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Abstract
With the widespread adoption of electric vehicles (EVs), the demand for public charging services is steadily increasing.

Consequently, the development of effective charging scheduling strategies, aimed at optimizing the utilization of limited

charging infrastructure, has become a key problem. Considering the diversity of user demands, we propose a Cost-Aware

Charging Scheduling Architecture (CASA). This architecture considers both urgent and nonurgent charging customers by

designing two charging modes with different power levels and associated costs. However, optimizing multiple objectives

simultaneously while ensuring the interests of all parties involved in the charging demand response presents a challenge.

Moreover, the uncertainty in customer charging demands and Time-of-Use (TOU) tariff further complicates the estab-

lishment of the model. To address the aforementioned challenges, this study formulates EV charging scheduling as a

Markov Decision Process (MDP) based on deep reinforcement learning (DRL), employing the Deep Q-Network (DQN)

algorithm for solution derivation. The objective is to minimize the operational costs of charging stations while ensuring the

quality of service (QoS) requirements for customers. The simulation results demonstrate that CASA exhibits superior

performance in optimizing both the average response time and service success rate, compared to commonly used baselines

for charging scheduling. Furthermore, the CASA approach achieves a significant reduction in operating costs of EV

charging station.

Keywords EV charging � DRL � Scheduling � Cost optimization

1 Introduction

In recent years, due to concerns about greenhouse gas

emissions and the global warming effect, an increasing

number of individuals have been inclined toward choosing

environmentally friendly modes of transportation. Among

these alternatives, electric vehicles (EVs) have emerged as

a promising solution by utilizing cleaner energy sources to

replace conventional fossil fuels, demonstrating significant

potential in carbon reduction efforts. According to a report

by the International Energy Agency [18], the global EV

fleet is expected to reach 250 million vehicles by 2030, a

substantial increase from the 5.1 million vehicles recorded

in 2018. However, the widespread adoption of EVs has

presented challenges, with one of the key issues being the

escalation of peak loads and circuit overloads caused by

uncoordinated charging. To address this, ensuring the

stable and orderly integration of EVs into the grid has

become a critical priority.

Public charging stations, designed to provide extensive

charging services for local areas and are considered

indispensable charging resources for EV users. Typically,

these charging stations offer two distinct charging modes:

alternating current Level 2 (AC II), which operates within a

power range of 10–22 kW, and direct current fast charging
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(DCFC), which provides a power range of 50–120 kW. In

terms of electrical characteristics, AC II has longer

charging times, while DCFC allows for shorter charging

times but incurs higher power losses, which may accelerate

battery aging [22]. In recent years, significant research has

been conducted on charging station scheduling in various

scenarios, including conventional charging stations [37],

charging stations integrated with renewable energy sour-

ces [21], and distribution grid stations [27]. However, most

of these studies assume that each charging station only

provide a single charging service, either AC II or DCFC.

This assumption falls short in accommodating the diverse

service requirements of different charging users, such as

shorter charging times, minimal battery degradation, or a

combination of both. Relying solely on a single charging

mode limits the ability to meet these varied needs, thereby

impacting the overall service quality.

The implementation of a real-time and efficient charging

scheduling strategy is crucial to ensure the smooth opera-

tion of charging stations, as it effectively mitigates poten-

tial risks associated with power system load fluctuations

and transmission line overloads [1]. Unlike conventional

refueling stations, EVs often experience significantly

longer idle parking periods at charging stations, exceeding

the time required for battery charging. Moreover, EV users

are typically sensitive to the pricing of charging ser-

vices [4]. They are willing to allow charging stations to

accommodate the charging process based on the Time-of-

Use (TOU) pricing policy, selecting lower tariff periods to

minimize their electricity costs, provided that their charg-

ing needs are met without disruption. Furthermore, con-

sidering the stochastic and uncertain nature of customer

behavior, if the allocation of charging station resources

fails to align with the specific charging requirements of

customers, it can lead to suboptimal charging efficiency

and impact the quality of service (QoS) provided by the

charging station. Specifically, the customer QoS require-

ments considered are declared upon their arrival at the

charging station, with the goal is to satisfy these require-

ments by completing the charging within the expected

time. Generally, the main focus of our study is to integrate

unpredictable customer behavior and electricity price

fluctuations, and we aim to optimize two vital areas: ful-

filling customer QoS requirements and minimizing the

operational costs of charging stations. This optimization is

key to balancing the needs of both customers and service

operators, ensuring customer satisfaction while promoting

economic efficiency.

In response to customers’ requests for charging services

and to ensure the smooth operation of EV charging sta-

tions, extensive research has been conducted on the

deployment of charging scheduling schemes. Some studies

have attempted to integrate renewable energy sources into

charging stations, aiming to achieve flexible energy

scheduling and management schemes to further reduce

energy costs [28]. Considering the impact of Time-of-Use

policies on station operation, certain efforts have focused

on developing dynamic pricing strategies to control the

charging demand through economic incentives, thereby

shifting the uncontrolled load [37]. While the aforemen-

tioned works have yielded effective optimizations from the

perspective of charging station operations, insufficient

attention has been paid to the limited number of charging

points within the station. In reality, considering EV

charging scheduling under the constraint of limited

charging facilities is crucial as it directly affects the initial

investment costs for station construction, which is an

essential factor for operators to achieve

profitable operations.

Several relevant studies have considered the limited

availability of charging facilities and proposed corre-

sponding optimization approaches [2, 10, 12, 19, 33].

