al. 
2017; Montesinos-Lopez et al. 2018); however, maximum likeli-
hood is far more time efficient (Ferrão et al. 2019), and the evalu-
ation of different model parametrizations can be done by 
comparing log-likelihoods. 

Using high-density molecular markers, and phenotyping infor-
mation collected from 3 regions across 2 years, we will perform 
multienvironment GP to tetraploid potato across the aforemen-
tioned breeding scenarios. For 3 traits (dry matter, tuber weight, 
and tuber length) and 6 trials, the magnitude of G×E will be quan-
tified and used to assess the prediction abilities of various multi-
environment models and G×E covariance structures. The aim is 
to get an impression of G×E in tetraploid potato within and across 
Europe, while investigating the suitability of the different model-
ing techniques for the different breeding scenarios and G×E pat-
terns. In addition, we will briefly look at how multienvironment 
prediction is affected by the relatedness of environments included 
in the model, by investigating the genetic correlations between 
environments. 

Materials and methods 
Phenotype and genotype information 
This study looked at a diversity panel of 147 tetraploid potato gen-
otypes that mainly consisted of commercial varieties; however, 
recent Dutch breeding material was included. Genotypes were 
classified into 7 distinct market classes: ancient, chip processing, 
French fry processing, fresh consumption, starch, cooking, starch 
and other. The population structure of this panel was explored in 
a recent study, and showed very little separation between subpo-
pulations (Wilson et al. 2021). Wright FST statistics between market 
classes were close to zero and in an analysis of molecular vari-
ance, population classifications contributed only 6.7% of the total 
molecular variation (Wilson et al. 2021). 

In 2017 and 2018, field trials were conducted in Głubczyce in 
Poland (N 50◦13′29.2′′, E 17◦48′40.1′′), Ecija in Spain 
(N 37◦32′51.1′′, W 5◦12′30.2′′), and Emmeloord The Netherlands 
(N 52◦40′06.2′′, E 5◦42′00.2′′). At all locations, locally optimized 
management practices were followed concerning planting date, 
fertilization, irrigation, and pest control. Plots consisted of 8 
plants with 2 ridges and 4 plants per ridge, spaced in such a way 
that there was 0.75 m between ridges and 0.33 m between plants 
in Spain and the Netherlands. In Poland, there was 0.9 m separ-
ation between ridges and 0.29 m between plants. In each trial, 
which was a location by year combination, a row–column resolv-
able design was implemented with 2 complete blocks. Latinization 
over rows and columns was used to disperse varieties across the 
field. Randomization was performed using the package DiGGer 
(Coombes 2009) executed with the software R (R Core Team 2019). 

In this study, we will focus on 3 traits: tuber weight per plot 
(kilograms), mean tuber length (millimetres), and dry matter con-
tent (percentage). For each trial, a mixed model that corrected for 
block effects and random row and column effects was used to ex-
tract the adjusted phenotypic means. The resulting best linear un-
biased estimates (BLUEs) were used as the dependent variable for 
GP models. Using this same mixed model, with all terms remain-
ing the same except genotype effects are changed from fixed to 
random, genetic variances were extracted and used to calculate 
trait heritability for each trial. The genetic architectures of the 
traits in this diversity panel were explored separately in a previous 
study, and the results showed that additive markers were able to 
explain 13, 42, and 67 of the phenotypic variance in tuber weight, 
tuber length, and dry matter, respectively (Wilson et al. 2021). 

Genotyping by sequencing, aligning with the reference gen-
ome, and filtering resulted in a marker matrix of 39,000 single nu-
cleotide polymorphism markers, across the 147 individuals. For 
more details on the genotyping process, please see Wilson et al. 
(2021). Each element of the marker matrix gives the allele dosage, 
i.e. the discrete count of alternative alleles (0, 1, 2, 3, 4). When 
these counts are entered in a design or relationship matrix and 
a single parameter is estimated to quantify the dependence of 
the phenotype on the allele count, then this implies that marker 
effects are additive. 

Estimating G×E and statistical models 
For GP, we use a statistical mixed model with random genomic ef-
fects. To extend this to a multienvironmental model, an environ-
mental main effect is added, and can be further extended by 
including G×E interaction effects: random genetic effects specific 
to each environment. This requires a covariance structure with 
genetic correlations for all environment combinations, estimated 
via maximum likelihood. Simplified genetic correlation structures 
can be used to restrict the number of parameters to be estimated,  
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however may oversimplify the G×E pattern of a given trait. Traits 
with little G×E do not require complex models for the genetic cor-
relations between environments, whereas traits that have com-
plex G×E patterns may need more flexibility. Using restricted 
maximum likelihood via ASREML (Butler 2009), various models 
were compared for all traits, and evaluated according to predic-
tion ability and log-likelihood. 

It should be noted that in the description of the models, we use 
the word environment, however depending on the prediction 
scenario which will be discussed later, the environments can refer 
to the trials, or can refer the 3 regions. 

