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Explainable and Effective Process Remaining
Time Prediction Using Feature-informed

Cascade Prediction Model
Na Guo, Cong Liu, Caihong Li, Qingtian Zeng, Chun Ouyang, Qingzhi Liu, and Xixi Lu

Abstract—Predictive Process Monitoring aims to predict the future information of ongoing process executions by leveraging machine
and deep learning techniques. One of the tasks is known as remaining time prediction, which focuses on predicting the remaining time
of ongoing cases. Accurate remaining time prediction can be valuable and important for improving business operations or taking timely
interventions to prevent delays. For predicting the remaining time, existing work has used deep learning techniques to achieve high
prediction accuracy. However, most of these techniques tend to learn very complex models that are difficult to explain. Systematic
feature selection approaches may help improve both the prediction accuracy and the explainability of the model. In this paper, we
introduce a feature-informed cascade prediction framework to predict the remaining time. Specifically, we first propose an approach
that builds a tree of features by systematically estimating their effects on the remaining time prediction. Next, we use the tree to either
automatically select an optimal combination of features or to guide users in this selection process. Each selected feature is correlated
with its prediction results in our Feature-informed Cascade Prediction Model (FCPM) for explainability. The proposed approach has
been implemented and is made publicly available. Using eight public real-life event logs, the proposed approach is compared to the
state-of-the-art approaches in terms of prediction accuracy. In addition, it is demonstrated that our approach visualizes the impact of
each input feature in the prediction of individual cases, producing explanations of the prediction results.

Index Terms—Predictive Process Monitoring, Remaining Time Prediction, Feature Selection, Cascade Prediction Model, LSTM.

✦

1 INTRODUCTION

W Ith the rapid digital transformation of enterprises,
high-quality event data have been stored in various

enterprise information systems. Process mining [1], [2] is
a set of techniques that can extract valuable information
from such historical event data, which can help enterprises
raise process efficiency and improve their competitiveness
of enterprises. Classical process mining techniques aim to
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uncover knowledge from existing event data by discovering
process models, checking conformance against normative
models, and improving actual processes [3]. To enable pre-
ventive actions and avoid risks promptly, predictive process
monitoring techniques have been proposed [4].

Predictive process monitoring focuses on predicting fu-
ture information on ongoing cases. Existing prediction tasks
include the prediction of remaining time, process outcome,
next activity, next event duration, suffix, etc. Predicting
the remaining time of a running case can help users take
early actions and adjust the subsequent execution steps to
avoid the risk caused by possible delay. Traditional process-
model-based prediction approaches are difficult to ensure
high prediction accuracy. Therefore, many approaches have
been proposed using machine learning and deep learning
[5], [6]. Most of these approaches focus on encoding the
activities or prefixes of cases to train the deep models [7].
Compared to classical approaches, these solutions improved
the prediction accuracy to a large extent [8]. Some other
research exploited the use or engineering of additional fea-
tures (e.g., resources, accumulated duration, data attributes),
but mainly for clustering traces [9]. To the best of our
knowledge, little research has focused on investigating the
engineering and selection of process features and their effect
on the accuracy of remaining time prediction. In addition,
deep models are known to be complex and difficult to
explain. Therefore, using a large number of features tends
to worsen this unexplainable issue. Systematic feature selec-
tion may help improve both the accuracy and explainability
of the deep model prediction results [10].

In this paper, we propose a feature-informed cascade
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prediction framework for remaining time prediction. The
main contributions of the paper include:

• a novel feature selection strategy is proposed to
support key features extraction in an automatic way;
and

• a feature-informed cascade prediction model is in-
troduced to correlate the effects between each input
feature and its prediction results for individual cases.

Note that the framework is general and can be instan-
tiated by any existing deep learning models. Without loss
of generality, this paper uses LightGBM [11] to instantiate
the prediction model in the feature selection strategy to
extract effective features as the input of the feature-informed
cascade prediction model. Then, the Long Short-Term Mem-
ory (LSTM) network [12] is used to implement the feature-
informed cascade prediction model as its wide applicability
in various application settings.

The rest of this paper is organized as follows. Section 2
presents a review of the related work. Section 3 introduces
the background knowledge. Section 4 details the feature-
informed cascade prediction framework. Section 5 evaluates
the effectiveness and feasibility of the proposed approach
using eight real-life event logs. Section 6 demonstrates a case
study to analyze and visualize each step of our approach.
Section 7 summarizes this paper and presents further re-
search directions.

2 RELATED WORK

This section reviews existing work on predictive process
monitoring, feature selection, and explainable prediction.

2.1 Predictive Process Monitoring
Predictive process monitoring focuses on learning predic-
tion models to make accurate predictions for ongoing cases
concerning future execution steps, remaining time, outcome,
and resource load [13], [14]. Existing predictive process
monitoring techniques can be divided into two categories,
i.e., process-aware approaches and non-process-aware ones.

Process-aware approaches exploit an explicit representa-
tion of a process model to make predictions [15]. van der
Aalst et al. [16] propose a remaining time prediction method
with a marked transition system as the prediction model
and develop the support tool FSM analyzer. To improve
the expressiveness of discovered models, Rogge-Solti et al.
[17] use stochastic Petri nets with generally distributed
transitions as a business process prediction model to pre-
dict the remaining time of process instances. On the one
hand, these process-aware prediction approaches may be
relatively easier to interpret and understand as an explicit
model exists. On the other hand, the prediction results may
be less accurate, because the quality of the process model
depends on the underlying process discovery algorithm,
and the existing discovery techniques may produce low-
quality models for processes with complex constructs, e.g.,
long-term dependency and inclusive choice [18].

Non-process-aware approaches typically use machine
learning techniques for learning models and making pre-
dictions. Leontjeva et al. [19] encode the prefix trace us-
ing Hidden Markov Models, and construct an outcome

prediction classifier using a random forest (RF) model.
By comparing with decision tree, support vector machines
(SVM) and generalized boosted regression models, this ap-
proach achieves better accuracy. To solve the imbalanced
classification problem in the next activity prediction, Kim
et al. [20] consider five classifiers that often have been
adopted, i.e., Artificial Neural Network, Logistic Regression,
Gaussian Naive Bayes, RF and SVM to evaluate different
resampling approaches, and proposed a novel classification
performance measure. This demonstrated the advantages of
machine learning technology in a small sample.