However, in the works [2, 10, 19], to simplify the problem,

the number of chargers is treated as the overall capacity

constraint of the charging station. Consequently, these

studies do not explicitly discuss the allocation of specific

chargers to individual EVs. The approach proposed in [33]

aims to reduce the service dropping rate of the charging

station under the constraint of limited chargers, but it treats

arriving EVs as a cluster, neglecting the individual

demands. In the study [12], the mathematical definition of

the charger constraint is explicitly provided, considering

the limited number within the station. However, the

assumption that customers will immediately leave if all

chargers are occupied upon arrival weakens its practicality.

To the best of our knowledge, there is a scarcity of pub-

lished research addressing the issue of EV charging

scheduling while considering the impact of TOU pricing

and making specific charger allocation decisions for indi-

vidual EVs.

Regarding the limitations of the aforementioned works,

taking into account the limited number of charging facili-

ties and the realistic scenario of dual-mode user demands,

we propose a Cost-Aware Charging Scheduling Architec-

ture (CASA), which is based on deep reinforcement

learning (DRL) to optimize charging scheduling. The

CASA approach tackles challenges like TOU pricing

changes, unpredictable user behavior, and aligning charg-

ers with service requests. In essence, CASA strives to

create an optimal charging schedule for stations, balancing

customer QoS needs with reduced operational costs.

Generally, the contributions of this work can be sum-

marized as follows:

– We propose a cost-aware charging scheduling model

for an EV charging station. In addition, we incorporate
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a dual-mode charging service and the constraints of

limited charging facilities into the charging scheduling

model, while accounting the stochastic nature of future

charging requests.

– We formulate the proposed charging scheduling model

as a MDP and develop a DRL-based solution method to

effectively optimize the operational costs of the charg-

ing station, encompassing the TOU charging cost,

power loss overhead, and QoS penalties for service

delays.

– Through meticulously designed simulation experiments

under various sets of distinct variable conditions, we

have substantiated the efficacy of the proposed CASA

in comparison with other typical efficient scheduling

methods, including reinforcement learning approaches.

This superiority encompassing the optimization of

scheduling objectives, improvement in learning effi-

ciency, as well as the enhancement of stability and

transferability.

The remainder of this paper is organized as follows. In

Sect. 2, we introduce the related work. We present the

system model and problem formulation in Sect. 3. In

Sect. 4, we present the specific details of the proposed

CASA procedure. In Sect. 5, the performance of our CASA

procedure is evaluated, and a summary of the whole

approach is given in Sect. 6.

2 Related work

In recent years, significant research efforts have been

conducted to address the inherent stochastic nature of EV

charging scheduling problems, encompass traditional

scheduling strategies such as dynamic programming and

day-ahead scheduling methods [34]. For instance, the

study [32] proposed a two-stage dynamic programming

strategy that utilizes short-term future predictions and long-

term estimates based on historical data to reduce energy

costs. However, the effectiveness of dynamic program-

ming-based approaches heavily relies on the accuracy of

load forecasting, making it challenging to obtain optimal

charging strategies in practical scenarios. To mitigate these

challenges, researchers have introduced day-ahead

scheduling methods and employed robust or stochastic

optimization techniques to formulate scheduling strategies

that minimize the impact of uncertainty factors [5]. For

example, the work [38] proposed a decision-making

approach based on the information gap to optimize day-

ahead scheduling for EV fleets and address the uncertainty

associated with electricity prices. Additionally, robust

optimization techniques have also been employed to pro-

vide optimal charging strategies. Although these methods

demonstrate a certain effectiveness in day-ahead EV

charging scheduling scenarios, they may not be suitable for

real-time settings due to the high uncertainty associated

with customer charging demands and TOU price

variations.

Reinforcement learning (RL), as a prominent machine

learning technique, provides a real-time framework for the

EV charging scheduling in dynamic environments. It

facilitates interactive learning by leveraging acquired

rewards and environmental interactions, eliminating the

need for prior knowledge of the underlying system. This

characteristic makes RL an attractive choice in this context.

For instance, the work [26] employs RL methods to opti-

mize charging scheduling and pricing strategies, proposing

a feature-based state-value function linear approximator to

handle time-varying continuous states and action spaces.

The proposed approach was validated using actual elec-

tricity price data, demonstrating significant cost reductions.

Furthermore, recent advancements in DRL techniques have

addressed limitations such as the applicability of RL solely

to discrete action spaces and the curse of dimensionality.

By employing deep neural networks to approximate the

Q-table, these techniques have showcased exceptional

performance across various scheduling scenarios in

domains similar to ours. Examples include network control

in the Internet of Things (IoT), network communication

control [14] and edge technologies [15], as well as energy

optimization in cloud data centers [30]. Building upon

these advancements, an adversarial imitation reinforcement

learning framework, referred to as AIRL, was introduced

in [13]. It serves as a deep generative model that tackles

suboptimality issues during the training of scheduling

strategies in DRL approaches. Moreover, the work [11]

focuses on enhancing the stability and convergence of the

training process in large-scale multi-agent RL scenarios,

while concurrently presenting novel cooperation schemes

among agents of different types.

In Table 1, we summarize the optimization objectives of

the CASA procedure and other relevant cost-aware meth-

ods. Currently, an increasing number of DRL studies in the

energy field prioritizing cost-aware task scheduling, aiming

to meet user demands while achieving resource efficiency

during execution, thereby reducing energy costs. For

instance, the work [6] proposes a real-time scheduling

approach based on DRL to optimize the monetary costs

associated with job execution in large-scale cloud envi-

ronments. Similarly, the study [25] address the EV charg-

ing scheduling problem using a model-free DRL approach.

