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A B S T R A C T   

Monitoring forest aboveground biomass (AGB) is essential for quantifying the carbon cycle and mitigating 
climate change. Tropical secondary forests are significant carbon sinks that sequester large amounts of carbon 
dioxide. While recent studies have attempted to estimate the AGB recovery rates in tropical forests, considerable 
uncertainty remains in the estimation of AGB recovery of secondary forests and the spatial variability of the 
effects that different environmental conditions and degrees of human use may have on AGB recovery. These 
knowledge gaps hinder further understanding of climate change mitigation potential of secondary forests. 
Remote sensing products provide spatially and temporally explicit information for understanding and monitoring 
secondary forest dynamics. To explore the local effects of different factors on AGB of secondary forests in Brazil, 
we used geographically weighted regression (GWR) models that account for spatial heterogeneity in geospatial 
data to estimate the AGB of secondary forests in Brazil. Secondary forest areas (29142 polygons) were extracted 
from Brazil’s forest age maps between 1984 and 2019. The AGB of these areas was derived from the Climate 
Change Initiative Biomass maps. The effects of selected predictors such as forest age, climatic water deficit, the 
cation exchange capacity of soil and surrounding tree cover were analyzed. The two most influential factors, 
forest age and surrounding tree cover were utilized to estimate the AGB and the recovery rates per year. Our 
results show the high spatial variation of different predictors’ effects on the AGB of secondary forests. Also, the 
GWR model (with an adjusted R2 of 0.74) showed considerable improvements regarding “goodness of fit” of 
models compared with the Ordinary Least Squares (with an adjusted R2 of 0.53). Our estimated average AGB 
recovery rate across all Brazil’s biomes is 7.5 Mg ha− 1 yr− 1 (using forest age) for the first 20 years. We presented 
the map of the spatial variation of AGB recovery rates in Brazil. The estimated AGB recovery rates range using 
forest age is 28.9 Mg ha− 1 yr− 1. Our estimated mean AGB recovery rates of different biomes are 17.7 % on 
average higher than IPCC default rates. Our results provide baseline information for reducing uncertainties 
related to carbon sink estimation of secondary forests in Brazil, hence assisting in developing sustainable forest 
management and ecosystem restoration strategies.   

1. Introduction 

Secondary forests are playing increasingly important roles in the 
global carbon cycle. Secondary forests are forests that regrow in regions 
that have experienced complete forest removal (Chokkalingam & De 
Jong, 2001). The secondary forests increased rapidly in their extent and 
covered more than 60 % of the global forest at the end of the 20th 

century (Orihuela-Belmonte et al., 2013; Mackey et al., 2015; Pain et al., 
2021). A previous study estimated the aboveground biomass (AGB) re
covery rate of young secondary forests in the Neotropics and found that 
the carbon uptake rate is eleven times of that in old-growth forests 
(Poorter et al., 2016). Research carried out in the secondary forests of 
the Amazon biome revealed that the mean gross carbon sequestration 
increased substantially from 1986 (10.38 ± 9.7 million Mg) to 2017 
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(66.12 ± 9.7 million Mg CO2) (Smith et al., 2020). 
Evaluating why and where the AGB recovery of secondary forest 

varies is essential for the quantifying potential of secondary forest. Many 
factors, such as forest age, climate, terrain, soil, water availability, 
landscape, disturbance and land use history affect AGB recovery in 
secondary forests (César et al., 2021; Cook-Patton et al., 2020; Crk et al., 
2009; Becknell et al., 2018; Heinrich et al., 2021, 2023; Poorter et al., 
2016; Pugh et al., 2019; Requena Suarez et al., 2021,2023; Sundqvist 
et al., 2013). Previous researchers have attempted to evaluate the effects 
of different factors on the AGB regrowth of secondary forests. For 
example, Poorter et al. (2016) evaluated the effects of climate, soil 
fertility, forest cover, and previous land use on biomass resilience and 
has revealed that biomass resilience is driven by climatic water deficit. 
Becknell and Powers (2014) examined the effect of age, functional traits 
and soils on the AGB and found that the AGB increases with forest age in 
a secondary tropical dry forest, age alone could explain approximately 
half of the variation in AGB plots. Chen et al. (2023) assessed how 
secondary forest AGB is affected by different environmental and human 
factors using geospatial data and found that AGB recovery was mainly 
influenced by time since disturbance. Similar research also assessed the 
effects of different drivers (e.g. forest age, surrounding tree cover, soil 
characteristics) on the recovery of AGB in a tropical secondary forest of 
Costa Rica and results show that soil fertility has no significant effect on 
the AGB, AGB is positively related to age and surrounding tree cover, 
defined as the percentage of forest cover within a one-kilometer radius 
surrounding each plot (STC) (Oberleitner et al., 2021). Despite the 
increased interest in estimating the AGB recovery rates and how 
different factors affect these rates. AGB and its recovery have large 
variations in space. For example, the AGB recovery after 20 years has an 
eleven-fold variation across different sites in Neotropics (Poorter et al., 
2016). The variation is even larger at a global scale, where a 100-fold 
variation of aboveground carbon accumulation rates in natural forest 
regrowth was observed (Cook-Patton et al., 2020). Previous studies have 
assessed the AGB recovery in Neotropics or Amazon biome (Heinrich 
et al., 2021; Poorter et al., 2016). However, spatially explicit informa
tion on how AGB recovery rates and its influencing factors vary in space 
in Brazil on a country scale is lacking. 

