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Abstract: 

The emergence of autonomous driving technology gradually facilitates the shift towards 

self-driving vehicles, altering the role of drivers and transitioning them from active 

operators to passive observers, which may impact their spatial cognition and decision-

making abilities. This study leverages virtual reality (VR) to create a simulated 

autonomous driving experience, integrating augmented reality (AR) displays that present 

spatial information through distant and local landmarks. The objective is to assess how 

drivers interact with and process AR-enhanced spatial cues in a virtual autonomous 

driving context. Building upon R. Li's research (2023), this study employs a two-by-two 

experimental design to investigate the effects of road type and AR landmark conditions on 

spatial knowledge acquisition. Eye-tracking data collected via the VR headset is analysed 

to examine variations in gaze behaviour under different experimental conditions in five 

windshield areas. Additionally, the study compares immersive VR-based results with 

those from R. Li's original online video-based research (2023) to evaluate the consistency 

and reliability of findings. The results indicate that the AR display with landmark 

information enhances spatial knowledge acquisition. Regarding road type, participants on 

the highway took more time to comprehend spatial layouts but achieved higher accuracy 

compared to those on the local road AR landmarks displayed on the top and bottom areas 

of the windshield attracted more attention than the right edge windshield area during VR 

experiments, as evidenced by increased average fixation duration, fixation count, and 

dwell time (which are eye-tracking metrics). Conversely, compared to the AR absent 

condition, adding AR landmarks reduced the frequency of gaze focus on the right edge of 

the windshield with less dwell time and lower fixation count. The route and 

configurational knowledge task accuracies produced consistent results in in-person VR 

and video-based online research. For directional knowledge, the VR experiment revealed 

higher accuracy than the online video experiment. The research findings guide future 

research in enhancing the integration of AR in autonomous driving, with a focus on 

improving safety, spatial awareness, and the overall user experience. 
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1 Introduction  

1.1 Background 

The emergence of autonomous driving technology is transforming the transportation industry. It 

promises to fundamentally change how we view and interact with our vehicles, providing 

unmatched convenience, safety, and efficiency during our daily commutes. However, as we go 

towards the world of self-driving vehicles, we find ourselves at a crossroads where technical 

innovation can transform not just the way we move but also our cognitive relationship with the act 

of driving itself. 

Human drivers have depended on their intrinsic spatial knowledge, perceptual ability, and intuition 

for decades to manage the complex and dynamic road environment. However, the introduction of 

GPS navigation systems to driving activities has shown a decline in spatial learning and awareness 

as drivers become more reliant on technology and less on their cognitive mapping abilities (Aporta 

& Higgs, 2005; Burnett & Lee, 2005). As we further transition to fully autonomous vehicles, this 

concern intensifies. There is a growing concern that the reliance on technology may induce a 

gradual degradation in human competence when it comes to spatial decision-making (Fleetwood, 

2017). With autonomous systems taking over control, drivers become passive passengers, 

increasingly detached from the once-critical task of piloting a vehicle (Janssen et al., 2019). 

Autonomous driving has challenged our traditional understanding of spatial awareness and 

decision-making (Parekh et al., 2022). Spatial awareness is the ability to understand, reason, and 

remember the visual and spatial relations among objects or space (Bolton & Bass, 2009; Endsley, 

1995; Wickens, 2002). Spatial awareness and learning are pivotal as they aid in navigation and 

enhance cognitive abilities, problem-solving, and memory. A robust spatial understanding allows 

individuals to relate to their environment, make informed decisions, and anticipate potential 

challenges (McCunn & Gifford, 2018; Spence & Feng, 2010). As we lean more toward technology 

while driving, it is crucial to recognize and address the potential cognitive impacts and maintain a 

balance between convenience and cognitive development. 

This transformation prompts us to examine how we can empower individuals within autonomous 

vehicles to regain their spatial awareness, stay engaged, and enhance their overall driving 

experience. One compelling solution lies in adapting the windshield as an information display 

canvas and using Augmented Reality (AR) visualization as an efficient means for augmenting the 

travel experience (Keil et al., 2020). AR, a technology that overlays digital information in the real 

world, offers a unique way to enhance visual data without detaching passengers from their 

surroundings (Çöltekin et al., 2020; Flavián et al., 2019). This integration of AR visualization 

provides a context-rich environment, making autonomous driving more informative and immersive 

(Dwivedi et al., 2022; Riegler et al., 2022). 

This thesis explores the intersection of autonomous driving technology, human cognition, and 

future AR technology. The experiment will create a virtual reality (VR) self-driving simulation, 

where the AR display will be presented through the windshield. Specifically, the windshield will 

add landmark cues and auxiliary driving information to enhance the acquisition of spatial 

knowledge for experimenters. The spatial knowledge is divided into three specific categories: route 

knowledge, directional knowledge, and configurational knowledge. Route knowledge involves the 
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ability to recall and navigate the sequences of the landmarks of different locations (Hirtle & 

Hudson, 1991; Siegel & White, 1975). Directional knowledge requests the ability to form a mental 

framework for understanding the orientations in spaces (Burte & Montello, 2017). And the 

configurational knowledge involves understanding the spatial layout and relationships between 

different locations (Golledge et al., 1992; Ishikawa & Montello, 2006). 

Furthermore, the study extends beyond mere task performance; it incorporates eye-tracking data 

alongside other metrics to scrutinize how drivers process the information presented on the AR 

windshield. One of the groundbreaking applications of VR is the integration of eye-tracking 

technology, which captures the gaze patterns and eye movements of users in real-time within the 

virtual environment (Clay et al., 2019). This convergence of technologies provides a unique 

opportunity to study human spatial knowledgeability. By analysing where, how long, and in what 

sequence users look at specific objects or landmarks in a virtual space, researchers can gain insights 

into how individuals navigate, recognize spatial patterns, and process spatial information (Walter et 

al., 2022). 

It is important to note that, although eye-tracking data is pivotal in interpreting the findings, 

integrating this data with statistical analyses of individuals’ task performance is essential for 

understanding the stimulus effectiveness. This comprehensive approach aims to shed light on the 

potential of AR technology in enhancing spatial awareness in the realm of autonomous vehicles. 

1.2 Related work 

1.2.1 GPS effects on spatial knowledge acquisition 

Over the years, numerous studies have consistently indicated a concerning trend: using GPS in 

traditional vehicle navigation and pedestrian wayfinding appears to be associated with a diminished 

capacity for spatial learning. 

Burnett and Lee (2005) explored the difference in spatial awareness and memory between users of 

traditional navigation methods (like paper maps) and those relying on modern vehicle navigation 

systems. The research suggested that the use of navigation systems might lead to a decreased ability 

to form detailed cognitive maps, as these systems often provide turn-by-turn instructions that 

require less active engagement from the user. Münzer et al. (2006) explored how computer-assisted 

navigation systems affect the route knowledge and survey knowledge. The results found that while 

navigation systems can aid in efficiently learning route, however, reliance on navigation hinder the 

development of a deeper, more integrated understanding of spatial environments. Parush et al. 

(2007) discussed the negative impact of reliance on automatic navigation systems on the acquisition 

of spatial knowledge. The key argument presented is that over-reliance on these systems may lead 

to a "mindless" approach to navigation, where users pay less attention to their environment and fail 

to develop necessary spatial knowledge. 

Later on, several empirical studies collectively examined the impact of different navigation tools on 

spatial knowledge acquisition and cognitive workload. Ishikawa et al. (2008) compared the efficacy 

and impact of GPS navigation with traditional paper maps and direct experiential navigation. This 

study reported while GPS-based systems are highly efficient in guiding users to their destinations, 

they tend to lead to less engagement with the environment and poorer spatial knowledge acquisition 

compared to traditional maps and direct experience. Willis et al. (2009) explored the differences in 

how traditional maps and mobile map applications affect understanding and memory of spatial 
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environments for users. In this research, users of mobile maps tended to perform worse in terms of 

estimating route distances and understanding the overall spatial layout compared to those who use 

traditional maps, which implied that mobile maps are not as effective as traditional maps in 

developing a comprehensive and integrated understanding of spatial environments (Willis et al., 

2009). 

In recent years, studies have increasingly tested the aforementioned effects using virtual 

environments. For instance, Gardony et al. (2015) delved into how the use of navigational aids (like 

GPS) impacts spatial memory, particularly focusing on the concept of divided attention. The results 

of these experiments generally revealed that the reliance on navigational aids, combined with 

divided attention, can impair the formation of robust spatial memory. Participants using 

navigational aids under divided attention conditions often showed a lesser ability to recall spatial 

details or navigate effectively without aids, compared to those who navigated without such aids or 

without divided attention (Gardony et al., 2015). Hejtmánek et al. (2018) involved participants 

navigating a virtual town using a GPS-like map, with their eye movements being tracked to assess 

spatial awareness and memory. In this study, participants who spent more time using the GPS-like 

map exhibited less accurate spatial knowledge, suggesting a negative correlation between GPS 

reliance and spatial awareness. Most recently, Ruginski et al. (2019) examined how reliance on 

GPS navigation impacts an individual's ability to learn and understand their environment. The study 

suggested that GPS use can negatively affect the overall process of environmental learning. 

Participants who heavily relied on GPS for navigation showed a decrease in their spatial 

transformation abilities. 

Taken together, the trend observed from previous studies on navigation assistance suggests that as 

autonomous vehicles become more prevalent, drivers may experience similar reductions in spatial 

cognition. The introduction of autonomous driving systems has the potential to transition 

individuals from active drivers, who rely on keen spatial awareness and navigation skills, to passive 

passengers (Brishtel et al., 2021; Mondschein et al., 2010; Parekh et al., 2022). During autonomous 

driving, many driver behaviours have nothing to do with paying attention to road information and 

driving behaviour itself (Riegler et al., 2022). The shift from active navigation to passive travel 

could further diminish the need for spatial awareness and cognitive map formation. In line with this 

prediction, Brishtel et al. (2021) investigated the effects of various navigation aids, including 

autonomous driving, on spatial knowledge acquisition and found out that with autonomous vehicles 

handling the complexities of the road, individuals may become less reliant on these skills in 

everyday travel which leads to poorer spatial knowledge and suggests a disadvantage to the long-

term development of spatial memory. Notwithstanding, in transportation technology the 

convergence of self-driving capabilities and spatial cognition is a nascent area of study. It remains a 

relatively uncharted domain with limited researchers delving into its intricacies.  

1.2.2 Head-up displays (HUD) 

Existing research in autonomous driving primarily concentrates on the development and refinement 

of self-driving technologies, with a predominant focus on vehicular control, navigation, and safety 

(Mora et al., 2020). Drivers are physically and cognitively passive while sitting in autonomous cars 

because they do not need to pay any attention to or intervene in the driving environment during the 

entire driving process. Previous study has proven that reducing the driver's mental load using 

autonomous driving mode comes at the expense of spatial learning (Brishtel et al., 2021). 
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Therefore, the goal of modern autonomous driving technology should be to enhance the driving 

experience and avoid adverse effects on the driver's acquisition of spatial knowledge (Brishtel et al., 

2021). The primary interface for human interaction in both autonomous and traditional manual 

vehicles is the windshield, a crucial element for acquiring spatial knowledge and forming spatial 

cognition of the driving environment (Riegler et al., 2022). This interface allows drivers to perceive 

spatial information from the surrounding environment, especially when no GPS is available in 

autonomous driving vehicles.  

A head-up display (HUD) is a technology used in vehicles to project essential driving information 

as visual cues onto the car's windshield (Ablassmeier et al., 2005; Charissis & Papanastasiou, 2010; 

Stojmenova Pečečnik et al., 2023). Conventional 2D HUDs project straightforward, two-

dimensional information such as speed or basic navigation onto the windshield (Feierle et al., 

2019). Previous research indicates that 2D HUDs in manual vehicles efficiently enhance driving 

performance and contribute to comprehensive situational awareness for drivers. Situational 

awareness allows individuals to assess what is happening around them, understand how 

information, events, and their own actions will impact their goals and objectives, and foresee 

potential dangers or opportunities (Endsley, 1995). 

For traditional vehicles, Ablassmeier et al. (2005) evaluated the integration of HUDs into a 

multimodal interaction concept, considering factors like driver attention and information 

processing. In this research, results indicated that HUDs could significantly enhance driving 

performance by providing critical information in the driver's line of sight, thus improving 

situational awareness and reducing distractions (Ablassmeier et al., 2005). Charissis and 

Papanastasious (2010) assessed how this HUD interface impacts driving performance and 

cognition. The HUD interface revealed the potential in enhancing driver awareness, safety, and 

interaction with vehicle controls, thus improving overall human-machine collaboration in the 

automotive environment. Jakus et al. (2015) evaluated different types of information displays 

within vehicles to determine which of these display methods is more efficient and effective for 

drivers. The findings suggested that interactions with visual and audio-visual HUDs are generally 

faster and more effective than with audio-only displays.  

Traditional HUDs use simple projection technologies to display non-interactive, static information 

that does not change based on the viewer's perspective or the external environment (Ablassmeier et 

al., 2005; Charissis & Papanastasiou, 2010; Jakus et al., 2015). Compared to traditional HUDs, AR 

HUDs demonstrate enhanced effectiveness in driving performance. They offer a more engaging 

experience by projecting dynamic, interactive three-dimensional information onto the real-world 

view for drivers, significantly enriching environmental perception with detailed contextual cues 

(Feierle et al., 2019; Pauzie, 2015). As autonomous driving technology advances, AR HUDs are 

increasingly incorporated into studies focusing on autonomous vehicles, illustrating their potential 

in this emerging field. Langlois and Soualmi (2016) compared the effectiveness of AR HUDs with 

traditional HUDs during the transition from automated to manual driving. The experiment showed 

the advantages of AR HUDs in enhancing driver response and maneuver anticipation, suggesting 

their potential superiority over classical HUDs in rebuilding situation awareness to take over 

driving. Feierle et al. (2019) assessed how AR technology influences driver behavior, situational 

awareness, and interaction with the vehicle's automated systems. The results indicated that AR 

HUDs potentially offer significant benefits in enhancing driver awareness and response in complex 

urban driving scenarios. More recently, X. Li et al. (2023) explored the role of HUDs in enhancing 
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the driving experience in automated vehicles. The experiment design involved participants in a 

driving simulator, assessing their response to taking over control from automated driving while 

engaged in tasks via the HUD.  The results indicate that AR HUDs enhance readiness and 

efficiency in transitioning back to manual control for drivers in autonomous vehicles (X. Li et al., 

2023). 

1.2.3 HUD for spatial awareness 

The relationship between situational and spatial awareness is foundational to navigating and making 

decisions in complex environments. Situational awareness provides the contextual understanding 

necessary to assess the current state of the environment, including potential hazards and 

opportunities (Endsley, 1995). Spatial awareness builds on this understanding, enabling an 

individual to navigate through or interact with the environment based on spatial relationships and 

orientations of objects and features (Bolton & Bass, 2009; Endsley, 1995; Wickens, 2002). 

Based on research reviewed above, there is potential for incorporating AR landmarks on the 

windshield due to the usefulness of HUDs in enhancing situational awareness. AR HUDs present 

interactively environmental information directly within the driver's field of view, which is 

beneficial for immediately understanding the environment and its potential changes (Feierle et al., 

2019; Langlois & Soualmi, 2016; X. Li et al., 2023). Given the close relationship between 

situational and spatial awareness, it is reasonable to anticipate that the benefits observed in 

situational awareness could also extend to spatial awareness. Therefore, by displaying significant 

spatial signals and instructions onto the actual environment, AR landmarks have the potential to 

improve spatial awareness and make navigating safer and more accessible in autonomous driving. 

