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adaptation, but there is limited evidence of when and where certain processes
occur and why. Overall, research on drought-to-flood events is scarce. To
increase our understanding of drought-to-flood events we need more compre-
hensive studies on the underlying hydrological, socio-economic, and adapta-
tion processes and their interactions, as well as the circumstances that lead to
the dominance of certain processes.

This article is categorized under:
Science of Water > Hydrological Processes

Science of Water > Water Extremes
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adaptation, consecutive events, drought, flood, impacts

1 | INTRODUCTION

Drought and floods are opposite hydrological extremes, but their risks are not independent. When an extreme flood
event occurs shortly after a major drought (i.e., drought-to-flood), its consequences can be catastrophic. Drought-
to-flood events are often initially not perceived as a disaster. After a long drought, the first rains are welcome (Little
et al., 2001; Parry et al., 2013), as they can result in a recovery of the ecosystem (Bennett et al., 2014) and the replenish-
ment of water resources (Brauer et al., 2011). In some cases, however, this positive situation turns into a disaster,
depending on physical and social processes and their interactions. Examples are the Millennium Drought in Australia
(2000-2010) followed shortly after by widespread flooding in the south and east of the country (Van Dijk et al., 2013);
the 2017-2018 drought in East Africa quickly followed by floods that killed hundreds (ReliefWeb, 2018) or the 2019
Mozambique deadly flooding that occurred at the end of a long drought (Cowan & Infante, 2019). When, where, and
for whom drought-to-flood events are a benefit or a disaster is still unclear. There are several processes through which a
drought event can influence a subsequent flood event: atmospheric processes affecting the meteorology; catchment pro-
cesses affecting the hydrology; socio-economic processes affecting impacts; or adaptation processes, potentially affecting
both hydrology and socio-economic impacts.

Both dry and wet climate extremes are occurring more frequently and with increasing severity (Rodell & Li, 2023)
and are expected to become even more frequent and intense with ongoing climate change (IPCC, 2023). He and Shef-
field (2020) show that, in certain areas across the globe, the frequency of rapid dry-to-wet transitions has also increased
over the past 30 years. In addition, the time between consecutive dry and wet events has been shown to be decreasing,
implying that there is less time to recover from the impacts of the dry extreme before the wet extreme occurs (Rashid &
Wahl, 2022). This shows the importance of improving the understanding of drought-to-flood events and how the differ-
ent processes that occur during and after a drought event increase or decrease the occurrence, severity, and impacts of
a consequent flood event.

Dry-wet transitions have gained increasing scientific interest, but most studies focus on the atmospheric processes
behind shifts from low to high rainfall (e.g., Dong et al., 2011; Payne et al., 2020; Singh et al., 2014). For example, on
the US West Coast, 33%-74% of persistent droughts over 1950-2010 were ended by atmospheric rivers
(Dettinger, 2013). Other case studies, mostly in the United States, revealed that dry-wet transitions resulted from a
reversal of the “ridge-trough” circulation pattern. This is a persistent high-pressure ridge changing to a persistent low-
pressure trough in the same location (e.g., Dong et al., 2011; Wang et al., 2017; Yang et al., 2013). In some studies, this
has been related to the migration of the jet stream (e.g., Parry et al., 2013; Payne et al., 2020; Wahl et al., 2019). In addi-
tion, large-scale ocean-atmosphere processes seem to play a role in rapid transitions between dry and wet periods. For
example, in the Amazon region such an abrupt transition was ascribed to negative sea surface temperature anomalies
corresponding to a La Nifia-like mode (Espinoza et al., 2013). Several studies in China also relate abrupt dry-to-wet
alterations to anomalies in sea surface temperatures and large-scale ocean atmospheric modes (e.g., Wu et al., 2006a;
Wu et al., 2006b). Other cases show that drought also enhances rain production, for example by increased convection
due to dry soils leading to vertical air motion which intensifies precipitation of atmospheric rivers (Gimeno et al., 2014).
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Both increased moisture transport and more active rain-producing systems may play a role in dry-wet transitions
(e.g., Dong et al., 2011; Ma et al., 2019; Maxwell et al., 2017).

Whether these meteorological conditions develop into a drought-to-flood hazard and associated impacts depends
on hydrological, socio-economic, and adaptation processes. There are some studies that provide examples of human
adaptation to drought (or flooding) and how this affects the other extreme (De Ruiter et al., 2021; Garcia
et al., 2022; Ward et al., 2020). However, the underlying physical and social processes that play a role in drought-
to-flood events have been studied less and an overview of their reducing and enhancing effects is lacking. In this
study, we aim to synthesize the current understanding on the hydrological, impact and adaptation processes behind
drought-to-flood events, as well as their interactions. Based on a literature analysis and a global review of historic
drought-to-flood cases (for a description of the methods, see Supporting Information), we show the diversity of pro-
cesses that govern how drought affects flood risk and assess the circumstances under which positive and negative
effects and feedbacks occur. The overview is subdivided in sections on “Catchment processes” (Section 2), “Impacts”
(Section 3), and “Adaptation processes” (Section 4). Besides providing new insights on drought-to-flood interactions,
we identify research gaps that should be addressed to better understand and improve the management of drought-
to-flood events (Section 5).