Remote sensing data provides key opportunities for assessing the 
influence of different factors on the AGB in space, given that it provides 
spatially and temporally explicit information and has been widely used 
for forest monitoring. For example, optical images (e.g. Landsat images) 
have been commonly used to derive spectral information to monitor 
forest recovery (de Keersmaecker et al., 2022; DeVries et al., 2015; 
Decuyper et al., 2022; White et al., 2022). Optical imagery, Synthetic 
Aperture Radar and LiDAR data alone or in combination have been used 
to estimate forest AGB (Ahmed et al., 2013; David et al., 2022; Urbazaev 
et al., 2018). Based on satellite images, forest age, AGB, and tree cover 
maps and other remote sensing derived products at a regional or global 
scale have become feasible (Buchhorn et al., 2020; Santoro et al., 2021; 
Silva Junior et al., 2020). 

Various spatial models can be used to capture the spatially varying 
relationships between variables. Geographically Weighted Regression 
(GWR) is a powerful spatial technique that takes spatial heterogeneity 
into consideration (Fotheringham et al., 2002). GWR models have been 
extensively used in many domains, such as environment (Pasculli et al., 
2014; Tian et al., 2012), ecology (Kang et al., 2014; Wang et al., 2005), 
meteorology and climatology (Chao et al., 2018; Wang et al., 2012) 
economics (Jin et al., 2019; Lu et al., 2011), transportation (Cardozo 
et al., 2012; Dziauddin et al., 2015), health (Ge et al., 2017; Wang et al., 
2010; Xu et al., 2022). GWR is able to analyze spatially varying re
lationships as well as provide local regression coefficients (Ge et al., 
2017; Lu et al., 2022). Therefore, the capability of providing location- 
wise parameters for each variable makes GWR suitable and attractive 
for analyzing the effects of different factors on AGB locally. 

Here, we aim to evaluate the local effects of different factors on 
regrowing forests of Brazil using geospatial data. Factors derived from 

remote sensing data, including forest age, elevation, slope, climatic 
water deficit (CWD), soil cation exchange capacity (CEC), soil total Ni
trogen, STC, fire frequency, distance to settlements, and distance to 
roads were selected for further analysis. We further focused on factors 
that can be directly monitored using remote sensing data. Specifically, 
we aim to (1) assess the local effects of the aforementioned spatial fac
tors on the secondary forest AGB in Brazil, (2) analyze the spatially 
varying effects of forest age on secondary forest AGB and (3) estimate 
the AGB recovery rates of secondary forests in Brazil. 

2. Materials and methods 

2.1. Study area 

Brazil covers more than 8.5 million km2, with forests covering 59 % 
of its total area and it is the second-largest forested area in the world 
(Shimabukuro et al., 2020). Brazil can be divided into six biomes, the 
Amazon, Atlantic Forest, Caatinga, Cerrado, Pampa and Pantanal 
(Fig. 1b) (Souza et al., 2020). The Amazon forest is the largest contin
uous tropical forest on earth (Silva Junior et al., 2022). Cerrado is the 
largest savanna in South America (De Castro et al., 2016). The Caatinga 
biome is located in the northeast of Brazil and the predominant land 
cover in the Caatinga biome is non-forest natural vegetated areas. The 
main forest types in Atlantic Forest are tropical moist forests and tropical 
seasonal forests. Historically, the Atlantic Forest biome suffered a 
tremendous loss of the original Atlantic forests (Ribeiro et al., 2009). 
Pampa is dominated by grasslands, sparse shrubs, and tree formation 
(Roesch et al., 2009). Pantanal is the largest tropical wetland on Earth 
(Ivory et al., 2019). Based on CCI Biomass (Supplementary material 
Table 1), the average AGB of biome Amazon is the largest (185.7 Mg 
ha− 1), followed by Atlantic Forest (113.2 Mg ha− 1), Pantanal (94.3 Mg 
ha− 1), Cerrado (83.4 Mg ha− 1), Pampa (75.0 Mg ha− 1), and Caatinga 
(36.1 Mg ha− 1). Based on the precipitation data of “TerraClimate” in 
2019 (Abatzoglou et al., 2017), the Amazon has the greatest annual 
precipitation (2464 mm), followed by Pampa (1464 mm), Atlantic 
Forest (1142 mm), Cerrado (1033 mm), Pantanal (808 mm) and Caa
tinga (594 mm). 

2.2. Extraction of explanatory variables from the geospatial dataset 

Forest age maps of Brazil from 1984 to 2019 (Silva Junior et al., 
2020) were utilized to extract the forest age for secondary forests. The 
edge pixels (pixels at the boundary or transition between secondary 
forests and non-secondary forests in an image) of the forest age raster 
layers from 1984 to 2019 were removed. Next, the raster age layers were 
converted to polygons and polygons that were smaller than 1 ha were 
excluded for further analysis. This was done to match the scale of the 
global AGB map (with a spatial resolution of 100 m). Tree cover was 
derived from “Copernicus Global Land Cover” maps (Buchhorn et al., 
2020, Fig. 2). The “Copernicus Global Land Cover” maps were derived 
from the PROBA-V 100 m time-series data (Buchhorn et al., 2020). 