They employ LSTM networks to extract electricity price

features and determine the optimal charging strategy, thus

achieving cost savings and alleviating anxiety. Further-

more, in work [29] extends the concept of comprehensive

anxiety in DRL-based scheduling methods. This concept
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considers driver experience and charging preferences to

determine the optimal charging sequence that strikes a

balance between charging costs and driver anxiety. More-

over, a scheduling method was proposed in [16] that

incorporates insertion cost-aware to dynamically match

EVs within a fleet. By leveraging DRL, they efficiently

dispatch idle vehicles to high-demand areas, thereby

reducing vehicle costs and enhancing fleet utilization.

However, in these cost-aware EV scheduling studies, there

has been limited consideration given to more pertinent

charging station characteristics, such as limited station

allocation and the relationship between charging power and

energy loss. Additionally, these studies have scarcely

addressed the impact of charging station service type

matching on QoS for customers.

Different from the aforementioned efforts, in this article,

we propose a novel approach called CASA based on DRL

to investigate the EV charging scheduling within dual-

mode charging stations under the constraint of limited

charging facilities. Our approach takes into consideration

constraints that are associated with service types and

average response time. The CASA method aims to obtain a

globally optimal charging scheduling strategy, which

reduces the average response time and decrease the oper-

ating costs, including energy loss and TOU electricity

price.

3 The proposed CASA system

In this section, we detail the general system model adopted

in our CASA framework, and then present the specific

formulation for the cost optimization problem of charging

operators. For better reference, the important notation is

listed in Table 2.

3.1 System model for charging scheduling

In this paper, the framework of our proposed CASA pro-

cedure is shown in Fig. 1. The intelligent charging scenario

considered in this study involves an EV charging station

with limited facilities, accompanied by the deployment of

CASA controllers. The controller serves as the central

component within the entire framework, responsible for

real-time decision-making regarding the allocation of

incoming EVs to specific chargers within the station. The

charging station comprises M DC chargers and N AC

chargers, which provide services to EVs in a dual charging

mode to cater to their diverse requirements. It is note-

worthy that AC chargers offer advantages such as lower

charging losses and reduced costs associated with battery

lifespan compared to DC chargers [20]. However, a trade-

off exists as AC chargers necessitate significantly longer

charging durations.

When the EVs arrive at the station, they submit their

charging information to the CASA controller, include

parameters such as the emergency type, duration of net-

work integration, and battery state of charge (SoC)

requirements. Subsequently, based on this information and

the real-time TOU pricing from the current power grid, a

charging strategy p is formulated. In accordance with this

strategy, the charging station allocates suitable chargers to

the arriving EVs, then determines whether they should

commence charging immediately or join a charging queue

based on the chargers’ operational status. Meanwhile, a

QoS evaluation model is defined, which sets constraints for

each arriving EV. These constraints must be given priority

Table 1 Comparison with some

typical works in the current

literature

References Main objective

Cost Demand Utilization Anxiety QoS

Paraskevas et al. [19] 4 8 8 8 8

Hao et al. [12] 4 4 8 8 8

Manchella et al [16] 4 8 4 8 8

Wan et al. [25] Yan et al. [29] 4 8 8 4 8

CASA 4 8 8 8 4

Table 2 The used notation

Notation Meaning

Cidi The id of the i-th EV

CTypei The type of the i-th EV

arrivalTi The arrival time of the i-th EV

Ei The charging demand by i-th EV

DDLi The QoS requirement by i-th EV

Pidj The id of the j-th charger

PTypej The type of the j-th charger

Velej Charging power for EVs

VLossj Energy loss of j-th charger per time unit

Ti The responsible time of the i-th EV

Tchar
i

The charging time of the i-th EV

Twait
ij The wait time of the i-th EV
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fulfillment during the scheduling and execution phases.

Furthermore, in order to model the optimization problems

within this research, we provide mathematical definitions

for the arrival of EVs and chargers, as well as other rele-

vant definitions associated with the implementation of the

scheduling mechanism in the CASA model.

Arrival EVs: an arrival EV Cari ¼
Cidi;CTypei; SoCi;Ci; arrivalTi;f DDLig is defined as the i-

th charging request entering the charging station. Specifi-

cally, Cidi is the EV id, which the controller allocates.

CTypei is a type identifier, which is used to classify EV

charging requirements into two types: urgent charging

demand and nonurgent charging demand. SoCi is the bat-

tery state expected by the user for this charge request,

which is a ratio of power level to achieve to complete this

charge. Meanwhile, Ci is the battery capacity of this EV.

arrivalTi is the arrival time of the EV, which the controller

records. DDLi is the estimated latest departure time of EV

users, which is immediately submitted to the controller

upon arrival at the charging station.

Chargers: in our study, we mainly consider two charg-

ing modes: DCFC and AC II. DCFC delivers high-voltage

power directly to the EV battery through the charging port,

resulting in fast charging speed but higher battery loss. On

the other hand, AC II supplies alternating current to the EV

onboard charger for battery charging, resulting in slower

charging rates but lower battery degradation. As mentioned

above, different customer types correspond to different

service modes. Urgent customers prioritize reducing

charging time, even if it leads to some battery lifespan

degradation. Conversely, nonurgent customers prefer

charging at a normal speed to minimize battery lifetime-

related costs. By guiding EV users toward more suit-

able charging modes, it is possible to reduce congestion at

charging stations while offering a greater variety of

charging service options.

For a set of chargers in the charging station, the j-th

charger can be represented as

CPj ¼ Pidj;PTypej;Velej;VLossj
� �

, where is the charger

ID, the type of charger (i.e., DC type or AC type), the

charging power for EVs, and the electrical loss rate of the

charger, respectively.