With the improvement of data quality and quantity in
event logs, deep learning techniques have also been widely
used. Tax et al. [21] apply LSTM neural network to business
process prediction, and add time attributes, i.e., date and
week extracted from timestamp information, as input. Com-
pared with process-aware approaches, the deep learning
techniques significantly improve the prediction accuracy [8].
For instance, Bukhsh et al. [22] apply the Transformer model
to the remaining time prediction task, and use activity and
time attributes as input, showing the advantages of the
advanced model. Ni et al. [23] adopt the Encoder-Decoder
model to encode activities and obtain effective context re-
lations. Camargo et al. [24] used LSTM neural network to
build a prediction model, added resource attribute to the
input, and adopted the encoding method of word vector.
More recently, Pegoraro et al. [25] encoded text attributes as
one of the inputs, which further improved the accuracy of
prediction. Effective attribute encoding helps capture con-
text relationships to improve prediction accuracy. However,
existing encoding approaches may mix multiple attributes,
which leads to a negative influence on interpretation.

2.2 Feature Selection

Feature selection is a data preprocessing step in machine
learning. The objectives of feature selection include building
simpler and more comprehensible models, improving data-
mining performance, and preparing clean data [26].

Feature selection approaches can be categorized as Filter-
based, Embedded, and Wrapper-based [27]. More specifi-
cally, filter-based feature selection assigns important values
by calculating the correlation between uni-variate or multi-
variable and target. In this area, Bommert et al. review dif-
ferent filter approaches to compare their performance con-
cerning both run time and predictive accuracy in [28]. Em-
bedded feature selection embeds feature selection approach
in the learning model, and the most typical approaches
are the boosting algorithm based on the decision tree in
[29].Wrapper-based approaches select feature combination
by adding/deleting features from the learning model. For-
ward/backward sequential selection, and recursive feature
elimination with cross-validation are discussed as typical
Wrapper-based implementations in [30].

Feature selection approaches can be applied to various
fields requiring data analysis. Zandkarimi et al. [31] propose
a generic framework for trace clustering in process mining,
taking the feature selection as a key step for trace clustering
to avoid problems with overfitting, precision issues, and
extra processing costs. Medeiros et al. [32] propose process
mining based on clustering, adopting the frequency-based
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method to select more refined features for partition process
instances. Although feature selection has been widely used
in the process trace clustering area, less attention has been
given to other process mining applications.

2.3 Explainable Prediction

Compared to process-aware approaches, deep-learning-
based non-process-aware approaches attract much more
attention and are more widely used because of their better
prediction accuracy and stability. Most of these approaches
are not explainable by design and approaches with bet-
ter explainability are needed. Sindhgatta et al. [10] apply
the machine learning explainable technology LIME to the
prediction model constructed by XGBoost, and provided
a certain explanation for the prediction results. More re-
cently, they propose an interpretable attention-based LSTM
model for process behaviour prediction in [33]. Galanti et
al. use the game theory of Shapley Values to obtain robust
explanations for business process prediction in [34]. Hsieh
et al. [35] design an extended DiCE counterfactual method,
which supports the derivation of counterfactual conditions
with milestone perception at different stages of the trace to
promote explainability. Existing approaches tend to explain
the prediction results through post hoc interpretation and
visualization from a holistic view. However, the correlation
between each input feature and its prediction results is
unclear at the case level.

3 BACKGROUND KNOWLEDGE

In this section, we formalize preliminary concepts that are
required to describe our approach, such as event logs,
process remaining time prediction, and feature encoding.

3.1 Event Logs

An event log is a set of traces where each trace records
one execution of the underlying business process. Each trace
is composed of chronologically ordered events where each
event refers to the execution of an activity. Each activity
represents a step in a business process.
Definition 1. (Event, Attribute) Let E be the event universe,

i.e., the set of all event identifiers. Events may be charac-
terized by various attributes. Let AN be a set of attribute
names. For any e ∈ E and attribute n ∈ AN : #n(e)
represents the value of attribute n for event e.

Let UA be the activity universe, #act(e) ∈ UA is the
activity name associated to event e.
Definition 2. (Trace, Case, and Event log) A trace is a finite

sequence of events, i.e., δ ∈ E∗, such that each event
appears only once and all events are ordered by the
timestamp. Let C be the case universe. For any c ∈ C and
attribute name n ∈ AN : #n(c) is the value of attribute
n for case c. Each case has a mandatory attribute, i.e.,
trace, such that #trace(c) ∈ E∗. An event log L is a set
of events such that each event appears at most once in
the entire log.

Definition 3. (Trace prefix) tpk(δ) is a trace prefix of δ, i.e.,
the sub-sequence consisting of the first k elements of δ.

Table 1 shows a fragment of the public Helpdesk Log1,
where one case with five events is given. Each event has a
unique id and a couple of attributes. For example, event e4
is an instance of activity “Resolve ticket” that occurred on
October 25th at 11:54. This event is executed by Peter, and
its seriousness is Level 1. Its trace prefix is ⟨e1, e2, e3⟩.

3.2 Business Process Remaining Time Prediction

The remaining time prediction aims to answer business
questions like “how long will my business process take to
complete?”. Predicting the remaining time helps to ensure
that the running instance can finish within the required time
constraints and enables effective actions to be taken in time
without negatively affecting the subsequent process.

The input of the remaining time prediction task is a set
of trace prefixes or the last n events, and the output is the
required time from the current time to the completion of
the instance. Event attributes that are selected as the input
of prediction model are called features. If the addition of a
feature improves the prediction accuracy, it is defined as a
positive feature, and vice versa, a negative feature.

3.3 Feature Encoding

Feature encoding aims to transform categorical feature val-
ues to an acceptable data type in model, and the encoding
needs to represent the context relationship with high quality.

Label encoding converts each category into an integer
value, and it is difficult to effectively distinguish different
categories if the number of categories is large when applied
to neural network models that cannot support category
attributes, e.g., LSTM [21] and Transformer [22]. One-hot
encoding applies a binary vector composed of 0 and 1 to
represent the feature. The vector dimension refers to the
categorical number of the feature, and the position in the
vector is set to 1 if the category relates to the feature value.
This approach is suitable for a limited number of categories,
but it cannot represent the relationship between activities.
Word2Vector is a word embedding technology in natural
language processing (NLP), including two approaches known
as Continuous Bag-of-Words (CBoW) and Skip-gram. CBoW
uses the context corpus to train the current word, and
Skip-gram uses the current word to train the context.
Word2Vector considers the relationship between adjacent
activities to represent the relevance between activities.