Elevation and slope were chosen to examine the effect of topography 
on the AGB of secondary forests. Elevation data was derived from the 
Digital Elevation Models (DEM) from the “Shuttle Radar Topography 
Mission” (Farr et al., 2007), and was utilized to compute slope (in de
grees). To assess the water availability’s effect on AGB, the Climatic 
water deficit (CWD) in 2019 was averaged over all the monthly “def” 
layers of the “TerraClimate” global dataset (Abatzoglou et al., 2017, 
Fig. 2). To evaluate the effects of soil fertility on AGB, we derived the soil 
total Nitrogen and the soil CEC from the ‘Soil Grids 250 m v2.0’ product 
(Poggio et al., 2021, Fig. 2). SoilGrids provides global soil attributes 
maps by utilizing approximately 240,000 soil observations, more than 
400 environmental variables and machine learning approaches to pre
dict soil attributes (Poggio et al., 2021). To assess the influence of STC, 
the area of stable forest (in ha) within 500 m distance of the centroid of 
each secondary forest patch were calculated. Stable forest layers were 
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overlayed from the yearly forest map 1985–2019 derived from LUCC 
maps provided by the MapBiomas Project (MapBiomas Collection 6). 
Before overlaying the yearly forest maps, surface water was masked 
using the max water surface extent data from Joint Research Centre 
(Pekel et al., 2016) for accounting commission errors of forest maps. The 
sum of fire frequency from 1985 to 2019 was derived from the Map
Biomas project (Mapbiomas Fire-Collection1; https://mapbiomas. 
org/en/colecoes-mapbiomas-1). To evaluate the effect of human use, 
we used distance to roads and settlements as proxies. The distance of the 
secondary forest to the closest roads and settlements was calculated 
using the ‘Near’ function of ArcGIS 10.6.1 based on the roads and set
tlements data acquired from OpenStreetMap (OpenStreetMap Contrib
utors, 2021). 

Before extracting the values of the explanatory variables, the geo
spatial data was reprojected to the same coordinate system (WGS84). 
After that, all the explanatory variables (except forest age, and fire) were 
resampled to 100 m spatial resolution to minimize the error caused by 
scale mismatch of datasets, and the mean value within each polygon was 
extracted in GEE. Resampling was not applied to forest age and fire 
frequency because the forest age has already been extracted as an 
attribute of polygons while converting from the raster layer and fire 
frequency maps were not resampled to keep their original values. 
Table 1 presents the statistical information of the chosen variables. 

2.3. Extraction of aboveground biomass of secondary forests 

The global AGB maps in 2018 (with 100 m spatial resolution) from 
Climate Change Initiative (CCI) Biomass project (Santoro et al., 2021) 
were downloaded, subsetted to the extent of Brazil and then uploaded to 
the GEE platform. Next, the mean AGB of each secondary forest polygon 
was calculated from the global CCI Biomass map. The descriptive sta
tistics of the AGB for different biome were present in Supplementary 
material Table 1. We adopted the CCI AGB map because it is suitable for 
analysing biomass accumulation in secondary tropical forests and it was 
generated from radar data, less susceptible to saturation for high 
biomass values (Heinrich et al., 2021, 2023). However, a previous study 
has revealed that the CCI biomass map tends to overestimate low AGB 
and underestimate high AGB (Araza, et al., 2022). Other global or 
regional AGB maps, such as global biomass map produced by JPL 
(Saatchi et al., 2011) and biomass map based on LiDAR data collected by 
the “improving biomass estimation methods for the Amazon” (EBA) 
project (Ometto et al., 2023), also could be investigated in future 
studies. 

2.4. Data analysis 

After extracting the values of input variables to the secondary forest 
polygons (Table 1), polygons with AGB equal to 0 were removed and 
29,142 polygons remained for further analysis. Natural log trans
formation was applied to the forest age variable to consider the non- 

Fig. 1. Study area and distribution of secondary forests in different forest age groups of Brazil.  
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linear relationship between AGB and time. All variables were subtracted 
by mean and then divided by standard deviations using the “scale”, a 
built-in function in R. A correlation coefficient between predictors was 
calculated and a correlation coefficient larger than 0.7 or less than − 0.7 
indicate strong linear relationships (Ratner, 2009). The correlation be
tween distance to settlements and distance to roads was 0.79, hence the 
distance to settlement was excluded from further analysis. 

2.4.1. Ordinary Least Squares regression 
Traditionally, the OLS model is widely used for estimating forest 

AGB (Li et al., 2019; Lu, 2006). The OLS was selected for estimating the 
forest AGB and it serves as a base model to examine the global rela
tionship between variables. OLS was fitted as: 

Y = β0 + β1X1 + β2X2 + ⋯ + βkXk + ε (1)  

where Y is the dependent variable, β0 is the intercept, βk (k = 1, …,10) 
are estimated coefficients and ε denotes random error. R2, Adjusted R2 

(corrected goodness-of-fit) and AICc (Corrected Akaike information 
criterion) were computed to evaluate the OLS Regression models. 