• Single environment G-BLUP model (SE) 

yi = μ + gi + ϵi, (1) 

where yi is the observation of genotype i, μ is the overall mean 
for the environment, gi is the random effect of genotype i, 

with distribution: gi ∼ N(0, Gσ2
g). G is the additive genomic re-

lationship matrix (from allele dosages) based on the work of  
VanRaden (2008) and extended by Ashraf et al. (2016). The 

term ϵi, with distribution ϵi ∼ N(0, σ2
ϵ ), and variance σ2

ϵ , is a 
random residual that contains genetic effects that are not 
modeled by the gi term as well as nongenetic effects, like 
the plot error. This model is used to make predictions within 
a single environment. 

• Multienvironment G-BLUP models 

yij = μj + gij + ϵij, (2) 

where yij is the BLUE of genotype i in environment j, μj is the 

mean of environment j. The residual for genotype i in envir-
onment j is denoted by ϵij, therefore modeling heterogeneous 

residuals across environments with a multivariate normal 
distribution ϵij ∼ MVR(0, R), where R is a diagonal matrix of 

environment specific residual variances (σ2
j ). The term gij is 

the random effect of genotype i within environment j. As a re-
sult gij also has a multivariate normal distribution, such that 

gij ∼ MVR(0, Σ), where Σ = G ⊗ ΣE. The term G represents the 

genomic relationship matrix as seen in the previous single 
environment model, and the term ΣE represents the genetic 
covariance matrix between environments. Four parametri-
zations of this matrix were compared in this study.  

1) Main effects (ME): The covariance matrix between environ-
ments is simply a matrix of all 1’s. If, for example, we were 
to consider 3 environments, our covariance matrix will 
look like: 

ΣE =
1 1 1
1 1 1
1 1 1

⎡

⎣

⎤

⎦.

As previously mentioned, variance of genotype effects for 
the multienvironment model is calculated as Σ = G ⊗ ΣE. 
Therefore, for the main environmental effects model, the 

genetic variance (σ2
g) is always multiplied by 1, and therefore 

remains the same regardless of environment. This homoge-
neous variance across environments means there is no G×E 
interaction. Additionally, the correlation between environ-
ments is 1, therefore no G×E. The only term that 

differentiates environments is the main environmental 
effect (μj).  

2) Compound symmetry (CS): In compound symmetry, each 
environment has the same variance, and the covariances 
between pairs of environments are also identical. This is 
the simplest G×E parametrization in this study, and as-
sumes a uniform relationship between and across environ-
ments. 

ΣE =
σ2

1 σ2
2 σ2

2
σ2

2 σ2
1 σ2

2
σ2

2 σ2
2 σ2

1

⎡

⎣

⎤

⎦.

The parameter σ2
1 is the genetic main-effect variance plus 

the variance for G×E and is homogeneous across environ-
ments as in the previous model (ME). However, this model 

includes the term, σ2
2 which is the covariance between envir-

onments. The correlation between environments can be cal-

culated as σ
2
2

σ2
1
.  

3) Uniform heterogeneity (UN.het): The full name of this model 
is “uniform correlation—heterogeneous variances” and as 
the name indicates, each environment has its own unique 
variance, so the G×E expresses itself as heterogeneity of vari-
ance. Like the compound symmetry model, the correlation 
between environments is constant; however, the covar-
iances between environments are not. 

ΣE =
σ2

1 ρσ1σ2 ρσ1σ3

ρσ1σ2 σ2
2 ρσ2σ3

ρσ1σ3 ρσ2σ3 σ2
3

⎡

⎣

⎤

⎦.

The parameter σ2
1 is the genetic main-effect variance plus 

the variance for G×E in environment 1. The covariance be-
tween environments 1 and 2 is given by ρσ1σ2 and is there-
fore proportional to the individual variances, multiplied by 
the constant correlation (ρ). 

4) Unstructured (US): Genetic variances are unique for envir-
onments, and genetic correlations are unique for pairs of en-
vironments. This is the most complex G×E model used in 
this study, requiring the highest number of parameters to 
be estimated. 

ΣE =
σ2

1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3

⎡

⎣

⎤

⎦.

The genetic correlations between environments were esti-
mated using this parametrization. For example, the genetic 
correlation between environments 1 and 2 are calculated as 

ρ12 = σ12
σ1σ2

, where σ2
1 and σ2

2 represent the genetic main-effect 

variance plus the variance for G×E in environments 1 and 
2, respectively, and σ12 is the covariance between these 
environments. 

The unstructured model contains genetic correlations which al-
low for the inference of G×E patterns for each trait; high genetic 
correlations between environments mean lower G×E interaction, 
and vice versa. A genotype plus genotype by environment (GGE) 
biplot was used to quickly visually inspect the variance–covari-
ance structure of the observations across environments (yij), in 
the hope to see where the heterogeneity of variance and correl-
ation is located (Bernal et al. 2013). For each trait, the length of  
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each arrow represents the genetic variance within an environ-
ment, while the cosine of the angle between arrows represents 
the genetic correlation between environments (Yan et al. 2000). 