4 FEATURE-INFORMED CASCADE PREDICTION
FRAMEWORK

This section first gives an overview of the framework and
then explains in detail the feature-informed cascade predic-
tion framework.

4.1 An Overview of the Framework

Fig. 1 shows an overview of the proposed feature-informed
cascade prediction framework that consists of the following
three steps:

1. https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-
4c63b3e9d5bb
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TABLE 1
A Fragment of the Helpdesk Log

Case id Event id Complete Timestamp Activity Resource Seriousness ...

1

e1 2012/10/9 14:50 Assign seriousness Peter Level 1 ...
e2 2012/10/9 14:51 Take in charge ticket Peter Level 1 ...
e3 2012/10/12 15:02 Take in charge ticket Mike Level 1 ...
e4 2012/10/25 11:54 Resolve ticket Peter Level 1 ...
e5 2012/11/9 12:54 Closed Niki Level 1 ...

... ... ... ... ... ... ...

Step 3: Feature-informed Cascade Prediction Model

Step 1: Feature Selection

Hidden Sub-layer 1

Hidden Sub-layer 2

1.1 Priority-

based Feature 

Selection

Positive Features

3.1 Constructing 

and Training of 

Prediction Model

3.2 Prediction

Layer 1 Layer 2

Visualization of Prediction Results

Incremental Feature Tree

1.2 Incremental 

Feature Tree 

Construction

Selected Features
2. Feature Encoding

Feature-informed Cascade Prediction Model

Dat Set

Event Log

Step 2: Feature Encoding

Layer 1

Layer 2

Fig. 1. An Approach Overview.

- Step 1: Feature Selection (Section 4.2). By taking an
event log as input, an effective feature combination
is selected based on the following components:

1.1 Priority-based Feature Selection. Features
are deleted and added iteratively based on
whether they have a positive or negative im-
pact on the prediction results, namely positive
and negative features, respectively. In this step,
positive features will be given higher priority
and preserved in the selected feature set.

1.2 Incremental Feature Tree Construction. Based
on the selected feature set, an incremental fea-
ture tree is constructed, where each node is a
feature. In this feature tree, the path from the
root to a node defines a sequence of features
with their corresponding prediction results. A
sequence of features is called a feature combina-
tion. Based on the constructed feature tree, the
optimal feature combination with acceptable
prediction results will be selected.

- Step 2: Feature Encoding (Section 4.3). By taking

as input an event log and its selected features, word
vector encoding is applied for feature encoding.

- Step 3: Cascade Prediction Model Construction
(Section 4.4). Encoded features are used as the input
to construct the prediction model and make predic-
tions as follows:

3.1 Prediction Model Construction. Taking an
event log and its selected features as input, the
feature-informed cascade prediction model is
constructed and trained by adding each fea-
ture in a sequential manner. Each input feature
refers to a dedicated layer including an input
sub-layer, a hidden sub-layer, and an output
sub-layer. In addition, the input of the first
layer has only one feature, and the input of
other layers includes a feature and the results
of its last layer.

3.2 Prediction. Based on the trained model, the
output changes of each layer are observed
and analyzed to explain the rationality and
credibility of the prediction results.
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4.2 Feature Selection Strategy

Effective feature selection is important to construct high-
quality prediction models. An event log may contain vari-
ous features and it is challenging to select effective features.
As some features may have a high influence on predicting
remaining time, it is important to provide a systematic
support for selecting them.

In this stage, we examine the importance of each feature
by deleting and adding it to a prediction model. The fea-
ture selection strategy aims to evaluate the importance of
features and the effectiveness of feature combination, and
therefore, the proposed strategy has an implicit assumption,
i.e., the importance evaluation of features is independent
of the underlying prediction model. We use a lightweight
model i.e., decision-tree-based boosting algorithm as in-
troduced in [29]. Specifically, the decision tree selects the
feature with the largest information gain as the split node,
and the information gain indicates the degree of informa-
tion uncertainty reduction under certain conditions. The
information gain of features can be used to quantify the
importance of features. In this stage, label encoding is used
to encode the categorical features. To evaluate the accuracy
of the feature selection strategy, the Mean Absolute Error
(MAE) is applied and computed as follows.

MAE =
1

n

n∑
i=1

|y − ŷ| (1)

As shown in Eq. (1), n represents the number of samples,
y represents the true value and ŷ is the prediction value. A
smaller MAE value indicates a higher prediction accuracy.

Two sequential steps of feature selection strategy are
introduced as follows.

First, the priority-based feature selection strategy is in-
troduced. Its main aim is to filter out features that have
negative effects on the prediction accuracy. Moreover, we
consider the scenario where two or more features may
jointly have a positive impact on the prediction results, but
each single feature has a negative or a negligible impact.
To handle such cases, a backward elimination feature se-
lection strategy is used to avoid damaging the combination
scenario among features. If the input feature set contains
two or more negative features, the deletion of a negative
feature may show a temporary positive impact. Therefore,
multiple rounds of feature selection are required. To control
the number of rounds of feature selection and ensure that
the key feature is not deleted, priority is set for every feature.
The activity feature is initialized as the highest priority and
priorities of other features are initialized to zero.

Let F = {f1, ..., fn} be the set of selected features
and it is initialized by taking all attributes in the input
event log into account. The MAE differences as new feature
importance value between two prediction models with and
without feature fi ∈ F is computed below.

IMAE(fi) = MAE(F )−MAE(F − {fi}) (2)

As shown in Eq. (2), MAE(F ) represents the MAE value
using feature set F , and MAE(F−{fi}) represents the MAE
value without feature fi.

The feature importance set (denoted as Idt) is ranked
by the information gain computed using decision tree al-
gorithm. Considering that the information gain of features
with multiple results may be large, but they have little
contribution to prediction. Therefore, Idt is only treated as
the initial reference metric. In each iteration, feature fi ∈ F
is removed from F if fi has the lowest priority and the
lowest importance value in Idt. Then IMAE (fi) is computed
using Eq. (2). If IMAE (fi) < 0, i.e., fi is a negative feature,
the removal is kept. Otherwise, the removal of fi is canceled
and the priority fi is boosted. Until ∀fi ∈ F , IMAE (fi) > 0,
the best feature set F is obtained.