2 | CATCHMENT PROCESSES INFLUENCING DROUGHT-TO-FLOOD
EVENTS

This section explores how drought can alter catchment processes and how these changes can affect a subsequent flood
event. In some cases, a drought can exacerbate subsequent flooding. In other cases, a change in catchment processes
because of a drought can reduce subsequent flooding or make it less likely to occur. An overview of the different pro-
cesses is provided, as well as an exploration of when and where different processes may be dominant. We make a dis-
tinction between storage and runoff process. An overview of the processes discussed in this section, and the factors that
influence when and where they are dominant, is provided in Table 1.

TABLE 1 Summary of catchment processes and the factors influencing when and where they are dominant.

Process
group Dominance Process Effect on flooding
Storage Dominant in arid catchments, Dry antecedent soil moisture conditions Decrease
depletion broader and flatter valley Groundwater disconnecting from surface  Decrease
catchments, catchments with water
deeper soils and catchments
with more groundwater
variability
Dominant in case of riverine
flooding
Runoff Generally dominant across Vegetation response Decrease
processes chr.nate a.nd catchment types Increase in places with low aridity,
Domm’ant 11 case of flash and high baseflow, a shift from snow to
pluvial flooding rain or resilience of high-elevation
runoff.
Decreased infiltration and increased Increase
surface runoff
Snow related processes Decrease in case of a lower snowmelt

peak because of below normal
snowmelt or when precipitation
falls as rain instead of snow

Increase in case of rain falling on
snow

Note: This overview is based on, in many cases, limited evidence and more research is necessary to get a better overview of the catchment characteristics
influencing when and where these processes are dominant.
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2.1 | Storage processes

The hydrological conditions at the end of a long drought are not the type of conditions that are prone to result in
flooding when heavy rainfall occurs. For example, subsurface storage will be low and will need to be replenished. With
dry antecedent soil moisture conditions, a lower flood is expected (Berghuijs et al., 2016; Bloschl et al., 2015; Evans
et al., 1999; Pathiraja et al., 2012), making drought-to-flood events less likely or less extreme. For example, the flash
flood in the Netherlands in the summer of 2010, was less severe than it could have been because the first rainfall was
stored in the dry soils (Brauer et al., 2011). In the UK 2010-2012 drought-to-flood event, initial rainfall led to soil mois-
ture recovery. It was only prolonged heavy rainfall that resulted in flooding (Parry et al., 2013), with variability in time
to peak discharge between quickly and slowly responding catchments (Parry et al., 2016). This suggests that, with
greater storage depletion after more severe drought, recovery takes longer (Bravar & Kavvas, 1991), as found by Parry
et al. (2016) in the United Kingdom. However, in some catchments in Australia, there was no such buffer effect and the
flooding occurred soon after the drought (Yang et al., 2017).

The process of flood mitigation due to empty or low water storage caused by preceding droughts is not frequently
mentioned in our case review of past drought-to-flood events. This is likely because this process alleviates flooding,
thereby reducing or eliminating impacts. These events are therefore not included in our database (since it only includes
cases with reported impacts). There were only two cases, in Saskatchewan, Canada and Iowa, United States of America,
where the increased storage availability because of the drought was mentioned as reducing subsequent flooding (CBC
News, 2015; Danielson, 2014).

One of the mechanisms that would explain an additional delay in the response of the hydrological system to exces-
sive rainfall after drought is decreasing groundwater levels during drought. This leads to groundwater disconnecting
from surface water (Eltahir & Yeh, 1999; Parry et al., 2013), which causes contraction in the stream network, shrinkage
of the saturated partial contribution area, and slower pathways for water. One of the reasons for this is that it takes
more water for saturation excess flow to occur (Saft et al., 2016). This would imply that heavier and longer duration
rainfall is necessary for flooding to develop as a result of saturation overland flow. However, pluvial flooding from infil-
tration excess in the case of short heavy rain events would not be affected by this contraction. In addition, with the con-
traction of the stream network the contribution of groundwater to the stream becomes lower up to the point that the
stream loses the connection with the groundwater and groundwater no longer contributes to the discharge. Large
amounts of recharge are needed for groundwater and stream to reconnect and for groundwater to start contributing sig-
nificantly to the discharge (Poeter et al., 2020). Drought recovery tends to be asymmetric (Eltahir & Yeh, 1999), with
changes to the stream network taking longer to recover than to develop. Therefore, it would take longer for flooding to
develop after a drought.