Prediction scenarios 
The performance of the aforementioned models were evaluated 
in various applications or scenarios where multienvironment pre-
dictions may be useful. 

Scenario 1: Predicting tested genotypes for future years 
Otherwise known as forecasting, we want to predict future per-
formance of tested genotypes in a particular region, using past 
phenotypic information from that region. As it pertains to this 
study, we will try to predict the genotypic performance of culti-
vars at a region in 2018, using the phenotypic information of 
2017 and vice versa. 

Using 105 individuals in the training set, we wish to predict the 
performance of cultivars in Netherlands 2018 (for example) using 
data from Netherlands 2017 only vs combining the data from all 
2017 trials. Prediction ability is the correlation between the pre-
dicted genotypic effects and their observed phenotypic values, 
averaged over 100 repetitions, i.e. 100 divisions of training and 
test set. Figure 1 illustrates the case where predictions are to be 
made in Netherlands 2018 from all 2017 data. This was performed 
in all three 2018 regions, and repeated in the reverse direction 
where predictions are made in all 2017 regions, using the 2018 
data to train the model. 

Scenario 2: Predicting untested genotypes in known 
conditions 
In this scenario, we want to predict new genotypes from all infor-
mation available, for a particular set of conditions (a year within a 
region). For this study, we have 6 different trials or trial conditions 
(NL17, PL17, SP17, NL18, PL18, SP18). For each trial, 105 cultivars 
were chosen from each trial to train the model and predict the 

held out individuals, and repeated 100 times. Prediction ability is 
the correlation between the predicted genotypic effects and their 
observed phenotypic values, averaged over the 100 repetitions. In  
Fig. 2, we see an example where we make predictions of new 
genotypes in Netherlands 2018, with a model that combines infor-
mation over all 6 trials. As mentioned before, various multienvir-
onment models are compared, along with the single environment 
model. 

Scenario 3: Predicting untested genotypes for future years 
Like scenario 1, we wish to make predictions in a particular region, 
however these are for genotypes not included in the training set. 
This is a more ambitious application of multienvironment predic-
tion because for the genotypes to be predicted there is no previous 
information (unlike scenario 1), and limited information on the 
particular environmental conditions (unlike scenario 2). 

In this scenario, we want to predict the performance of untest-
ed genotypes in Netherlands 2018 using data from Netherlands 
2017 only vs combining the data from all 2017 trials as illustrated 
in Fig. 3. Prediction ability is the correlation between the predicted 
genotypic effects and their observed phenotypic values, averaged 
over 100 repetitions. Similar to scenario 1, this was performed in 
all three 2018 locations, and repeated in the reverse direction 
where predictions are made in all 2017 locations, using the 2018 
data to train the model. 

Results  

Trait heritability 
Broad-sense heritability was estimated during phenotypic ana-
lysis as the proportion of phenotypic variation that can be attrib-
uted to genetic variation (Table 1). 

The high heritabilities reported in Table 1 are a good indication 
that the phenotypic variation was mainly due to genotypic 

Fig. 1. Illustration of scenario 1 for predicting in Netherlands 2018 (NL.2018) using 2017 data. The gray regions represent the training set and the green 
region represents the prediction set.   
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variation and not field trends. Dry matter and tuber length had on 
average much higher heritabilities than tuber weight. This was 
not surprising as tuber weight is known to be a complex trait. 
The field trial in Spain of 2017 had the lowest heritabilities for tu-
ber weight and tuber length. All other trials had on average, simi-
lar estimates of heritability. For more information on these traits, 
see Wilson et al. (2021). 

Correlation between environments 
Two components that indicate the presence of G×E is a lack of per-
fect genetic correlation as well as heterogeneity of genetic 

Fig. 2. Illustration of scenario 2 for predicting in Netherlands 2018 (NL.18). The gray regions represent the training set and the green region represents the 
predicted set. This was repeated with the predicted set in each of the other 5 trials. The predicted individuals are excluded from the training set making 
these untested genotypes.  

Fig. 3. Illustration of scenario 3 for predicting in Netherlands 2018 (NL.2018) using 2017 data. The gray regions represent the training set and the green 
region represents the prediction set.  

Table 1. Heritability estimates of each trait at each field trial.  

Tuber weight Tuber length Dry matter  

NL 2017 0.90 0.94 0.83 
PL 2017 0.82 0.94 0.91 
SP 2017 0.60 0.85 0.91 
NL 2018 0.84 0.93 0.93 
PL 2018 0.78 0.95 0.98 
SP 2018 0.85 0.94 0.96   
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variance. Estimates of genetic correlations were extracted from 
the unstructured parametrization of the G×E model (equation 
(2)). In Table 2, the genetic correlations are shown for 2 traits, tu-
ber weight, and tuber length. 

