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1 | INTRODUCTION

The Amazon forests store around 100 petagrams of carbon (Pg C) in
their aboveground live biomass (Feldpausch et al., 2012; Malhi et al.,
2006), which represents c. 20% of the carbon (C) stored in the world's
forest vegetation (Baccini et al., 2012; Houghton, 2007; Saatchi et al.,
2011). Intact Amazonian forests have acted as a large C sink over the
past decades (Brienen et al., 2015; Hubau et al., 2020), accounting for
c. 25% of the terrestrial C sink (Pan et al., 2011; Phillips et al., 2009).
However, the response of Amazon forests to increasing atmospheric
carbon dioxide concentration ([CO,]) is highly uncertain (Cernusak
et al., 2013) since the increase in [CO,] does not necessarily translate
directly into an increase in CO, uptake by the forests (Terrer et al.,
2019). Given that nutrient availability, rainfall variability and light
environment constrain plant C assimilation, these factors impose
limitations to the forests’ responses to elevated CO, (eCO,)
(Chazdon, 1988; Ellsworth et al., 2017; Fleischer et al., 2019;
McCarthy et al., 2010; Walker et al., 2021).

The Amazonian terra-firme (upland) forests are characterized
by high species diversity (Fauset et al., 2015; ter Steege et al,,
2013) that forms a dense and continuous canopy, resulting in
vertical gradients of irradiance, decreasing from the top of the
canopy to the forest understory (Chazdon, 1988; Wright & Van
Schaik, 1994). The irradiance that reaches the lower layer of the
Amazon Forest is usually less than 5% of that reaching the top
canopy (Dos Santos et al., 2019), potentially making light the
strongest limiting factor for understory plants (Baldocchi &
Collineau, 1994; Chazdon, 1988). The vertical gradient in incident
light in the Amazon is closely reflected in leaf CO, assimilation
rates throughout the vertical forest strata (Domingues et al., 2005),
with plants inhabiting the understory being dependent on brief and
unstable periods of high light density (sunflecks) to maintain a
positive carbon balance in the long term (Chazdon, 1988; Chazdon
& Pearcy, 1991; Neufeld & Young, 2003). Limiting light level
conditions, close to the plant compensation point, is thought to

trigger the largest responses of plants to eCO, (Kimball, 1986;

ambient levels). Under eCO,, we observed increases in carbon assimilation rate (67%),
maximum electron transport rate (19%), quantum yield (56%), and water use efficiency
(78%). We also detected an increase in leaf area (51%) and stem diameter increment
(65%). Central Amazon understory responded positively to eCO, by increasing their
ability to capture and use light and the extra primary productivity was allocated to
supporting more leaf and conducting tissues. The increment in leaf area while maintaining
transpiration rates suggests that the understory will increase its contribution to
evapotranspiration. Therefore, this forest might be less resistant in the future to extreme

drought, as no reduction in transpiration rates were detected.

apparent photosynthetic quantum yield, CO, enrichment, leaf area, open-top chambers,
photosynthesis, tropical forest, water-use efficiency

Poorter and Pérez-Soba, 2001). Therefore, forest understories are
a highly interesting component of eCO, research.

The understory of tropical forests is inhabited not only by
species that are restricted to completing their life cycles under
shaded conditions (typical understory species), but also by juveniles
of trees and lianas that will eventually reach the full sunlight
environment at the top of the canopy (Valladares & Niinemets, 2008).
Despite the relatively lower biomass stored in the midcanopy and
understory compartments (30 vs. 70% from canopy trees for a
Central Amazonia site), it is nonetheless a relevant component of the
forest, contributing up to 32% of the wood productivity (Araujo et al.,
2020). Moreover, it has been suggested that understory plants may
be particularly responsive to eCO, as they often operate near-neutral
carbon balance due to limiting light availability, that is, close to their
physiological light compensation point (LCP) (Curtis & Wang, 1998;
Kubiske & Pregitzer, 1996; Lloyd & Farquhar, 2008; Wirth et al.,
1998). If understory plants are indeed particularly responsive to
eCO,, this may not only have consequences on C sequestration but
may also result in changes in community structure and the future
composition of tropical forests, as less responsive plants might be
excluded from that community by competition (Hubau et al., 2019;
Lapola et al., 2009). Therefore, there is an urgent need to better
understand the response of the understory plant community to
ongoing increase in [CO,].