2.2 | Runoff processes

In the literature, there is also evidence for drought-induced changes in the land surface activating quick runoff path-
ways. This would suggest that catchments do not need to fully recover, with storage completely replenished, before
flooding can occur (Parry et al., 2013). One mechanism that could play a role is vegetation response. In Australia, for
example, many catchments remained in a lower runoff state for more than 7 years after the Millennium drought and
showed no sign of recovery to the pre-drought runoff state (Peterson et al., 2021). In this case, the lack of recovery is
not controlled by refilling of subsurface storage, but rather the authors postulate that it is related to a vegetation
response leading to increased evapotranspiration (Peterson et al., 2021). However, the authors only investigated changes
in annual runoff, and not changes in runoff extremes. In a study in the southern Appalachians, in California, Scaife
and Band (2017) find that stormflow response is higher after a drought, because of a reduction in transpiration. Maurer
et al. (2022) find that in some basins in California, the rainfall-runoff response during drought is higher than expected
compared to the rainfall-runoff response under normal conditions. This occurs in basins with low aridity, high base-
flow, a shift from snow to rain (i.e., more precipitation falling as rain instead of snow), or resilience of high-elevation
runoff (i.e., no significant decreases in high-elevation runoff during a drought). Whether a drought increases or
decreases the rainfall-runoff response, therefore seems to depend on the climatic and catchment conditions.

Many studies report increased runoff after drought because of decreased infiltration rates and increased surface run-
off (Descroix et al., 2009). This can be due to, for example, increased soil compaction (Alaoui et al., 2018) or hydropho-
bicity (Evans et al., 1999). Also, soil cracking can result in quick vertical flow of rainwater (Miller et al., 1997) and
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increased flooding. Similarly, land cover changes can affect infiltration excess runoff generation, surface runoff routing
and spatial connectivity, usually increasing (but in some cases decreasing) flooding (Rogger et al., 2017). Wildfires, often
related to drought, have been found to change flow pathways (Murphy et al., 2018) and increase the risk of other haz-
ards including flash floods, debris flows, and landslides (Moftakhari & AghaKouchak, 2019) (see Box 1 for more details
on wildfires). The question remains whether these changes in pathways persist long after the end of the drought
(Worrall et al., 2007) and whether they are important at the catchment scale (Alaoui et al., 2018; Bloschl et al., 2007).

In snow-dominated regions, other mechanisms can explain the relation between drought and flooding. Early or
below-normal snowmelt in dry and warm years, could lower the snowmelt peak, reducing snowmelt floods (Van Loon
et al., 2015). The same occurs when precipitation falls as rain instead of snow, resulting in decreased snowfall and
snowpack (Tabari, 2020). On the other hand, early snowmelt could also lead to higher peak runoff. Hatchett
and McEvoy (2018) found that many snow droughts were characterized by lower snow fractions and midwinter peak
runoff events. Under higher winter and spring temperatures (often co-occurring with drought), rain-on-snow flood
events are expected to shift in occurrence. They shift from spring to winter (Freudiger et al., 2014) and from lower to
higher elevations (Musselman et al., 2018). We can also speculate that drought in snow-covered areas could potentially
lead to compacted snowpacks that could result in more severe rain-on-snow floods when rainfall occurs (Rossler
et al., 2014). However, more research would be needed on this process.

2.3 | Which process is dominant, when, and where?

The availability of studies on effects at the catchment scale is limited. Therefore, it is difficult to answer the question of
where and when storage depletion processes or runoff processes are dominant. Rainfall-runoff relationships are a good
overarching metric to study effects at the catchment scale. Rainfall-runoff relationships often decrease during multiyear
droughts. In these cases, the same amount of rainfall will produce lower runoff after a prolonged dry period compared
to normal circumstances. This has been observed in Australia (Peterson et al., 2021; Saft et al., 2015) and Chile
(Garreaud et al., 2017). In Algeria, however, rainfall-runoff relationships were found to increase, leading to less infiltra-
tion, more surface runoff and higher flood hazard (Sofiane et al., 2019). Although in this case it is not clear which spe-
cific process may have caused this decrease in infiltration and increase in runoff. Stronger decreases in rainfall-runoff
relationships were found to be related to aridity (Garreaud et al., 2017; Saft et al., 2016), broader and flatter valley catch-
ments (Saft et al., 2016; Yang et al., 2017), deeper soils, and more groundwater variability (Saft et al., 2016). Therefore,

BOX1 The role of wildfires and landslides in drought-to-flood events

Drought increases the frequency and severity of wildfire (Riley et al., 2013), increasing flammability and inter-
acting with other fire spread controls such as the prevalence of fire weather conditions (Littell et al., 2016).
Wildfire drives changes in vegetation and soil properties making overland flow the dominant flow path post-
wildfire (Rountree et al., 2000) and increasing the risk of flooding (McGuire et al., 2021; Moftakhari &
AghaKouchak, 2019).

This was illustrated in Australia where the 2019-2020 wildfires were a consequence of a widespread drought
and a heatwave. While at first, torrential rain assisted in containing the fires, the wildfires had decreased infil-
tration capacity and flash floods soon followed (Alexandra & Finlayson, 2020).

Landslide risk increases up to several years after a wildfire. Wildfire followed by extreme precipitation cau-
ses increased run-off generated debris flows and slope instability (Rengers et al., 2020). In a study of Southern
California, Rengers et al. (2020) found that slopes that burned 3 years prior to an extreme rainfall event, had
the highest landslide density. Handwerger et al. (2019) report an increased risk in landslides during drought-
to-flood events even without wildfires, because a rapid shift from drought to extreme rainfall may trigger the
acceleration of landslides.