Table 2 gives an example to explain the first step such
that No. represents the sequence number of the strategy
iteration, and MAE represents the obtained results of feature
combinations. Given a combination including features 1, 2,
3, 4, 5, 6, and their initial importance is ranked as 1, 3, 6, 4,
5, 2 by Idt in decreasing order. As can be seen from No.1-3,
the MAE increases after deleting feature 2, indicating that it
is temporarily a positive feature, and therefore, the deletion
operation is cancelled. From No.3-4, MAE decreases after
deleting feature 5, which indicates it is a negative feature.
Based on No.i and No.i+1, the MAE decreases after deleting
feature 2 indicating that it is actually a negative feature, but
temporarily shows a positive impact due to feature 5. After
multiple rounds of iterative operations, features 1, 4, 6, 3 are
finally labeled as positive features.

TABLE 2
An Example of the Priority-based Feature Selection Strategy

No. Feature Combination MAE
1 1, 2, 3, 4, 5, 6 3.2
2 1, 3, 4, 5, 6 3.3
3 1, 3, 4, 5, 6, 2 3.2
4 1, 3, 4, 6, 2 3.0
... ... ...
i 1, 2, 4, 6, 3 3.0

i + 1 1, 4, 6, 3 2.9
... ... ...
N 1, 4, 6, 3 2.9

Second, an incremental feature tree is built to visualize
the influence of each positive feature on the prediction,
which aims to produce the main positive features by ex-
cluding features that have a slight positive impact on the
prediction results. The algorithm starts from the primary
feature Activity and uses it as the root node. The tree
expands by adding the next feature fi with the highest
impact IMAE (fi), iteratively. Each node includes a MAE
value that is computed by the training set with features
from the root to the current node. After several rounds
of iteration, the best feature combination from the root to
minimum MAE node in the tree is obtained. On the path of
the best feature combination, if the MAE difference between
a node and the last node is less than the given threshold,
features of the node and its child nodes will be ignored to
prevent over-fitting.

Fig. 2 is an incremental feature tree constructed based
on the selected feature combination in Table 2. First, the
primary feature 1 is used as the root node, and then other
features are added according to the strategy. It can be seen
that 1, 4, 3, 6 is the best feature combination. If the threshold
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is set to 0.2, the three positive features with slight impact,
i.e., features 4, 3 and 6, are discarded.

Fig. 2. An Example of the Incremental Feature Tree.

The constructed tree provides additional support, users
are capable of balancing between prediction accuracy and
efficiency by selecting a dedicated feature set based on the
incremental feature tree. As reference, incremental feature
tree can provide users with valuable information: (1) feature
importance ranking; (2) the contribution of each feature to
prediction; (3) the combination relationship between fea-
tures, as shown in Fig. 2, the prediction error increases by
adding feature 6 or 3 to feature combination 1, 4, while
adding them together can reduce the error. Therefore, it indi-
cates that features 6 and 3 have a combination relationship.

4.3 Feature Encoding

The encoding approaches mainly come from the word
embedding technology in NLP, including Word2Vector,
FastText, LSA, Glove, ELMO, GPT and BERT [36], [37].
Word2Vector and FastText are based on local corpus with
high optimization efficiency. LSA uses global corpus with
high computational complexity. Glove combines the ad-
vantages of LSA and Word2Vector. ELMO, GPT and BERT
adopt dynamic features to solve the polysemy problem.
In business process predictive monitoring application, the
number of categorical features is not as large as that in the
NLP area, and therefore, Word2Vector is selected from the
efficiency and effectiveness point of view.

Predicting the next activity through the prefix of a trace
is similar to using context corpus to train the current word,
and therefore, the CBoW is used to learn the embedding
matrix of the activity feature. Each row of the embedded
matrix is a real number vector representing an activity.
The activity encoding model is shown in Fig. 3 where the
input is the binary vector of the last N activities. E.g.,
N = 3, the last three activities are [a1, a2, a4], the binary
vector is [1, 1, 0, 1, ..., 0, 0]. The number of the hidden layer
units is equal to the vector dimension, and the output is
the next activity represented by the One-hot vector. The
number of hidden layer units can be tuned for better vector
representation. Normally, the higher the prediction accuracy
of the CBoW is, the stronger the representation ability of the
activity vector is.

For other categorical features whose context maybe not
clear, the random vector encoding approach is applied.
In this approach, a fixed dimension real number vector

1 1 0 0

0 0 1 0

m1 mM

Input Layer

Hidden Layer

Output Layer

x1             x2                                      xN-1          xN 

y1             y2                                      yN-1          yN 

Embedding Matrix N×M

Fig. 3. Activity Encoding Model.

is generated randomly based on the number of feature
categories. Note that numerical attributes are handled using
a standardized approach.

4.4 Feature-informed Cascade Prediction Model
Deep Neural network (DNN) has been widely used for
remaining time prediction. The neural network is composed
of the weight, bias, and activation function in neural units.
In fact, the influence of each input feature on the prediction
results can be explained by the weight of each network cell.
However, if the neural network is extremely complex, e.g.,
millions of parameters are involved, it is difficult to explain
how different input features affect the prediction results.
To cope with this challenge, a Feature-informed Cascade
Prediction Model (FCPM), is proposed by taking as input
the selected feature combination.

The architecture of the proposed FCPM is depicted in
Fig. 4. For example, the selected features include “Activity”,
“Duration”, and “Resource”, and they are ordered descend-
ing by their importance. As can be seen in Fig. 4, for layer 1,
the model takes prefixes of the feature “Activity” as input,
and returns the predicted remaining time as the output of
layer 1, after the computation of the hidden sub-layer 1.
The embedding layer is designed exclusively for categorical
features using the approach in Section 4.3. The hidden layer
includes a LSTM layer and a Fully Connection (FC) layer.
As for layer 2, the model takes as input the input sub-layer
2 that concatenates the result of the output of layer 1 and
the next feature prefixes, which is the “Duration” feature in
this example. The prediction result is obtained and given in
the output sub-layer 2. For layer 3, its input concatenates the
result of the output sub-layer 2 and prefixes of “Resource”
feature, and the final prediction result is given in the output
sub-layer 3.