As eCO, increases photosynthetic efficiency, plants are
expected to acclimate to the decreased demand for investments
in ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco),
often represented by the leaf maximum carboxylation capacity
(Vemax) (Rogers & Humphries, 2000). On the other hand, eCO5 can
also increase the demand for cofactors produced by photo-
synthetic light reactions (ATP and NADPH), which can shift
photosynthesis from being limited by Rubisco to being limited by
the regeneration capacity of ribulose 1,5-bisphosphate (RUBP)
(Drake et al.,, 1997), often represented by the leaf maximum
electron transport rate (Jimay). This second possibility seems more

likely in shaded conditions (Sharkey, 1985), but might be true also
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for high-light environments. In addition, to offset the low light
availability, understory plants tend to invest resources in
strategies to optimize light capture, such as greater leaf area
(Gommers et al., 2013; Valladares & Niinemets, 2008).

In that sense, an increase in understory leaf area could enhance
the contribution of this forest stratum to the leaf-to-atmosphere
moisture flux, offsetting a fraction of the possible decline in leaf
transpiration (E) due to reduced stomatal conductance (g5) under
eCO, (Xu et al., 2016). The negative effect of eCO, on E has the
potential to cascade into basin-wide changes in rainfall, which,
particularly in the Amazon, is highly dependent on water vapour
transferred back to the atmosphere via forest evapotranspiration
(Sampaio et al., 2021; Zemp et al., 2017; but see Yang et al., 2016).

In situ field experiments are crucial for reducing uncertainties
surrounding the response of tropical forests to eCO, and climate
change. Through these experiments, it is possible to enhance the
understanding of ecosystem processes to improve terrestrial bio-
sphere models (Norby et al., 2016). While numerous experiments
have been conducted with elevated CO, levels, in situ experiments,
specifically in tropical forests, remain rare (for a review see Ainsworth
& Long, 2004; Norby & Zak, 2011; Walker et al., 2021). As a result,
the current knowledge about tropical rain forest plants response to
eCO, is primarily based on experiments with seedlings growing in
pots (e.g., Cernusak et al., 2011a; Reekie & Bazzaz, 1989; Slot et al.,
2021; Ziska et al., 1991) and planted species (Arnone & Kérner, 1995;
Korner & Arnone, 1992; Wirth et al., 1998).

Here we employed in situ open-top chambers (OTCs) to
investigate the short-term (120-354 days) effect of eCO, on the
photosynthetic parameters related to carbon assimilation and water
use, and carbon allocation for the naturally occurring understory
community of an old-growth forest in the Central Amazon. We tested

the following hypotheses:

(i) Plants in the tropical forest understory are responsive to eCO,,
increasing their net CO, assimilation at saturating light (As.t),
intrinsic water-use efficiency (IWUE), Jnax apparent quantum
yield (@), relative growth rate (RGR) and leaf production (Lf),
while decreasing Vi max, s, E and LCP.

(ii) Due to their adaptation to low-light environments understory
plants under eCO, prioritize allocation of carbon to leaf area
(Lfarea)-

2 | MATERIALS AND METHODS
2.1 | Site description

The study site is located at the Experimental Station of Tropical
Forestry (EEST/ZF-2), in Central Amazon (2°35'39"S, 60°12'29"W)
at the experimental site of the AmazonFACE program (Free-Air CO,
Enrichment—https://amazonface.inpa.gov.br). The site is situated on a
low fertility and highly weathered deep soil, classified as geric
Ferralsol, rich in clay (76%), well drained and with average nutrient
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concentration of 0.1% nitrogen, 1.9% carbon and 0.01% phosphorus
(101.8 mg kg’l) for the top 0-30cm (Quesada et al., 2010). The
vegetation of the site is classified as terra firme (upland) evergreen
forest, characterized by high diversity of plant species, with an
average canopy height of 30 m and canopy tree crowns close to each
other (Pereira et al., 2019). On average, the irradiance reaching the
understory of this site is less than 5% of that reaching the upper
canopy, and over 75% of the understory daytime irradiance is below
25 umol m™2s7 (Dos Santos et al., 2019). The climate of the region is
classified as rainy tropical, according to Képpen-Geiger (Peel et al.,
2007). The local mean annual temperature is 26.7°C with low
seasonal variation (24.5-27.5°C—min and max, respectively), and
mean annual precipitation of 2400 mm, with a drier period between
July and September when monthly precipitation can reach less than
100 mm (Ferreira et al., 2005; Tanaka et al., 2014).