Our case review indicates that wildfires occur more often when a drought has propagated to a hydrological
drought (Figure 3a). In case wildfires are reported during the drought event, landslides are also more often
reported after the flood event (Figure 3b).
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this may indicate that in areas with larger subsurface water depletion due to an arid climate, permeable geology, or
deeper soils, the effect of filling up of depleted storage is more dominant, whereas in wetter, more quickly-responding
catchments the balance might tip to runoff increase after drought.

In the global case review, we also find that the type of flood is important in drought-to-flood events. We define
the type of flood generating process following the typology proposed by Merz and Bloschl (2003). Short-rain flood
was the most frequently reported flood process (120 cases), whereas long-rain flood (34), tropical cyclone (20), and
snowmelt flood (3) were reported less often as the dominant process causing flooding. The more frequent occurrence
of short-rain floods points to high intensity rainfall events and limited infiltration. This may indicate that, in general,
across all climate types, drought-induced changes to the land surface activating quick runoff pathways are a domi-
nant process. Flood events reported as flash flood or pluvial flood (rather than a riverine flood or a combination of
flash and/or pluvial with riverine flooding) were mentioned more often in case of a multiyear drought than a within
year drought (Figure 1a). In addition, flash floods are more often reported to occur during than after a drought
(Figure 1b). This may be because during a multiyear drought the land surface is affected more severely than during a
1-year drought. For example, through changes in vegetation or soil properties, causing quick-runoff generation pro-
cesses to be dominant. However, it could also be that flash floods and pluvial floods after a drought instead of during
a drought are not reported in our case review because the excessive rainfall refills depleted storage and did not cause
severe impacts. In case of riverine flooding (which was reported much less often), storage depletion processes may be
more dominant. This may especially be the case in arid regions, as discussed in the previous paragraph. We find some
evidence for this, since groundwater drought is most often reported in semi-arid cases, as shown in Figure 2. There
are no reports of groundwater drought in arid cases, but this may be due to the low number of cases with an arid cli-
mate in our case review. This may indicate an increase in available storage before a subsequent high rainfall period.
However, there are also several cases with sub-humid and humid climate conditions that are reporting groundwater
drought, which indicates there may be other factors, besides aridity, that influence the importance of storage deple-
tion process.

All of these processes and their importance depend on the speed of drought recovery and the time lag between the
drought and the heavy rainfall. The rate and duration of drought recovery are strongly dependent on climate and catch-
ment properties, such as elevation, slope, average catchment wetness, and soil conditions (Ganguli et al., 2022; Parry
et al., 2016; Yang et al., 2017). Additionally, human activities, including land use change, groundwater abstraction, and
reservoir operation, have been found to prolong recovery (Apurv et al., 2017; Margariti et al., 2019) and shift seasonality
(Wang et al., 2020). In many locations across the globe, the recovery time (i.e., the time between the drought and the
flood event) is decreasing. This means that there is less time for the system to recover before the next extreme happens
(Rashid & Wahl, 2022). We find that a flash flood by itself or in combination with pluvial flooding (rather than pluvial
or riverine alone or flash flood in combination with riverine) is more often reported during a drought than after a
drought (Figure 1b). This may be an indication of runoff processes being dominant and shows that heavy rain can lead
to floods without terminating the drought. Riverine and compound flooding occurred mostly after the end of a drought
(Figure 1b). This may indicate that for riverine floods to develop, depleted storage first needs to be replenished.

Both storage processes and land-surface conditions are influenced by human activities, especially during drought,
but there is no empirical research on the effects of human activities on consecutive drought and floods. For example,
studies on changes in the rainfall-runoff relationship (Garreaud et al., 2017; Saft et al., 2016; Yang et al., 2017) excluded
“impaired” catchments.

Recent research has started to quantify the effects of human activities on hydrological drought (Rangecroft
et al.,, 2019). Van Loon et al. (2022), for example, show that groundwater abstraction makes a hydrological drought
more severe. In addition, human activities can slow drought recovery (Margariti et al., 2019). Flash floods occur more
frequently and/or are more severe in human-influenced catchments (Jodar-Abellan et al., 2019; Mohamed &
Worku, 2021). Human activities seem to enhance both storage and runoff processes. In human-dominated catchments,
increased storage depletion leads to lower floods after droughts, and land-surface changes lead to higher floods after
drought. These human activities are discussed in detail in Section 4 on adaptation processes.

3 | IMPACTS OF DROUGHT-TO-FLOOD EVENTS

In this section, we explore how drought impacts affect flood impacts. Droughts are generally long-lasting and have a
range of cascading impacts on both the physical and societal system (De Brito, 2021; Stahl et al.,, 2016; Sugg
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FIGURE 1 Percentage of cases reporting a certain flood type differentiated by drought duration (a), and percentages of cases reporting a
certain flood type differentiated by flood timing during or after the drought (b). Highlighted in red are the event types (flash flood and
pluvial flood) that occur more often in relation to a multiyear drought than to a 1-year drought (a), and the event types (flash flood and flash
and pluvial flood combined) that occur more often during than after a drought (b).

et al., 2020). These impacts can continue into the period after the drought ended. If society is hit by a flood event, the
impact may be higher due to the preceding drought impacts.