TOU tariff: in our consideration, tariffs pt play a sig-

nificant role in the overall cost optimization problem. From

the charger provider’s perspective, the cost of electricity is

determined by the price of purchasing electricity from the

main Grid. To capture the realistic scenario of varying grid

load severity, we divide the TOU tariff into three levels:

peak period, normal period, and valley period [31]. We

assume that the tariff for EV i is established at the moment

of entering charger execution and remains constant

throughout the charging process. Therefore, the CASA

controller can learn to prioritize the lower valley period for

allocating chargers to EV i to minimize the tariff cost while

ensuring that the charging is completed within the given

deadline, thus reducing the tariff cost and alleviating the

load on the grid.

3.2 System optimization model

In the CASA approach, the priority for the charging pro-

vider is to develop an optimal scheduling strategy that

effectively minimizes costs at each customer arrival point,

by assigning each charging request of EV i 2 I to the most

appropriate set of charger stations J ¼ j1; j2; :::; jn½ �. In this

case, the main optimization target is to minimize the total

operating costs x, which can be calculated as

Fig. 1 The general system

framework of CASA
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x ¼ min
XI

i¼1
Costi ð1Þ

where Costi represents the cost of EV i, specifically, con-

sists of two main components, i.e., the cost of electricity

purchased from the grid and the cost of power loss during

charging. Therefore, in our optimization problem, the main

focus is for the controller to learn how to make decisions

that minimize Costi at each time step t, thus achieving a

reduction in the total overhead throughout the operation

period, which yields

Costi ¼ pt � Ei þ VLossj � Tchar
i ð2Þ

In Eq. (2), the latter loss cost on charger j corresponding to

EV i can be expressed as the product of the loss rate VLossj
and the charging time Tchar

i , which will be presented next.

And the former tariff cost is determined by the tariff pt at

the charging point t of EV i, and its charging demand Ei,

which can be calculated as

Ei ¼ SoCi � Ci ð3Þ

Emin�Ei�Emax ð4Þ

The power required by the user for this charge, denoted as

Ei, is determined by the product of the SoCi submitted by

the user and the capacity of the EV battery, denoted as Ci.

Accordingly, we constrain Ei, to ensure it falls within

certain limits. The maximum value, denoted as Emax, cor-

responds to the battery capacity Ci, representing the max-

imum power required when the battery can be fully

charged. On the other hand, the minimum value, denoted as

Emin, represents the minimum power required by the user.

The CASA method aims not only to minimize costs but

also to meet customer QoS requirements by reducing the

average response time. Our QoS evaluation model places

significant emphasis on adhering to response time criteria,

as this directly affects the success rate of charging services.

The charging response time, represented as Ti, which

encompasses the total duration between the submission of

the charging request upon EV arrival and the completion of

the charging process, two components should be taken into

consideration.

Ti ¼ Tchar
i þ Twait

ij ð5Þ

Here, Tchar
i indicates the time required for charging and

Twait
ij indicates the time spent in the waiting queue of EVs.

Correspondingly, the charging time and queuing time can

be defined as

Tchar
i ¼ Ei=Velej ð6Þ

where Ei indicates the power demand of EV i, while Velej
represent the charging power of chargers. Furthermore,

assuming that there are queueL j
i charging requests waiting

in the queue of the assigned charger j when EV i arrives,

and EV i0 is used to denote the n charging jobs assigned to

charger j before EV i, then the waiting time for EV i can be

calculated as

Twait
ij ¼

Pn
i0¼0 T

char
i0j ; if queueLij [ 0

0; if queueLij ¼ 0

(

ð7Þ

The given formula, inspired by Cheng et al. [7], indicates

that the arriving EVs in the request queue are required to

follow the first-come, first-served (FCFS) rule. Moreover,

if a designated charger j is available, the charging request

will be promptly addressed. By utilizing the above defini-

tion, we can introduce another crucial metric, denoted as

Respi, which represents the reciprocal of the total response

time for EV i. This establishes an inverse relationship

between the two variables, serving as a critical measure for

evaluating the charging station’s timeliness in responding

to each EV’s charging request. It will subsequently be

utilized in the computation of the reward function. This

design guides the RL agent to make decisions that reduce

the average response time, ensuring timely service com-

pletion and thereby upholding the guaranteed QoS for the

customers.

Respi ¼
1

Ti
ð8Þ

As previously mentioned, EVs can arrive at the charging

station at any time without a fixed pattern. For this sce-

nario, it is essential that EVs are charged within the cus-

tomer’s expected time, as this greatly impacts service

quality. Each charging request is linked to a deadline, or

QoS requirement. A request is successful if charging fin-

ishes within this time, meeting the customer’s QoS

expectation. However, if charging exceeds the deadline,

customers may end the process early and leave, leading to

service failure. Following this approach and in accordance

with the principles presented in [35], we outline a criterion

for QoS success in CASA as:

success Cari;CPj

� �
¼

1; if Ti�DDLi

0; else

�
ð9Þ

where DDLi denotes the maximum acceptable response

time specified upon the arrival of EV i. On this basis, the

provided equation can be used to assess the success of

assigning EV i to charger j in terms of meeting QoS

requirements.
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4 DRL-based implementation of the CASA
procedure

In the proposed CASA procedure, we employ reinforce-

ment learning to address the scheduling problem. RL is a

machine learning technique, where an agent engages in

continuous interactions with an unknown environment,

taking specific actions to maximize the cumulative

reward [23]. This process involves storing Q-function

values in a lookup table, which can be challenging when

dealing with high-dimensional environments. To overcome

the curse of dimensionality, deep neural networks (DNNs)

are introduced as a nonlinear Q value approximator,

thereby defining the corresponding framework as a DRL

method.