Note that the hidden sub-layer in the FCPM can be
implemented by any existing network unit. Without loss
of generality, in this paper, the hidden sub-layer in the
FCPM is implemented based on the LSTM network which
is a special type with excellent expression performance of
Recurrent Neural Network (RNN) [12], [38]. LSTM network
is known as one of the most widely used deep learning
solutions for predictive process monitoring because it is
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Fig. 4. Architecture of FCPM.

capable of solving the long-term dependency problem of
RNN by remembering all prefix information and is good at
dealing with time series with long intervals [8].

LSTM has long-term memory depending on its cell
structure. Three types of gates, i.e., input gate, forgetting
gate, and output gate are included. The value range of the
gate output is [0, 1], such that 0 represents the complete
discarding of information, and 1 represents the complete
retention of information. Eqs. (3)-(8) show the calculated
process of LSTM cell. σ represents the sigmoid layer, and
tanh is the hyperbolic tangent layer. xt, ht, and Ct represent
input, output and cell state in time t, respectively. ht−1

and Ct−1 represent output and cell state in last time t − 1.
Each time sequence input these cells calculated prediction
results by the gating information. it output by input gate
determines how much information in xt is retained to Ct. ft
output by forgetting gate determines how much information
in Ct−1 is saved to Ct. it and ft as weight calculated Ct

by Ct−1 and the state information C̃t. ot output by output
gate determines how much information in Ct is output to
ht. And the weight matrices Wfh, Wih, WCh, Woh, Wfx,
Wix, WCx, Wox and bias terms bf , bi, bC , bo are 12 sets of
parameters for training.

it = σ(Wihht−1 +Wixxt + bi) (3)

fi = σ(Wfhht−1 +Wfxxt + bf ) (4)

C̃t = tanh(WChht−1 +WCxxt + bC) (5)

Ct = ftCt−1 + itC̃t (6)

ot = σ(Wohht−1 +Woxxt + bo) (7)

ht = Ottanh(Ct) (8)

As the FCPM has multiple outputs, the back-propagation
of all output errors may be difficult to converge during the
model training process. Therefore, in the model training
process, each batch is trained layer by layer, i.e., layer 1
is trained first, the loss between the predicted value of
output sub-layer 1 and the real value is calculated, and the
network parameters are adjusted by backpropagation. Then,
parameters of the layer 1 are fixed before layer 2 is trained.
Next, the loss of output sub-layer 2 is computed. The whole
procedure is repeated until all layers are trained.

5 EXPERIMENTAL EVALUATION

This section shows the experimental setup and results
analysis using eight real-life event logs. Our approach is
implemented in Python 3.7. The source code of our imple-
mentation and all experimental results are available2. The
computer configuration used is: Windows11, AMD Ryzen
7 5800H with Radeon Graphics @ 3.20 GHz processor and
16.00GB memory.

5.1 Experimental Settings
Feature selection: In the feature selection stage, seven nu-
merical attributes, i.e., duration, allDuration, year, month,
day, week, and hour, are generated using the timestamp.
Note that duration refers to the time from the completion
of the last event to the completion of the current event.
And allDuration refers to the time from the beginning of the
case to the completion of the current event. The LightGBM
[11], one of the most efficient decision tree based boosting
algorithms that can ensure high accuracy, is used to build
the prediction model for estimating the impact of features.

Feature encoding: The embedding size of CBoW sets
over ranges {4,8,16,32,64} [39]. The dimension of encoding
is equal to the embedding size. Based on the experiment
results, it is determined that the activity encoding dimension
for the BPIC2015 series logs is 32, while for other logs, it is
16. By referring to the CBoW activity encoding dimension,
the dimension of random vector encoding is set to encode
other categorical features.

Data set partition and trace prefix selection: To ensure
that traces of the training set and test set have similar
time distribution, the event log is divided into five parts
according to the end time sequence of the trace. For each
part, one fifth of the traces that complete the earliest are
selected as the test set, and the rest of the traces are ran-
domly divided into the training set and the validation set
according to the ratio of 4:1. Different prediction models
adopt trace prefixes of different lengths. More specifically,
the LightGBM algorithm needs to set the last event of the
prefix as input in the feature selection stage while the LSTM
neural network uses the entire trace prefix as input. In
addition, CBoW needs to set a fixed prefix length. According
to the accuracy of the next activity prediction, this paper
determines that the prefix length of the activity encoding
model input is 3 among the prefix length range of {1,3,5}.

Feature-informed Cascade Prediction Model: We use
LSTM to implement the model. The hyperparameters of

2. https://github.com/gn874682003/Explainable-Prediction-
Framework
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the feature-informed cascade prediction model are tuned
using the following ranges: (1) the number of hidden layer
nodes: {4,8,16,32,64}; (2) batch size: {20,50,100,150}; (3)
learning rate: {10−2,10−3,10−4}; (4) the number of train-
ing epoch: {100,200,300,400,500}; and (5) optimization algo-
rithm: Adam.

5.2 Data set

In our experiments, eight real-life event logs from 4TU
Research Center are used as data sets to demonstrate the
effectiveness of the proposed approach.

• Helpdesk Log3 involves the ticket management pro-
cess of the help desk in an Italian software company.

• BPIC2012 Log4 is the loan application process of a
financial institution.

• BPIC2015 series Logs5 contains five event logs pro-
vided by five Dutch municipal governments. The
data includes all building permit applications over
a period of four years.

• Production Log6 comes from the data of product
production process in a production workshop.

Table 3 shows a statistical overview of eight event logs,
where the number of numerical attributes includes with
seven attributes generated using the timestamp. These event
logs cover business processes with different data scales and
complexity.

5.3 Experimental Results of Feature Selection Strategy

To demonstrate the effectiveness of the proposed feature
selection strategy, four different feature selection approaches
are set for comparison. The experimental results are shown
in Table 4 such that (1) Activity indicates only activity
attribute is selected; (2) #All indicates all attributes are
selected; (3) FeaNum indicates the number of features; (4)
FeaSel indicates features are selected by the proposed fea-
ture selection strategy; (5) NullImp indicates features are
selected by a corrected feature importance measure as intro-
duced in [40] where the feature importance is not affected by
features with more results; and (6) RFECV indicates features
are obtained by the recursive feature elimination with cross-
validation in [30], which evaluates the feature importance in
different data distributions. All the above feature selection
strategies are implemented in the LightGBM model. Table 5
shows that all FeaSel features are listed in descending order
in terms of importance, and common features are bolded in
each log of BPIC2015 series.