3.1 | Drought impacts on the physical system

Drought can impact the physical system, thereby making subsequent flood impacts more likely. Drought can cause
damage to infrastructure, including infrastructure for flood risk mitigation. For example, during droughts, dikes and
levees can suffer from cracking, which can increase the probability of failure (either during the drought itself or during
subsequent wet periods). Examples of this are abundant in the literature, especially for the Netherlands (e.g., Van
Baars, 2005; Van Baars & Van Kempen, 2009), Australia (e.g., Hubble & De Carli, 2015; IWMI, 2017; Jaksa et al., 2013),
and the United States (Vahedifard et al., 2016; Vahedifard et al., 2017). This happens mostly in lowland areas with dikes
made of peat and clay or on peat/clay soils that are prone to cracking during drought.

Moreover, drought-to-flood events can increase impacts by degrading water quality and creating favorable condi-
tions for the development of diseases that impact human health. In our case review, we find that impacts on human
health were most often reported in low-income countries (Figure 4). We also found examples in the scientific literature.
For example, Effler et al. (2001) showed that the Escherichia coli outbreak in Swaziland and South Africa in 2000 was
preceded by intense precipitation following a three-month drought period. It was shown that high concentrations of
pathogens occurred during the drought period because livestock used human water sources. This increased human
exposure during consequent heavy rainfall (Levy et al., 2016). Drought-to-flood events can also result in large-scale
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FIGURE 2 The percentage of cases of a certain drought duration (1 year vs. multiple years) reporting a certain drought type, separated
by aridity group. Meteorological drought was reported in all cases, whereas soil moisture, surface water and groundwater drought are
reported in a decreasing percentage of the cases. There is a clear difference between the propagation for multiyear and 1-year events.

simultaneous hatching of mosquito eggs. This may lead to the transmission and outbreaks of, for example, Rift Valley
fever virus (Stanke et al., 2013). In addition, these events can alter water quality due to deposition of pollutants within
the soil during the drought period and their consequent discharge into the river during flood events (Mishra
et al., 2021). Moreover, consecutive dry and wet periods result in elevated phosphorus release and consequent water
quality degradation (Laudon et al., 2005). Alteration of river nutrient concentrations can cause severe fish mortality
(Laudon et al., 2005) and eutrophication of surface water bodies (Wurtsbaugh et al., 2019).

3.2 | Drought impacts on the socio-economic system

Impacts of drought on the physical system (e.g., water supply infrastructure) can also impact water supply, leading to
water insecurity. Drought impacts on agriculture and public drinking water supply were most often reported (Figure 4).
Drinking water supply is often disrupted during drought, especially if communities or households rely on local sources
that are not connected to a network (Mullin, 2020). This may not only be due to lower water levels, but also to more
sediments in the water intake, more breakage of handpumps, and more damage to pipes because of soil subsidence
(Thomas et al., 2020; Wlostowski et al., 2022). Drinking water companies then need to repair pumps and pipes and/or
invest in finding other sources of drinking water, thereby depleting financial reserves (Koehler et al., 2018). For exam-
ple, in the 2011-2017 drought in California (USA), many community water services requested emergency funding from
the state to maintain water delivery to low-income populations (Mullin, 2020). This left drinking water supply services
in a vulnerable position in case a subsequent flood destroys drinking water infrastructure (Fekete, 2019; Njogu, 2021).
For women and girls in rural communities in low-income countries, walking distance to drinking water sources
increases during drought (Arku & Arku, 2010; MacAllister et al., 2020). This creates many cascading impacts, for exam-
ple, increased exposure to sexual harassment, missing school, and less time to work on the land to provide food for the
family or to work on other sources of income (Tallman et al., 2023). All of these can potentially increase vulnerability
to flooding (and other hazards).
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FIGURE 3 Percentage of cases with a certain drought type also reporting fires (a) and percentage of cases with and without reports of
fire reporting land- or mudslides (b). If a case reports a groundwater drought it becomes more likely that there are also reports of fires. In
case there are reports of fire, it is more likely that there are also reports of mud- or landslides.

Drought impacts lead to changes in vulnerability and increase the susceptibility to subsequent flooding. This occurs
through multiple processes. Multiyear droughts cause long-term impacts such as physical and mental health issues,
long-term financial struggles, lack of education, erosion of social coherence, and increase in social conflicts
(e.g., Matand et al., 2022; Sena et al., 2017). This is especially the case in low-income countries. Sena et al. (2017), for
example, found that in Brazil health and well-being are lower in regions that experience drought more regularly than
the rest of the country. This implies that drought increases vulnerability. In contrast, repeated extreme flooding has
been found to reduce vulnerability in subsequent flood events due to enhanced awareness and adaptation (Kreibich
et al., 2017). These studies focus on multiple occurrences of the same hazard, but to understand the social processes
behind drought-to-flood events we need to understand cascading impacts and changes in vulnerability between differ-
ent hazard types (De Ruiter & Van Loon, 2022; Siegel et al., 2003). One study by Rockstrém (2003) mentions how
drought-induced unemployment leads to increased financial struggles during flood, but more research is needed on cas-
cading vulnerabilities.