From Table 2, we can see that tuber weight shows moderate to 
low genetic correlation, that vary noticeably across environmental 
pairs. This is evidence of G×E interactions, as genotype rankings 
are different across different environments. Tuber length had high-
er genetic correlations between environments than tuber weight, 
thus indicating less G×E interaction than tuber weight. The genetic 
correlations for dry matter (not shown) were quite high, ranging 
from 0.783 to 0.972 with an average of 0.877 indicating little to no 
presence of G×E interaction. Across the 3 traits, we see varying de-
grees of G×E, from quite low in dry matter to more substantial in tu-
ber weight. The extent of G×E should also be considered in modeling 
strategies, as simpler G×E patterns can be captured by simpler mod-
els (compound symmetry) and more complex G×E patterns will re-
quire more complex models (unstructured). Looking at genetic 
correlations we can see that some environments are more similar 
for certain traits and this can be visualized with the GGE plot (Fig. 4). 

The GGE plot gives an impression of the sources of environ-
mental variation between trials: region or year. The 2017 trials 
seem to be quite similar across tuber weight and length suggesting 
that the difference in the year of planting was more influential 
than the difference in location. Dry matter is an exception where 
the locations of the trials are consistently more closely related 
than the years; this also occurs for tuber length in Spain. Tuber 
weight shows the most G×E, which is emphasized by the separ-
ation of the Poland 2018 trial, but not surprising when looking at 
the correlations in Table 2. 

Model comparison 
Model comparison was done using scenario 2, where all 6 trials 
were used in the training set. Due to the variations in G×E patterns 
across the 3 traits, we expect that the best models for 
multienvironment prediction will vary from trait to trait. Using 
log-likelihood statistics, we can get a clearer picture of how well sui-
ted the model is for the data; a higher log-likelihood means a better 
fit. The log-likelihoods for the different multienvironment models 
and traits can be seen in Fig. 5. 

For all traits, the inclusion of G×E interaction term fits the data 
better as seen by the higher log-likelihood scores in Fig. 5. The 
relative differences do vary across traits; the increase in likelihood 
when going from an ME model to a G×E model is less for dry mat-
ter than the other 2 traits. This indicates that modeling G×E is of 
greater importance in tuber length and tuber weight. 

Based on Fig. 5, the more complex parametrizations of the G×E 
matrix, were better suited for all traits, even though the differ-
ences in likelihood between G×E models are small. This differ-
ence, however, is not consistent across traits. For tuber length 
and tuber weight, there is a noticeable difference between the 
compound symmetry model and the other 2 more complex mod-
els, which is not present in dry matter. 

As more parameters are estimated, an increase in likelihood is 
expected; however, to test if the increase is significant a likelihood 
ratio test was performed. Across all traits, increasing model com-
plexity sequentially gave significant improvements in explaining 
our data, as all P-values were below the common threshold of 0.05. 

Scenario 1: Predicting tested genotypes for future years 
Using the 2017 and 2018 data, predictions were made from one 
year to the next in a particular region (Netherlands, Spain, or 
Portugal). The advantage of using multiple regions or just the re-
gion in question was assessed and the results can be seen in Fig. 6. 

Following the order of heritabilities, dry matter was predicted 
the most accurate, followed by tuber length and finally tuber 
weight. The direction of prediction, meaning from 2017 to 2018 
or vice versa, had no noticeable effect on prediction ability. Dry 
matter was predicted equally well in every region, while tuber 
weight was predicted substantially better in the Netherlands in 
comparison to the other 2 regions. As a result, prediction abilities 
for tuber weight in Spain and Poland benefited from the inclusion 
of the Netherlands’ trials. The same can be seen in tuber length, 
where the Dutch trials benefited from the information available 

Fig. 4. GGE plots for 3 traits across 6 environments, showing the extent of distinction between environments and therefore the amount of G×E potential.  

Table 2. Genetic correlation between the 6 trials: above the 
diagonal are the correlations for tuber weight, while below the 
diagonals are the genetic correlations for tuber length. 

Tuber weight  

NL.17 0.624 0.653 0.697 0.314 0.547 
0.830 PL.17 0.799 0.685 0.422 0.637 
0.708 0.873 SP.17 0.600 0.315 0.463 
0.639 0.793 0.699 NL.18 0.302 0.695 
0.643 0.835 0.803 0.872 PL.18 0.244 
0.699 0.752 0.816 0.721 0.658 SP.18 

Tuber length 

Characters in bold refer to the location and year: NL, PL, SP are Netherlands, 
Poland and Spain. NL.17 means Netherlands 2017.   
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from the other regions, where prediction abilities were higher for 
this trait. 

Overall, multienvironment models that combined information 
across regions gave higher prediction abilities than predicting 
with a single environment model with data from just the target re-
gion. This was consistent across all regions and traits. Among the 
multienvironment models, the main genotypic effects model gave 
the most noticeable improvement in prediction ability for almost 
all trials. Modeling G×E did not improve prediction ability except 
for predicting tuber length in Poland and Spain. Focusing on the 
G×E models only, we see the patterns that were foreseen from 
the genetic correlations: tuber length and tuber weight have 
more complex G×E and therefore unstructured and uniform het-
erogeneity models did better than the simpler compound sym-
metry model in some trials. For dry matter, there was no 
difference among the G×E models and the compound symmetry 
parametrization was sufficient. 