The experimental results are described as follows. Com-
pared to Activity, the prediction error of #All is much lower
for most of the cases. Exceptions are the BPIC2012 and
BPIC2015 4. This can be attributed to the fact that some
features have a negative impact on prediction tasks. After

3. https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-
4c63b3e9d5bb

4. https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-
75976070e91f

5. https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-
305d167a0ec1

6. https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-
ee76ea412399

filtering the negative and slightly positive features, MAE
values of FeaSel are lower than #All excerpt BPIC2015 2,
BPIC2015 3 and BPIC2015 5 logs. For BPIC2015 series logs,
the number of traces is close to their variant number, i.e.,
the underlying process varies a lot during execution, in-
dicating that there is a deviation in the data distribution.
For these business processes and their corresponding event
logs, choosing a reasonable feature selection is extremely
challenging. According to Table 4, the results of NullImp
and RFECV are not convincing. RFECV aims to select
features with high importance while the NullImp focuses
on eliminating features that may lead to over-fitting. Both
approaches do not fully consider the influence of the fea-
ture combination. According to the FeaSel features of the
BPIC2015 series logs in Table 5, although the data distribu-
tion of these logs varies a lot, the top-ranked features that
are bolded in Table 5 are consistent, which indicates that the
proposed strategy is reasonable and stable.

Based on the testing results, we can conclude that the
proposed strategy is able to find a balance between the
prediction accuracy and the number of features for further
prediction. In addition, another contribution is to provide
users with valuable insights through incremental feature
trees. Users can combine feature selection results with do-
main knowledge to optimize feature combinations.

5.4 Experimental Results of FCPM
In this experiment, we aim to show the effectiveness of
selected features, encoding approach and feature-informed
cascade prediction model for process remaining time pre-
diction. The experimental settings and results are shown in
Table 6 such that (1) LabAct indicates the model takes the
activity feature with label encoding as input; (2) OneHotAct
indicates the model takes the activity feature with One-
hot encoding as input; (3) CBoWAct indicates the model
takes the activity feature with CBoW encoding as input;
(4) LabFeaSel indicates the model takes a one-dimensional
vector concatenated by features including in FeaSel as input,
where categorical features are encoded by label encoding;
(5) EmbFeaSel indicates the model takes a one-dimensional
vector concatenated by features including in FeaSel as input,
where the activity feature encoded by CBoW and other cat-
egorical features are encoded by random vector encoding;
and (6) FCPM is the proposed approach. All the above
prediction models are implemented by LSTM.

In general, the prediction results of CBoWAct are better
than those of LabAct and OneHotAct, meaning that the
CBoW encoding technique can capture the inter-relations
among activities. In addition, MAE values of LabFeaSel
are smaller than those of LabAct, indicating that the fea-
tures selected by the proposed strategy can reduce the
prediction error. However, for BPIC2015 series logs, MAE
values of EmbFeaSel are larger than CBoWAct. One possible
explanation is that all inputs are concatenated into a one-
dimensional vector, and the prediction model cannot fully
capture and utilize the information. The FCPM achieved the
best prediction results in all logs, showing that FCPM can
effectively use each feature.

By comparing our approach against state-of-the-art ap-
proaches, the results and training time are shown in Ta-
ble 7. Specifically, the following approaches are used: (1)
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TABLE 3
Statistics of Event Logs

Data Set Cases Events Activities Variants Categorical Numerical Mean Case Mean Case
Attributes Attributes Lengths Duration

Helpdesk 4580 21348 14 226 11 7 5 40.859
BPIC2012 13087 262200 36 4366 2 8 20 8.6113

BPIC2015 1 1199 52217 398 1170 16 7 44 95.716
BPIC2015 2 832 44354 410 828 16 7 53 159.981
BPIC2015 3 1409 59681 383 1349 16 7 42 62.266
BPIC2015 4 1053 47293 356 1049 16 7 45 116.871
BPIC2015 5 1156 59083 389 1153 16 7 51 98.362
Production 225 4543 55 221 10 7 20 20.516

TABLE 4
Comparison of Different Feature Selection Srategies

Data sets
Remaining time (MAE: Day)

Activity #All FeaSel NullImp RFECV
/FeaNum /FeaNum /FeaNum /FeaNum

Helpdesk 6.827 5.278/18 4.930/4 4.926/5 5.323/14
BPIC2012 7.533 8.186/10 7.356/3 8.124/9 8.198/2

BPIC2015 1 45.747 39.709/23 39.517/16 41.659/12 40.939/6
BPIC2015 2 75.628 60.952/23 63.160/17 72.457/17 78.764/2
BPIC2015 3 23.984 18.425/23 18.833/17 21.825/13 20.639/4
BPIC2015 4 52.589 53.076/23 51.153/19 52.720/16 52.874/7
BPIC2015 5 42.140 40.411/23 41.096/15 42.617/12 48.438/2
Production 12.122 8.693/17 8.517/9 11.937/4 10.148/6

TABLE 5
Selected Features from Feature Selection Strategy

Data sets FeaSel Features
Helpdesk Activity, allDuration, seriousness 2, service level
BPIC2012 Activity, allDuration, month

BPIC2015 1

Activity, IDofConceptCase, allDuration, SUMleges,
last phase,monitoringResource, termName, parts, year,

Includes subCases, resource, duration, requestComplete,
month, hour, Responsible actor

BPIC2015 2

Activity, SUMleges, allDuration, IDofConceptCase,
parts, month, Responsible actor, last phase, day,

landRegisterID, year, resource, Includes subCases,
week, caseProcedure, monitoringResource, hour

BPIC2015 3

Activity, IDofConceptCase, allDuration, SUMleges,
parts, last phase, year, month, Includes subCases,

caseProcedure, day, week, termName, resource,
requestComplete, Responsible actor, caseStatus

BPIC2015 4

Activity, IDofConceptCase, SUMleges, allDuration,
last phase, month, year, parts, day, caseProcedure, resource,
termName, Responsible actor, week, landRegisterID, hour,

requestComplete, Includes subCases, duration

BPIC2015 5
Activity, landRegisterID, allDuration, SUMleges,
IDofConceptCase, last phase, parts, month, year,

termName, requestComplete, resource, week, hour, day

Production Activity, Work Order Qty, allDuration, Part Desc.,
day, month, week, hour, Worker ID

Camargo LSTM [41], a multi-task prediction model, con-
catenates all the inputs and completely shares the first
LSTM layer to enrich information, which can help to dif-
ferentiate execution patterns; (2) CRTP LSTM [42] is a
complete remaining trace prediction approach, utilizing all
available attributes of previously observed events to pre-
dict the complete remaining trace and time; (3) GRU NP
[43] is a remaining time prediction model based on gated
RNN, which explains the model by constructing reachability
graph; (4) Auto-encoded [23] can improve the prediction
accuracy of complex process; and (5) Process Transformer

[22] applies Transformer, one of the most advanced deep
learning models with excellent fitting and generalization
capabilities, and uses activity and time attributes as input,
it is suitable for processing large-scale data. We reproduced
these approaches using the same experimental setting, e.g.,
training set and testing set division, as the FCPM.