A combination of impacts on agriculture and livestock, from both the drought and the flood event is reported quite
often and most frequently in low- and lower middle-income countries (see Figure 4). The vulnerability of livestock to
flooding may be increased by a preceding drought. This occurred in Queensland in 2019 (Cowan et al., 2022), where
cattle were weakened due to a lack of food during a drought. This increased their vulnerability during the following
flood, causing many of them to die from exposure. Vegetation conditions can be an important factor in drought-to-flood
events. Agriculture that has suffered during drought can be further impacted by extreme rain events. Cobon et al.
(2016) found that, in coffee plantations, alterations of extreme dry and wet periods reduce coffee bean size. Drought-
to-flood can have severe effects on crop yield, based on the intensity of the consecutive hydrological extremes, soil con-
ditions, and crop growth stage (Gao et al., 2019; McCarthy et al., 2021). Impacts on agriculture cascade further to
health, financial and societal impacts. Thereby potentially increasing the vulnerability of the population. If the drought
is followed by a flood, food availability could decrease even further and access to water, food and health care could be
reduced even more (Matano et al., 2022).

These effects are not uniform throughout society. Natural hazards do not affect people equally (Neumayer &
Pliimper, 2007) and differences in societal vulnerabilities can exacerbate the inequality of impacts of consecutive
droughts and floods. Low-income groups are more at risk of damages caused by hydrological extremes due to structural
inequalities (Andrijevic et al., 2020). Moreover, social groups are impacted differently by hazards because of the differ-
ences in access to resources for preventing, mitigating, or recovering from extreme events (Masozera et al., 2007). As a
result, groups that possess resources for adaptation against one hazard type can become less vulnerable to another con-
sequent hazard, compared with groups that do not have such means. In addition, the recovery of people and economies
after a drought ends is important. Societies that quickly bounce back or even forward will be less vulnerable to a next
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FIGURE 4 Percentage of cases per income group reporting both a certain drought impact (x-axis) and flood impact (y-axis). The four
quadrants represent the four income groups. An empty quadrant means zero % of the cases in the corresponding income group report this
combination of impacts and a full quadrant means 50% of the cases report this combination of impacts. Note that for the first column of
drought impacts “Agriculture and livestock farming” a full quadrant means 100% of the cases report this impact combination. This was done
for visualization purposes.

event than societies that recover slowly (Di Baldassarre et al., 2018). The latter are more prone to collapse when faced
with subsequent extreme events (Kuil et al., 2016; Weiss & Bradley, 2001).

The differences between groups (or countries) with different amounts of resources is also reflected in our case
review. While we do not find evidence of specific drought impacts causing an increase in a specific flood impact,
we do find evidence of income levels as a common driver to the type of impacts that are reported most in a coun-
try. Figure 4 shows that drought impacts on public water supply, energy/industry and ecosystems are more often
reported in higher-income countries (the darker colored upper right and lower right quadrants) than in lower-
income countries (the lighter colored lower left and upper left quadrants). This coincides with a higher reporting
of the flood impacts of damage to properties and road infrastructure and more reported evacuations. In contrast,
damage to agriculture as a flood impact is more often reported in lower-income countries and often coincides with
reported agricultural impacts from drought (which is generally high across all income groups). In addition,
drought impacts on human health and public safety are mostly reported in low-income countries and they often
coincide with a high frequency of reported loss of life, as well as damage to agriculture and/or livestock due to
flooding.
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4 | ADAPTATION PROCESSES AFFECTING DROUGHT-TO-FLOOD EVENTS

In this section, we discuss how human adaptation to drought can affect flood risk. Besides leading to more impacts and
increased vulnerability (Section 3), long, multiyear droughts allow ample time for drought responses, management,
and adaptation (Watts et al., 2012). Human adaptation processes can affect the catchment processes and impacts dis-
cussed in the previous sections, both positively and negatively. Responses to drought that increase flood risk are some-
times called maladaptation (Adger et al., 2005; Ward et al., 2020). Ward et al. (2020) provide an extensive review of how
drought adaptation measures can influence flood risk (and how flood adaptation measures can influence drought risk).
Here, we provide a summary of their findings and compare them with the evidence from the case review.