Scenario 2: Predicting untested genotypes in known 
conditions 
Treating all 6 trials as a separate environmental condition, we 
compared various models based on prediction ability. This com-
parison was done using scenario 2 (Fig. 2), where all environments 
are in the training set, and none of the genotypes to be predicted 
are used to train the model. The results can be seen in Fig. 7. 

The first impression of the results in Fig. 7 further confirm the 
expectations for G×E, that were based on the correlations seen in  
Table 2. Results for dry matter, which had high correlations, show 
that there is very little impact of including G×E for multienviron-
ment predictions, while tuber weight has improvements in predic-
tion ability when modeling G×E. In the 1 trial where G×E improved 
prediction ability for dry matter (NL.17), compound symmetry 
was sufficient to capture the interaction effects. With such a 
high heritability and high genetic correlations between trials, pre-
dicting dry matter for new genotypes in known conditions can just 
as accurately be done by a single environment model. 

The opposite can be said for tuber weight, where combining in-
formation across multiple trials always led to better prediction 
ability. With the exception of 1 trial (NL.17), those multienviron-
ment models that include a term for G×E interaction gave better 
predictions. Among the remaining 5 trials, G×E models with 

more complex parametrizations (uniform heterogeneity and un-
structured) were superior to the more simpler compound sym-
metry model. 

Tuber length showed less of a clear trend; for most cases single 
environment prediction was just as good as or even more accurate 
than multienvironment models. Those multienvironment models 
that did improve prediction ability did so with only an ME model 
and no G×E interaction. Comparing prediction abilities of only 
the G×E models for this trait, we do not notice any pattern, as 
for some trials the simpler compound symmetry model is more ef-
fective, while for others the unstructured model is better; how-
ever, this comparison is not meaningful as the highest 
prediction abilities were already obtained without including G×E 
interactions. 

Tuber weight (scenario 2) 
Comparing the genetic correlations and heritabilities for tuber 
weight, we notice that some trials were quite different. Poland 
2018 showed low genetic correlation with the other trials 
(Table 2 and Fig. 4), while Spain 2017 had a low heritability in com-
parison to the other trials (Table 1). These trials may be a potential 
source of noise to the multienvironment prediction model. 
Therefore, to test the impact of these trials, we looked at the pre-
diction abilities using all trials, and compared it to the prediction 
abilities after removing Poland 2018 only and Spain 2017 only 
(Table 3). 

For all models and environments, using all 6 environments 
gave higher prediction abilities than models that used 5 environ-
ments. For the ME model, it is clear that the information from 
these environments were useful and increased prediction ability 
but for the G×E models these differences were mostly negligible. 
Similarly, removing both these environments together did not im-
prove prediction ability (results not shown). 

To reverse perspectives, we look at prediction in Poland 2018 
and how it may be affected by trials used in the prediction model. 
Referring to the estimated genetic correlations in Table 2 and the 
GGE biplot in Fig. 4, the 2018 trials in Netherlands and Spain are 
quite distant from the Poland trial of that year. Recall that in scen-
ario 2 we are predicting new genotypes in 1 particular trial, using a 
model trained by the information from all 6 trials. For predicting 
tuber weight in the Poland 2018 trial, there are 2 trials that both 

Fig. 5. Comparison of model fit under scenario 2, using log-likelihood statistics. Traits analyzed: tuber weight (TW), tuber length (TL), and dry matter 
(DM). Models compared: main effects (ME), compound symmetry (CS), uniform Heterogeneity (UN.HET), unstructured (US).   
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have a low genetic correlation with Poland 2018. To have a closer 
look at how this impacts prediction ability, a similar comparison is 
done as seen previously, where predictions are made in Poland 
2018 using all trials vs predictions made after both Spain and 
Netherlands 2018 are removed (Fig. 8). 

Here, we see a different result from Table 3. The information 
added from Netherlands and Spain 2018 was not beneficial for 
making predictions in Poland 2018 and therefore prediction ability 
increased when these 2 environments were removed. This was 
clearest with the ME model. To a lesser degree, the models that in-
cluded G×E interactions also benefited from removing these 2 en-
vironments, except for the unstructured model. (While the other 2 
G×E models try to generalize the G×E patterns across environ-
ments, the unstructured model allows for unique correlations be-
tween all environments, and therefore was not affected when 
“noisy” environments are included.) 

Scenario 3: Predicting untested genotypes for future years 
In this scenario, we predicted the performance of new, untested 
genotypes from one year to the next in a particular region. With 
less information on genotype and environmental conditions avail-
able for combining, the impact of using multiple regions or just 
the location in question was compared (Fig. 9). 