4.1 Preliminaries

When addressing problems using a DRL method, the

mathematical model can be represented by a Markov

Decision Process (MDP), taking the form of a quintuple

ðS;A;P;R; cÞ, where S denotes the set of all states that can

be perceived in the environment, A denotes the set of all

actions that the agent can take, P denotes the state transfer

probability, R denotes the immediate reward under a par-

ticular state and action, and c represents a value between 0

and 1, and serves to denote the significance of future

rewards to the agent.

To solve the optimization problem presented in Sect. 3,

we propose a DQN algorithm. The objective during the

operation of EV charging stations over a duration of t time

steps is to maximize the cumulative reward R ¼
Pt

0c � rt.
As mentioned earlier, the discount factor c is utilized to

discount the reward. The DQN algorithm employs the

optimal value Q� s; að Þ to represent the maximum reward

that can be obtained by taking action at in state st. The

value Q� s; að Þ can be iteratively obtained by solving the

Bellman equation [3].

Q�ðs; aÞ ¼ rtþ1 þ cmax
p

Q� stþ1; atþ1ð Þ ð10Þ

where stþ1 and atþ1 denote the state and action at the next

moment; The Bellman equation shows that the value of the

current state action is only related to the current reward and

punishment value and the state-action value of the next

step. During each iteration of the algorithm, the Q value

undergoes updates as follows

Qtþ1 st; atð Þ  Q st; atð Þ

þ a rt þ cmax
a

Q stþ1; atþ1ð Þ
�

� Q st; atð ÞÞ

ð11Þ

Given the parameter a 2 0; 1ð Þ as the learning rate, it

signifies the extent of coverage over previous Q values.

Moreover, to ensure that the agent is able to both explore

the unknown environment and utilize the acquired knowl-

edge, the selection of actions for the agent generally fol-

lows the �-greedy strategy.

a ¼
randomA b\e

argmax
a2A

Qðs; aÞ b > e

(

ð12Þ

here, � represents the fixed constant in the interval [0, 1]; b
is randomly generated by the computer in the interval [0,

1]. When b\�, the agent randomly selects an action in the

action space; otherwise, select the action with the greatest

value in the current state.

Within the high-dimensional environment considered in

our problem, the combination of all possible state-action

values of EVs and charging stations forms huge state-ac-

tion pairs. Consequently, the learning rate of the agent is

excessively slow, rendering traditional RL agents (such as

Q-learning) ineffective. DQN is proposed to overcome this

issue. Unlike Q-learning, which employs a Q-table, DQN

adopts a DNN to approximate the computation of Q values

through a Q-network, as presented in Eq. (11). In the

context of DRL, actions are not explicitly labeled or

directly provided as training samples to the Q-network.

Instead, the interaction between the agent and the unknown

environment is leveraged to approximate this interaction.

Currently, this DRL-based algorithm has proven to be

effective and successful in various applications [24].

4.2 Markov decision process for CASA

In this section, we present the formulation of the EV

charging scheduling model as a MDP with discrete-time

steps. The primary goal is to determine an optimal strategy

for the real-time scheduling of EVs and chargers, with the

objective of minimizing the operational costs of the

charging station. The specific details of each element

within the MDP are presented as follows.

4.2.1 State space

We denote the state space as S, which consists of a set of

vectors st at each time step t. The state st at a certain point t

contains the necessary information about the arriving

charging requests, as well as the state of the TOU tariffs

and chargers in the environment, i.e.,

st ¼ CTypei;Ei;DDLi; pt; T
wait
j1 ; Twait

j1 ; :::;
�

Twait
jM

�
, where

CTypei is the type of arriving EV, Ei and DDLi are the

charge demand and time requirements submitted by EV

users. Besides, pt represents the TOU tariff at step t, and

Twait
jM represents the waiting time on a charger at step t.
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4.2.2 Action space

As previously mentioned, a separate request queue is

established for each charge, and charging requests added to

these queues are executed in a FCFS manner. Therefore,

we define the action space as the set of all available

chargers within the charging station, which are identified

with a system-assigned ID represented as

a ¼ Pid1;Pid2; :::;PidMð Þ.

4.2.3 Reward function

Given any st 2 S, r st; at; stþ1ð Þ is the immediate reward

when a state transits from st to stþ1 over action at. Our

objective is to minimize the operational costs of charging

stations while concurrently ensuring the fulfillment of QoS

requirements for customers. In a more detailed explanation,

for each EV charging service provided, it is imperative to

adhere to deadline constraints and, optimally, reduce the

operational costs, which includes both charging costs and

loss costs. As outlined in the problem formulation, the

system should assign a charger to an arriving EV in a

manner that ensures the charging process can be completed

within the specified departure time while minimizing the

associated cost. Therefore, the reward function should be

designed to consider both the charging response time and

cost. When the agent makes an assignment for EV i that

results in a shorter response time, it should receive a higher

reward. In terms of cost minimization, if EV i incurs a

lower charging price and experiences fewer losses during

charging, it should be rewarded. Otherwise, it will receive

a penalty. In summary, the reward value r of EV i can be

obtained through the reward function, which is expressed

as

r ¼ 1þ ek�Costi
� �

Respi ð13Þ

where Costi and Respi are the main metrics we defined in

the previous section, represents the charging cost and

response time, respectively, k is a hyper-parameter that

enables a balanced control between cost and response time,

which means that the immediate reward increases as

charging time and power loss decrease.