In a study conducted by R. Li (2023), the author delved into the varying capabilities of acquiring 

spatial knowledge through AR landmarks displayed on the windshield (R. Li, 2023). This 

experiment delves into the application of AR for visualizing distant landmarks, transitioning from 

mobile phones to vehicle windshields, to enhance spatial learning. It uses simulated autonomous 

driving videos to explore the influence of AR landmarks and varying road conditions—highway 

and local road—on spatial knowledge acquisition. Participants are allocated randomly to two 

distinct scenarios and undertake tasks to evaluate their spatial knowledge. In R. Li’s experiment, the 

participants joined the research online by watching the video. While online and video research 

methods are advantageous in many respects, they have inherent limitations. Generally, online 

researchers have limited control over the participant’s environment, and  it is hard to verify the 

identity of participants or ensure they are not distracted during the study. Moreover, video only 

provides a fixed viewpoint and static perspective, leading to a low immersion level for participants. 

The current study adopts VR technology to overcome the limitations. Using a computer-generated 

3D virtual world that one can interact with, resulting in immersive real-time simulation, is 

characterized as VR. Firstly, VR provides a highly immersive and realistic experience (S. Kim & 

Dey, 2009; Riegler et al., 2019). Zhao et al. (2023) utilized an immersive VR experimental setup to 

investigate the advantages of AR cues in enhancing spatial learning and navigation, demonstrating 

the effectiveness of VR technology in facilitating the acquisition of spatial knowledge. Instead of 

passive observation, participants in VR feel like they are within the environment, allowing for a 

more authentic representation of the impact of autonomous driving on individuals (Nezami et al., 

2020; Riegler et al., 2021). Moreover, VR allows for detailed behavioural analysis by utilizing eye-

tracking technology (Clay et al., 2019). Researchers can track participants’ movements, gazes, and 
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reactions in real time, providing valuable data on their responses to different autonomous driving 

situations (Clay et al., 2019; Walter et al., 2022). Also, the experimental environments can be 

precisely controlled, ensuring that all participants are exposed to the same conditions and stimuli. 

This control enhances the scientific rigour of experiments and minimizes confounding variables. 

 

2 Research Objective 

This study seeks to replicate the findings of a previous video-based online study conducted by R. Li 

(2023), but with a twist: it utilizes VR to recreate two autonomous driving scenarios (highway and 

local road). A significant objective of this study is to compare the results derived from the video-

based online method with those from the VR approach. This comparison serves a dual purpose: to 

cross-validate the findings (using results from video participants to validate those from VR 

participants and vice versa) and to explore the joint effects of the experimentation method (VR + in-

person vs. video + online) on spatial learning. 

To begin, a virtual driving environment based on VR implementation is required to simulate the AR 

display showing distant landmarks along with directional cues to evaluate the effectiveness of this 

innovative display in spatial learning in local road and highway environments. 

Using this VR environment, the influence of the AR display on the spatial learning of autonomous 

vehicle drivers in two specific contexts, highway and local road, will be investigated. Furthermore, 

by analysing and visualizing gaze-behaviour patterns, this research aims to understand the cognitive 

processing of visual-spatial information presented on the windshield. 

2.1 Research Questions and hypotheses 

Several research questions (RQs) can be generated to explore the impact of different factors on the 

results of the immersive driving simulation. These RQs can help guide the investigation: 

RQ1. How do road types and AR landmarks affect task completion times and spatial knowledge 

formation during the immersive driving simulation? 

RQ2. Which changes in eye-tracking data significantly differ across road types and landmark types, 

and does this affect spatial knowledge accuracy? 

RQ3. What are the differences between the experiment results from online video and in-person VR 

participants? 

These RQs address the between-subject factors (landmark conditions and road types) and dependent 

variables (task completion times, route knowledge accuracy, directional knowledge accuracy, and 

configuration knowledge accuracy) which will be given more details in the experiment design 

section.  

Analysing these aspects with the two-way analysis of variance can provide valuable insights into 

the immersive driving simulation and its effects on participants’ performance for studying RQ1. 

Additionally, eye-tracking data such as average fixation duration, dwell time, and fixation count 

will be used to investigate the experiment’s outcomes to answer RQ2. In this study, the windshield 

is segmented into five areas, each depicting diverse environmental details of landmarks. And the 

cumulative link mixed model is conducted to interpret the interaction effects that involve the 

experimental methods to answer RQ3. 
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For RQ1, based on the synthesis of existing literature on AR applications in driving conditions, our 

hypothesis posits that different road types combined with AR landmarks will significantly influence 

drivers' task completion times and spatial knowledge acquisition (Charissis & Papanastasiou, 2010; 

Feierle et al., 2019; R. Li, 2023). Specifically, we hypothesize that complex road types, when 

augmented with strategically placed AR landmarks, will facilitate quicker task completion and 

enhance spatial knowledge. 

Regarding RQ2, we predict that participants will participate in more proactive information 

processing and higher eye-tracking metrics when traversing complicated road situations, such 

as highways and AR landmarks. Moreover, different kinds of landmarks are expected to improve 

the accuracy of spatial information at various levels. Increased cognitive interaction with 

environmental features aids in improving memory encoding and retrieval processes, thereby 

fostering the development of spatial awareness. 

Regarding the comparison between online video and VR (RQ3), we predict consistent outcomes 

across both in-person VR sessions and research utilising online videos. This consistency supports 

the hypothesis that AR landmarks displayed on the windshield can enhance spatial awareness in 

autonomous driving scenarios across varied road conditions. The inherent ecological validity of VR 

and the effectiveness of video as a research tool validate their application in simulating autonomous 

driving environments. Moreover, VR can perform head movement simulation, more accurately 

reflecting real-world experiences than traditional video research. 

  



 

 

8 

3  Methodology 

A schematic description of the workflow is shown in Figure 1. The VR development prepares and 

establishes the experiment environment. The experiment procedure analysis aims to get the 

experimental findings and answer all RQs. 

 

Figure 1: Workflow of the research 

3.1 Autonomous driving experience 

Unity, a renowned game engine, has shown its versatility beyond gaming, making strides in VR 

applications (Riegler et al., 2019). This research crafts immersive VR environments that closely 

replicate real-world driving conditions through Unity, allowing for comprehensive autonomous 

driving simulations, AR landmark displays, and eye-tracking functions (see the development 

window in Figure 2). 

 

Figure 2: Unity development window 

Four scenarios are developed within the Unity project to simulate autonomous driving experiences. 

These scenarios are differentiated by the presence or absence of an AR display on the windshield 
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and the type of driving environment, either highway or local roads. The first scenario involves 

driving on a highway without the AR display, while the second scenario introduces the AR display 

in the same environment. Similarly, for local roads, one scenario is designed without the AR 

display, and another incorporates it, allowing experiencers to engage with both environments under 

varying conditions. 

Upon completion of the game project, relevant VR plugins are integrated into the Unity project. 

The Varjo Aero Headset is then connected to the VR headset host computer. This setup provides 

individuals with a VR view and includes built-in capabilities for eye tracking data detection and 

collection. 

3.1.1 Virtual environments 

In developing VR driving scenes within a Unity project, the methodology begins with modelling 

scenarios based on real-world driving videos to ensure realism. Assets and models from the Unity 

Asset Store are utilized to build these scenes, enhancing the visualization of 3D road infrastructures.  

During the environment development phase, special attention is given to differentiating highways 

from local roads (two environments showed in Figure 3). This differentiation is achieved by 

varying the route lengths, speed limits, and specific characteristics unique to each road type, 

thereby creating a more authentic driving experience (two routes displayed in Figure 4). 

 

Figure 3: Driving scenes and autonomous navigation system (left: highway, right: local road) 

 

Figure 4: A top down view of the two routes (left: highway, right: local road) 
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Landmark placement is crucial in these scenes for fostering spatial awareness and environmental 

understanding. The number and location of landmarks are strategically chosen, focusing on global 

landmarks like traffic signs for spatial learning and local landmarks like custom building signs for 

contextual information. 

The Unity model used in this project is equipped with innovative autonomous driving features. 

These include newly developed windshield functions that project landscapes and AR information, 

enhancing the immersion and interactivity of the simulation. Autonomous navigation is facilitated 

by using waypoints and navigation meshes, which guide the vehicle along pre-defined paths. 

However, this system intentionally limits user control over specific driving dynamics like vehicle 

speed and turning behaviour to maintain a consistent and controlled simulation environment. 

3.1.2 AR windshield 

The windshield is divided into five distinct portions, as seen in Figure 5 and described below, to 

display different types of information for enhancing driver safety and awareness (R. Li, 2023). This 

setup also provides distinct areas of interest for eye-tracking data collection. 

 

Figure 5: AR visualization of different portions on the windshield (modified from R. Li, 2023) 

1) Top area - distant landmarks: Displaying distant landmarks in the top portion of the windshield 

aids drivers in long-range navigation. This view helps in identifying major landmarks for 

orientation, and understanding the broader context of the driving environment (Yesiltepe et al., 

2021). 

2) Middle centre area – local landmarks: Displaying the location of local landmarks on central part 

of the windshield, which offers the most comprehensive view of the immediate surroundings. Local 

landmarks play a crucial role in spatial learning by serving as reference points that aid in 

constructing cognitive map and formatting spatial awareness (Bruns & Chamberlain, 2019; Steck & 

Mallot, 2000).  

3) Left edge - local landmarks: Reporting the position changes of local landmarks from the central 

projection area of the windshield to the left outside area when local landmarks are still in front of 

the observers. These off-screen local landmarks enable users to better orient themselves and 

understand the layout of the surrounding area (R. Li & Zhao, 2017). 



 

 

11 

4) Right edge - local landmarks: Same as the left side, the right edge also indicates the relative 

location of the local landmarks, which moved to the right side of the off-screen area. 

5) Bottom area - auxiliary Information: Presenting auxiliary information, such as speed limitations, 

at the bottom portion ensures drivers don't have to divert their eyes far from the road. Having this 

information within the periphery of their primary view allows drivers to quickly check essential 

data without losing focus on the central environment or the road ahead. 

In the top area of the windshield, the transparency of the distant landmarks will gradually change to 

indicate the distance of the landmarks. As the car and distant landmarks become closer, the 

transparency gradually decreases. When people are presented with such transparency changes, they 

may generate better spatial insights from the visualization (Ananny & Crawford, 2018). For off-

screen local landmarks (the left and right edges of the windshield), as shown in Figure 6, 

transparency increases as the angle between the line connecting the landmark to the observer's eye 

and the observer's body level decreases. Once the direction of the landmark is opposite to the 

vehicle's heading, it completely vanishes from view. A local landmark loses visibility and becomes 

a distant landmark once it is farther away than 1 km. Likewise, when a distant landmark is within 

the immediately visible range (1 km), it transforms into a local landmark and becomes visible in the 

middle of the windshield. 

 

Figure 6: Transparency changes for off-screen local landmarks as they move away from the projection area 

(where users can directly see the physical surroundings through windshield). 

To achieve the AR display functionality in Unity for replicating reference research, a flexible 

approach to landmark projection on the vehicle's windshield is employed (see in Figure 7). Unity 

models feature windshields that are often curved rather than flat. To address this, a flat, transparent 

canvas is strategically positioned at the windshield's location. This addition simplifies the task of 

transforming coordinates from the real-world system to the local screen system for landmark 

anchors, ensuring accurate projection and orientation representation of the landmarks. 

 

Figure 7: AR displays on the windshield (left: highway, right: local road) 
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In the AR system designed for immersive autonomous driving simulations, distant landmarks 

receive a more comprehensive representation on the top portion of the windshield. This area 

features both an icon and the name of the landmark, strategically placed in a section generally clear 

of crucial environmental data. This placement not only efficiently uses the available space but also 

supports spatial learning by using the upper part of the windshield to display global information 

(Steck & Mallot, 2000). 

Conversely, local landmarks in the AR system are depicted in a more simplified manner. Only the 

icons of these landmarks appear on an image layer, which is centrally located in the middle of the 

canvas. This design approach effectively reduces visual clutter and avoids overwhelming the driver 

with excessive information in their immediate field of view, thereby reducing the risk of distraction. 

Additionally, the system thoughtfully displays auxiliary information at the bottom of the 

windshield, such as the road name and speed limit. This information is dynamically updated based 

on the vehicle’s location and the characteristics of different roads, ensuring that drivers receive 

critical information without being overwhelmed. This sophisticated integration of various AR 

elements not only enhances the overall driving simulation experience but also contributes 

significantly to the learning process within this simulated environment. 

3.1.3 Eye-tracking and VR setup 

In this research, eye-tracking data was cooperated to enhance our understanding of learning 

performance. Eye-tracking technology offers several benefits over traditional questionnaires and 

tests. It provides real-time, objective data on where and how long subjects focus their attention, 

which is particularly valuable in understanding the cognitive processes involved in learning 

(Adhanom et al., 2023). In this research, eye-tracking data collected by Varjo Aero includes 

information on pupil situations, fixation count, and dwell time, offering insights into the visual 

attention patterns of subjects. 

However, relying solely on eye-tracking data for interpreting VR experimental results has its 

limitation. While eye-tracking offers valuable insights, it primarily focuses on visual attention and 

may not capture the complete cognitive processing involved (Shadiev & Li, 2023). To address this, 

eye-tracking data is integrated with questionnaires. This approach allowed us to gain a more 

comprehensive understanding of spatial knowledge learning performance, especially in the context 

of evaluating cognitive processing in simulated AR windshields for drivers (Jeong et al., 2022). 

In a practical application, the Varjo Aero VR headset is combined with its software development kit 

(SDK) in Unity to collect data. Varjo SDK for Unity includes pre-made scripts for eye-tracking data 

collection, which are instrumental in efficiently gathering and exporting eye-tracking data for 

subsequent statistical analysis. This setup was chosen for its robustness and convenience for 

research needs in autonomous driving simulation. 

3.2 Participants and experimental design 

This research project initially aimed to recruit 40 volunteers. Ultimately, 34 individuals enrolled 

and participated in the VR experiments. The experiment received approval from Wageningen 

University & Research and the Laboratory of Geo-Information Science and Remote Sensing, 

adhering to all necessary legal and ethical guidelines. 
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The two-by-two design for this study includes two variables: road type (highway vs. local road; see 

Figure 4) and AR landmark condition (AR present (Figure 5) vs. AR absent). In the experiment, 

volunteers were divided into two groups. Each participant was assigned to one of two conditions: 

either 1) a highway without an AR landmark and a local road with an AR landmark, or 2) a local 

road without an AR landmark and a highway with an AR landmark. The road types are arranged in 

reverse order for each condition to counterbalance the order effect. For each condition, the spatial 

knowledge task survey varied in its settings. Participants were required to complete only one 

survey, corresponding to their assigned group, as detailed in Appendix 1. 

In total, 60 participants participated in this experiment, with 17 in each condition: seven men and 

ten women in condition one and three men and 14 women in condition two (Figure 8). In general, 

30 participants are full-time students (28 with bachelor’s degrees and two with graduate degrees) in 

Wageningen University, and four are full-time employees (three work in Wageningen University & 

Research and one in another company). In condition one, volunteers were first assigned to the 

highway without an AR landmark and followed the local road environment with an AR landmark. 

In condition two, volunteers are on the local road without an AR landmark display environment and 

on the highway with an AR landmark environment. 

 

Figure 8: The gender, age and educational degree of the participants 

Out of all, 19 participants are within the age range of 18–24, ten are within the age range of 25–29, 

four are within the age range of 30–34, and one is within the age range of 35–39. Regarding 

education level, only four participants have less than a high school diploma, 14 have bachelor’s 

degrees, 13 have graduate degrees, and one finished a PhD degree.  

3.3 Procedure and Measures 

The experimental procedure was conducted in a laboratory room, where participants completed the 

survey and engaged in an immersive autonomous driving experience using the Varjo Aero headset. 

In immersive experiment, each participant spent 20 minutes on average completing an autonomous 

driving simulation using the Varjo Aero headset. The VR headset was crucial for capturing eye-

tracking data, which was then saved in .csv format for thorough data analysis. 

The experimenter had each participant peruse the consent form and give verbal consent as soon as 

they arrived at the lab. Every participant gave their implicit agreement to take part in the survey and 

experiment (experimental procedure indicated in Figure 9). Prior to the VR experience, volunteers 

are required to complete a pre-experiment questionnaire evaluating their self-assessed spatial 
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knowledge and directional abilities, which were based on the Santa Barbara Sense of Direction 

Scale (SBSOD) questionnaire (Hegarty, 2002). Upon completing a scenario within the VR 

environment, each participant was expected to undertake three specific tasks. As the study involved 

two distinct self-driving scenarios, a total of six tasks were undertaken by each volunteer, the 

results of which contributed to the analysis of spatial knowledge acquisition. 