2.4.2. Geographically weighted regression (GWR) 
GWR is a local linear model that enables regression coefficients to 

vary in space by providing local-specific estimated parameters for each 
regression model (Fotheringham et al., 2002). The GWR model was 
selected to map the spatial variation of selected factors’ effects on AGB 
of secondary forests. A GWR model was fitted as (Fotheringham, 
Brunsdon,and Charlton, 2002): 

yi = β0(μi, vi) +
∑n

j=1
βj(μi, vi)xij + εi (2)  

where yi is the dependent variable of location i, β0(μi, vi) denote the local 
intercept, βj are the estimated coefficients, n represents the number of 
independent variables, (μi, vi) are the coordinates of the locations, xij are 
k th independent variable and εi is the random error at location i 
(Brunsdon et al., 1996; Lu et al., 2022). Adjusted R2 and AICc were 
computed to evaluate the performance of models. According to Tobler’s 
first law of geography, nearby things are more similar than those that are 
farther apart (Tobler, 1970). In line with the first law, GWR consists of 
local regressions that consider the nearby locations and different 

Fig. 2. Spatial distribution of continuous remote sensing variables for the GWR model.  

Table 1 
Descriptive statistics of environmental and human use variables.  

Variable Unit Range Mean SD Spatial resolution Time Source 

Aboveground biomass (AGB) Mg ha− 1 0 – 552.8  172.1  107.1 100 m 2018 (Santoro et al., 2021) 
Tree cover % 0 –100.0  83.7  19.0 100 m 2019 (Buchhorn et al., (2020) 
Forest age year 1 – 34.0  10.9  10.0 30 m 2019 (Silva Junior et al., 2020) 
Elevation meter 0.9 – 1905.5  221.7  196.2 30 m 2000 SRTM 
Slope degree 0.8 – 49.4  5.4  4.9 30 m 2000 Calculated 
Climatic water deficit (CWD) mm/year 0 – 855.5  237.0  113.6 4638 m 2019 (Abatzoglou et al., 2017) 
Soil cation exchange capacity mmol(c)/kg 0 – 313.3  112.2  31.8 250 m / (Poggio et al., 2021) 
Soil total N (0–30 cm mean) cg/kg 0 – 7427.0  1806.0  460.3 250 m / (Poggio et al., 2021) 
Surrounding tree cover (STC) ha 0 – 77.1  32.2  25.2 / 2019 Calculated from Mapbiomas 
Distance to settlements km 0.1 – 400.0  24.2  33.3 / 2021 OpenStreetMap contributors (2021) 
Distance to roads km 0 – 379.0  19.2  36.7 / 2021 OpenStreetMap contributors (2021) 
Fire frequency (1985–2019) times 0 – 19.0  0.8  1.5 30 m 1985– 2019 Mapbiomas (Alencar et al., 2022)  
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weights are assigned to the neighbours based on the distance-decay 
kernel function (Lu et al., 2014). Several commonly used functions 
like gaussian, exponential, bi-squar can be specified to estimate the 
weight matrix for the GWR model (Gollini et al., 2015). We selected the 
gaussian function to estimate the weight matrix and the form of the 
function is expressed as follows, 

wij = exp

[

−
1
2

(
dij

b

)2
]

(3)  

where dij is the distance between location i and j, b represents the 
bandwidth (Gollini et al., 2015). Bandwidth is an essential parameter for 
the GWR model, fixed distance or adaptive distance (fixed number of 
neighbours) approaches can be used to decide the bandwidth. As the 
fixed distance suffers from the risk of excessive coefficients in a lower 
density of observations (Gao et al., 2022), we selected the adaptive 
approach. To decide the bandwidth, we tested the AICc by varying the 
bandwidth (number of neighbours) and used 100 as the appropriate 
bandwidth as it can ensure sufficient observations for local modelling as 
well as produces relatively low AICc for GWR modelling. The GWR 
model was implemented using R package “GWmodel” developed by Lu 
et al. (2022). The evaluation metrics for models (e.g. R2, adjusted R2 and 
AICc) are also computed in the “GWmodel” package. The script for the 
GWR model is available from GitHub (https://github.com/cherish2019 
/BiomassUptakeRates) under the GNU General Public Licence v3.0. 
Local effects of variables on the AGB were visualized and the non- 
significant polygons for each variable were removed. 

2.4.3. Computing the biomass recovery rates, carbon sequestration rates 
and relative recovery percent 

As forest age is a significant variable for secondary forest AGB re
covery (Chen et al., 2023) and it has explained approximately half of the 
variation in AGB of secondary forests in northwest Costa Rica (Becknell 
& Powers, 2014), we calculate the AGB recovery rates using only forest 
age variable (log-transformed). We further added STC, which can be 
derived directly from earth observations with a higher spatial and 
temporal resolution, in the GWR model to calculate AGB recovery rates 
locally. Secondary forest polygons that have a non-significant coefficient 
for any of the input variables were removed, after which, the remained 
number of secondary forest polygons for GWR models using only forest 
age and “age + STC” are 27,390 and 25816, respectively. Based on the 
estimated coefficients from GWR model using forest age and STC, STC 
was kept constant at the mean while AGB at year 0.01, year 20, and year 
34 were predicted. Recover rates of younger (age ≤ 20) and older (20 <
age ≤ 34) secondary forests per polygon were computed as the differ
ence between two predicted AGB values divided by the time interval 
(number of years). The carbon sequestration rates were calculated by 
multiplying AGB recovery rates with the IPCC factor of 0.47. We 
calculated the average AGB for old-growth forests of each biome. Based 
on recover rates of younger forests computed from GWR model using 
only forest age, AGB of each polygon was predicted at age 20 and then 
divided by the mean AGB of old-growth forests in that biome. 