4.3 CASA implementation

The optimal scheduling architecture for charging stations

based on DQN is as follows. The overall workflow of the

framework includes: Initially, the agent interacts with the

environment to obtain transitions, which encompass states,

actions, rewards, and next states. These transformations are

then stored in a replay buffer, serving as a repository for

past experiences. Finally, the agent samples a small batch

of transitions from the buffer to update the neural network

parameters. The following description delineates the

specific workflow of the DRL-based CASA procedure and

Algorithm 1 outlines this process.

Algorithm 1: The proposed CASA procedure
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Interaction: At the beginning of each step t, partial EVs

arrive at the charging station and submit charging requests.

By observing their service types, SoC requirements,

departure times, and other relevant factors, the initial states

of the EVs can be determined. Subsequently, the agent

receives information regarding the waiting times at each

charger within the charging station and real-time TOU

prices from the main grid. By integrating this information,

an observation fCTypei;Ei;DDLi; pt; T
wait
j1 ; Twait

j1 ; :::; Twait
jM g

is obtained. Then, the agent selects an action corresponding

to the policy p derived from the network output. The agent

continuously adjusts its scheduling strategy based on

feedback provided by a defined reward function. This

feedback guides the agent in improving the scheduling

policy, aiming to enhance user QoS satisfaction while

minimizing operational costs.

Experience replay: In this study, we encounter a chal-

lenge of learning an optimal charging scheduling strategy

from scalar reward signals such as QoS and cost. This

challenge is attributed to the sparse and delayed nature of

rewards. Additionally, DRL-based approaches commonly

assume a fixed distribution of underlying data, whereas

real-world data often demonstrate partial correlations

among sequences of samples. To address these issues, the

utilization of an experience replay memory can improve

the stability of the training process [17].

As depicted in Fig. 2, an experience replay buffer is

established. At each time step t, after the agent interacts

with the environment, the interaction experience can be

stored as a quadruple ðst; at; rt; stþ1Þ, encompassing the

current state, the taken action, the reward, and the subse-

quent state. Subsequently, during the training process, the

agent no longer directly utilizes the current sample for

training. Instead, it randomly samples a batch of records

(referred to as a mini-batch) from the replay memory to

update both the Q-network and the target network. Through

this process, random sampling reduces the inter-sample

correlations, while the replay mechanism mitigates noise

during the training process, thereby enhancing the stability

of the model.

Training: During the training process, the system first

initializes its parameters and then proceeds to train the

neural network extensively and effectively based on input

data. Specifically, the DQN employs a dual-network

architecture to enhance the convergence and stability of the

training process. The Q-network aims to minimize the

discrepancy between the current estimated Q values and

the target Q values, allowing the agent to select optimal

actions based on the current state. On the other hand, the

target network is utilized to calculate the target Q values,

serving as a reference during the training of the Q-network.

These networks are responsible for action selection and

evaluation, respectively. A loss function is employed to

measure the difference between the predicted values and

the ground truth, then updated the parameters using

stochastic gradient descent to minimize this loss. To miti-

gate training fluctuations, the parameters of the Q-network

are periodically copied to the target network, employing a

mechanism known as delayed updates. Ultimately, by

selecting the optimal parameters, the EV charging station is

guided in choosing the most favorable action given a par-

ticular state.

To maintain effective exploration during the training of

the scheduling policy, we employ an e-greedy mechanism

as the action selection strategy to choose the optimal

actions. At the beginning of training, the agent can either

Fig. 2 The DRL-based architecture for EV charging scheduling
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randomly select an action with a probability of e to explore

the action space or choose the action with the highest

action value with a probability of 1-e. Moreover, to strike a

better balance between exploration and exploitation

strategies, the exploration rate e is decayed after each

iteration at a decay rate until it reaches the minimum value

emin. This approach encourages the agent to explore dif-

ferent actions at the beginning of training while avoiding

excessive exploration in subsequent iterations.

5 Evaluation

This section entails a comparative analysis of the

methodology we have proposed in contrast to several

commonly employed charging scheduling techniques. We

utilized Python 3.9 to construct our simulation environ-

ment, and our method is implemented within the Pytorch

framework on a laptop equipped with an Intel Core i7-

7700HQ CPU @ 2.80 GHz and 16GB of RAM. Through

the experiments, our primary objective is to substantiate

the superior performance of our CASA procedure con-

cerning average response time and service success rate in

comparison with extant scheduling methods, all while

endeavoring to maintain cost-efficiency.

5.1 Experimental setup

We perform a series of evaluations simulating data to

demonstrate the suitability of the CASA procedure for

learning scheduling strategies in EV charging scenarios.

Our evaluation considered a shared charging station with

ten chargers, providing fast or slow charging services with

capacities of 10, 20, 40, and 60 kW for EV charging. To

capture their characteristics, we set loss rates for the

chargers based on their respective charging capacities. For

the evaluation, we utilized a typical TOU tariff schedule

similar to Ding et al. [9], which is presented in Table 3.

This schedule is characterized by hourly discrete segments,

aligning well with the scale of the problem investigated in

this experiment. Moreover, we model user behavior as a

stochastic variable, where the arrival time, departure time,

and power demand of EVs follow a truncated normal dis-

tribution. Specifically, taking charging demand as an

example, we model these demands using a normal distri-

bution, represented as N�N 20; 22ð Þ, meaning that the

charging demand of each arriving EV follows a normal

distribution with a mean of 20 and a standard deviation of

4. This indicates that the range of charging demand exhi-

bits a symmetrical probability distribution, with a major

portion falling between 12 and 28 kWh, and the closer the

demand is to 20 kWh, the higher the probability. Similarly,

the departure time of EVs is determined by their estimated

entry time, which follows a normal distribution

N�N 0:5; 0:1ð Þ. This implies that it predominantly falls

within the range of 0.3�0.7 hr. It is important to note that

while we model the distribution of these random variables,

our DRL-based approach does not rely on any knowledge

of it, allowing the CASA procedure to be applied to dif-

ferent environments without requiring additional modeling.