Generally speaking, FCPM achieves the smallest pre-
diction error, which indicates that the selected features
are more effective for high-quality prediction model con-
struction and the cascade input structure can capture all
feature information. However, there are some exceptions,
i.e., BPIC2015 4 and BPIC2015 5 logs. For BPIC2015 4 and
BPIC2015 5 which contains enough prefix states, Auto-
encoded can effectively distinguish different prefixes and
get the best results. We use the Nemenyi statistical test to
evaluate the proposed FCPM and baseline approaches, and
the evaluation results are shown in Fig. 5. It can be seen that,
FCPM achieves obvious advantages compared to baseline
approaches, which demonstrates that an effective feature
selection strategy can significantly improve the accuracy
even when the prediction is built on basic deep learning
models.

Fig. 5. Approaches Evaluation Using Nemenyi Statistical Test.

From the training time of each prediction model in
Table 7, it can be seen that the Auto-encoded approach
achieves the best training time while the training time of
the Process Transformer is the longest compared to other
approaches. One possible reason is that the Process Trans-
former approach requires the most parameters than others.
Among the four approaches based on RNN, although FCPM
contains the most abundant input information, its training
efficiency is at a medium level.

To observe the earliness [8] of the proposed FCPM, the
evaluation results in terms of MAE as the prefix lengths vary
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TABLE 6
Ablation Experiment of FCPM

Data sets Remaining time (MAE: Day)
LabAct OneHotAct CBoWAct LabFeaSel EmbFeaSel FCPM

Helpdesk 6.968 6.626 6.550 5.193 4.858 4.573
BPIC2012 7.685 6.466 6.374 7.293 6.341 6.287

BPIC2015 1 46.725 38.006 37.723 40.519 40.081 35.281
BPIC2015 2 98.076 68.466 65.491 68.856 66.893 62.017
BPIC2015 3 20.044 18.424 16.994 17.283 17.404 16.544
BPIC2015 4 78.294 51.797 47.995 47.788 55.655 44.617
BPIC2015 5 58.905 35.879 36.599 43.163 36.725 35.604
Production 11.426 9.648 9.633 10.007 9.556 8.283

TABLE 7
Results of FCPM and Other Approaches

Data sets Camargo LSTM [41] CRTP LSTM [42] GRU NP [43] Auto-encoded [23] Process Transformer [22] FCPM
MAE Time(s) MAE Time(s) MAE Time(s) MAE Time(s) MAE Time(s) MAE Time(s)

Helpdesk 8.546 482s 19.570 1688s 6.544 627s 9.140 99s 5.688 338s 4.573 1100s
BPIC2012 7.896 11419s 11.081 90965s 6.369 62057s 7.826 2040s 6.325 13350s 6.287 2796s

BPIC2015 1 141.613 1284s 52.546 94230s 41.907 10540s 46.661 586s 59.529 68926s 35.281 13227s
BPIC2015 2 89.223 950s 83.138 100497s 71.371 10815s 80.159 487s 93.915 183600s 62.017 14532s
BPIC2015 3 28.025 1777s 20.505 133050s 17.291 12901s 19.410 727s 30.462 288182s 16.544 14887s
BPIC2015 4 79.969 2029s 62.166 80214s 55.214 9399s 39.839 547s 48.327 61209s 44.617 16747s
BPIC2015 5 177.646 2739s 48.795 138313s 37.002 13965s 35.199 880s 47.897 108791s 35.604 11401s
Production 18.249 165s 11.127 8330s 9.531 984s 10.857 26s 13.039 963s 8.283 437s

Fig. 6. MAE of Various Prefix Lengths.
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are shown in Fig. 6, based on which we see that the MAE
of the prediction model gradually decreases and tends to
be stable with the increase of prefix length. The number of
traces used for evaluation is monotonically decreasing as the
prefix length increases. Therefore, as the case progresses, the
prediction ability of the FCPM reduces gradually. Generally
speaking, the shorter the prefix length when the prediction
accuracy reaches the acceptable threshold, the better the
prediction model in terms of earliness. By taking the MAE
of the FCPM in Table 7 as the acceptable prediction error,
the following observations are given. For event logs with
relatively short case lengths, e.g., Helpdesk, the prediction
result is acceptable when the prefix length is 4, which
indicates good earliness. For event logs with relatively long
case lengths, e.g., BPIC2012 and BPIC2015 series ones, an
acceptable prediction error can be achieved when the prefix
length is about 20. Although the Production event log has
a small number of cases for model training, it still shows a
good prediction trend in the early stage. Based on the above
observations, FCPM performs well in terms of earliness in
different event logs.

6 CASE ANALYSIS

This section takes the Helpdesk Log as a case study to
demonstrate the effectiveness of the proposed feature se-
lection strategy and explainability prediction results. Fig. 7
shows the feature importance value obtained based on Step
1.1 (Section 4.2), demonstrating the importance of each
feature on the prediction task to provide a global expla-
nation. Because the Activity is the primary feature, and
its importance is not calculated. Then, seven features (the
Activity and the other six features with positive importance
values) are used as input.

Fig. 7. Feature Importance of Ranking Helpdesk.