3. Results 

3.1. Evaluation metrics of OLS and GWR models 

The OLS and GWR models were utilized to examine the relationship 
between the forest AGB and the ten selected predictors. The evaluation 
metrics of models are shown in Table 2. The adjusted R2 of using ten 
selected predictors in the global regression is 0.53, indicating that the 
percent of variation that can be explained with the ten predictors is 53 
%. While for the GWR model, the adjusted R 2 is 0.74. The GWR model 
explained a larger proportion of variance than the OLS models. 

Regarding OLS and GWR models using only forest age, the adjusted 
R2 for OLS and GWR models are 0.19 and 0.60, respectively (Table 2). 

Two extra models also have been added to model the AGB and calculate 
the recovery rates using forest age and STC as explanatory variables, the 
adjusted R2 for OLS and GWR models are 0.38 and 0.66, respectively 
(Table 2). The GWR models explained a larger proportion of variance 
than the OLS models. The AICc of GWR model also indicates that the 
GWR model fits better than OLS. 

3.2. Coefficients of the OLS and GWR models 

3.2.1. OLS model coefficients 
The OLS model explores the relationship between the AGB and the 

selected ten variables. All explanatory variables are statistically signif
icantly related to the response variable, AGB of secondary forests 
(Table 3). 

3.2.2. GWR model coefficients 
Regarding GWR model using ten selected variables, the distribution 

of local R2, residuals and the coefficients estimates of ten variables are 
presented in Fig. 3. The spatial distributions of local R2 show that the 
goodness of fits at local models in the west, north and southeast of 
Amazon biome, Cerrado biome, northeast of Atlantic Forest biome, and 
northeast of Pampa biome is higher. Generally, the Local R2 is relatively 
higher at the boundary of different biomes. The effects of different 
variables on the AGB vary by region. All the variables can have positive 
or negative effects on the AGB at different locations (Fig. 4). But the 
proportion of negative and positive effects of the selected variables are 
different (Fig. 4). Forest age is mainly positively related to the AGB. 
Especially in the southwest and east of the biome Amazon and the 
middle of the biome Cerrado, forest age has large effects on the AGB. 
Regarding CWD, the effects are high in the southwest and northeast of 
the Amazon biome. The effect of elevation is more significant in the 
Amazon biome compared with other biomes. In particular, in the west 
and northeast of this biome, the influence is large. In terms of the in
fluence of fire frequency, positive relationships are mainly found in the 
Cerrado biome. In the east of the biome Amazon, the positive effect of 
distance to roads is large. For slope, the effect is highly positively related 
to AGB in the southwest of the Amazon biome. The positive effect of CEC 
on the AGB is more significant in Amazon and Atlantic Forest biomes. 
The positive effect of soil total N is prominent in the south and east of the 
Amazon biome. While for the effect of STC on the AGB, the effects are 
larger in the northeast of the Amazon biome and southeast of the 
Atlantic Forest biome. The effect of tree cover is more prominent in the 

Table 2 
Evaluation metrics of OLS and GWR models.  

Models R2 Adjusted R2 AICc 

OLS using ten selected variables  0.53  0.53  60663.1 
GWR using ten selected variables  0.75  0.74  44967.3 
OLS using Age  0.19  0.19  348853.5 
GWR using Age  0.60  0.60  328848.0 
OLS using Age + STC  0.38  0.38  341247.5 
GWR using Age + STC  0.67  0.66  323546.5  

Table 3 
Statistics of the OLS model using ten selected variables.  

Variable Estimate Standard error t value Pr(>|t|) 

Forest age  0.26  0.004  58.56 < 0.001 
Climatic water deficit (CWD)  − 0.15  0.005  − 30.52 < 0.001 
Elevation  − 0.06  0.005  − 13.04 < 0.001 
Fire frequency (1985–2019)  − 0.07  0.004  − 15.34 < 0.001 
Distance to roads  0.09  0.005  19.48 < 0.001 
Slope  0.06  0.005  13.52 < 0.001 
Soil cation exchange capacity  − 0.06  0.005  − 11.72 < 0.001 
Soil total N  0.02  0.005  3.86 < 0.001 
Surrounding tree cover (STC)  0.20  0.005  40.95 < 0.001 
Tree cover  0.33  0.005  66.19 < 0.001  
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west of the Amazon biome. 
The statistical distribution of different estimate coefficients based on 

the GWR model using the ten selected variables is illustrated in Fig. 4a, 
the tree cover, forest age and STC are the top 3 variables that positively 

influence the AGB of secondary forests. Fire frequency was found to 
mainly has negative effects on AGB. The percentage of positive and 
negative effects of each variable based on the GWR model are presented 
in Fig. 4b. Regarding the percent of positive effects of selected factors on 

Fig. 3. The distribution of the coefficients of local R2 (a), each explanatory variable (b-k) and residuals (l) for predicting AGB in secondary forests of Brazil.  

Fig. 4. The distribution of the coefficients estimates (a) and the percentage of positive and negative effects (b) of different variables.  
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AGB, the tree cover is the highest (99 %). While for the proportion of 
negative effects of selected factors on AGB, the fire frequency is the 
highest (86 %), followed by CWD (52 %) and distance to roads (51 %) 
etc. The distribution of the coefficients estimates and the percentage of 
positive and effects of different variables for each biome are shown in 
Supplementary material Figs. 1–2. 