2.2 | Experimental design

Eight steel-polypropylene OTCs, with 2.5 m diameter and 3 m height
each, surrounded by soil trenching of 30 cm wide and 50 cm deep—to
isolate them from the surrounding soil and plant roots—(Supporting
information: Figure S1), were installed at the experimental site. The
chambers were designed to increase the [CO,] inside them and were set
up in pairs, with four control (ambient—aCO,) and four treatment
(+250 ppmv—eCO,) chambers (Supporting information: Table S1). The
distance between the OTC chambers varies between 14.7 and 219.4 m.
The locations of the chambers were determined semi-randomly by using
the Leaf Area Index (LAI) derived from hemispherical photos, aiming
to homogenize the amount of light that reaches each area. Each pair
of OTCs has a CO2/H,O nondispersive infrared (NDIR) gas analyser
(LI-840A, Li-Cor® Biosciences) installed in a nearby central system that
measures and records (Campbell Scientific CR1000 dataloggers) the CO,
and water (H,0) concentrations inside the chambers every 1 min. This
system was programmed to control the CO, injection in the eCO,
replicates whenever the difference between the pair of OTCs falls below
200 ppmv. The CO, is injected inside the eCO, chambers through a gas
line connected to a central cylinder system and spread by fans installed
close to the injection hose. The CO, injection into the eCO, chambers
started on 1 November 2019, and since then, CO, injectors have been
switched on during daytime hours, that is, from 6 AM to 6 PM, each day.
The mean (+SD) daytime [CO,] during 2020 was 466 +21 and 732+ 24
ppmv among the control and treatment chambers, respectively.

In addition to [CO,] and [H,O] measurements inside the OCTs,
we estimated the solar irradiance (mol m~2 day™?) from hemispherical
photographs taken 1.5m above the ground in the centre of each
chamber using a Canon Rebel EOS T3 camera with Sigma fish-eye
lens (8 mm) and further analysed using Gap Light Analyzer software
(https://www.caryinstitute.org/science/our-scientists/dr-charles-d-
canham/gap-light-analyzer-gla). For each OTC, the total solar
radiation transmitted by the canopy (TSRT) was calculated as a
?)

function of the solar constant (1367 W m™), geographical coordi-

nates (latitude/longitude), cloudiness index (kt= 0.5) and canopy
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openness (percentage of open sky seen from beneath the forest
canopy), and then transformed into photosynthetically active radia-
tion (PAR) (Supporting information: Table S1).

Considering all OTCs, we identified 56 different plant species,
belonging to 26 distinct families. Among the OTCs, the number of
individual plants varied from n=10 to 18 (Supporting information:
Table S1), with heights (considered here as the main stem length—Ht)
between 0.28 and 3 m, diameter at the base (DB) ranging from 3.9 to
35 mm (Supporting information: Figure S2A and Table S2). Due to the
high local biodiversity, there were no species that occurred in all

OTCs (Supporting information: Table S2).

2.3 | Leaf level gas exchange measurements

Leaf level gas exchange parameters were determined through light-
saturated CO, assimilation versus intercellular CO, concentration (A/C)
curves in up to three leaves from each of three individuals of different
species per OTC (aCO, = 36, eCO, = 34), and light response curves in one
leaf from each of the individuals selected for A/C; curves per OTC
(aC0,=12, eCO,=12), during March 2020, 120 days after CO,
enrichment started. These measurements were taken with a portable
infrared gas analyser (IRGA-LI-6400XT; Li-Cor® Biosciences) on fully
expanded leaves, between 8:00 AM and 3 PM, in individuals that either
belonged to species that were more abundant or displayed a perceived
larger contribution the LAl within a given OTC. Before the measurements,
leaves were acclimated for at least 15min by carefully monitoring
assimilation rate and gs values to ensure their stability. From each A/G
response curve, the photosynthetic capacity parameters (Vemax and Jmax
umol m™2s™1) were calculated based on Farquhar et al. (1980) by a curve-
fitting routine based on minimum least squares (Domingues et al., 2010)
and adjusted to the standard temperature of 25°C (Bernacchi et al.,
2001). From the light response curves, the Ae; (umolm™2s7Y), g, at Acy
(molm™2s™Y), E at Asst (mmol m2s™Y and IWUE (umol mol™) were
quantified, and the LCP (umolm™2s™Y) and the ® (umolm2s™Y) were
calculated.