In our proposed CASA procedure, the underlying DNN

was initialized using a feed-forward neural network

architecture with a hidden layer containing 20 neurons. We

set the replay memory value ND to 800 and the mini-batch

size SD to 30. The learning rate was fixed at 0.01, and the

target iterations were set to 50 decisions per episode.

Following the general configuration for training the DQN

model, we set the remaining parameters as follows:

c ¼ 0:9; f ¼ 1; s ¼ 500, and � is decreased from 0.9 by

0.002 in each learning iteration. In addition, the evaluation

also include an implementation of the PPO (Proximal

Policy Optimization) method to validate the performance

of our proposed CASA based on the DQN. For specific

parameters, we set the epsilon clipping �� clip value to

0.2, and the entropy coefficient e to 0.01.

5.2 Experimental results

We evaluate several real-time methods for EV charging

station scheduling, including two traditional approaches:

the random method employs an unordered scheduling

approach, where arriving EVs randomly select a charger. In

contrast, the earliest assignment method employs a time-

greedy strategy, assigning each arriving EV to the earliest

available charging station to minimize the average

response time. Additionally, we consider two DRL meth-

ods, in addition to the CASA method we proposed, which

is based on the implementation of DQN, there is also a

CASA reimplementation based on PPO as a baseline for

evaluating the performance of RL agents. Both methods

utilize networks of distinct architectures but achieve dis-

crete action decisions, which are the two most widely

applied approaches in similar scheduling problems [8, 36].

Table 3 Tariff TOU Price (¥/kWh)

Time (h) 1 2 3 4 5 6 7 8

Tariff price 0.4 0.4 0.4 0.4 0.7 0.7 0.7 1

Time (h) 9 10 11 12 13 14 15 16

Tariff price 1 1 1 0.7 0.7 0.7 1 1

Time (h) 17 18 19 20 21 22 23 24

Tariff price 1 1 0.7 0.7 0.4 0.4 0.4 0.4
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It should be noted that in the subsequent experimental

result figures, we use Ran to denote random selection, EL

to denote earliest allocation, CASA-P and CASA, respec-

tively, signify the implementations of our proposed method

based on PPO and DQN algorithms.

5.2.1 Varying mean EV arrival rate

In this case study, we commence by comparing the per-

formance of each method under a varying mean EV arrival

rate. As mentioned earlier, the simulated charging station

was configured with 10 chargers. To evaluate its schedul-

ing capability, we intentionally set the number of EV

arrivals per hour to exceed the number of available

chargers at any given moment. Specifically, we varied the

average EV arrival rate from 10 to 30, with a step size of 5.

Furthermore, we maintained a balanced distribution of

customer service types. The proportion of urgent and

nonurgent EVs was uniformly set to 50%.

The results of this experiment are presented in Fig. 3. To

avoid disproportionate influence on the agent’s strategy

learning due to unit differences in reward function, we

normalized each metric. Therefore, in subsequent experi-

mental results, ‘‘Cost’’ and ‘‘Average Response Time’’ are

shown as abstract values without units. First, it is evident

that our proposed CASA procure with two DRL imple-

mentations outperforms the other two baseline methods in

terms of success rate, exhibiting an approximate 20%

improvement compared to the suboptimal Earliest method.

Additionally, as depicted in Fig. 3b, there is no significant

cost difference among the first two baseline methods, while

our CASA method effectively reduces costs by approxi-

mately 50%. Since the charging stations have a relatively

fixed hourly response capacity under limited facilities, the

cost of the charging station changes relatively little with

the increase in EV arrival rates when viewed from the

perspective of charging customers. Furthermore, Fig. 3c

reveals that the CASA procedure achieves comparable

performance to the earliest method in reducing the average

response time, while the earliest method optimizes solely

for minimizing response time in a greedy manner without

regard for other metrics.

It is worth noting that both CASA-P and CASA

demonstrate exceptional performance under low EV arrival

rates. However, as the charging stations face a more intense

service requests that exceed facility capacity, leading to

performance fluctuations in the CASA procedure. Notably,

when compared to CASA-P, CASA exhibits a more

stable and gradual performance degradation, indicating

superior adaptability. This phenomenon is contingent upon

the distinct convergence and suitability of the two algo-

rithms for the given problem scale, which will be further

substantiated in subsequent experiments. In summary, the

Fig. 3 Comparison by varying the mean EV arrival rate
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CASA procedure we proposed exhibits the ability to reduce

costs, shorten response times for real-time requests, and

consistently outperform other baseline methods under

various average EV arrival rates.

5.2.2 Varying urgent service proportion

In this experiment, we aimed to compare the performance

of each method at different ratios of urgent service types.

Unlike the previous case, we maintained a constant average

EV arrival rate of 20 while varying the ratio of urgent

service EVs from 10 to 90% in increments of 0.2. The ratio

of AC II charger to DCFC charger in the charging station

remained at 50%. The experimental results in Fig. 4 con-

sistently demonstrate our method outperforming other

baselines, including the PPO-based CASA-P, across all

metrics. Our CASA procedure exhibits a success rate

exceeding traditional comparative methods by approxi-

mately 30% to 50%, while maintaining a lower average

response time compared to the earliest method. Further-

more, our method achieves a 40% cost reduction. Through

the analysis of the individual subplots, it becomes evident

that the CASA procedure performs exceptionally well

when the proportion of urgent service customers is set to

50%. This is due to the ability of RL agent to make type

matching decisions effectively, a capability that traditional

methods clearly lack. Consequently, the first two baselines

consistently exhibit inferior and relatively stable perfor-

mance as the proportion of urgent service changes. In

conclusion, our proposed CASA process exhibits superior

performance at any service type ratio, and its performance

is enhanced when the proportion of urgent and nonurgent

customers is closer to parity.