Similar to scenario 1, the ordering of traits in terms of predic-
tion ability followed the ranking of their heritabilities. The direc-
tion of prediction did have an impact for tuber weight, as 

prediction abilities going from 2017 to 2018 were higher than pre-
diction abilities going from 2018 to 2017 in 2 of the 3 regions, while 
in Poland this trend reversed. As expected, prediction abilities 
were noticeably lower than those calculated for scenario 1, as 
there is no information on genotype performance for cultivars in 
the predicted set. 

From Fig. 9, we see that the combining of information across 
multiple regions did not always lead to more accurate prediction 
of new genotypes, when compared to predictions within a region. 
For tuber weight in Poland, and dry matter in the Netherlands, the 
single-region model gave prediction abilities better, or as good as 
the models that combined information from multiple regions. The 
only cases where multiregion prediction performed noticeably 
better than the single-region model were for tuber weight in 
Netherlands and Spain, and tuber length in Poland going from 
2017 to 2018, and Netherlands from 2018 to 2017. 

Listed above are the instances where combining the data across 
regions resulted in a substantial positive change, and these all oc-
curred when the main-genotypic effect model was utilized. 
However, there are a few cases where the main-genotypic effects 
model caused prediction abilities to fall below the single-region 
model; namely tuber weight in Poland, and predicting tuber 
length in 2017 from 2018 data in the Spanish region. Among the 
G×E models, we see the same trends as in the other scenarios: 
dry matter shows no difference between the G×E parametriza-
tions, while tuber length and tuber weight show evidence that 

Fig. 6. Results of scenario 1: Prediction abilities when predicting tested genotypes from one year to another. Regions are predicted from the same region in 
a different year (SE: single environment) or from all locations combined using multienvironment main effects model (ME), G×E compound symmetry (CS), 
G×E uniform heterogeneity (UN.HET), and G×E unstructured (US).   
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the more complex G×E parametrizations are better suited than 
the simpler compound symmetry model. 

The effectiveness of predicting from one year to a next depends 
largely on the trait and understanding the relationship between 
regions. This relation between trials (regions and years), can be 
seen from the GGE plot (Fig. 4). From the GGE plot, dry matter 
showed stronger genetic correlations between the same region 
of the trial than the same year of the trial; genetic correlation be-
tween the 2 Dutch trials (Spanish or Polish) were higher than the 
correlations from the same year. The prediction abilities for this 
trait show that the borrowing of information from multiple re-
gions only added noise to the model and often did not improve 
predictions from year to year within a single region. 

Discussion 
Including G×E in GP has been investigated in many crops includ-
ing maize (Windhausen et al. 2012; Malosetti et al. 2013), barley 
(Malosetti et al. 2016), ryegrass (Fois et al. 2021), and coffee 
(Ferrão et al. 2019), to name just a few. Due to its ploidy and hetero-
zygosity, G×E interactions in tetraploid potato has been theorized 
to be substantial (Jansky and Spooner 2018). In 1 recent study, 

modeling of G×E for GP has been shown to improve prediction 
ability of tuber weight (Ortiz et al. 2022). In the study by Ortiz 
et al., predictions were made on tested genotypes (genotypes in-
cluded in the training set as seen in scenario 1) and the different 
sites were all within 1 country in Europe. In this study, we con-
ducted trials in different countries in Europe and investigated 
the G×E patterns for other traits, different breeding scenarios, 
and how that may affect modeling strategies and the trials in-
cluded to train the model. Breeding programs that are in the later 
stages are interested in forecasting the future performance of ex-
isting material, in an effort to identify stable varieties. For this 
stage of breeding, the results of scenario 1 are more applicable. 
Scenario 2 is more applicable to breeding programs that are in 
the earlier stages and interested in testing new genotypes in 
known environments, in an effort to develop varieties well suited 
for a particular set of environmental conditions. 

Overall, the impact of G×E interactions on prediction ability 
was quite low. More G×E was expected as trials were conducted 
in 3 distinctly different regions of Europe; however, this was not 
the case. All trials were closely monitored and subject to precise 
field management, which reduced the amount of G×E. This is 
good news for breeders as they can better control and forecast 
the performance of known cultivars in target regions, with the 
use of consistent management practices. There were limitations 
to this study due to the number of cultivars and trials, which 
are small in comparison to other multienvironment GP studies 
of other crops. Also, to understand the physiological mechanisms 
of G×E in potato, different conditions should be intentionally cre-
ated, which was not the case in this study. Lastly, the population 
structure present in this diversity panel may not represent the 
population structure in breeding programs, and therefore affect 
the generalisability of the findings. 

Modeling G×E according to trait 
We have seen that multienvironment GP of potato can improve 
prediction ability, across different scenarios. In scenario 2, where 
we had 6 trials in the training set, we had a closer look at how the 
estimated variance–covariance matrix influences model param-
etrization choices. Out of all the traits analyzed, only tuber weight 
showed evidence of significant G×E, which corresponds with the 
findings of Ortiz et al. (2022). Tuber length and dry matter showed 

Fig. 7. Scenario 2: Prediction abilities for across all 6 trials with various models: single environment (SE), main effects (ME), compound symmetry (CS), 
uniform heterogeneity (UN.HET), unstructured (US).  