Fig. 8 shows the incremental feature tree constructed by
taking the seven selected features as input. For each tree
node, the number in the left cell represents the index of the
feature (e.g., index 0 means Activity feature), and the value
in the right cell is the MAE value of the prediction result
by using the feature combination from the current node to
the root node. The full mapping between indexes and fea-
tures are: [0: Activity, 6: seriousness 2, 7: service level, 12:
allDuration, 13: month, 14: day, 17: year]. The incremental

Fig. 8. An Example Incremental Feature Tree with Nine Features.

feature tree is constructed from the root node by selecting
the feature of each layer that leads to the smallest MAE
value in an iterative way. If a feature is already used, it is
not visited in the following layer any more. All the features
in the path from the root node to the node with the smallest
MAE represent the best feature combination. Because there
may be distribution deviation between the verification set
and the test set, the important features are [0: Activity, 12:
allDuration, 6: seriousness 2, 7: service level] by deleting
the features with slight impact according to the threshold
(set to 0.2). Then, the four features are used as input, and
the obtained MAE=4.930 in the test set. The incremental
feature tree helps visualize the obtained MAE of all feature
combinations, which can provide users with selection assis-
tance. In addition, this tree helps to understand the effect
of combination relationships among features. For example,
considering the third layer, adding feature 7: service level
can increase the prediction error, but adding the feature after
feature 6: seriousness 2 can reduce the prediction error. It
can be concluded that features 6 and 7 may have an implicit
inter-dependency between each other.

Fig. 9. MAE of Each Input Layer in Various Prefix Lengths.

We selected the top four features for the Helpdesk event
log according to Fig. 8 for the FCPM training. The overall
prediction error decreased layer by layer and MAE values
are 6.559, 5.537, 4.842, and 4.573, respectively. For different
trace prefix lengths, the contribution of the four features to
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(a) Visualized Prediction Results of Case 4130
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(b) Visualized Prediction Results of Case 889
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(c) Visualized Prediction Results of Case 2155
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(d) Visualized Prediction Results of Case 2336

Fig. 10. Examples of FCPM Prediction Results, (a) Cid=’Case 4130’, trace prefix=⟨(’Assign seriousness’, 0.0, ’Level 1’, ’Level 2’),(’Take in charge
ticket’, 4.689, ’Level 1’, ’Level 2’)⟩; (b) Cid=’Case 889’, trace prefix=⟨(’Assign seriousness’, 0.0, ’Level 1’, ’Level 2’),(’Take in charge ticket’, 0.896,
’Level 1’, ’Level 2’)⟩; (c) Cid=’Case 2155’, trace prefix=⟨(’Assign seriousness’, 0.0, ’Level 2’, ’Level 2’),(’Take in charge ticket’, 0.031, ’Level 2’, ’Level
2’)⟩; (d) Cid=’Case 2336’, trace prefix=⟨(’Assign seriousness’, 0.0, ’Level 1’, ’Level 3’),(’Resolve ticket’, 0.019, ’Level 1’, ’Level 3’)⟩.

the remaining time prediction is shown in Fig. 9. Based on
this, we can see that in the early stage of the process, each
feature has a positive impact on the prediction accuracy, and
as the process progresses, the positive influence of serious-
ness 2 and service level becomes weak. Due to the number
of traces in the event log is monotonically decreasing as the
prefix length increases, the prediction ability of the model
may decrease gradually, which is a common defect of deep
learning models. Generally speaking, based on the MAE
comparison, it is demonstrated that effective features input
can significantly improve prediction accuracy even when
the prediction is built on very basic deep learning models.

To illustrate the explainability of the proposed feature-
informed cascade prediction model, four cases with IDs
4130, 889, 2155 and 2336 in the Helpdesk Log are visualized
and analyzed. The prefix of these four cases from the activity
point of view are identical, and the prediction is made
after the second event with activity name “Take in charge
ticket”. Fig. 10 shows the prediction results of the four
cases using the top-4 features (i.e., Activity, allDuration,
seriousness 2 and service level) according to Fig. 8. The
predicted remaining time by adding each input feature
incrementally to different layers are visualized. Based on
Fig. 10 (a) and (b), we found: (1) For layer 1, the Activity
feature is used and both feature values are “Take in charge
ticket”, and therefore, the predicted values are also identical;

(2) For layer 2, the allDuration feature is included and its
values are different (4.689 days vs 0.896 day). The predicted
remaining time is different for these two cases, i.e., one
is closer to the true value, while the other is not. One
possible explanation could be that with the increase of the
allDuration feature value, the remaining time of the case
decreases, and vice versa. Based on Fig. 10 (a) and (c), for
layer 3, the seriousness 2 feature is included in the FCPM
with different values (Level 1 vs Level 2), the predicted
results are closer to the true value compared to the results
obtained based on the first two layers. This is consistent with
our domain knowledge, i.e., the higher the seriousness level,
the longer the time required. Based on Fig. 10 (b) and (d), for
layer 4, both feature values and prediction results of the first
three layers are similar, but there is a significant difference
between the two true values. However, the service level
feature is added and its values are different (Level 2 vs Level
3), both predicted results approximate the true value. The
rationale is that the higher the service level, the longer the
time required.

Using the FCPM to predict the remaining time of an
online instance, the prediction results of each layer can be
obtained at the currently event. If the prediction trend of
each layer conforms to business regulations and conven-
tional perception, the prediction results can be considered
credible and used as a basis for decision-making. Otherwise,
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it indicates that the instance may have special circumstances
and refuse to trust the prediction result.

7 CONCLUSION

Deep learning-based business process remaining time pre-
diction has demonstrated its strong capability of achieving
high prediction accuracy. Most existing remaining time pre-
diction approaches tend to rely on the activity attribute or
the prefix information, which are not sufficient in general
cases. In this paper, we proposed a feature selection ap-
proach. In addition, a feature-informed cascade prediction
model is designed to correlate the effects between each input
feature and its prediction results. We have implemented our
approach and evaluated its performance using eight real-life
event logs. The experimental results have shown that our
proposed framework can achieve better prediction accuracy.
In addition, based on our model, the relative impact of each
attribute is observed and analyzed to explain the rationality
and credibility of the prediction results.

The proposed approach can be further strengthened
from the following aspects: (1) in terms of control flow,
its influence on the remaining time prediction should be
explained; and (2) the cascade prediction model needs to
accelerate convergence if too many features are selected. In
addition, our future work mainly lies in generalizing the ex-
plainable prediction framework with more advanced deep
learning models to further improve the prediction accuracy
and universality. In addition, due to the complexity and
diversity of real-life event logs, we prefer to come up with
a dedicated process-oriented feature selection approach. Be-
sides explainability from the feature perspective, we would
like to continuously explore other advanced explainable
models to further improve the prediction reliability.
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