5.2.3 Varying DCFC charger proportion

Similar to the case Sect. 5.2.2, in this experiment, we

varied the charger types and evaluate the performance of

our method accordingly. Here, a ratio of 0.1 indicates that

only 10% of the chargers are DCFC chargers, while the

remaining are AC II chargers. The experimental results,

presented in Fig. 5, highlight a significant performance

advantage of our method over the other baseline methods.

In contrast to the other methods, which exhibit a degra-

dation in performance as the charger proportions change,

our method consistently maintains stable performance

throughout the process. Particularly, when the proportions

reach 0.7 and 0.9, the CASA procedure demonstrates sig-

nificant performance advantages in terms of average

response time and success rate. Furthermore, as depicted in

Fig. 5b, CASA consistently achieves a stable cost reduc-

tion of approximately 40%. This experiment showcases

that the CASA procedure can provide effective schedulingFig. 4 Comparison by varying the proportion of EV types
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regardless of the specific charger settings in the charging

station, thereby demonstrating the scalability and adapt-

ability of our proposed method.

The above three experiments provide insights into the

performance of the CASA procedure in terms of reducing

the average response time, improving the service success

rate, and reducing the cost of EV charging stations. These

experiments demonstrate the stability of our proposed

method under different environmental conditions, as evi-

denced by the consistent performance across varying

experimental variables. In summary, our DRL-based

CASA procedure effectively reduces the overall cost of the

charging process compared to traditional methods while

maintaining user satisfaction and meeting service quality

requirements. Moreover, it demonstrates the greater sta-

bility and improved performance of RL agent compared to

CASA-P.

Fig. 6 Comparison of loss convergence between DQN and PPOFig. 5 Comparison by varying the proportion of charger types
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5.2.4 Comparative analysis of DQN and PPO methods

In the aforementioned experiment, we assessed the per-

formance of scheduling strategies optimized based on PPO

and DQN by manipulating different variables. Preliminary

findings indicate that our CASA implementation based on

DQN exhibits superior convergence and stability. Subse-

quently, we will provide a comprehensive explication of

this comparative outcome.

In the scheduling problem considered by CASA procure,

where the action space consists of all the charger IDs

within the charging station. The task of scheduling policy

is to select the appropriate charger for a specific vehicle,

making it a purely discrete decision problem. In this case,

the stability of the Q-network structure employed by DQN

is highly suitable. As illustrated in Fig. 6a, it calculates the

loss through mean squared error to provide more

stable estimates and can directly output the Q values of

each charger for optimal selection. In contrast, as shown in

Fig. 6b, PPO calculates the loss through both policy loss

and value function loss, aiming to output a continuous

action probability distribution or discrete action values. It

is worth noting that due to the different loss calculation

methods employed by the two algorithms, their loss ranges

may different, while the convergence trends exhibited

during the iteration process remain comparable. Therefore,

DQN excels in this particular problem due to its special-

ization in handling purely discrete action decisions, without

the need to accommodate the capacity for addressing

continuous action spaces. In conclusion, the DRL

scheduling strategy optimized based on DQN outperforms

the re-implemented scheduling method using PPO in terms

of reducing charging station costs and decreasing average

response times. Furthermore, It is capable of meeting real-

time scheduling demands for large-scale EV charging

requests with continuous random arrivals.

For the comparison of transfer learning performance,

PPO collects new data for online learning with each policy

update, typically involving complex gradient policies.

Conversely, DQN leverages the experience replay mecha-

nism, sampling from previous experiences for parallel and

iterative learning, which is generally easier to train. As

depicted in Fig. 7, DQN exhibits convergence in average

rewards after approximately 20 training episodes, whereas

PPO requires approximately 60 episodes to achieve reward

stability. Consequently, when the scale of facilities within

the charging station needs to be adjusted, the more train-

ing-efficient DQN demonstrates superior transfer

capabilities.

6 Conclusion

In this paper, we propose the CASA procedure, a cost-

aware EV charging scheduling framework. The CASA

framework considers the diverse charging demands of

customers, addressing both urgent and nonurgent charging

needs of EVs. To achieve this, we have designed two

distinct charging modes with different power levels and

corresponding costs for power losses, significantly

improving responsiveness to user demands while reducing

power costs. Furthermore, given the limited availability of

charging infrastructure, the CASA procedure optimizes the

allocation of chargers for each EV, aiming to minimize the

charging cost based on the TOU tariff. We formulate the

charging scheduling problem as a MDP and have devel-

oped an effective method using the DQN algorithm. Our

experimental results demonstrate that the CASA procedure

provides an efficient solution which meets QoS require-

ments and also significantly reduces the operational costs

for the charging station, compared to existing methods.

Future work on EV charging scheduling can be further

expanded with more detail. For instance, forthcoming

studies could consider a broader range of real-world chal-

lenges, such as renewable energy generation, instead of

solely relying on TOU tariffs from the grid to reflect the

volatility of electrical loads. Furthermore, in future

scheduling optimization endeavors, it would be pertinent to

explore the impact of EV discharge behaviors and the

heterogeneous characteristics of arrival models in different

scenarios on charging strategies.
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