3.3. Estimates of AGB recovery rates and carbon sequestration rates 

AGB recovery rates were estimated using only forest age as it is one 
of the most significant variables (Fig. 4). We added STC, another sig
nificant variable derived directly from remote sensing data, to estimate 
the local AGB recovery rates. The coefficient estimates for the STC 
variable in the GWR model using forest age and STC is shown in Sup
plementary material Fig. 3. The map of AGB recovery rates shows large 
variations in different biomes of Brazil in secondary forests (Fig. 4 and 
Supplementary material Fig. 5). The average AGB recovery rates of each 
biome range from 4.2 Mg ha− 1 yr− 1 to 7.8 Mg ha− 1 yr− 1 based on the 
GWR model using forest age variable (Table 4). The average AGB re
covery rates of each biome of GWR model using forest age and STC are 
shown in Supplementary material Table 2. 

Among all biomes of Brazil, the average recovery rate of the Biome 
Amazon is the largest, the Caatinga biome is the smallest in the young 
secondary forests (Table 4). A similar trend can be found in the old 
secondary forests across all biomes. The average recovery rate for all 
young secondary forests is approximately 4 times of the recovery rate for 
all old secondary forests in Brazil. The carbon sequestration rates of 
secondary forests vary spatially in the secondary forests of Brazil (Sup
plementary material Figs. 4 & 5). The average carbon sequestration rates 
for each biome in Brazil are shown in Supplementary material Table 3. 

Generally, the spatial patterns of AGB recovery estimated from forest 
age only and “forest age + STC” models are similar, and the AGB re
covery rates estimated from the forest age only model are larger than 
those estimated from the “forest age + STC” model (Fig. 5 and Supple
mentary material Fig. 5). 

The relative recovery percentage varies significantly across different 
regions within the Amazon biome and Atlantic Forest biome, as depicted 
in Fig. 6. Within the Amazon biome, the rate of relative recovery is 
comparatively slower in the middle, northwest, and southeast regions. 
On the other hand, in the Atlantic Forest biome, the relative recovery is 
slower in the northeast region. These spatial variations highlight the 
heterogeneity in the recovery processes and suggest that different areas 
within these biomes have distinct patterns of AGB recovery. The average 
relative recovery percentage for the Caatinga, Cerrado, Pampa, and 
Pantanal biomes surpasses 100 %, indicating that the recovery of these 
biomes will exceed their original state after 20 years. In contrast, the 
remaining biomes have average relative recovery percentages lower 
than 100 %, implying that AGB recovery has not yet reached or sur
passed their initial conditions after 20 years. 

4. Discussion 

We explored how selected variables (e.g., forest age, STC, fire fre
quency) influence the AGB of secondary forests locally and estimate the 
local AGB recovery rates. Our results show that the different variables’ 
influence on secondary forests AGB varies in space. Generally, tree 
cover, forest age and STC are the three main drivers of AGB. Tree cover, 
forest age, STC, Soil N, Slope, and CEC mainly positively related to AGB, 
which aligns with previous research (Oberleitner et al., 2021; Pugh 
et al., 2019; Chen et al., 2023). Fire mainly has a negative effect on AGB, 
consistent with research conducted in tropical forests (Martins et al., 
2012; Slik et al., 2008). Regarding elevation, distance to nearest roads 
and CWD, the percentage of positive and negative effects are similar 
(Fig. 4). The large proportion of the elevation has positive effects on the 
AGB is difficult to explain (Fig. 4). Unexpectedly, we did not find a clear 
positive relationship between distance to roads and AGB. We expect 
elevation to be negatively associated with AGB (Maza et al., 2022). 
Higher AGB is associated with higher water availability (lower CWD) 
(Poorter et al., 2016). The percentage of positive and negative effects of 
the CWD on AGB is similar, which might be explained by the fact that the 
effect of climate on the AGB in tropical regions varies by space and 
might be scale-dependent (Álvarez-Dávila et al., 2017). 

Based on the estimated AGB recovery rates from the forest age 
model, our estimated average rates for younger secondary forests in 
each biome (except biome Pampa) (Table 4) are on average 17.7 % 
larger than those of the IPCC default AGB change rates (IPCC, 2019). The 
comparison between IPCC default rates and our estimated recovery rates 
using forest age and “forest age + STC” models are shown in Fig. 8 and 
Supplementary material Fig. 4. As the extent of the biomes used in the 
present study and the global ecozones used in IPCC are different, the 
ecozone map was overlayed with the biome map to identify the main 
ecozone for each biome. Amazon biome and Caatinga biome are 
compared with the tropical rainforest and tropical dry forests in the 
Americas, respectively. Cerrado and Pantanal biomes are compared with 
tropical moist forests in the Americas. Atlantic Forest was compared 
with the average of two ecozones (tropical rainforest and tropical moist 
forest). The Pampa biome is not compared since it mainly overlays with 
the subtropical humid forest, for which a 2019 IPCC default rate for 
secondary forests was not derived. Our estimated local recovery rates 
are generally consistent with the IPCC rates, with most falling within 
two standard deviations of the mean compared. The small discrepancy 
between the estimated mean recovery rates and IPCC default values in 
each biome (Fig. 8), suggests that our estimated recovery rates were 
comparable with IPCC default values. Local AGB recovery rates can 
provide spatially explicit information about the carbon sequestration 
potential of secondary forests and thus provide important complemen
tary information that enables the IPCC to refine the estimates 
accordingly. 