 

Figure 9: Experimental procedure schematic diagram 

The research specifically includes three varieties of tasks to evaluate the spatial knowledge 

acquisition of the participants by processing distant and local landmark information: route 

knowledge, directional knowledge, and configurational knowledge (example tasks are shown in 

Figure 10). Upon conclusion of the trials, two key metrics are recorded: the accuracy of responses 

to the spatial knowledge questions and the time taken to answer each question. These metrics 

provide valuable insights into the effectiveness of the VR simulation in enhancing spatial 

understanding and wayfinding abilities. 

  

Figure 10: Example tasks for three level of spatial knowledge 

Three spatial knowledge formation tasks are set as multiple-choice questions (details in Appendix 

1). Task one asks participants to select the correct sequence of the appearance of landmarks with a 

focus on representing the route knowledge learning performance (e.g., from landmark A to B to C; 

see the left side of Figure 10). Participants need to recall the order of the landmarks along the 

travelled route. In the highway environment, both the local and distant landmarks are used for route 
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knowledge testing, while only local landmarks are used on local roads. To enhance the 

comparability between AR and AR absence conditions, in virtual environments the information of 

local landmarks is indicated by the buildings along with custom-building signs, and distant 

landmarks are indicated with traffic signs along the road. Furthermore, in the spatial knowledge 

testing phase, for the AR absence condition only landmarks names are displayed in multiple choice 

questions, while both landmark names and icons are presented for the AR condition. 

The second task is to test the directional knowledge learning ability. Two distant locations need an 

accurate name displayed in a figure (middle task in the Figure 10). Participants are asked to match 

the names of the distant landmarks they encountered in the autonomous driving scene. Depending 

on the conditions, the distant locations are indicated by AR landmarks or the environment's traffic 

signs. 

For the configurational spatial knowledge testing, as shown by the right of Figure 10, the task 

(third) asks participants to choose the correct route configuration out of three options with a similar 

topology. Individuals need to memorize the significant features of the traffic roads and attempt to 

recall the directions of turning points that contribute to the topological shapes. 

Specifically, there are three output eye-tracking metrics to assist the experiment and understand 

how individuals navigate and process spatial information:  

1) Average fixation duration: this metric measures the time span for which the eyes remain steadily 

focused on a specific point, offering insights into which landmarks or road types capture the most 

attention or require extensive cognitive processing (Negi & Mitra, 2020);  

2) Fixation count: this refers to the number of times the eyes fixate on a specific point or area 

(Mahanama et al., 2022). A higher fixation count might indicate either confusion or interest in the 

observed element (Kwon & Kim, 2021);  

3) Dwell time: this quantifies the duration spent looking at a particular area of interest (AOI) 

(Holmqvist et al., 2011). Longer dwell times can suggest a high level of interest in a region, 

whereas shorter durations may imply that other areas are more engaging or relevant.   

These three metrics are specifically selected and calculated based on fixation object names to offer 

insights into user behaviour and performance. 

Additionally, participants are asked to provide their insights through a post-experiment 

questionnaire (Appendix 2). Their responses, crucial for refining the experimental design and VR 

simulation experience, encompass their overall impressions and reactions as well as motion 

sickness (how uncomfortable they felt after finishing the VR experiment). This feedback was used 

to provide guidelines that other relative research could consider on how to improve the usability of 

VR simulations as a research tool in assessing spatial knowledge.  

3.4 Data analysis 

3.4.1 Data preprocessing 

Upon gathering all necessary data, it is crucial to manually convert the responses from multiple-

choice format into a scale of relative accuracy for a detailed analysis of spatial knowledge (original 

results in Appendix 3 and pre-processing data in Appendix 4). 
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In the first task, which involves ordering three landmarks, the accuracy scale is defined as follows: 

0 indicates that none of the landmark orders is correct, whereas a score of 1 signifies that the 

sequence of landmarks is accurately identified. To align with pre-processing data in original 

experiment by R. Li (2023), a partial score of 0.2 is allocated for a partially correct order, 

considering that three landmarks are evaluated in this task. Specifically, if participants correctly 

identify the sequence of two adjacent landmarks, they are awarded a 0.2 score. 

The scoring is slightly different for the second task, which assesses the positioning of two distant 

landmarks. Each landmark position is assigned a value of 0.5. Therefore, a total score of 0 is given 

for completely incorrect positions and a score of 1 for entirely correct positions of the two distant 

landmarks. A score of 0.5 is designated for partially correct answers, applicable when the 

participant accurately identifies the position of one out of the two landmarks. 

The scoring system is straightforward in the third task, with only two possible scores: 0 or 1. The 

participant receives a score of 0 if they select an incorrect topological shape and a score of 1 for a 

correct selection. This binary scoring system simplifies assessing the participant’s understanding of 

topological relationships. 

For eye-tracking data pre-processing, the Velocity-Threshold Identification (I-VT) fixation 

classification algorithm is employed (Hartridge & Thomson, 1948; Olsen, 2012). This algorithm, 

based on velocity threshold of 130 degrees/ second, distinguishes between fixations and saccades 

by categorizing eye movement data points as either stationary fixations or rapid saccades 

(Andersson et al., 2017; Birawo & Kasprowski, 2022). In the detailed process of classifying the 

eye-tracking data, each data point is meticulously evaluated based on its velocity. When the 

velocity of a particular point falls below a predefined threshold, it is identified as a fixation (Orsi & 

Geneletti, 2010). Conversely, should the velocity surpass this threshold, the movement is 

categorized as a saccade (Orsi & Geneletti, 2010).  

Within the context of this study, there is a need to filter out the saccades to hold the more relevant 

fixation data through I-VT filter (Olsen, 2012). To optimize this fixation data, the algorithm 

undertakes maximum time between fixations of 75ms and maximum angle between fixations of 0.5 

degrees for merging adjacent fixations while simultaneously discarding any fixations of brief 

duration less than a minimum fixation duration threshold of 150ms (Chen & Hou, 2022; Olsen, 

2012). Thereby enhancing the quality and efficiency of the data for subsequent analysis. 

To address the variation in eye-tracking metrics (dwell time and fixation count) influenced by the 

duration of the experiment, a normalization procedure has been applied to the data collected from 

the highway environment experiments. The dwell duration and fixation count in the highway setting 

are multiplied by 0.75 since the local road scenarios take around three minutes to complete, but the 

highway scenarios usually last four minutes. The adjustment aims to mitigate data discrepancies 

arising from the different experiment lengths, thereby ensuring a more meaningful comparison 

between the two environments.  

3.4.2 Statistical analysis 

The first research question (RQ1) is about to research the impact of AR landmarks and road types 

for task completion times and spatial knowledge task accuracies during the immersive driving 

simulation. To answer this question, six two-way analysis of variance (ANOVA) tests are applied 

(Table 1).  
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Table 1: Statistical analysis methodologies and data components for three research questions 

 

For the second research question (RQ2), the eye-tracking data, such as average fixation duration, 

dwell time, and fixation count, are the additional variances to explain the performance differences 

across road types and landmark types according to the results of two-way ANOVA tests (eye-

tracking metrics attached in Appendix 5). The cumulative link mixed models (CLMMs) are 

conducted to explore the impact from individual eye movement behaviour to spatial knowledge 

accuracy (treated as the ordinal scale) in immersive autonomous driving experiments (Table 1). 

Also, for the third research question (RQ3), the CLMMs are conducted to cross-validate results in 

video and VR experiments. Specifically, the differences between the two experiments should be 

compared by using several generalized linear mixed models to examine the joint effects of the 

experimentation method (VR + in-person vs. video + online) on spatial learning. 

After conducting the statistical analysis methods, two-way ANOVA and CLMM, the pairwise post 

hoc test is conducted to examine all possible pairwise comparisons between groups to pinpoint 

exactly which differences are statistically significant. Thereby it could provide a clear 

understanding of how the factors interact with each other. Also, in multiple comparisons, the 

likelihood of a Type I error (false positive) increases (McHugh, 2011). Post hoc tests are designed 

to control the familywise error rate, ensuring that the probability of making one or more Type I 

errors is kept within a desired level, thus maintaining the integrity of the statistical analysis 

(McHugh, 2011). 

3.4.3 Research question one 

A statistical technique called the two-way ANOVA, which tests how two between-subjects 

independent variables affect the dependent variable in combination, is expected to be utilized in 

RQ1 (Frude, 1987). The categorical variables, road types (highway vs. local road) and AR 

landmark conditions (AR absent vs. AR present), are set as between-subject factors. In this 

instance, six dependent variables are route knowledge examining task completion time, directional 

knowledge examining task completion time, configurational knowledge examining task completion 

time, route knowledge task accuracy, directional knowledge task accuracy, and configuration 

knowledge task accuracy. 

ANOVA is a statistical method used for comparing the means across three or more groups (Frude, 

1987; Gelman, 2005). Specifically, two-way ANOVA can analyse the interaction effects of 

variables, such as road type and AR landmark condition, on performance characteristics. However, 

it is important to note that if the interaction effects of the independent variables are not significant, 

two-way ANOVA primarily indicates the overall differences attributable to one independent 

variable alone (Alin & Kurt, 2006; H.-Y. Kim, 2014). In the post hoc comparisons, the Bonferroni 

correction was applied with interaction effects, which adjusts the significance level when 

performing multiple comparisons (McHugh, 2011).  

Method Description Research target Balanced design

two-way analysis of variance

(two-way ANOVA)

examine the interaction effects between the two

independent variables on the dependent variable
RQ1, RQ2 yes

cumulative link mixed model

(CLMM)

evaluate the significance of fixed effects and

random effects, focusing on the ordinal

dependent variable

RQ2, RQ3 no
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3.4.4 Research question two 

Two comprehensive statistical analysis models are conducted to study RQ2 in five separating gaze 

areas, two-way ANOVA models with post hoc comparisons and CLMM in logit function. 

The two-way ANOVA models examined the influence of road type (highway vs. local road) and 

AR landmark condition (AR present vs. AR absent) on participant’s eye movement performances. 

The interaction between these two factors was also a critical aspect of the analysis. The results from 

two-way ANOVA tests provided a clear understanding of whether the differences observed in the 

means were statistically significant, which is crucial in determining the effect of road type and AR 

landmark condition on eye movement. To further validate and elucidate the findings from the two-

way ANOVA tests, post hoc Bonferroni comparisons are conducted.  

In addition to the ANOVA models, CLMMs play a significant role in tracing the effects of eye-

tracking metrics on spatial knowledge task accuracy. In CLMM, ordinal logistic regression is 

commonly employed to evaluate the significance of fixed effects and random effects, focusing on 

the ordinal nature of the dependent variables (Christensen, n.d.; McCullagh, 1980).This statistical 

approach is particularly useful for understanding complex relationships between ordinal dependent 

variables and independent variables. In this research, the dependent variables for spatial knowledge 

task accuracies are three-level or two-level ordinal categories. 

These CLMMs are applied to five separate gaze areas, providing a detailed understanding of how 

different aspects of eye movement relate to task performance. The results are instrumental in 

identifying significant eye-tracking metrics that acted as factors influencing the dependent 

variables, and it improve understanding the relationship between eye movements (independent 

variables) and spatial knowledge task accuracy (dependent variables). 

3.4.5 Research question three 

CLMM is particularly suitable for data with ordinal categories and unbalanced samples. In Li’s 

reference research, 60 volunteers donated 120 samples for three types of spatial knowledge 

accuracy assessment. In contrast, this research only includes 34 volunteers and 68 samples. To 

adjust for the unbalanced sample sizes between the two studies and to account for random effects, 

the CLMM is chosen for its robustness in handling ordinal data and mixed effects, compared to 

models like the generalized linear model or linear mixed model (Taylor et al., 2023). 

CLMM examines the differences in experimental findings and explore the interaction effects of the 

experimentation method (VR + in-person vs. video + online) to address RQ3, and post hoc 

Bonferroni comparisons are conducted to reveal the value of the means in different groups. 

Specifically, the dependent variables in CLMM are road type, AR landmark condition, and the 

experimentation method. This approach is crucial for identifying disparities between experiment 

results from online video participants and in-person VR participants. Focusing on interaction effects 

in CLMM provides detailed insights, especially in understanding the differences in experimental 

outcomes based on the various methods of experimentation. 

Additionally, since the data comes from multiple participants, we include a random intercept for 

subjects to capture individual variability. Along with the fixed effects, selecting appropriate link 

functions is essential in CLMM. For ordinal outcomes like accuracy levels, appropriate ordinal link 

functions, such as logit, is used to model the ordinal nature of the responses. 
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4  Results 

The results of this study are present in three sections (aligned with three research questions): First, 

we examine the impacts of road type (highway vs. local road) and AR landmark condition (AR 

absent vs. AR present) on accuracy and time performance; then, we observe the differs in the eye-

tracking metrics and examine the patterns of metrics in spatial knowledge accuracy; finally, we 

examine the joint effects of the experimentation method (VR + in-person vs. video + online), road 

type, and AR landmark condition. Additionally, the discomfort and motion sickness conditions after 

experiencing VR equipment collected from the post-questionnaire are revealed in the last 

subsection. 

In interpreting the p-value, which displays the significant differences between the groups selected 

for the null hypothesis, distinct p-value ranges are substituted to offer a relative gauge of the 

persuasiveness of the evidence (Ganesh & Cave, 2018). P < 0.001 in this study denotes extremely 

strong support for the null hypothesis, p < 0.01 for strong effect, p < 0.05 for moderate effect, and p 

< 0.1 for possible effect (Ganesh & Cave, 2018). The asterisks next to the p-values denote the level 

of significance, with more asterisks indicating higher statistical significance. 

4.1 Accuracy and time performances 

The study methodically evaluated the accuracy and time performance of two independent variables: 

road type and AR landmark condition. This evaluation included six two-way ANOVAs (Table 2) 

supplemented with pairwise post hoc analyses (Figure 11 and Figure 12). These statistical tests 

sought to determine the significance of observed discrepancies in the data. 

Table 2: Two-way ANOVA between subjects (road type and AR landmark condition) in accuracy and 

time performance of spatial knowledge tasks 

 

Dependent variable Factor DF MS F-value p-value η2 

Route knowledge task

accuracy
Road type (R) 1 0.038 0.231 0.632 0.003

AR landmark condition (A) 1 2.562 15.733 0.0002*** 0.196

R * A 1 0.021 0.130 0.720 0.002

Directional knowledge task

accuracy
Road type (R) 1 0.033 0.186 0.668 0.003

AR landmark condition (A) 1 0.827 4.639 0.0350* 0.066

R * A 1 0.298 1.670 0.201 0.024

Configurational knowledge

task accuracy
Road type (R) 1 2.118 9.846 0.0026** 0.125

AR landmark condition (A) 1 0.529 2.462 0.122 0.031

R * A 1 0.529 2.462 0.122 0.031

Route  knowledge task

time
Road type (R) 1 168.368 1.029 0.314 0.013

AR landmark condition (A) 1 2460.015 15.033 0.0002*** 0.187

R * A 1 66.015 0.403 0.528 0.005

Directional knowledge task

time
Road type (R) 1 2046.015 2.863 0.096 0.042

AR landmark condition (A) 1 181.191 0.254 0.616 0.004

R * A 1 371.779 0.520 0.473 0.008

Configurational knowledge

task time
Road type (R) 1 1980.721 6.576 0.012* 0.087

AR landmark condition (A) 1 1496.485 4.968 0.0293* 0.066

R * A 1 41.309 0.137 0.712 0.002

Two-way ANOVA
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Figure 11: Pairwise post hoc comparisons between subjects (road type and AR landmark condition) by 

significant differences in accuracy of spatial knowledge tasks 

 

Figure 12: Pairwise post hoc comparisons between subjects (road type and AR landmark condition) by 

significant differences in time performance of spatial knowledge tasks 

Initially, there are no significant interactive effects for two independent variables (road type and AR 

landmark condition) in two-way ANOVA, and only the overall differences indicated to one 

independent variable alone, shown in Table 2: Two-way ANOVA between subjects (road type and 

AR landmark condition) in accuracy and time performance of spatial knowledge tasks. For route 

knowledge, revealed from recalling the appearance order of landmarks, the accuracy is strongly 

influenced by the AR landmark condition [F (1, 68) = 15.73, p = 0.0002, η2 = 0.196]. From pairwise 

post hoc comparison (details revealed in Figure 11 and Figure 12), the participants revealed better 

performance in route-level accuracy with AR landmark display on the windshield (M = 0.85, SE = 

0.06) for all road types of driving environments. Without AR display, route accuracy in all driving 

environments is lower (M = 0.47, SE = 0.08). Also, the AR landmark display condition reveals 

significant differences for the time spent recalling the landmarks’ order [F (1, 68) = 15.03, p = 

0.0002, η2 = 0.187]. With AR landmarks, time spent on route-level knowledge tasks is shorter (M = 

14.82, SE = 1.47), and participants took longer time on the same task without the AR landmarks (M 

= 26.85, SE =2.72). 