4.1 | Adaptation processes affecting hydrological processes

As mentioned in Section 2, increased groundwater abstraction in response to a drought can potentially reduce flooding.
Groundwater abstraction is often increased during drought, which depletes storage and potentially slows drought recov-
ery (Apurv et al., 2017; Wendt et al., 2021). This makes drought-to-flood events less likely, depending on the local geol-
ogy and the type of flood event that follows the drought. Groundwater abstraction is one of the drought adaptation
measures that was reported most often (Figure 5). It is mostly reported in higher-income (i.e., both high- and higher
middle-income) countries (Figure 6). Ward et al. (2020) discuss how increased groundwater abstraction can also
increase the risk of flooding, because it can lead to subsidence. Stopping abstraction can also lead to flooding, for exam-
ple, in the case of the foggaras (a traditional irrigation system) of Bouda in Algeria. An initial increase of groundwater
extraction through boreholes caused the foggaras to run dry and their long disuse caused a state of disrepair. When the
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FIGURE 5 Number of cases reporting a drought adaptation measure. In total 192 drought-to-flood events were included in the case
review.
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groundwater pumping through boreholes was reduced, the foggaras started flowing again. However, they could not
handle the amount of water due to their state of disrepair and this caused flooding of sebkhas and palm groves
(Boutadara et al., 2018). The opposite of groundwater abstraction, managed aquifer recharge, or the construction of
other water storage infrastructure, such as sand dams, can be beneficial for both drought and flooding (Ward
et al., 2020). The construction of new water infrastructure in response to a drought was found in several cases
(Figure 5). There are several examples of drought adaptation measures that can have a negative effect on subsequent
flooding by influencing catchment processes. Examples are reservoir operation strategies, agricultural practices and
land use change (Ward et al., 2020).

4.2 | Adaptation measures affecting impacts

Ward et al. (2020) also discuss how awareness and risk perception of flooding can be influenced by drought experience,
and how a focus on drought preparedness can decrease the preparedness for flooding. These processes can increase the
vulnerability to flooding. There are also several drought adaptation measures or coping strategies that increase exposure
to flooding, such as migration (Ward et al., 2020). Flood exposure could be increased by drought-induced migration
resulting in people living in floodplains (FGS, 2018), but migration is complex and not always directly attributable to
drought (Black et al., 2013). However, it was reported as a drought response in some instances in the case review
(Figure 5). Another example of a drought coping mechanism that results in a higher exposure to flooding is when
farmers decide to delay planting until the rains start. When the rains do start, but are extreme, they may wash away
seeds or make sowing impossible. This happened, for example, in Bundhelkhand, India (Pateriya, 2016). Similarly, the
uptake of drought resistant crops which may be vulnerable to heavy rain can worsen flood impacts (Tirado &
Cotter, 2010). In addition, food aid reducing outmigration in drought-struck and flood-prone areas (Salite &
Poskitt, 2019) is another measure that can increase exposure to flooding.

We found that in low-income countries, food aid or cash aid is the most reported adaptation measure (Figure 6).
Government and NGO support could be exhausted during the drought, meaning that limited aid would be available
during a subsequent flood (Matané et al., 2022). On the other hand, responses that aim to reduce vulnerability to
drought can also be beneficial during floods. Mavhura (2019) found, for a case in Northern Zimbabwe, that vulnerabil-
ity to flood and drought was influenced by the same drivers, such as low incomes or few savings. Measures and policies
that address these drivers, would be beneficial for reducing both flood and drought vulnerability.

Another adaptation measure frequently reported is water rationing or the prioritizing of certain users (Figure 6).
This measure is more often reported in high-income countries and semi-arid countries. The latter could be because
these places may be more experienced with dry conditions and have regulations in place for the rationing and prioritiz-
ing of water use in case of a drought. However, there is also a high percentage of cases with a humid climate reporting
this measure, which may indicate that high-income is a more important factor. This could be related to the fact that
high-income countries more often have a regulated public water supply system in place. These regulations may lead to
unequal impacts because water users may face different levels of reduction in water supply This depends on the legisla-
tion, prevailing water rights and social inequalities (Lund et al., 2018; Savelli et al., 2021). Therefore, different water
users may experience different levels of increases in vulnerability, which may influence their ability to cope with a sub-
sequent flood. These unequal effects hold for adaptation measures in general, just like for impacts. Adaptation mea-
sures benefit some groups more than others and responses that are beneficial for one group may not be for another
group (Masozera et al., 2007; Savelli et al., 2021). In California, for example, cuts in water supply did not severely affect
the agricultural sector, who used groundwater as an alternative. However, the combination of cuts in water supply and
the effects of adaptation measures taken by the agricultural sector (such as groundwater extraction) led to increased
vulnerability of ecosystems and the people that rely on them (Christian-Smith et al., 2015). Another example of
increased vulnerability of ecosystems because of human adaptation is the case of Guadiana wetlands in Spain, where
impacts of groundwater abstraction on ecosystems were found to be four times higher than the impacts of drought
(Van Loon & Van Lanen, 2013).

In general, risks are experienced differently and lead to varying adaptation strategies, depending on the manage-
ment structure (e.g., public, private, or community responses) and the type of hazard (e.g., drought or flood). In a
review on pre-disaster planning and preparedness for droughts and floods, Raikes et al. (2019) found that drought man-
agement tends to be responsive, while flood management is more risk-based and includes prevention and preparation.
In addition, some countries may have a more centralized approach to flood and drought risk management, such as the
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FIGURE 6 Percentage of cases per income group (top) and aridity group (bottom) reporting a certain drought adaptation measure. Food
and cash aid are reported more often in lower income countries while water rationing and groundwater pumping are reported more often in
higher income countries. Water rationing is reported slightly more often in semi-arid countries.

Netherlands and Poland. In other countries, such as the United States, risk management is increasingly privatized
(Raikes et al., 2019). This affects the type of adaptation measures that may be adopted.