Our estimated local recovery rates map (Fig. 5) provides spatially 
explicit information that complements our understanding of forest car
bon stocks. Our secondary forest AGB recovery rates map captures more 
than 31.3-fold variations, approximately three times compared with 
previous research conducted in Neotropical secondary forests (Poorter 
et al., 2016). By illustrating the variation in recovery rates across 
different regions, the map enhances the capability of identifying areas 
where carbon sequestration efforts may be most effective. Results from 
previous studies that utilized 13,112 georeferenced ground measure
ments revealed similar trends (Cook-Patton et al., 2020). Brazil’s carbon 
sequestration rate estimated from GWR based on the forest age model 
(3.51 Mg C/ha yr− 1) is close to previous studies that combine filed data 
and remote sensing data (Poorter et al., 2016). For example, a previous 
study used 1500 forest plots and combined that with variables derived 
from remote sensing products to study the recovery rates in Neotropics 
and the estimated carbon uptake rate was 3.05 Mg C ha− 1 yr− 1 (Poorter 
et al., 2016), which is marginally lower than our estimated rate. 

Our findings for the Brazilian Amazon corroborate previous studies, 

Table 4 
Average AGB recovery rates for each biome based on the GWR model using 
forest age.   

AGB recovery rates (Mg ha− 1 yr− 1) using forest age  

Age ≤ 20 20 < Age ≤ 34 

All 7.47 1.83 
Amazon 7.77 1.90 
Caatinga 4.20 1.03 
Cerrado 6.30 1.54 
Atlantic Forest 5.46 1.34 
Pampa 5.13 1.26 
Pantanal 6.72 1.65  
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which demonstrated a remarkable variability in the capacity of sec
ondary forests to uptake atmospheric carbon (Elias et al., 2020; Heinrich 
et al., 2021). Furthermore, we discovered this variability was repeated 
within and between other Brazilian biomes. Thus, the variation in 
environmental characteristics throughout Brazil can explain the vari
ability of recovery factors. The structure and composition of previously 
deforested mature forests or the surrounding remnants (which vary 
between the biomes) will determine the species and the abundance of 
the seed bank available for the recovery process of secondary forests 
and, consequently, the carbon accumulation rates (Baider et al., 2001; 
Poorter et al., 2016). In the Amazon, Cerrado and Atlantic Forest 
(mature forests with greater carbon storage capacity), recovery rates 
were higher than in the Caatinga (mature forests with lower carbon 

storage capacity). Cloud cover determines the amount of diffuse solar 
radiation available on the ground; diffuse radiation can penetrate deeper 
into closed forest canopies than direct radiation and enhance produc
tivity and carbon accumulation rate (Mercado et al., 2009; Roderick 
et al., 2001). Thus, this can explain why biomes such as Amazon, Cer
rado and Atlantic Forest (high-level cloud coverage) have higher re
covery rates than other biomes (Martins et al., 2018). Hydroclimatic 
conditions are other important factors that control recovery rates - drier 
biomes showed lower recovery rates than biomes with greater water 
availability. Furthermore, drier forests are more susceptible to fire, a 
disturbance that can reduce the recovery capacity of secondary forests 
by 40 % to 50 % (Heinrich et al., 2021; Zarin et al., 2005). In addition to 
these factors, the combination of different distributions of characteris
tics such as elevation, slope, and soil type can also explain the variability 
of recovery rates found here, as they will determine the limitation of 
recovery rates (Chazdon et al., 2016; Heinrich et al., 2021; Poorter et al., 

Fig. 5. AGB recovery rates of younger and older secondary forests based on GWR using only forest age.  

Fig. 6. Relative AGB recovery percent of younger secondary forests at age = 20 
based on GWR using only forest age. 

Fig. 7. Comparison between the AGB recovery rates among different previous 
land use types. “****” indicates that P ≤ 0.0001 and “ns” represent P > 0.05. 
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2021, 2016). Previous land use could also affect the AGB recovery rates 
(Fig. 7), but its local effects on AGB recovery rates need further inves
tigation. The AGB recovery rates depend on a combination of local 
environmental conditions, ecological processes, and human influences. 
The North-South variations in the Atlantic Forest biome might be 
explained by the difference in the tree cover and surrounding tree cover, 
which is related to seed abundance. The variation of AGB recovery rates 
in the Amazon biome could also explained by the difference in the forest 
age, tree cover, soil fertility water availability, etc. For example, the 
surprisingly low recovery rate of the Cabeça de Cachorro (Amazonas 
state) areas might be explained by that the forest age of secondary for
ests in that region is relatively higher than in other regions. 

Exploring AGB recovery using geospatial data has many challenges. 
Firstly, the distribution of residuals and the relatively low R2 indicates 
that a significant proportion of the variance remains unexplained. 
Future work needs to investigate the potential of adding other variables, 
such as previous land use, and disturbance intensity/history for 
improving the performance of estimating AGB recovery rates. Previous 
land use /land cover (LUCC) types of different secondary forest polygons 
based on LUCC maps provided by the MapBiomas Project (MapBiomas 
Collection 6) (Souza et al., 2020). We used one-way analysis of variance 
(ANOVA) to determine whether there are any statistically significant 
differences between the mean AGB recovery rates of younger secondary 
forests of three different previous land use groups, including agriculture, 
pasture, and other land use types. We selected these three land use types 
because large amounts of forests have been changed into mainly agri
culture and pastures in the tropics (Jakovac et al., 2021). The results 
show that there is a significant difference between the mean AGB re
covery rates of younger secondary forests of these three different pre
vious land use types (P < 0.05, Fig. 7). However, the local effects of 
previous land use type on the AGB recovery is difficult to analyze as 
previous land use is categorical variables and it clusters spatially, there 