For Directional knowledge of distant locations, the sole effect of task accuracy, which reveals a 

moderate difference, is the AR landmark condition [F (1, 68) = 4.64, p = 0.035, η2 = 0.066]. As 

shown in Table 2: Two-way ANOVA between subjects (road type and AR landmark condition) in 

accuracy and time performance of spatial knowledge tasks, participants with AR landmarks had a 
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significant advantage in visualizing the correct locations of distant landmarks (M = 0.66, SE = 

0.07), which leads to higher accuracy in directional knowledge tasks and a better understanding of 

spatial orientation in VR experiences. For participants with the conditions without AR landmarks 

displayed on the windshield, lower accuracy for directional knowledge (M = 0.44, SE = 0.08) 

revealed a poorer memory of the orientation of distant landmarks. Additionally, the differences in 

road type and AR landmark condition for directional knowledge examination time in this study are 

not significant. 

The two-way ANOVA analysis results, shown in Table 2: Two-way ANOVA between subjects 

(road type and AR landmark condition) in accuracy and time performance of spatial knowledge 

tasks, revealed a very strong significant difference on configurational accuracy between road types 

[F (1, 68) = 9.85, p = 0.0026, η2 = 0.125]. Based on the pairwise post hoc comparison, participants 

who travelled on the highway had better accuracy in configurational-level tasks (M = 0.65, SE = 

0.08) than those who travelled on the local road (M = 0.29, SE = 0.08). For the time to recall the 

topology of the travelled route, both road type [F (1, 68) = 6.58, p = 0.012, η2 = 0.087] and AR 

landmarks condition [F (1, 68) = 4.97, p = 0.0293, η2 = 0.066] have moderately significant 

differences on time to answer the configurational-level task. With AR landmarks, participants in the 

highway environment spent longer time (M = 33.41, SE = 3.46) than those in the local road 

environment (M = 22.62, SE = 2.57). Regardless of the road type, participants with AR landmarks 

presented on the windshield spent shorter time (M = 23.32, SE = 2.94) than those without AR 

landmarks (M = 32.71, SE = 3.22). 

4.2 Eye-tracking metrics 

Fifteen two-way ANOVA models were utilized to determine whether there are any statistically 

significant differences between the means of road type (highway vs. local road) and AR landmark 

condition (AR present vs. AR absent) and their interaction on participants’ eye movement 

performances in the VR experiments. The results from two-way ANOVA tests were supported by 

post hoc Bonferroni comparisons, revealed the value of the means in different groups. 

For the top portion of the windshield (which displays distant landmarks in the AR present 

condition), see in Table 3, a statistically moderate significant difference was shown in average 

fixation duration between road types [F (1, 68) = 4.449, p = 0.037, η² = 0.062]. The Bonferroni post 

hoc comparison, revealed in Figure 13, indicates that average fixation duration is significantly 

greater for highways (M = 644.81, SE = 25.88) compared to local roads (M = 567.05, SE = 26.66). 

Dwell time is significantly influenced by two main factors: Road type [F (1, 68) =5.656, p = 0.020, 

η² = 0.065] and AR landmark condition [F (1, 68) =4.155, p = 0.045, η² = 0.048], and the 

interaction between road type and AR landmark condition [F (1, 68) = 10.324, p = 0.002, η² = 

0.118]. Dwell time is significantly longer when AR landmarks are present (M = 49283, SE = 

3735.13) compared to absent on highways (M = 27804.00, SE = 3494.40), and for AR absent on 

highways (M = 27804.00, SE = 14407.8) dwell time is less than for AR absent on local roads (M 

=51070.00, SE = 4716.71). For Fixation count, there were statistically significant effects of the road 

type [F (1, 68) = 14.034, p < 0.001, η² = 0.150]. This indicates that participants had more fixations 

on local roads (M = 89.943, SE = 6.74) compared to highway environments (M = 60.98, SE = 5.10). 

The interaction between road type and AR landmark condition was also significant [F (1, 68) = 

9.955, p = 0.002, η² = 0.106]. This suggests a differential effect of the AR landmark condition on 

fixation counts depending on the road type. Specifically, there were more fixations on highways 
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when the AR landmark was present (M = 79.33, SE = 5.82) than absent (M = 42.63, SE = 5.59), and 

this effect was greater on local roads (M = 96.00, SE = 10.68) compared to highways (M = 42.63, 

SE = 5.59) in AR absent conditions. 

Table 3: Two-way ANOVA results for top area with eye-tracking metrics 

 

 

Figure 13: Pairwise post-hoc comparisons for top area with eye-tracking metrics 

For the gaze area in the middle centre (displaying local landmarks in the AR present condition), a 

distinct difference in attention allocation based on the type of road observed in Table 4 and Figure 

14. The variable average fixation duration is significantly affected by the road type [F (1, 68) = 

30.393, p < 0.001, η² = 0.309], indicating a strong effect where gazes are more focused on highways 

(M = 743.64, SE = 22.82) compared to local roads (M = 575.68, SE = 20.71). Dwell time, which 

represents the duration of gaze, also shows a significant effect of road type [F (1, 68) = 7.454, p = 

0.008, η² = 0.100], with longer dwell times on highways (M = 132788.00, SE = 7001.73) than on 

local roads (M = 110010.00, SE = 4585.49).  

Table 4: Two-way ANOVA results for middle centre area with eye-tracking metrics 
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Figure 14: Pairwise post-hoc comparisons for middle centre area with eye-tracking metrics 

The analysis indicated a significant main effect of road type on several gaze variables at the left 

edge (see in Table 5 and Figure 15). For the average fixation duration, participants had a 

significantly higher value when observing highways (M = 646.00, SE = 36.90) compared to local 

roads (M = 524.95, SE = 31.18). This suggests a moderate effect size, indicating that road type 

accounts for 8.7% of the variance in average fixation duration [F (1, 68) = 6.425, p = 0.014, η² = 

0.087]. The dwell time was significantly different between road types [F (1, 68) = 17.413, p < 

0.001, η² = 0.193], with more time spent on local roads (M = 27931.50, SE = 1733.93) than 

highways (M = 19583.01, SE = 1213.68). For the fixation count, the results were significant [F (1, 

68) = 25.161, p < 0.001, η² = 0.257]. But in this case, participants had a lower fixation count for 

highways (M =32.44, SE = 2.72) compared to local roads (M = 55.46, SE = 4.01), suggesting that 

participants may have had fewer but more focused fixations on highways. 

Table 5: Two-way ANOVA results for left edge area with eye-tracking metrics 

 

 

Figure 15: Pairwise post-hoc comparisons for left edge area with eye-tracking metrics 

In the right edge area, the effect of road type on average fixation duration was statistically 

significant [F (1, 68) = 4.661, p = 0.034, η² = 0.062], see in Table 6 and Figure 16, which is higher 

for highway (M = 788.60, SE = 42.43) compared to local road (M = 673.32, SE = 34.48). There was 



 

 

24 

a highly significant effect of road type on dwell time [F (1, 68) = 17.978, p < 0.001, η² = 0.160]. 

This indicates that road type has a substantial impact on dwell time, with significantly longer 

durations on highways (M = 22028.25, SE = 1279.98) than on local roads (M = 15329.9, SE = 

1351.35). The presence of AR landmarks significantly affected dwell time [F (1, 68) = 15.034, p < 

0.001, η² = 0.108]. Participants had shorter dwell time when AR landmarks were present (M = 

18697.63, SE = 1978.14) compared to when they were absent (M = 26308.30, SE = 1712.81). There 

was a significant interaction between road type and AR landmark condition on dwell time [F (1, 68) 

= 19.937, p < 0.001, η² = 0.177]. This suggested a specific condition where the combination of local 

road and AR present (M = 9847.46, SE = 1275.43) leads to shorter dwell times compared to local 

road and AR absent condition (M = 21134.90, SE = 1391.94). And highways in general had longer 

dwell times with AR landmarks than local roads (M = 20660.85, SE = 1630.95). The road type also 

significantly influenced fixation count [F (1, 68) = 4.428, p = 0.039, η² = 0.050]. This signified that 

the road type is strongly associated with the number of fixations, with more fixations occurring on 

highways (M = 28.85, SE = 2.07) compared to local roads (M = 23.11, SE = 2.20). The presence of 

AR landmarks significantly affected the fixation count [F (1, 68) = 13.095, p < 0.001, η² = 0.147]. 

Participants had fewer fixations when AR landmarks were present (M = 21.24, SE = 1.94) 

compared to when they were absent (M = 30.95, SE = 2.11). The interaction effect was significant 

[F (1, 68) = 4.817, p = 0.032, η² = 0.054], exhibiting that fixation count decreased with the AR on 

local road environments (M = 15.56, SE = 1.99) compared to without AR conditions (M = 31.12, SE 

= 2.92), and participants gazed at the right edge more frequently on the highways in AR present 

conditions (M = 26.92, SE = 2.73) than on local roads. 

Table 6: Two-way ANOVA results for right edge area with eye-tracking metrics 

 

 

Figure 16: Pairwise post-hoc comparisons for right edge area with eye-tracking metrics 

In the bottom area of the windshield (displaying auxiliary information in the AR present condition), 

the two-way ANOVA results in Table 7 for the variable average fixation duration with respect to 



 

 

25 

the road type were highly significant [F (1, 68) = 27.167, p < 0.001, η² = 0.276], indicating a strong 

effect where the average fixation duration was significantly greater for highways (M = 940.70, SE = 

67.43) compared to local roads (M = 534.52, SE = 43.54). This suggested that traffic signs in 

highways require longer fixation times for processing (details in Figure 17). For dwell time, the 

impact of road type [F (1, 68) = 14.431, p < 0.001, η² = 0.163] was also highly significant, showing 

that participants spent more time dwelling on highways (M = 19269.00, SE = 3367.48) than on local 

roads (M = 6638.08, SE = 1071.18). The AR landmark condition [F (1, 68) = 6.926, p = 0.011, η² = 

0.078] had a significant effect, indicating that dwell time was longer when AR landmarks were 

present (M = 17310.00, SE = 3275.55) compared to when they were absent (M = 8653.63, SE = 

1753.61). The fixation count showed a significant main effect of road type [F (1, 68) = 4.499, p = 

0.003, η² = 0.051], with participants counting more fixations on highways (M = 20.92, SE = 3.75) 

than on local roads (M = 12.97, SE = 2.12). The effect of AR landmark condition [F (1, 68) = 

16.265, p < 0.001, η² = 0.185] was highly significant, suggesting that the presence of AR landmarks 

significantly increased the number of fixations when on highways and local roads (AR present: M = 

24.60, SE = 3.67; AR absent: M = 9.19, SE = 1.56). 

Table 7: Two-way ANOVA results for bottom area with eye-tracking metrics 

 

 

Figure 17: Pairwise post-hoc comparisons for bottom area with eye-tracking metrics 

Fifteen CLMMs were used to trace the effect of eye-tracking metrics, in five separately gaze areas, 

on spatial knowledge task accuracy. The results listed in Table 8 indicated the significant eye-

tracking metrics as factors, and the dependent variables affected by the independent factors. 

Table 8: CLMM results for gaze areas with spatial knowledge task accuracy dependent variables and eye-

tracking metric factors 
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In the middle centre gaze area, a significant negative effect showed up between average fixation 

duration and directional knowledge task accuracy (z = -3.852, p < 0.001). This suggests that longer 

attentional focus duration is associated with lower directional knowledge task accuracy. There was 

a very strong significant effect of dwell time on directional knowledge task accuracy in middle 

centre area (z = 4.265, p < 0.001). This means longer dwell times are strongly associated with 

higher directional knowledge task accuracy. The significant effect of fixation counts on directional 

knowledge task accuracy indicated that an increase in fixation count is associated with better 

directional knowledge task accuracy (z = -3.152, p = 0.002). 

There was a highly significant positive effect of dwell time on configurational knowledge task 

accuracy (z = 3.076, p = 0.002). Longer dwell times are strongly associated with better 

configurational knowledge task accuracy. The significant effect depicted on the fixation count 
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number to configurational knowledge task accuracy (z = -1.993, p = 0.046). The increase in fixation 

count is associated with better configurational knowledge task accuracy. 

The results of fixation count in bottom area suggests a marginally significant positive effect of 

fixation count on route knowledge task accuracy (z = 2.230, p = 0.026). This implies that as 

fixation count increases, there was a slight tendency for route knowledge accuracy to improve. 

4.3 Experimentation method 

Experimentation method expressed differences between original research by R. Li (2023) and this 

research. Three CLMMs were applied to examine the joint effects of the experimentation method 

(VR + in-person vs. video + online), road type, and AR landmark condition as the statistical 

analysis model. The medium and experimentation method, road type, and AR landmark condition 

were modelled as fixed effects of the test accuracies, and participants were the random effect. The 

CLMM results in Table 9 showed significant differences between the experimentation method, and 

the significant interaction effects on the experimentation method and road type or AR landmark 

condition are in light grey backgrounds. In the post hoc results, details shown in Figure 18, asterisk 

annotates the accuracy value differences in the experimentation method groups are significant. 

 Table 9: Cumulative link mixed model analysis of independent variables (experimentation method, road type 

and AR landmark condition) 

 

Dependent variable Factor DF coef z p-values

Road type (R) 1 0.530 0.532 0.595

AR landmark condition (A) 1 2.145 2.296 0.022*

Method of experimentation (M) 1 1.688 1.232 0.218

R * A 1 -0.234 -0.177 0.859

R * M 1 -1.230 -1.084 0.278

A * M 1 -1.768 -1.677 0.094-

R * A * M 1 1.259 0.853 0.394

Road type (R) 1 -0.785 -1.067 0.286

AR landmark condition (A) 1 -0.110 -0.15 0.881

Method of experimentation (M) 1 4.339 3.219 0.001***

R * A 1 2.020 1.755 0.079

R * M 1 -2.759 -2.839 0.005**

A * M 1 -2.983 -3.116 0.002**

R * A * M 1 3.565 2.586 0.01**

Road type (R) 1 2.632 2.923 0.003**

AR landmark condition (A) 1 1.874 2.147 0.032*

Method of experimentation (M) 1 1.419 1.093 0.274

R * A 1 -2.088 -1.609 0.108

R * M 1 -3.073 -3.029 0.002**

A * M 1 -2.179 -2.199 0.028*

R * A * M 1 1.591 1.115 0.265

Cumulative link mixed model

Route knowledge task accuracy

Directional knowledge task

accuracy

Configurational knowledge task

accuracy
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Figure 18: Pairwise post hoc comparisons between variables (experimentation method, road type and AR 

landmark condition) 

For route knowledge accuracy, shown in Table 9, there are no sole effects from experimentation 

method in the task of recalling the landmark orders (z = 1.232, p = 0.218), but AR landmark 

condition and experimentation method indicated the moderate interaction effect (z = -1.677, p = 

0.094). As suspected from the post hoc comparison result table, there are no significant differences 

in the route knowledge accuracy for different AR measurements in both the in-person VR 

experiment and the online video experiment.  