Table 3. Prediction abilities in scenario 2 for tuber weight when 
using all trials, removing Poland 2018 only, and removing Spain 
2017 only, for all multienvironment models and traits. 

Models Env. used Predicted environments   

NL.17 NL.18 PL.17 PL.18 SP.17 SP.18   

All 0.445 0.306 0.511 0.220 0.496 0.440 
ME No PL.18 0.422 0.281 0.480 — 0.460 0.434  

No SP.17 0.430 0.295 0.482 0.195 — 0.434  
All 0.374 0.341 0.582 0.215 0.567 0.473 

CS No PL.18 0.372 0.337 0.580 — 0.560 0.473  
No SP.17 0.370 0.340 0.579 0.207 — 0.471  

All 0.373 0.345 0.583 0.229 0.577 0.476 
UN.HET No PL.18 0.371 0.339 0.578 — 0.564 0.476  

No SP.17 0.370 0.345 0.578 0.224 — 0.475  
All 0.364 0.330 0.589 0.239 0.565 0.469 

US No PL.18 0.359 0.332 0.585 — 0.559 0.469  
No SP.17 0.364 0.331 0.575 0.241 — 0.472   
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Fig. 8. Prediction abilities in scenario 2 for Poland 2018 using all 6 trials vs prediction abilities when Spain and Netherlands 2018 are removed. Models 
compared: main effects (ME), compound symmetry (CS), uniform Heterogeneity (UN.HET), and unstructured (US).  

Fig. 9. Results from scenario 3: Prediction abilities when predicting untested genotypes from one year to another. Regions are predicted from the same 
region in a different year (SE: single environment) or from all regions combined using multienvironment main-effect model (ME), G×E compound 
symmetry (CS), G×E uniform heterogeneity (UN.HET), and G×E unstructured (US).   

10 | S. Wilson et al. 

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkae011/7577733 by guest on 19 M

arch 2024



little to no G×E which was evident from the genetic correlations 
reported in Table 2, and confirmed with the prediction abilities at-
tained from different models. 

The heritability estimates (Table 1) give an indication of hetero-
geneity of genetic variances, while Table 2 shows the heterogen-
eity of genetic correlations. Comparing these tables with the 
G×E covariance parametrizations, we can understand why certain 
models gave better predictions than others. The compound sym-
metry model assumes that the genetic variation is the same in 
each environment. Based on the heritability estimates in  
Table 1, this is a reasonable assumption for dry matter and tuber 
length, as all the heritabilities were quite similar. The uniform 
heterogeneous model assumes a unique genetic covariance for 
each environment, but a constant genetic correlation between en-
vironments. Based on the genetic correlations, we see that this 
can be applicable to dry matter and tuber length, however, not tu-
ber weight. Prediction ability of tuber weight benefited from the 
more complex unstructured model which allowed correlations 
and variances to be environment specific, aligning with the herit-
ability estimates and genetic correlations. 

Modeling decisions are often made before predictions are car-
ried out; assessment of models based on prediction ability in the 
test set, may lead to different conclusions, vs assessment of mod-
els based on likelihood statistics, that measure goodness-of-fit of 
the training data. Within the application of scenario 2, likelihood 
statistics were observed and used to compare models using the 
likelihood scores (Fig. 5) and likelihood ratio tests (not shown). 
As mentioned previously, for all traits, the more unstructured 
G×E model was significantly better than the simpler models. 
Likelihood scores were used to help identify the most suitable par-
ametrization for the variance–covariance matrix, but such a mod-
el as assessed on the training set does not automatically transfer 
to the test set. Also we must consider that for the likelihood ratio 
tests, not many parameters were estimated in this study. For 
scenario 2, we look at 6 trials, therefore the number of parameters 
estimated for variances and covariances in the unstructured 
model are relatively small in comparison to many breeding 
programs. 

Predicting from year to year 
In many G×E studies, the potential of using years of past data to 
predict forward is of keen interest. In this study, we were not 
able to use years of data to predict forward; however, we did get 
an impression of using one year to predict another, and the results 
were encouraging from a breeder’s perspective. Within the same 
region, we are able to predict from one year to the other, and in 
the majority of cases, this improved when information was com-
bined from multiple regions. The added value of incorporating 
G×E in the multienvironment prediction model was small in cases 
with high G×E, while in cases with low G×E it did not help. For each 
region, there is only 1 year of information; however, there are 
some valuable concepts from the scenarios explored in this study. 