For all measurements, the standardized set conditions inside the
IRGA chamber were airflow of 400 umols?, relative humidity between
60% and 70%, and leaf temperature of 30°C. The A/C; curves were
performed at a saturating photosynthetic photon flux density (PPFD) of
1000 pmol m™2s7%, and the reference [CO,] were controlled as follows:
400, 300, 200, 75, 50, 400, 600, 800, 1000, 1200 and 1500 pmol mol 2.
The light response curves were performed at [CO,] of 400 pmol mol™t
for aCO, and 600 pmol mol™ for eCO,, using a PPFD sequence of 250,
500, 750, 1000, 1500, 500, 250, 100, 75, 50, 25, 10, 5 and
Oumol m2s™?
these curves, under PPFD of 1000 pmol m
CO, treatment, at 400 pmol mol™ for aCO, and 600 pmol mol™ for

. The Aq 85, E and iIWUE parameters were taken from
-2 -1
s

, and according to the

eCO,. The LCP was calculated by the equation:

LCP = &, (1)
a

where Ry is the dark respiration rate (PPFD =0) and a is the light
response curve initial slope, between 0 and 50 pmolm™2s™! PPFD.
The ® was determined as the light response curve initial slope
above LCP.

2.4 | Leaf production

We measured leaf production (pr) of 55 individuals in aCO,, and 47
individuals in eCO,, from January to October 2020, with Lf, defined as
the number of newly produced leaves divided by the number of individual
plants within a given OTC. Leaf production monitoring followed the
methodology by Menezes et al. (2022) where, at the beginning of the
experiment, all leaves from each individual were included as initial stock,
and the leaves from both ends (proximal and terminal) of each branch
were tagged to follow changes in leaf demography. Thereafter, the new
flushed leaves were included in the demographic censuses when their
leaf blade was nearly expanded, while scars left from an abscised petiole
were considered to be dead leaves. Leaf demographic censuses were
performed in November 2019, January, March, July and October 2020.
The cumulative Lf, was calculated as the sum of total flushed leaves
during the sampled period, that is, 354 days after the start of the

experiment.

2.5 | Leaf area

We quantified changes in individual leaf area (Lfiea) by measuring two
fully expanded leaves from the same branch, one that flushed before (t;)
and another that flushed after (t,) the onset of the experiment (November
2019), on all plants that flushed new leaves (aCO, =42, eCO,=41).
Measurements of both leaves were taken in the same campaign (July
2020). Lfuea Was determined from photographs taken from leaves
overlaying graph paper and processed in the Image) software (https://
imagej.nih.gov/ij/). The results are presented as the sum of the mean leaf
area (m?) per treatment, and the percentage change in leaf area (Lfarea%)
was calculated as the difference between the leaves that flushed before

and after CO, enrichment starts, in the same branch.

2.6 | Height, diameter and relative growth rate

We measured the individual plants main stem length (which is often their
height) (Ht; aCO, =51, eCO,=44) and the stem base diameter (BD;
aCO, = 56, eCO, = 45) in November 2019 and September 2020. The Ht
was measured with a millimetre measuring tape, from the base of the
stem to the apex of the main stem, even when the individual's growth
pattern was not completely vertical (e.g., lianas). In each plant, two
perpendicular measurements of the BD were taken using a digital calliper
(Mitutoyo/Absolute). The BD measurement point was set in the first
campaign, at 5cm from the ground. Thereafter, subsequent measure-

ments were taken at the same marked point. For subsequent analysis, we
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divided the plants in three height classes: 20 < 80, 80 < 140 and 2140 cm,
and three diameter classes: 3<9, 9< 15 and =215 mm.

Daily mean height (cmday™®) and base diameter (mmday™?)
increment were calculated for each plant, as the difference between Ht
and BD, respectively, measured in September 2020—t, and November
2019—t; (when CO, enrichment started). We also calculated the relative
growth rate (RGR) for each plant, using BD?x Ht as a non-destructive
surrogate for plant dry mass (Bloomberg et al., 2008). RGR was

calculated as
RGR = [In(BDZ x Hiy,) - In(BDZ x Hiy) /(- &), @

where BDy, and BD;, are initial and final base diameter (mm), Ht,
and Ht;, are initial and final total height (cm), and t; and t; are initial

and final time (days).