There was a powerful significant effect of the experimentation method on directional knowledge 

accuracy (z = 3.219, p = 0.001), and a strong interaction effect of the experimentation method and 

the road type or AR landmark condition (road type * experimentation method: z = -2.819, p = 

0.005; AR landmark condition * experimentation method: z = -3.116, p = 0.002). Pairwise 

comparisons indicated that participants in the in-person VR experimental approach made 

significantly larger directional accuracy (M = 0.55, SE = 0.05) in task-related directional knowledge 

than the online video experimental approach (M = 0.37, SE = 0.05). For participants who were 

assigned to the highway condition or AR present condition, the average directional knowledge 

accuracy detected in the in-person VR research is higher (highway: M = 0.57, SE = 0.07; AR 

present: M = 0.66, SE = 0.06) than in online video research (highway: M = 0.30, SE = 0.06; AR 

present: M = 0.36, SD = 0.07). 

There is no significant difference between the experimentation method on configurational 

knowledge accuracy in the task (z = 1.093, p = 0.274). For both road type and AR landmark 

condition, the two-way interaction effects of each above and the experimentation method on 

directional task accuracy are significant (road type * experimentation method: z = -3.029, p = 0.002; 

AR landmark condition * experimentation method: z = -2.199, p = 0.028). The differences between 

the two studies affected by the interaction effect of road type and medium and experimentation 

method in highway and local road environments are opposite. On the local road, configurational 

knowledge task accuracy is higher in online video compared to in-person VR research (in-person + 

VR: M = 0.29, SE = 0.07; online + video: M = 0.62, SE = 0.07). For the joint effect of AR landmark 

condition and experimentation method, when there was no AR landmark, online video participants 

had higher configurational knowledge accuracy than VR participants (in-person + VR: M = 0.38, 

SE = 0.07; online + video: M = 0.60, SE = 0.07). 

4.4 Discomfort and motion sickness 

The Figure 19 presents data on the frequency of reported discomfort and motion sickness among 

participants, with scores ranging from 1 to 5. These scores likely represent increasing levels of 
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discomfort and motion sickness, where 1 indicates the lowest level and 5 the highest level of 

experienced discomfort or motion sickness. 

 

Figure 19: Frequency of discomfort and motion sickness scores 

In this study, the distribution of scores indicates that participants experienced a broad range of 

discomfort and motion sickness levels, spanning from low to high (scores 1 to 4). The highest level 

of discomfort and motion sickness (score 5) was relatively rare, reported by only one participant in 

each category. On average, the data suggest that the 34 participants experienced moderate levels of 

discomfort and motion sickness while engaging with the immersive experiences (M = 2.79, SE = 

0.15).  
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5  Discussion 

The research's analysis delivers insights into three main questions related to research. The following 

discussion goes into the findings and then focuses on the study's limitations. 

5.1 Accuracy and time performances 

The study's findings provide valuable insights into how road types and AR landmarks influence 

task completion times and spatial knowledge formation during immersive driving simulations. In 

general, the enhancement in accuracy with AR landmarks suggests that AR provides effective 

visual cues, aiding spatial orientation and memory. The faster task completion with AR assistance 

across both environments indicates that AR landmarks streamline navigation, reducing the 

cognitive load on participants. These results align with previous research indicating the benefits of 

AR in spatial knowledge tasks and that AR can enhance spatial understanding and reduce the time 

taken for navigational tasks (Gabbard et al., 2019; Jabbari et al., 2022). 

Consistent with the order of the experimental tasks, the discussion below explores three aspects of 

spatial awareness, explicitly concentrating on spatial learning in the context of realistic simulations 

for self-driving cars: route knowledge, directional knowledge, and configurational knowledge. 

5.1.1 Route knowledge 

Route knowledge is a fundamental aspect of spatial learning, involving the ability to recall and 

navigate through a series of locations using landmarks as key reference points (Hirtle & Hudson, 

1991; Siegel & White, 1975). Recent research has underscored the significant role of AR landmarks 

in supporting the acquisition of route knowledge in autonomous driving scenarios (R. Li, 2023). In 

this research, local AR landmarks reveals markedly benefits in enhancing the accuracy of route 

knowledge learning and facilitating the recall of landmark sequences encountered during travel. 

Ruddle et al. (2011) demonstrated that local landmarks significantly benefit route knowledge by 

reducing errors and enhancing the accuracy of navigation decisions, which supports the idea that 

drivers using AR displays exhibit a more precise memory of landmark sequences, leading to more 

effective recall and enhanced memorisation efficiency (Ruddle et al., 2011). 

The application of AR technology on highways and local roads greatly assists drivers in 

memorizing sequences of local landmarks. These landmarks, frequently incorporated into traffic 

signs or represented by local features like buildings, become more memorable through AR displays. 

Unlike brief glimpses of landmarks seen through a car windshield, AR displays maintain a constant 

presence, ensuring continuous visibility for the driver. This is typically accomplished using a HUD 

technique, which projects AR imagery, such as navigational cues and landmarks, onto the 

windshield of the car (Feierle et al., 2019; Pauzie, 2015; Stojmenova Pečečnik et al., 2023). The 

HUD allows for prolonged interaction with the AR landmarks, enabling a more thorough and 

accurate mental construction of their sequence along a route.  

5.1.2 Directional knowledge 

Directional knowledge, essential for spatial orientation, involves navigating an environment using 

various cues and is key to forming a mental framework for understanding and navigating spaces 

(Burte & Montello, 2017). This research has shown that the inclusion of distant AR landmarks 

significantly improves the accuracy of directional knowledge tasks. These distant AR landmarks 

serve as beneficial markers, especially over larger distances, aiding drivers in navigation and 
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enhancing their understanding of spatial orientation (Jabbari et al., 2022). Distant landmarks assist 

in the subconscious acquisition of directional knowledge, enabling individuals to perceive and 

interpret spatial information more effectively, thereby improving spatial awareness. Studies 

examining the impact of virtual global landmarks and the visualization of distant landmarks on 

mobile devices have shown a parallel effect that distant landmarks enhance incidental spatial 

learning, facilitating the processing of spatial orientation (R. Li et al., 2014; Liu et al., 2022). 

In this research, distant AR landmarks significantly impact directional knowledge acquisition in 

urban environments, but their effectiveness appears to be less pronounced on highways. Urban 

landscapes, characterized by their complexity with numerous intersections, streets, and landmarks, 

present more significant navigational challenges. Here, distant AR landmarks provide clear and 

visible cues that help individuals orient themselves and navigate the intricate city layout effectively. 

They serve as essential reference points where buildings and other structures obstruct natural 

orientation cues. In contrast, highways offer a more open and straightforward environment with 

fewer obstructions and more traffic signs, making the role of AR landmarks less critical. 

However, the research also found no significant differences in the time performance of directional 

knowledge tasks based on road type or AR landmark condition. This suggests that while AR 

landmarks may improve accuracy, they do not necessarily reduce the time required to complete 

these tasks. 

5.1.3 Configurational knowledge 

According to this research, AR displays have a significant impact on configurational knowledge, 

especially in highway environments. Configurational knowledge involves understanding the spatial 

layout and relationships between different locations (Golledge et al., 1992; Ishikawa & Montello, 

2006). AR enhances this by superimposing relevant information directly onto the driver's field of 

view, aiding in route configuration and spatial understanding. 

In highway settings, AR displays improve accuracy and efficiency in configurational tasks. They 

provide clear, contextually relevant cues that align with the driver's visual perspective, making it 

easier to process spatial information and make quick, accurate decisions. This is particularly useful 

in the more predictable and linear layout of highways, where AR can effectively guide drivers at 

crucial decision points like exits or lane changes. 

Highways typically have a more straightforward layout than urban areas, making AR cues easier to 

follow and more directly applicable to the task of navigating the route. They present fewer 

distractions and less complex decision-making scenarios than urban settings. AR displays can 

provide just the right amount of information needed for highways to understand the spatial layout 

and evaluate relative distance without overwhelming the driver. In urban environments, the 

abundance of visual stimuli can compete with AR cues, potentially reducing their effectiveness. In 

contrast, the open environment of highways allows AR displays to be more visible and impactful. 

5.2 Eye-tracking metrics 

5.2.1 Gaze areas 

Across all gaze areas, there is a consistent pattern where highways attract longer, and more focused 

attention compared to local roads. This is evidenced by higher average fixation duration, dwell 

time, and fixation count on highways. 
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The presence of AR landmarks generally increases the fixation count, indicating that these 

landmarks draw more attention and cause participants to return their gaze to these points more 

frequently. However, the impact of AR landmarks varies by road type and gaze area. For instance, 

on highways, AR landmarks tend to increase dwell time and fixation count, whereas on local roads, 

they can reduce these metrics. Eye-tracking metrics exhibit significant differences in gaze areas not 

aligned with the drivers' direct line of sight, such as the windshield's top, right edge, and bottom 

regions. However, such significant differences in eye-tracking metrics are not observed in areas 

typically aligned with the drivers' direct line of sight (the middle centre and left edge).  The 

following discussion is structured into five sections, corresponding to the windshield's five regions: 

top area, middle area, left edge, right edge and bottom area. 

5.2.1.1 Top area 

In the top gaze area, highways show greater average fixation duration than local roads. The 

presence of distant AR landmarks also led to an increase in dwell time, and this increase was more 

pronounced on highways. Dwell time and fixation count were significantly longer on local roads 

than on highways, especially when distant AR landmarks were absent. 

Highways typically have more traffic signs with contextual information about distant landmarks 

than local roads.  While driving near highway traffic signs, distant landmark information is located 

in the top portion of the windshield, resulting in a more significant average fixation duration as 

drivers need more time to process the information. Introducing distant AR landmarks on the 

windshield likely provides additional spatial cues, aiding global orientation and directional spatial 

knowledge (Jabbari et al., 2022; R. Li et al., 2014; Liu et al., 2022). Additional indicators can 

increase dwell time, and fixation count as drivers focus more on these new visual elements to 

integrate them into their navigation strategy. When distant AR landmarks are absent, increasing 

dwell time and fixation count on local roads might be compensatory for drivers. Drivers could put 

more effort into proactively seeking additional spatial cues in the environment to compensate for 

the lack of augmented guidance, leading to more frequent and prolonged fixations (Kwon & Kim, 

2021). 

5.2.1.2 Middle centre area 

In the middle centre gaze area, there was a strong effect of road type on average fixation duration 

and dwell time with highways consistently showing higher values than local roads. 

The middle centre of the windshield is the primary observation zone for drivers. On both highways 

and local roads, the primary focus of drivers is likely on the driving environment itself, which 

requires monitoring the road, traffic, and navigation cues through the middle portion of the 

windshield. The local AR landmarks, while informative, do not significantly impact eye-tracking 

metrics in the middle centre. Moreover, due to the less complex traffic environments on highways 

compared to local roads, drivers experienced fewer distractions during the simulation. The higher 

average fixation duration and dwell time on highways indicate more focused and sustained attention 

than the more complex local road scenarios. 

5.2.1.3 Left edge 

For the left edge gaze area, average fixation duration was higher for highways, but interestingly, 

dwell time and fixation count were lower on highways compared to local roads, indicating fewer 

but more focused fixations on highways. 



 

 

33 

Like the middle centre area, the left edge is a driver's primary observation zone. In this area, local 

AR landmarks do not significantly impact eye-tracking metrics. This lack of change indicates that 

the AR landmarks do not alter the drivers' natural gaze patterns. The observed combination of 

longer fixation duration with fewer fixations time and frequency on highways suggests a pattern of 

more focused attention. This is likely because highway drivers concentrate on specific, crucial 

elements like signs or distant vehicles. Consequently, they do not need to shift their gaze as 

frequently as on local roads, where immediate navigational challenges are more prevalent and 

require frequent gaze adjustments. 

5.2.1.4 Right edge 

In the right edge area, all metrics were significantly higher for highways. The presence of AR 

landmarks generally reduced the value of metrics. For dwell time and fixation count, decrease effect 

of local AR landmarks is more noticeable on local roads. 

In highway driving scenarios, the abundance of traffic signs on the right side increases the 

likelihood of drivers focusing their gaze on the right edge. As a result, eye-tracking metric are 

generally higher for highway drivers. However, introducing AR landmarks on the right edge tends 

to decrease these metrics. This reduction implies that AR landmarks provide more efficient visual 

cues (similar to AR HUDs), enabling drivers to process information more quickly (Feierle et al., 

2019; Langlois & Soualmi, 2016; X. Li et al., 2023). Consequently, this efficiency lessens the 

requirement for extended or multiple fixations, streamlining the visual attention process. 

5.2.1.5 Bottom area 

In the bottom gaze area, average fixation duration, dwell time, and fixation count were all 

significantly higher for highways. The presence of AR landmarks increased fixation count number. 

On highways, traffic signs display speed limits, and road names are more frequent. Meanwhile, the 

AR elements of auxiliary information like speed limits and road names are superimposed onto the 

driving view. This AR technology aids drivers in merging AR information with standard driving 

data, leading to an increased gaze towards the bottom area of the windshield. 

5.2.2 Effect on spatial knowledge accuracy 

A marginally significant positive correlation was observed between fixation count and route 

knowledge task accuracy in the bottom gaze area. However, this area primarily displays auxiliary 

information unrelated to route knowledge, suggesting the need for further investigation into how 

fixation count influences route knowledge accuracy in this context. 

Local landmark indicators are projected onto the windshield in the middle centre gaze area. These 

indicators generally have minimal direct impact on directional knowledge. However, the statistical 

analysis revealed that dwell time positively correlates with configurational knowledge, while 

fixation count demonstrated a negative relationship. Research results suggest that prolonged focus 

on specific environmental elements enhances the depth of spatial information processing. The 

extended focus aids in connecting individual local landmarks into a unified spatial understanding, 

facilitating a more precise grasp of the interrelations among various locations. In contrast, a high 

fixation count, which is a sign of frequent attentional shifts, hinders the acquisition of spatial 

knowledge. 
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5.3 Experimentation method 

In this research, the experimentation method represented significant differences in accuracy in 

directional tasks. For route and configurational knowledge, the participants in the two types of 

research behaved consistently in accuracy tasks. Interestingly, when considering the interaction 

effect for configurational knowledge, significant two-way interaction effects were observed for road 

type and AR landmark condition with the experimentation method. 

5.3.1 Route knowledge 

There was no significant main effect of experimentation method on route knowledge accuracy. 

Route knowledge, which focuses on understanding sequence landmarks, is not influenced by the 

medium (VR vs. video) or experimentation method (in-person vs. online), probably because it 

primarily relies on sequential memory rather than immersive spatial experience. The simplicity and 

straightforward nature of acquiring route knowledge mean that different mediums or methods may 

not significantly affect the learning outcome. The cognitive process of memorising sequences of 

landmarks is consistent across various mediums and methods, leading to similar levels of accuracy 

in route knowledge acquisition, regardless of the medium or method employed. 

5.3.2 Directional knowledge 

A significant effect of the experimentation method was found on directional knowledge accuracy. 

Strong interaction effects were also noted between experimentation method and road type, and 

between experimentation method and AR landmark. In the in-person VR approach, participants 

showed significantly higher accuracy in directional knowledge tasks than those in the online video 

approach. In highway environments or with distant AR display conditions, there was a significant 

increase of accuracy in directional knowledge with in-person VR approach. 

In-person VR, offering a more immersive spatial experience than online videos, significantly 

enhances understanding of global orientations and distances. Its realistic space representation 

supports better focusing and memorising locations and directions, with shorter experimental times 

in VR settings potentially boosting learning efficiency and retention of directional knowledge. 

In highway environments, in-person VR experiments show higher directional spatial accuracy. The 

simplicity of highways, compared to urban areas, allows for clearer spatial cues, making VR more 

effective in conveying directional information and reducing cognitive load. This focused 

environment enables users to concentrate more on VR's directional cues, leading to improved 

directional knowledge accuracy. 

Furthermore, a previous study indicates that AR cues in immersive VR environments, particularly 

with screen-fixed conditions, greatly enhance spatial learning and navigation (Zhao et al., 2023). 