Scenario 1 
In this scenario, we made year to year predictions of tested geno-
types, i.e. genotypes included in the training set (Fig. 6). We clearly 
see that multiregion prediction models performs consistently bet-
ter than single-region models, when forecasting the performance 
of genotypes in the upcoming year. The improvement in predic-
tion abilities were the greatest with the main-genotype effect 
model and not models that included a G×E interaction term. It is 
true that among the G×E models we see differences in model per-
formance depending on the genetic correlations of the traits, as 

discussed previously in the section Modeling G×E according to trait; 
however, in this section, we observe another result. Because pre-
dictions are made on genotpyes that occur in one of the regions in-
cluded in the training set, therefore adequately estimating the 
genotpyic main effect, this main-effect model benefits the most 
and seems to be a fitting choice for this scenario. It is especially 
helpful when prediction ability in a trial of one of the training re-
gions is higher than ability in the region where predictions are to 
be made. This shows the added value of including trials in very dif-
ferent regions of Europe for forecasting. 

Scenario 3 
In this scenario, we made year to year predictions of untested gen-
otypes, i.e. genotypes not included in the training set (Fig. 9). As 
expected, the prediction abilities were better in scenario 1 where 
we predicted tested genotypes, as also seen in other studies 
(Burgueño et al. 2012; Malosetti et al. 2016). In this scenario, we no-
tice that there are many cases where combining regions lead to 
higher prediction ability, but we also see cases where the multire-
gion model can perform worse than the single-region model. 
When this occurred, it was the main-genotypic effect model being 
applied. The absence of the information on genotype makes the 
main-genotype effect model a riskier choice, a pattern also ob-
served in scenario 2 (Fig. 7). When combining information in scen-
arios with untested genotypes, the G×E models perform as well as 
and sometimes better than the single-region model. Unlike the 
main-genotype effect model, the G×E models never substantially 
reduced prediction ability. 

For dry matter in particular, looking at the genetic correlations 
and the GGE biplot (Fig. 4), genotypic performance appears to be 
more consistent according to region than year. For that reason a 
model within that single region was enough to predict untested 
genotypes from one year to the other. For example, for predicting 
new genotypes in Spain 2018, better prediction ability was at-
tained when using Spain 2017 only and not all three 2017 trials to-
gether. This introduces the discussion topic about adding multiple 
“distant” trials to the training set (in terms of genetic correlation), 
and its impact on prediction ability. 

Tuber weight and the training set of trials 
(scenario 2) 
In scenario 2, we had 6 trials or trial conditions, and we were pre-
dicting new untested genotypes for these a known trial condition. 
This allowed us to investigate the impact of the training set of en-
vironments, or in this case, the training set of trial conditions. 
When applying multitrial prediction to tuber weight, we see that 
the set of trials used for training is important (Fig. 8). The Poland 
2018 trial had low correlation with all other trials so it did not 
benefit from combining information across trials. However, 
when the 2 trials that had the lowest correlations with Poland 
2018 were removed, prediction ability improved. This result 
shows that we cannot simply utilize all trials available when ap-
plying multitrial GP, and must instead, investigate the genetic cor-
relation between the target trial condition, and the trials that are 
to potentially be used to train the model. Of course it is curious 
that removing Poland 2018 to make predictions in the other trials 
did not improve prediction ability. A possible explanation is that 1 
singular trial with low genetic correlation, and not multiple trials 
with low genetic correlation, may not contribute enough noise to 
negatively impact prediction ability. The advice to not use a multi-
environment main-genotypic effect model when predicting un-
tested genotypes also gets support from the result in Poland 
2018 (Fig. 8). We notice that this model benefits the most from  
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removing the lowly correlated trials; however, it can be viewed in-
versely as the model that has the highest potential to go wrong 
when the composition of trials in the training set is not suitable. 

The trial with the lowest heritability benefited the most from 
including trials with high heritabilities (Spain 2017). Inversely, it 
was expected that removing this trial to make predictions where 
the heritabilities were higher, would improve prediction ability. 
This was not observed in this study, possibly due to the same rea-
son as above, 1 trial was not enough to negatively impact predic-
tion ability. Another explanation is that even though the trial has 
a lower genetic signal, it is still extra information that has a decent 
correlation with the target trial, and therefore useful. 

Conclusions 

• For multienvironment GP, it is important to consider the pre-
diction scenario when choosing a modeling strategy. 

• For tested genotypes (scenario 1), the multiregion main- 
genotypic effect model was the most suitable choice for 
combing information across regions. For untested genotypes 
(scenarios 2 and 3), the same ME model can negatively impact 
prediction ability and models that include G×E interactions 
were more reliable. 

• Predicting a target set of environment conditions can be 
negatively impacted when multiple trials that have low gen-
etic correlation are included in the training of the model. 

• Genotype by environment interactions are to be expected 
from multiregion trials; however, they can be minimized 
with consistent management practices.  

Data availability 
The data used in this study are available in the Supplementary 
Material. Supplementary File S1 contains phenotypic 
information including BLUEs, as well as the location and year of 
the trial. Supplementary File S2 contains marker information.  
Supplemental material is available at G3 online. 
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