is a high risk of encountering local multicollinearity while integrating 
categorical variable into GWR model (Liu et al., 2017). Besides, a pre
vious study has revealed that regrowth rates exposed to more than 3 
times of deforestation prior to regrowth were lower compared with 
those experiencing one deforestation in the Brazilian Amazon (Heinrich 
et al., 2021). Thus, it is necessary to integrate previous land use and 
disturbance intensity /history for characterizing the secondary forest 
recovery in future research. Secondly, the input data might cause certain 
circularity in the models. For example, CEC and Soil total Nitrogen 
derived from the SoilGrids 2.0 data used original bands and vegetation 
indices derived from Landsat images (Poggio et al., 2021), while forest 
age and fire also derived from Landsat imagery. Thirdly, the spatial 
distribution and uncertainty in forest age maps also contribute to the 
errors of our models. Younger secondary forests (less than 5 years old) 
clustered in the east of the Amazon biome, low variation in the forest age 
distribution could reduce the accuracy of the models as its estimation of 
recovery rates highly depends on the very young secondary forests. This 
might explain the negative recovery rates and negative effects of forest 
age because older forests have relatively lower AGB than younger for
ests. Fourthly, using the global biomass data for local analysis is chal
lenging, replacing the global biomass map with a regional one might 
have the potential to improve the estimation of AGB recovery. Future 
research could explore the potential of mapping aboveground biomass 
based on LiDAR data collected by the “improving biomass estimation 
methods for the Amazon” (EBA) project conducted by the National 
Institute for Space Research (INPE) (Ometto et al., 2021) or using the 
regional AGB map (Ometto et al., 2023). Next, bandwidth is an essential 
parameter for GWR, although we used the adaptive approach for spec
ifying the bandwidth, it is still unavoidable that the local model may use 
observations that are further away from each other. Then, the AGB re
covery rates estimated from the age and STC model are generally lower 
than those estimated from the forest age model. This suggests that AGB 

Fig. 8. Comparing the AGB recovery rates estimated from forest age with IPCC default rates. The vertical red line represents the mean AGB recovery rate of each 
biome. The blue solid line and blue dashed line represent the mean and 2 standard deviations from the mean IPCC default rates, respectively. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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recovery rates estimated from age and STC may be underestimated as 
the STC was held constant and was subtracted when subtracting the AGB 
at year 0.01. Furthermore, the use of various geospatial datasets 
collected in different years introduced uncertainty in models, for 
example, the AGB map was acquired in 2018, while the tree cover map 
and distance to settlements and roads were acquired in 2019 and ac
quired in 2021, respectively. Future research could explore the potential 
of characterizing AGB recovery rates using datasets acquired from the 
same year when they are available. Finally, the results of GWR models 
were not validated due to unavailable field data. Integrating field data or 
LiDAR data could have the potential to improve our results. For instance, 
a previous study has illustrated the potential of combining field mea
surements and LiDAR to estimate the AGB in tropical secondary forests 
(Jha et al., 2020). 

Our results provide complementary information by providing 
spatially explicit recovery rate maps. Moreover, our results have the 
potential of capturing more variations of the varied AGB recovery rates 
of secondary forests, thus providing important information for reducing 
the uncertainty related to quantifying the climate mitigation potential 
and terrestrial carbon stocks of secondary forests at a national scale. Our 
framework for estimating local AGB recovery rates could also be tested 
in other tropical countries if forest age data is available. 

5. Conclusions 

We assessed the spatial effects of selected factors on secondary for
ests in Brazil, finding that forest age and tree cover are the main pre
dictors for characterizing AGB secondary forests in Brazil. All the 
variables could have positive or negative effects on the AGB at a local 
scale, with spatially varying magnitudes. We presented AGB and carbon 
sequestration recovery rates maps that illustrate the geographic varia
tion in the climate mitigation potential of secondary forests in Brazil. 
The estimated secondary forests AGB recovery rates (using forest age) 
varied more than 31.3-fold across sites. Our analysis provides crucial 
information for understanding the AGB resilience spatially and serves as 
a basis for quantifying the climate mitigation potential of regrowing 
forests at the country scale. Additionally, our estimated AGB recovery 
rates provide spatially explicit information for policymakers to develop 
sustainable forest management strategies. For example, our maps could 
assist Brazil in monitoring or evaluating its progress towards National 
Determined Contributions (NDCs) targets to the UNFCCC. Our analysis 
could serve as a basis for estimating local secondary forest AGB recovery 
rates in other tropical countries. Extra attention could be paid to the 
conservation of forests in regions with slow recovery. Afforestation 
initiatives also could take advantage of these recovery rate maps and 
arrange activities in regions with high recovery rates. Finally, our results 
can reduce uncertainties in MRV (Measuring, Reporting and Verifying) 
systems in jurisdictional and voluntary REDD+ (Reducing emissions 
from deforestation and forest degradation) programs in the carbon 
market. Due to its continental dimensions, obtaining carbon uptake 
rates from field approaches for secondary forests in Brazil is impracti
cable. Thus, our uptake rates map based on remote sensing data provides 
an unprecedented database to meet the needs of REDD + programs 
developed in the country. 
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Rozendaal, D.M.A., Ruíz, J., Tabarelli, M., Teixeira, H.M., de Sá, Valadares, Barretto 
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