AR landmarks in VR, being contextually relevant and integrated into the user's field of view, 

simplify understanding and memorising spatial relationships and locations, which are crucial for 

directional knowledge. 

5.3.3 Configurational knowledge 

The lack of significant difference between the medium (VR vs. video) and experimentation method 

(in-person vs. online) on configurational knowledge accuracy suggests that these factors do not 

independently influence the ability to understand spatial layouts and relationships. This could imply 

that configurational knowledge, which involves understanding the spatial arrangement and 
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connections between different locations, may be robust across various mediums and methods of 

learning.  

However, the two-way interaction effects identified for road type and AR landmark condition with 

the experimentation method reveals some intriguing details. Specifically, compared to VR 

experiment, the online video research yielded significantly higher configurational knowledge 

accuracy in local road environments or scenarios without AR landmarks. 

In complex environments like local roads, where navigation may be more challenging, the online 

video medium might be ideal for individuals to stay undistracted for the acquisition of good 

configurational knowledge.  However, it is important to note that while this medium may result in 

better performance due to less distraction, it does not necessarily equate to high ecological validity. 

One of the principal advantages of VR over video is its ecological validity. In fact, VR simulations 

are designed to simulate the distractions present in real-world driving environments (S. Kim & Dey, 

2009; Nezami et al., 2020; Riegler et al., 2019). Therefore, a VR simulation that is as distracting as 

an actual driving scenario is desirable, as it more accurately represents the real-world conditions 

and challenges that drivers face. 
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6 Limitations and future study suggestions 

Based on the feedback gathered from participants in the post-questionnaire and the analysis of 

experimental results, as detailed in Appendix 2, the study identified several vital limitations and 

proposed actionable suggestions for future research. 

6.1 Variability in Experimental Length 

In this research, experiments in highway and local road conditions have different time lengths. The 

variation in experimental duration significantly impacts participant engagement and data reliability. 

Longer durations might yield more detailed responses but risk participant fatigue. Standardizing the 

duration across experiments is essential to address these challenges. This approach will ensure 

uniform conditions for all participants, minimizing data variability and enhancing the consistency 

and comparability of results. 

6.2 Lack of representativeness of statistics 

The study's focus on young adults and the disproportionate number of female participants presents 

notable limitations in terms of demographic representation. This concentration on a specific age 

group and gender imbalance restricts the study's applicability and may introduce biases in the 

results. To address these limitations and improve the generalizability of future research findings, it 

is essential to include a more diverse age range and a balanced gender representation. 

Moreover, the recruitment of participants from the Netherlands presents additional constraints. This 

lack of demographic variability limits the study's ability to reflect broader population dynamics 

accurately. Future studies should aim for a more diverse participant pool to mitigate these 

limitations, improve the representativeness of research findings and encompass a more 

comprehensive range of nationalities and cultural backgrounds. 

6.3 Confounding effect 

Given the limitations identified in the current research, where participants were divided into two 

groups rather than four, future studies should adopt a more balanced design that aligns with the 

ideal two-by-two experimental framework for two-way ANOVA. This design divides the 

experimental sample into four distinct groups, each randomly assigned to one level of both 

independent variables. Such a structure ensures that all combinations of the experiment's conditions 

are fully explored, covering road types and AR landmark conditions across the groups. 

While the current design may have offered advantages regarding participant economy and 

mitigating order effects associated with experiencing different road types and AR conditions, it 

potentially introduces complications. Specifically, the design might lead to confounding within-

subject effects for variables to be analysed between subjects, which obscures the clarity of the 

interaction effects between road types and AR landmark conditions, making it challenging to isolate 

the impact of each independent variable.  

6.4 Intrusive AR elements 

Integrating AR landmarks into drivers' natural viewing patterns presents an intriguing area for 

further research. Potential distractions in this research, caused by abruptly intrusive AR elements, 

can divert drivers' attention away from the road elements (H. Kim & Gabbard, 2022). Attention 
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reduction on the windshield in driving could disrupts the process of spatial learning and slows the 

formation of spatial knowledge. 

Future investigations could improve designing non-intrusive AR elements that blend seamlessly 

with the driving environment.  The goal is to incorporate AR technology in a way that does not 

disrupt the attention of travellers, ensuring that these advancements support rather than detract from 

the overall driving experience. 

6.5 Simultaneous generation of spatial knowledge 

In this research, spatial knowledge encompasses route, directional, and configurational knowledge. 

Local landmarks assess the route and configurational knowledge, while distant landmarks focus on 

directional and configurational aspects. Previous studies reveal that different levels of spatial 

knowledge may not develop sequentially but can emerge simultaneously (Bruns & Chamberlain, 

2019; Kelly & McNamara, 2010; Montello, 1998; Stites et al., 2020). This simultaneous generation 

of spatial knowledge layers presents a complex interplay that warrants deeper exploration. Future 

studies should consider more comprehensive task designs that intricately test these overlapping 

elements of spatial knowledge to dissect the nuanced ways more effectively in which individuals 

navigate and understand spatial environments. 

6.6 Distance indication beyond transparency changes 

In the study, altering the transparency of AR indicators were employed as a method to signal 

distance to drivers. However, it was observed that drivers often did not effectively perceive these 

transparency changes, especially when their attention was focused on other environmental 

elements. The lack of sensitivity to transparency shifts in AR displays suggests a need for 

alternative approaches to convey distance information, such as changing the size of the indicators. 

6.7 Simulation environment 

One limitation is the environment of a driving simulator, which may not fully replicate real-world 

conditions. The simulated environment for this research ignores the dynamic elements of live traffic 

and pedestrians, which are essential aspects of daily driving, potentially omitting challenges and 

distractions in developing spatial knowledge during autonomous driving. The simulation scenarios 

are also based on the eastern United States, a region unfamiliar to the Dutch-recruited participants. 

This geographical unfamiliarity may influence their navigation strategies, spatial awareness 

development, and overall simulation performance. Given the distinct differences between 

immersive simulation and actual driving situations, further research is necessary to explore the 

effectiveness of AR interfaces and the applicability of eye-tracking metrics in actual driving 

conditions. 

6.8 Discomfort and motion sickness  

Based on participant feedback from the post-questionnaire (see Figure 19), many participants 

experienced moderate discomfort and motion sickness with a mean score of 2.79, primarily 

attributed to the jerky car turning function in the VR simulation. Additionally, prolonged exposure 

to the VR scenarios exacerbated discomfort among participants. To enhance user experience in 

future studies, it is essential to refine the VR driving simulation, focusing on creating smoother car 
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movements. This improvement aims to reduce motion sickness and provide a more comfortable and 

realistic driving experience for participants. 

  



 

 

39 

7 Conclusion 

This research employs VR and AR technologies to illuminate the dynamics of spatial knowledge 

processing in a simulated autonomous driving context. The study underscores the efficacy of AR 

displays in enhancing spatial knowledge acquisition, with both distant and local landmarks playing 

pivotal roles. Local AR landmarks significantly improve route knowledge accuracy and facilitate 

the recall of landmark sequences, while distant landmarks offer crucial orientation cues in complex 

urban environments. 

A notable discovery is the influence of AR landmarks on gaze behaviour. The study finds that AR 

landmarks in areas of the windshield that typically receive less attention draw increased focus (top 

and bottom areas), as evidenced by eye-tracking metrics. Conversely, the introduction of AR 

landmarks in frequently observed windshield areas (right edge) leads to reduced gaze focus, 

indicating AR's potential to direct attention and bolster spatial awareness strategically. Additionally, 

the results indicate that greater attention in the middle centre area assists in understanding the 

spatial layout and relationships of different locations, emphasising the significance of this gaze area 

for spatial understanding. 

Spatial knowledge performances generally report consistency between VR research and online 

video research in spatial knowledge tasks.  The consistency across the results of both experiments 

mutually validates their findings, further substantiating VR's credibility as a research methodology. 

VR has a great deal of potential as a research tool because of its ability to accurately replicate real-

world settings, which emphasises its relevance, ecological validity, and potential for use in 

upcoming studies. 

Historical research findings suggest that as autonomous vehicles become more prevalent, there is a 

risk of exacerbating the decline in spatial cognition observed with GPS-reliant navigation (Brishtel 

et al., 2021; Gardony et al., 2015; Hejtmánek et al., 2018; Ishikawa et al., 2008; Münzer et al., 

2006; Parush et al., 2007; Ruginski et al., 2019). Existing research also posits that integrating AR 

technology can mitigate these effects by enhancing situational awareness and engaging drivers 

more actively in navigation (Feierle et al., 2019; Langlois & Soualmi, 2016; X. Li et al., 2023; 

Pauzie, 2015). This research addresses the identified research needs and sets a foundation for future 

studies to optimize AR integration in autonomous vehicles, ensuring that advancements in self-

driving technology do not come at the expense of essential cognitive skills and spatial awareness. 

Also, it paves the way for future investigations to optimize AR integration in autonomous vehicles, 

focusing on safety and enhancing the driving experience. Furthermore, the work emphasises the 

feasibility of in-lab VR experiments in spatial cognition research, indicating an optimistic outlook 

for immersive techniques in spatial learning studies. 
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Appendix 1: Spatial knowledge tasks 

Experiment condition one: highway without AR+ local road with AR  

 

Scenario one: highway without AR 

Q1: From the start to end, you have passed a few traffic signs in the environment, they are:  

Troy, Rest area, Toll booth 

Please use your best judgement to choose which is the correct order of seeing the three locations, 

from the start to end? 

A. Troy -> Toll booth -> Rest area 

B. Toll Booth -> Rest area -> Troy 

C. Toll Booth -> Troy -> Rest area 

D. Rest area-> Troy -> Toll booth 

 

Q2: The following figure shows the start and end of the travelled route and two distant locations 

that are indicated by exit signs in the environment. 

Please try to recall the "travel" experience" and use your best 

judgement to choose the correct names for the two distant 

locations. 

A. 1: Albany, 2: Watervliet 

B. 1: Cohoes, 2: Watervliet 

C. 1: Watervliet, 2: Albany 

D. 1: Cohoes, 2: Albany 

 

Q3: One of the following figures shows the correct route that you "travelled" in the simulated 

driving experience. Please try to recall the experience and use your best judgement to choose one 

route that you have just "travelled". 

 

A. Route A 

B. Route B 

C. Route C 
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Scenario two: local road with AR 

Q5: From the start to end, you have passed a few locations marked by the icons on the windshield, 

they are: 

 

A. Church -> Square -> Basketball court 

B. Basketball court-> Square -> Church 

C. Basketball court -> Church-> Square 

D. Square -> Basketball court -> Church 

 

Q6: The following figure shows the start and end of the travelled route and two distant locations 

that have been displayed on the windshield. 

Please try to recall the "travel" experience" and use your best 

judgement to choose the correct names for the two distant locations. 

A. 1: Guilderland, 2: Mountain 

B. 1: Mountain, 2: Guilderland 

C. 1: Guilderland, 2: Downtown 

D. 1: Downtown, 2: Mountain 

 

Q7: One of the following figures shows the correct route that you "travelled" in the simulated 

experience. Please try to recall the experience and use your best judgement to choose one route that 

you have just "travelled". 

 

A. Route A 

B. Route B 

C. Route C 
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Experiment condition two: local road without AR+ highway with AR  

 

Scenario two: local road without AR 

Q1: From the start to end, you have passed a few landmarks in the environment, they are:  

Square, Church, Basketball court 

Please use your best judgement to choose which is the correct order of seeing the three locations, 

from the start to end? 

A. Church -> Square -> Basketball court 

B. Basketball court-> Square -> Church 

C. Basketball court -> Church-> Square 

D. Square -> Basketball court -> Church 

 

Q2: The following figure shows the start and end of the travelled route and two distant locations 

that have been displayed on the windshield. 

Please try to recall the "travel" experience" and use your best 

judgement to choose the correct names for the two distant locations. 

A. 1: Guilderland, 2: Mountain 

B. 1: Mountain, 2: Guilderland 

C. 1: Guilderland, 2: Downtown 

D. 1: Downtown, 2: Mountain 

 

Q3: One of the following figures shows the correct route that you "travelled" in the simulated 

experience. Please try to recall the experience and use your best judgement to choose one route that 

you have just "travelled". 

 

A. Route A 

B. Route B 

C. Route C 
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Scenario two: highway with AR 

Q4: From the start to end, you have passed a few traffic signs in the environment, they are:  

 

Please use your best judgement to choose which is the correct order of seeing the three locations, 

from the start to end? 

A. Troy -> Toll booth -> Rest area 

B. Toll Booth -> Rest area -> Troy 

C. Toll Booth -> Troy -> Rest area 

D. Rest area-> Troy -> Toll booth 

 

Q5: The following figure shows the start and end of the travelled route and two distant locations 

that are indicated by exit signs in the environment. 

Please try to recall the "travel" experience" and use your best 

judgement to choose the correct names for the two distant 

locations. 

A. 1: Albany, 2: Watervliet 

B. 1: Cohoes, 2: Watervliet 

C. 1: Watervliet, 2: Albany 

D. 1: Cohoes, 2: Albany 

 

Q6: One of the following figures shows the correct route that you "travelled" in the simulated 

driving experience. Please try to recall the experience and use your best judgement to choose one 

route that you have just "travelled". 

 

A. Route A 

B. Route B 

C. Route C 
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Appendix 2: Post-questionnaire 

While using VR, people always come into different levels of motion sickness. We want to know 

how you feel after experiencing all these "travel" scenarios. You should have different feedback for 

the fieldtrip enjoyment and the system usability scale. You should circle a number to indicate your 

level of the statements. 

 

Circle “1” if you strongly agree that the statement applies to you, “5” if you strongly disagree, or 

some number in between if your agreement is intermediate. Circle “3” if you neither agree nor 

disagree. 

Q1. How much you enjoyed the previous "travel experiments" in VR? 

 

 

Q2. How would you think the AR windshield displays are useful for improving the spatial learning. 

 

 

Q3. Do you have any suggestions on the VR experiment? 

________________________________________________________________________________ 

 

Q4. How much general discomfort are you experiencing right now? 