5 | CONCLUDING REMARKS
5.1 | Main findings

This review has provided an overview of the processes and feedbacks that are important in drought-to-flood events. We
find that drought can increase subsequent flood occurrence and severity due to increased surface runoff, but it can also
decrease subsequent flooding due to storage depletion. There is little evidence as to which process may generally be
dominant. Storage depletion processes seem to be more prevalent in arid places, as well as in broader and flatter valley
catchments and places with deeper soils or more groundwater variability. This also depends on the type of flood that
occurs during or after the drought event. For high-intensity rain events and flash floods, storage depletion processes are
less important. Both increased runoff and storage depletion processes seem to mostly play a role when the drought is a
multiyear drought and when the flood occurs during the drought (e.g., the drought is not ended by the flooding).
Human activities seem to enhance both processes in human-dominated catchments, with increased storage depletion
leading to lower floods after droughts and land-surface changes leading to higher floods after drought.

In terms of impacts, there is clear evidence that drought-to-flood events cause more impacts than if the hazards
would occur on their own. Examples are breaking levee systems and drought-to-flood related water quality problems.
In general, the socio-economic processes that underlie drought-to-flood events seem to be mostly related to changes in
vulnerability. The drought may cause increases in the vulnerability of people, crops or livestock, which causes impacts
of a subsequent or co-occurring flood to be worse than from a flood event that is not preceded by a drought. This
depends on the initial vulnerability and how quickly communities are able to recover. Impacts and changing vulnera-
bility are not the same for everyone. Which process is dominant where, when, and for whom, is strongly dependent on
the context of the drought-to-flood event. Characteristics like climate, geology, land use, and the socio-economic, cul-
tural, and political context determine the impacts and responses and therefore the interactions between drought and
flood impacts.
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The case review has shown that there is a huge diversity in the type of adaptation measures that are implemented.
Several adaptation measures are focused on reducing the overall vulnerability of the population, which makes them
beneficial for both flood and drought risk management. In addition, there are several measures that focus on storing
excess water, which can reduce both drought and flood risk (e.g., managed aquifer recharge, sand, and earth dams).
Groundwater abstraction (reported most often in higher income and arid places) can have a positive effect on flood risk,
by increasing storage space, but can also increase subsidence. Finally, the awareness or memory of flood risk may
decline due to a drought, which can negatively affect flood risk. Adaptation processes in response to a drought can
affect socio-economic processes in several ways, changing the risk perception, exposure and vulnerability to flooding.

5.2 | Outlook

We argue that more research is needed on drought-to-flood events. In particular, the catchment characteristics and the
socio-economic, cultural, and political context that determine which drought-to-flood processes and feedbacks are
important should be further investigated. In terms of hydrological processes, it would be interesting to further explore
when and where storage depletion and runoff processes are dominant and how human interventions affect this. There
is still a lot unknown about processes related to impacts. Further research is needed into whether certain drought
impacts make certain flood impacts more likely, or into whether there are common drivers of these impacts and when
and where these occur. In addition, changes in vulnerability related to drought-to-flood events require further investiga-
tion (De Ruiter & Van Loon, 2022). This review does not provide much evidence of which adaptation measures are
taken when and where and how this affects flood risk. Characteristics of the social and hydrological system that influ-
ence the feasibility and effectiveness of adaptation measures, as well as their influence on flood risk could be further
investigated. In addition, adaptation measures may be beneficial for some while they are harmful to others. When and
where this is the case is something that could be addressed in future research.

Methods that can increase our understanding of the specific hydrological and social processes happening during
drought-to-flood events include detailed case study analyses, as suggested by Mostert (2018). Qualitative case studies
can also be compared to find generalizable results, especially if and when a larger body of case study analyses becomes
available, for example using qualitative comparative analysis (Srinivasan et al., 2012). System characteristics (both
social and hydrological) that lead to certain processes being dominant, or certain adaptation measures being feasible or
not, can be investigated using large-scale comparative studies. This approach has already been applied in hydrological
studies to, for example, investigate which characteristics influence the seasonality and magnitude of maximum annual
flows (Berghuijs et al., 2016). These qualitative and quantitative case studies can be combined to both create new
insights and report the findings to different audiences (e.g., Grainger et al., 2016). Finally, management alternatives can
be explored using models that incorporate both the hydrological and social processes (e.g., Mazzoleni et al., 2021).
Using these models, scenarios can be developed and explored. This can be done through the exploration of adaptation
pathways (Werners et al., 2021), where not only the effects of management and adaptation choices on drought risk are
taken into account, but also the effects on flood risk.

Improving our knowledge on drought-to-flood events and their interactions will help in designing more robust mea-
sures that do not have adverse effects on the opposite risk, now or in the future. The necessity for the analysis of
system-wide, short-term and long-term implications is already recognized for both drought and flood risk management
separately. Here, we argue that this should also be expanded to the study and management of drought and flood risk
together. Identifying drought-to-flood processes and their characteristics would help in the design of robust measures
that hold under future risk scenarios. In addition, it would help identify opportunities for reducing both drought and
flood risk at the same time, through the reduction of overall vulnerability or by implementing measures such as man-
aged aquifer recharge.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.
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