 

 

Q5. How much the motion sickness affects you are feeling right now? 
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Appendix 3: Original experiment results of spatial knowledge tasks 

Experiment condition one: highway without AR+ local road with AR  
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Experiment condition two: local road without AR+ highway with AR  
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Appendix 4: Statistical table after data preprocessing 

Experiment condition one: highway without AR+ local road with AR  
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Experiment condition two: local road without AR+ highway with AR  
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Appendix 5: Eye-tracking metrics filtered by I-VT algorithm 

Gaze area: Top 

 
Subject Gender Age Degree Status afd dwell_time fixation_count revisits

1 Female 18-24 Bachelor degree Full-time student 503.6351 56407.12691 112 111

1 Female 30-34 Graduate degree Full-time student 911.3943 47392.5024 52 51

3 Male 30-34 PhD Full-time employee 588.2237 55881.25312 95 94

5 Female 25-29 Bachelor degree Full-time student 851.4808 73227.35206 86 85

7 Female 25-29 Bachelor degree Full-time student 1079.164 8633.315712 8 7

9 Female 18-24 Bachelor degree Full-time student 213.8536 855.414272 4 3

11 Female 18-24 Bachelor degree Full-time student 649.9332 51344.72576 79 78

13 Female 18-24 Bachelor degree Full-time student 747.3976 29895.90298 40 39

15 Female 35-39 Bachelor degree Full-time student 635.2554 12705.10848 20 19

17 Female 30-34 Graduate degree Full-time employee 479.7067 40775.06765 85 84

19 Female 18-24 Bachelor degree Full-time student 515.1928 15970.97638 31 30

21 Female 25-29 Bachelor degree Full-time student 800.9614 30436.5321 38 37

23 Male 18-24 Bachelor degree Full-time student 657.9291 52634.32934 80 79

25 Female 18-24 Bachelor degree Full-time student 764.6212 28290.98304 37 36

27 Male 18-24 Bachelor degree Full-time student 909.9971 50959.83744 56 55

29 Female 18-24 Bachelor degree Full-time student 536.7974 30060.65421 56 55

31 Female 18-24 Bachelor degree Part-time employee/Freelancer 556.0779 35032.91085 63 62

33 Female 18-24 Bachelor degree Full-time student 577.6795 46792.03712 81 80

2 Female 30-34 Graduate degree Full-time student 684.043 56091.52333 82 81

4 Male 30-34 PhD Full-time employee 456.5873 80815.95443 177 176

6 Female 25-29 Bachelor degree Full-time student 640.389 64679.28563 101 100

8 Female 25-29 Bachelor degree Full-time student 608.0146 63233.52077 104 103

10 Female 18-24 Bachelor degree Full-time student 653.5375 63393.14163 97 96

12 Female 18-24 Bachelor degree Full-time student 890.97 20492.31002 23 22

14 Female 18-24 Bachelor degree Full-time student 492.229 19196.93133 39 38

16 Female 35-39 Bachelor degree Full-time student 746.5431 38073.69882 51 50

18 Female 30-34 Graduate degree Full-time employee 385.144 34662.96154 90 89

20 Female 18-24 Bachelor degree Full-time student 566.738 20402.56845 36 35

22 Female 25-29 Bachelor degree Full-time student 491.658 66865.48365 136 135

24 Male 18-24 Bachelor degree Full-time student 563.3016 36614.60698 65 64

26 Female 18-24 Bachelor degree Full-time student 407.6966 65639.14534 161 160

28 Male 18-24 Bachelor degree Full-time student 574.8082 50583.11808 88 87

30 Female 18-24 Bachelor degree Full-time student 429.688 59296.9417 138 137

32 Female 18-24 Bachelor degree Part-time employee/Freelancer 433.5254 52890.09728 122 121

34 Male 18-24 Bachelor degree Full-time student 616.8264 75252.82419 122 121

2 Male 18-24 Bachelor degree Full-time student 676.3637 94690.91251 140 139

2 Female 25-29 Bachelor degree Full-time student 568.7611 80764.07411 142 141

4 Male 30-34 PhD Full-time employee 633.5966 40550.18509 64 63

6 Male 18-24 Bachelor degree Full-time student 503.7009 71021.82886 141 140

8 Female 18-24 Bachelor degree Full-time student 672.1108 99472.39488 148 147

10 Female 18-24 Bachelor degree Full-time student 578.3706 64199.13114 111 110

12 Male 25-29 Bachelor degree Full-time student 573.1195 57311.94547 100 99

14 Female 18-24 Bachelor degree Full-time student 616.6837 57351.58016 93 92

16 Male 25-29 Bachelor degree Full-time student 639.4785 63308.37427 99 98

18 Female 25-29 Bachelor degree Full-time student 519.8124 41065.17734 79 78

20 Female 18-24 Bachelor degree Full-time student 506.5211 70406.43507 139 138

22 Female 25-29 Bachelor degree Full-time student 597.4706 30471.0007 51 50

24 Female 25-29 Graduate degree Currently not employed 719.3732 92799.14317 129 128

26 Female 18-24 Bachelor degree Full-time student 651.4302 93154.51174 143 142

28 Female 18-24 Bachelor degree Currently not employed 728.789 69234.95245 95 94

30 Male 25-29 Graduate degree Full-time employee 624.8781 43741.46982 70 69

32 Male 18-24 Bachelor degree Full-time student 734.212 48457.99002 66 65

34 Male 18-24 Bachelor degree Full-time student 689.3505 64798.94874 94 93

1 Female 25-29 Bachelor degree Full-time student 266.4124 15185.50502 57 56

1 Male 30-34 PhD Full-time employee 445.4502 46326.82496 104 103

3 Male 18-24 Bachelor degree Full-time student 695.0215 60466.86758 87 86

5 Female 18-24 Bachelor degree Full-time student 516.2125 55234.73856 107 106

7 Female 18-24 Bachelor degree Full-time student 667.1493 68049.23238 102 101

9 Male 25-29 Bachelor degree Full-time student 824.4762 24734.28621 30 29

11 Female 18-24 Bachelor degree Full-time student 460.1674 12424.51866 27 26

13 Male 25-29 Bachelor degree Full-time student 450.2083 54925.40877 122 121

15 Female 25-29 Bachelor degree Full-time student 660.4662 71990.81318 109 108

17 Female 18-24 Bachelor degree Full-time student 301.7591 44056.82765 146 145

19 Female 25-29 Bachelor degree Full-time student 447.7806 38509.13446 86 85

21 Female 25-29 Graduate degree Currently not employed 811.9379 42220.77338 52 51

23 Female 18-24 Bachelor degree Full-time student 421.9486 31646.14592 75 74

25 Female 18-24 Bachelor degree Currently not employed 502.6017 29150.89907 58 57

27 Male 25-29 Graduate degree Full-time employee 721.3324 78625.22931 109 108

29 Female 18-24 Less than bachelor degreeFull-time student 894.2134 48287.52346 54 53

31 Female 18-24 Less than bachelor degreeFull-time student 557.8602 73637.55123 132 131

33 Male 18-24 Bachelor degree Full-time employee 560.126 33047.43526 59 58
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Gaze area: middle centre 

 

 

 

  

Subject Gender Age Degree Status afd dwell_time fixation_count revisits

1 Female 18-24 Bachelor degree Full-time student 579.5892 170399.239 294 293

1 Female 30-34 Graduate degree Full-time student 816.772 205826.5536 252 251

3 Male 30-34 PhD Full-time employee 711.4964 170759.1341 240 239

5 Female 25-29 Bachelor degree Full-time student 761.2411 186504.0617 245 244

7 Female 25-29 Bachelor degree Full-time student 925.4948 217491.274 235 234

9 Female 18-24 Bachelor degree Full-time student 354.2485 2125.4912 6 5

11 Female 18-24 Bachelor degree Full-time student 749.3869 192592.4224 257 256

13 Female 18-24 Bachelor degree Full-time student 860.433 185853.5246 216 215

15 Female 35-39 Bachelor degree Full-time student 818.5212 185804.3212 227 226

17 Female 30-34 Graduate degree Full-time employee 566.2711 144399.1281 255 254

19 Female 18-24 Bachelor degree Full-time student 876.0496 192730.9119 220 219

21 Female 25-29 Bachelor degree Full-time student 871.9603 191831.2586 220 219

23 Male 18-24 Bachelor degree Full-time student 641.0766 180142.5236 281 280

25 Female 18-24 Bachelor degree Full-time student 805.2801 201320.0265 250 249

27 Male 18-24 Bachelor degree Full-time student 1058.552 224413.0175 212 211

29 Female 18-24 Bachelor degree Full-time student 693.4221 179596.3283 259 258

31 Female 18-24 Bachelor degree Part-time employee/Freelancer 651.8501 188384.6792 289 288

33 Female 18-24 Bachelor degree Full-time student 673.0835 181732.5366 270 269

2 Female 30-34 Graduate degree Full-time student 703.9945 127422.9988 181 180

4 Male 30-34 PhD Full-time employee 515.4938 94850.85619 184 183

6 Female 25-29 Bachelor degree Full-time student 679.5692 129118.1549 190 189

8 Female 25-29 Bachelor degree Full-time student 614.0279 107454.8902 175 174

10 Female 18-24 Bachelor degree Full-time student 637.047 119764.8429 188 187

12 Female 18-24 Bachelor degree Full-time student 833.5273 126696.1457 152 151

14 Female 18-24 Bachelor degree Full-time student 630.4013 96451.392 153 152

16 Female 35-39 Bachelor degree Full-time student 734.0213 123315.578 168 167

18 Female 30-34 Graduate degree Full-time employee 484.7469 101312.1124 209 208

20 Female 18-24 Bachelor degree Full-time student 625.8844 120795.6805 193 192

22 Female 25-29 Bachelor degree Full-time student 521.8393 101236.8183 194 193

24 Male 18-24 Bachelor degree Full-time student 588.2466 112943.3524 192 191

26 Female 18-24 Bachelor degree Full-time student 466.3221 91399.13843 196 195

28 Male 18-24 Bachelor degree Full-time student 625.2617 118799.7249 190 189

30 Female 18-24 Bachelor degree Full-time student 463.9837 85372.9984 184 183

32 Female 18-24 Bachelor degree Part-time employee/Freelancer 490.865 100627.3349 205 204

34 Male 18-24 Bachelor degree Full-time student 548.9856 124070.7432 226 225

2 Male 18-24 Bachelor degree Full-time student 774.644 169647.0254 219 218

2 Female 25-29 Bachelor degree Full-time student 569.7233 133884.9665 235 234

4 Male 30-34 PhD Full-time employee 788.5976 202669.5711 257 256

6 Male 18-24 Bachelor degree Full-time student 651.7501 144688.5192 222 221

8 Female 18-24 Bachelor degree Full-time student 598.9382 121584.4575 203 202

10 Female 18-24 Bachelor degree Full-time student 771.1682 157318.3155 204 203

12 Male 25-29 Bachelor degree Full-time student 697.4335 150645.6338 216 215

14 Female 18-24 Bachelor degree Full-time student 844.8683 163904.441 194 193

16 Male 25-29 Bachelor degree Full-time student 763.0157 141157.8984 185 184

18 Female 25-29 Bachelor degree Full-time student 577.9459 128303.9965 222 221

20 Female 18-24 Bachelor degree Full-time student 697.5554 336919.2558 483 482

22 Female 25-29 Bachelor degree Full-time student 965.3341 331109.5981 343 342

24 Female 25-29 Graduate degree Currently not employed 811.2514 159005.2788 196 195

26 Female 18-24 Bachelor degree Full-time student 730.5041 142448.299 195 194

28 Female 18-24 Bachelor degree Currently not employed 863.9603 174519.9736 202 201

30 Male 25-29 Graduate degree Full-time employee 831.235 201990.1006 243 242

32 Male 18-24 Bachelor degree Full-time student 668.6828 127718.4132 191 190

34 Male 18-24 Bachelor degree Full-time student 749.6047 184402.7535 246 245

1 Female 25-29 Bachelor degree Full-time student 253.277 13930.23731 55 54

1 Male 30-34 PhD Full-time employee 461.064 100973.0241 219 218

3 Male 18-24 Bachelor degree Full-time student 746.3188 118664.6821 159 158

5 Female 18-24 Bachelor degree Full-time student 528.8026 112106.1578 212 211

7 Female 18-24 Bachelor degree Full-time student 563.617 118359.5745 210 209

9 Male 25-29 Bachelor degree Full-time student 630.1104 151226.5078 240 239

11 Female 18-24 Bachelor degree Full-time student 600.8543 152616.993 254 253

13 Male 25-29 Bachelor degree Full-time student 532.9208 96991.5799 182 181

15 Female 25-29 Bachelor degree Full-time student 654.5822 113897.2961 174 173

17 Female 18-24 Bachelor degree Full-time student 293.0942 32533.45101 111 110

19 Female 25-29 Bachelor degree Full-time student 472.1624 103403.5752 219 218

21 Female 25-29 Graduate degree Currently not employed 773.4851 126851.559 164 163

23 Female 18-24 Bachelor degree Full-time student 506.5956 115503.7948 228 227

25 Female 18-24 Bachelor degree Currently not employed 572.7126 117978.7958 206 205

27 Male 25-29 Graduate degree Full-time employee 678.3375 139737.5178 206 205

29 Female 18-24 Less than bachelor degreeFull-time student 611.7897 113181.0939 185 184

31 Female 18-24 Less than bachelor degreeFull-time student 486.6404 106574.2566 219 218

33 Male 18-24 Bachelor degree Full-time employee 618.3162 134174.6115 217 216
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Gaze area: left edge 

 

Subject Gender Age Degree Status afd dwell_time fixation_count revisits

1 Female 18-24 Bachelor degree Full-time student 479.9850 37438.8338 78 77

1 Female 30-34 Graduate degree Full-time student 846.8617 33027.6064 39 38

3 Male 30-34 PhD Full-time employee 564.1974 36108.6362 64 63

5 Female 25-29 Bachelor degree Full-time student 710.8161 19192.0356 27 26

7 Female 25-29 Bachelor degree Full-time student 966.4184 13529.8572 14 13

9 Female 18-24 Bachelor degree Full-time student 0.0000 0.0000 0 0

11 Female 18-24 Bachelor degree Full-time student 573.2388 30381.6581 53 52

13 Female 18-24 Bachelor degree Full-time student 721.3593 33182.5279 46 45

15 Female 35-39 Bachelor degree Full-time student 968.3939 17431.0911 18 17

17 Female 30-34 Graduate degree Full-time employee 418.1567 22998.6203 55 54

19 Female 18-24 Bachelor degree Full-time student 718.8278 20127.1773 28 27

21 Female 25-29 Bachelor degree Full-time student 1031.0271 23713.6228 23 22

23 Male 18-24 Bachelor degree Full-time student 424.3630 28856.6852 68 67

25 Female 18-24 Bachelor degree Full-time student 469.2258 15015.2260 32 31

27 Male 18-24 Bachelor degree Full-time student 1144.8048 28620.1204 25 24

29 Female 18-24 Bachelor degree Full-time student 508.5803 31531.9800 62 61

31 Female 18-24 Bachelor degree Part-time employee/Freelancer 625.2337 30011.2182 48 47

33 Female 18-24 Bachelor degree Full-time student 497.1261 35793.0765 72 71

2 Female 30-34 Graduate degree Full-time student 490.5615 25999.7615 53 52

4 Male 30-34 PhD Full-time employee 398.9081 25929.0253 65 64

6 Female 25-29 Bachelor degree Full-time student 588.7402 37679.3733 64 63

8 Female 25-29 Bachelor degree Full-time student 504.1044 34783.2035 69 68

10 Female 18-24 Bachelor degree Full-time student 562.8492 39399.4419 70 69

12 Female 18-24 Bachelor degree Full-time student 600.3166 30616.1485 51 50

14 Female 18-24 Bachelor degree Full-time student 460.0229 29901.4865 65 64

16 Female 35-39 Bachelor degree Full-time student 549.5240 28025.7244 51 50

18 Female 30-34 Graduate degree Full-time employee 402.2013 20512.2647 51 50

20 Female 18-24 Bachelor degree Full-time student 630.8872 29651.6961 47 46

22 Female 25-29 Bachelor degree Full-time student 424.9393 29320.8124 69 68

24 Male 18-24 Bachelor degree Full-time student 564.1226 33847.3577 60 59

26 Female 18-24 Bachelor degree Full-time student 416.7019 32502.7488 78 77

28 Male 18-24 Bachelor degree Full-time student 525.5744 35213.4861 67 66

30 Female 18-24 Bachelor degree Full-time student 429.1552 34332.4191 80 79

32 Female 18-24 Bachelor degree Part-time employee/Freelancer 471.9967 31151.7846 66 65

34 Male 18-24 Bachelor degree Full-time student 494.2869 36082.9459 73 72

2 Male 18-24 Bachelor degree Full-time student 873.6325 20967.1794 24 23

2 Female 25-29 Bachelor degree Full-time student 464.7522 39039.1812 84 83

4 Male 30-34 PhD Full-time employee 647.8887 34338.1024 53 52

6 Male 18-24 Bachelor degree Full-time student 491.7264 33437.3919 68 67

8 Female 18-24 Bachelor degree Full-time student 525.1851 33611.8479 64 63

10 Female 18-24 Bachelor degree Full-time student 844.7614 15205.7048 18 17

12 Male 25-29 Bachelor degree Full-time student 668.5888 16046.1321 24 23

14 Female 18-24 Bachelor degree Full-time student 771.0896 14650.7026 19 18

16 Male 25-29 Bachelor degree Full-time student 582.3239 18052.0398 31 30

18 Female 25-29 Bachelor degree Full-time student 407.8880 26104.8303 64 63

20 Female 18-24 Bachelor degree Full-time student 581.9578 36663.3436 63 62

22 Female 25-29 Bachelor degree Full-time student 625.2267 16881.1200 27 26

24 Female 25-29 Graduate degree Currently not employed 589.1345 35348.0687 60 59

26 Female 18-24 Bachelor degree Full-time student 606.9580 15780.9079 26 25

28 Female 18-24 Bachelor degree Currently not employed 903.0871 26189.5247 29 28

30 Male 25-29 Graduate degree Full-time employee 746.1132 31336.7532 42 41

32 Male 18-24 Bachelor degree Full-time student 577.8396 26580.6235 46 45

34 Male 18-24 Bachelor degree Full-time student 679.2261 42791.2461 63 62

1 Female 25-29 Bachelor degree Full-time student 180.0383 180.0383 1 0

1 Male 30-34 PhD Full-time employee 379.8185 52414.9517 138 137

3 Male 18-24 Bachelor degree Full-time student 588.1641 19997.5785 34 33

5 Female 18-24 Bachelor degree Full-time student 435.2358 29596.0317 68 67

7 Female 18-24 Bachelor degree Full-time student 821.4847 20537.1172 25 24

9 Male 25-29 Bachelor degree Full-time student 611.2888 23228.9756 38 37

11 Female 18-24 Bachelor degree Full-time student 534.1330 27774.9166 52 51

13 Male 25-29 Bachelor degree Full-time student 519.6480 33777.1232 65 64

15 Female 25-29 Bachelor degree Full-time student 393.1831 12975.0412 33 32

17 Female 18-24 Bachelor degree Full-time student 242.3789 5817.0945 24 23

19 Female 25-29 Bachelor degree Full-time student 368.5882 21378.1156 58 57

21 Female 25-29 Graduate degree Currently not employed 739.0984 31781.2293 43 42

23 Female 18-24 Bachelor degree Full-time student 464.9295 29290.5573 63 62

25 Female 18-24 Bachelor degree Currently not employed 522.9188 28760.5318 55 54

27 Male 25-29 Graduate degree Full-time employee 1156.4353 11564.3533 10 9

29 Female 18-24 Less than bachelor degree Full-time student 966.1070 44440.9225 46 45

31 Female 18-24 Less than bachelor degree Full-time student 400.4363 27229.6667 68 67

33 Male 18-24 Bachelor degree Full-time employee 534.3482 21908.2746 41 40
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Gaze area: right edge 

 

Subject Gender Age Degree Status afd dwell_time fixation_count revisits

1 Female 18-24 Bachelor degree Full-time student 497.1691 29830.1436 60 59

1 Female 30-34 Graduate degree Full-time student 632.1406 34767.7352 55 54

3 Male 30-34 PhD Full-time employee 613.7701 29460.9660 48 47

5 Female 25-29 Bachelor degree Full-time student 835.1527 25054.5815 30 29

7 Female 25-29 Bachelor degree Full-time student 1178.7775 42435.9905 36 35

9 Female 18-24 Bachelor degree Full-time student 0.0000 0.0000 0 0

11 Female 18-24 Bachelor degree Full-time student 907.2075 24494.6019 27 26

13 Female 18-24 Bachelor degree Full-time student 854.2747 36733.8117 43 42

15 Female 35-39 Bachelor degree Full-time student 861.5002 40490.5085 47 46

17 Female 30-34 Graduate degree Full-time employee 566.5131 39655.9155 70 69

19 Female 18-24 Bachelor degree Full-time student 983.8080 28530.4323 29 28

21 Female 25-29 Bachelor degree Full-time student 742.2114 28946.2460 39 38

23 Male 18-24 Bachelor degree Full-time student 560.5176 26344.3265 47 46

25 Female 18-24 Bachelor degree Full-time student 730.2611 24098.6173 33 32

27 Male 18-24 Bachelor degree Full-time student 1271.2318 33052.0268 26 25

29 Female 18-24 Bachelor degree Full-time student 740.8404 53340.5055 72 71

31 Female 18-24 Bachelor degree Part-time employee/Freelancer 880.4754 29936.1627 34 33

33 Female 18-24 Bachelor degree Full-time student 798.2109 34323.0670 43 42

2 Female 30-34 Graduate degree Full-time student 887.5615 15976.1074 18 17

4 Male 30-34 PhD Full-time employee 495.7182 23298.7564 47 46

6 Female 25-29 Bachelor degree Full-time student 984.4968 16736.4460 17 16

8 Female 25-29 Bachelor degree Full-time student 593.5848 27304.9025 46 45

10 Female 18-24 Bachelor degree Full-time student 783.7017 14890.3314 19 18

12 Female 18-24 Bachelor degree Full-time student 1237.4022 22273.2392 18 17

14 Female 18-24 Bachelor degree Full-time student 715.4941 32197.2358 45 44

16 Female 35-39 Bachelor degree Full-time student 1071.1254 28920.3862 27 26

18 Female 30-34 Graduate degree Full-time employee 514.5224 23153.5071 45 44

20 Female 18-24 Bachelor degree Full-time student 743.8206 23058.4396 31 30

22 Female 25-29 Bachelor degree Full-time student 796.3124 19907.8111 25 24

24 Male 18-24 Bachelor degree Full-time student 716.5789 16481.3156 23 22

26 Female 18-24 Bachelor degree Full-time student 438.8591 13604.6321 31 30

28 Male 18-24 Bachelor degree Full-time student 757.1984 19687.1579 26 25

30 Female 18-24 Bachelor degree Full-time student 476.9163 15261.3201 32 31

32 Female 18-24 Bachelor degree Part-time employee/Freelancer 539.2775 29660.2620 55 54

34 Male 18-24 Bachelor degree Full-time student 703.3963 16881.5113 24 23

2 Male 18-24 Bachelor degree Full-time student 729.1539 22603.7696 31 30

2 Female 25-29 Bachelor degree Full-time student 532.4847 24494.2949 46 45

4 Male 30-34 PhD Full-time employee 850.0717 34002.8682 40 39

6 Male 18-24 Bachelor degree Full-time student 617.3471 36423.4812 59 58

8 Female 18-24 Bachelor degree Full-time student 599.8480 16195.8964 27 26

10 Female 18-24 Bachelor degree Full-time student 882.0362 38809.5935 44 43

12 Male 25-29 Bachelor degree Full-time student 775.4642 23263.9264 30 29

14 Female 18-24 Bachelor degree Full-time student 970.5160 28144.9637 29 28

16 Male 25-29 Bachelor degree Full-time student 1032.1289 23738.9646 23 22

18 Female 25-29 Bachelor degree Full-time student 610.8914 36653.4833 60 59

20 Female 18-24 Bachelor degree Full-time student 1357.4295 17646.5829 13 12

22 Female 25-29 Bachelor degree Full-time student 636.9154 9553.7312 15 14

24 Female 25-29 Graduate degree Currently not employed 1045.5950 27185.4711 26 25

26 Female 18-24 Bachelor degree Full-time student 742.4551 28955.7482 39 38

28 Female 18-24 Bachelor degree Currently not employed 1124.0470 20232.8463 18 17

30 Male 25-29 Graduate degree Full-time employee 745.4239 26089.8377 35 34

32 Male 18-24 Bachelor degree Full-time student 673.8861 39759.2828 59 58

34 Male 18-24 Bachelor degree Full-time student 809.7237 42105.6325 52 51

1 Female 25-29 Bachelor degree Full-time student 390.1038 390.1038 1 0

1 Male 30-34 PhD Full-time employee 803.1273 11243.7827 14 13

3 Male 18-24 Bachelor degree Full-time student 978.4740 7827.7920 8 7

5 Female 18-24 Bachelor degree Full-time student 706.8707 17671.7687 25 24

7 Female 18-24 Bachelor degree Full-time student 530.1867 6892.4270 13 12

9 Male 25-29 Bachelor degree Full-time student 625.2333 14380.3649 23 22

11 Female 18-24 Bachelor degree Full-time student 628.7614 6287.6141 10 9

13 Male 25-29 Bachelor degree Full-time student 583.8755 17516.2647 30 29

15 Female 25-29 Bachelor degree Full-time student 580.5888 8128.2437 14 13

17 Female 18-24 Bachelor degree Full-time student 233.4019 700.2056 3 2

19 Female 25-29 Bachelor degree Full-time student 683.6783 10938.8530 16 15

21 Female 25-29 Graduate degree Currently not employed 621.9936 8707.9105 14 13

23 Female 18-24 Bachelor degree Full-time student 544.0828 4896.7455 9 8

25 Female 18-24 Bachelor degree Currently not employed 706.1987 18361.1654 26 25

27 Male 25-29 Graduate degree Full-time employee 821.3946 7392.5516 9 8

29 Female 18-24 Less than bachelor degree Full-time student 498.5118 11964.2842 24 23

31 Female 18-24 Less than bachelor degree Full-time student 481.3755 10108.8860 21 20

33 Male 18-24 Bachelor degree Full-time employee 692.2641 13845.2814 20 19
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Gaze area: bottom 

 

Subject Gender Age Degree Status afd dwell_time fixation_count revisits

1 Female 18-24 Bachelor degree Full-time student 761.7892 7617.8920 10 9

1 Female 30-34 Graduate degree Full-time student 1224.8881 9799.1050 8 7

3 Male 30-34 PhD Full-time employee 494.4638 6922.4929 14 13

5 Female 25-29 Bachelor degree Full-time student 1159.8239 10438.4147 9 8

7 Female 25-29 Bachelor degree Full-time student 1380.0408 60721.7961 44 43

9 Female 18-24 Bachelor degree Full-time student 0.0000 0.0000 0 0

11 Female 18-24 Bachelor degree Full-time student 1034.9741 24839.3791 24 23

13 Female 18-24 Bachelor degree Full-time student 1227.4258 22093.6641 18 17

15 Female 35-39 Bachelor degree Full-time student 889.9897 51619.4025 58 57

17 Female 30-34 Graduate degree Full-time employee 565.0108 14125.2692 25 24

19 Female 18-24 Bachelor degree Full-time student 998.4983 23963.9597 24 23

21 Female 25-29 Bachelor degree Full-time student 1505.5829 15055.8294 10 9

23 Male 18-24 Bachelor degree Full-time student 992.8876 3971.5506 4 3

25 Female 18-24 Bachelor degree Full-time student 1365.7648 27315.2959 20 19

27 Male 18-24 Bachelor degree Full-time student 2188.3161 21883.1612 10 9

29 Female 18-24 Bachelor degree Full-time student 884.4318 15035.3402 17 16

31 Female 18-24 Bachelor degree Part-time employee/Freelancer 1414.6741 16976.0895 12 11

33 Female 18-24 Bachelor degree Full-time student 833.9258 9173.1843 11 10

2 Female 30-34 Graduate degree Full-time student 696.9777 4181.8661 6 5

4 Male 30-34 PhD Full-time employee 444.8223 6672.3341 15 14

6 Female 25-29 Bachelor degree Full-time student 312.6492 625.2984 2 1

8 Female 25-29 Bachelor degree Full-time student 782.8612 1565.7225 2 1

10 Female 18-24 Bachelor degree Full-time student 615.0403 615.0403 1 0

12 Female 18-24 Bachelor degree Full-time student 622.9622 6852.5847 11 10

14 Female 18-24 Bachelor degree Full-time student 623.8120 4366.6840 7 6

16 Female 35-39 Bachelor degree Full-time student 315.1789 315.1789 1 0

18 Female 30-34 Graduate degree Full-time employee 277.4015 3051.4168 11 10

20 Female 18-24 Bachelor degree Full-time student 580.2244 4061.5707 7 6

22 Female 25-29 Bachelor degree Full-time student 210.0870 210.0870 1 0

24 Male 18-24 Bachelor degree Full-time student 1048.3680 5241.8401 5 4

26 Female 18-24 Bachelor degree Full-time student 513.9388 2055.7554 4 3

28 Male 18-24 Bachelor degree Full-time student 796.3162 3981.5812 5 4

30 Female 18-24 Bachelor degree Full-time student 386.8468 1160.5403 3 2

32 Female 18-24 Bachelor degree Part-time employee/Freelancer 0.0000 0.0000 0 0

34 Male 18-24 Bachelor degree Full-time student 877.9060 1755.8120 2 1

2 Male 18-24 Bachelor degree Full-time student 1289.8132 20637.0116 16 15

2 Female 25-29 Bachelor degree Full-time student 867.9407 16490.8726 19 18

4 Male 30-34 PhD Full-time employee 1072.7886 28965.2928 27 26

6 Male 18-24 Bachelor degree Full-time student 666.5681 19997.0444 30 29

8 Female 18-24 Bachelor degree Full-time student 549.1725 13180.1399 24 23

10 Female 18-24 Bachelor degree Full-time student 855.0502 33346.9571 39 38

12 Male 25-29 Bachelor degree Full-time student 713.2694 17831.7352 25 24

14 Female 18-24 Bachelor degree Full-time student 901.0570 49558.1357 55 54

16 Male 25-29 Bachelor degree Full-time student 516.4441 8263.1057 16 15

18 Female 25-29 Bachelor degree Full-time student 669.1982 19406.7474 29 28

20 Female 18-24 Bachelor degree Full-time student 773.9728 94424.6829 122 121

22 Female 25-29 Bachelor degree Full-time student 1323.2681 100568.3727 76 75

24 Female 25-29 Graduate degree Currently not employed 652.9384 15670.5219 24 23

26 Female 18-24 Bachelor degree Full-time student 587.0918 9393.4688 16 15

28 Female 18-24 Bachelor degree Currently not employed 736.9470 6632.5231 9 8

30 Male 25-29 Graduate degree Full-time employee 788.0754 104814.0339 133 132

32 Male 18-24 Bachelor degree Full-time student 603.9111 9058.6669 15 14

34 Male 18-24 Bachelor degree Full-time student 1375.0609 15125.6700 11 10

1 Female 25-29 Bachelor degree Full-time student 244.6420 2691.0624 11 10

1 Male 30-34 PhD Full-time employee 488.6416 6352.3406 13 12

3 Male 18-24 Bachelor degree Full-time student 593.2299 8898.4483 15 14

5 Female 18-24 Bachelor degree Full-time student 304.2523 10648.8310 35 34

7 Female 18-24 Bachelor degree Full-time student 568.1722 8522.5828 15 14

9 Male 25-29 Bachelor degree Full-time student 652.4808 11744.6545 18 17

11 Female 18-24 Bachelor degree Full-time student 565.2016 14695.2412 26 25

13 Male 25-29 Bachelor degree Full-time student 342.6404 8223.3706 24 23

15 Female 25-29 Bachelor degree Full-time student 505.2462 3536.7235 7 6

17 Female 18-24 Bachelor degree Full-time student 364.1853 1820.9265 5 4

19 Female 25-29 Bachelor degree Full-time student 363.6577 18546.5441 51 50

21 Female 25-29 Graduate degree Currently not employed 584.1665 22198.3258 38 37

23 Female 18-24 Bachelor degree Full-time student 547.3595 16420.7840 30 29

25 Female 18-24 Bachelor degree Currently not employed 369.0552 5166.7725 14 13

27 Male 25-29 Graduate degree Full-time employee 1346.7829 5387.1315 4 3

29 Female 18-24 Less than bachelor degree Full-time student 833.4195 24169.1657 29 28

31 Female 18-24 Less than bachelor degree Full-time student 473.6840 4736.8398 10 9

33 Male 18-24 Bachelor degree Full-time employee 456.1431 11859.7194 26 25
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Appendix 6: Table of Content of the zip file 

This thesis report is accompanied by a zip file. The table provides an overview of what this zip file 

includes. 

Index Content 

1. Documentation of what is where in the 

file 

- Documentation .txt file 

explaining the content of the zip 

file 

2. Report (word, pdf) - Thesis report (word) 

- Thesis report (pdf) 

3. Midterm & final presentation (pptx) - Midterm presentation (pptx) 

- Final presentation (pptx) 

4. Animations  

5. Datasets used and created - VR: Unity project 

- Eye-tracking data: .csv files 

- Outputs: .xlsx excel tables 

6. Figures/ maps/ tables - All figures and tables used in 

the report 

7. Scripts/ code/ exe - Statistical analysis scripts: .py 

files 

8. Questionnaires - Experiment questionnaires 

(Google forms) 

9. Literature (pdfs of used articles) - References in the report 

 