2.7 | Statistical analyses

We analysed the effects of eCO, on leaf-level gas exchange (A,
g5, E, IWUE, Vimaxs Imaxs Jmax:Vemax, LCP and @), Lfp, Lfarea and plant
growth (Ht, BD and RGR). Due to the high diversity of species and
considering the fact that there were no species that occurred in
every OTC, it was not feasible to consider species identity in our
analyses. Instead, we evaluated parameters averages (Supporting
Information: Table S3) from each OTCs as sampling units (n = 8),
establishing comparisons between the control (ambient—aCO,,
n=4) and treatment (+250 ppmv—eCO,, n =4) OTCs. For the Lf,
data, we first averaged the rate of leaf production for each OTC
(number of new leaves produced within the time interval divided
by the number of individuals within a given OTC) and afterwards
we calculated the mean and standard deviations among the four
OTCs from each treatment. We also analysed the average
absolute accumulation of new leaves as the sum of all leaves
produced within each OTC (Section 2.4). In the case of Ht and BD,
the analyses were conducted according to the previously
mentioned size class division specified in Section 2.6.

Differences between the parameters measured under aCO,
and eCO,, were analysed by generalized linear mixed models, with
the CO, treatment as categorical fixed effect with two levels. For
all parameters, we found that models including species identity or
ambient light levels as random effects were not significantly
different from those that did not (p <0.05); therefore, these
factors were not included in the final models. To account for the
chambers’ natural environmental variation, we included OTC
pairs as a random effect in the mixed models, using the
‘elmmTMB’ package (Brooks et al., 2017). The leaf-level gas
exchange parameters are presented as the mean+SD and
reported as the mean percentage change of the response ratio
[(r-1) x 100], where r=response under eCO,/response under
aCO,. Significant differences were regarded at p <0.05. The
statistical analyses were performed with R version 4.1.2 (R Core
Team 2021).

B9-wiLey—>

3 | RESULTS
3.1 | CO, enrichment effects on leaf gas exchange

We evaluated the response of leaf gas exchange to eCO, 120
days after CO, enrichment started. Under eCO, the A, was 67%
and the iIWUE was 78% higher than aCO, (p < 0.001 for both). J,ax
and the Jmax:Vemax ratio were 19% higher under eCO, (p < 0.001
for both). For Vi ma. 9s and E, no significant changes were
observed under eCO, (p=0.7, p=0.5 and p = 0.3, respectively).
The ® was 56% higher (p<0.001), while LCP did not show
significant  difference between the treatments (p=0.3)
(Figure 1 and Table 1). Regarding the quality of the A/C; curve
fitting, the average root mean squared error (RMSE) was 0.11
(ranging from 0.04 to 0.28).

3.2 | CO, enrichment effects on leaf production,
leaf area and plant growth

Plants under aCO, produced more leaves between January and March
2020 (Figure 2). However, between March and June, Lf, was more than
two times higher under eCO, than aCO, (59 vs. 18 leaves, Figure 2).
Despite this, the cumulative Lf, was higher under aCO, than eCO, for
that period. Between June and October, Lf, was 85% higher under eCOs,,
although it was not statistically different from aCO, (p = 0.059). At the
end of our study, we observed that the absolute accumulated Lf,
between January and October, was 23% higher under eCO,, although no
significant difference was detected between treatments (p=0.3)
(Figure 2).

The Lfiea that flushed after the onset of CO, enrichment,
compared to those already present before the experiment started
(November 2019), increased by 51% under eCO, and 19% under
aCO, (p £ 0.001) (Figure 3).

Although we observed a trend of higher total Ht of 23% under eCO,,
this increase was not statistically significant (Figure 4), except for the
larger size class (2140 cm) (p=0.2, p=0.9 and p <0.001, respectively).
When all BD classes were considered together, increment was significant
(p<0.001) and 65% higher at eCO,. That was also true for the
intermediary and largest size classes (9 < 15 and 215 mm) (p < 0.001 for
both). For the smallest size classes (3 <9), no difference was detected
(p=0.02 (Figure 5).

Concerning the RGR, we detected a 29% increment under eCO,
(p =0.01) (Figure 6).

4 | DISCUSSION

41 | Carbon assimilation and growth responses to
elevated CO,

This Amazonian understory community showed higher potential
carbon assimilation rates (Ac,t) under eCO,, as previously observed in
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FIGURE 1 Mean response to eCO, (n = 8, £95% Cl) of net CO, assimilation at saturating light (Asat, tmol m~2s™1), stomatal conductance (g,
molm™2s™Y), transpiration (E, mmol m~2s™Y), intrinsic water-use efficiency (iIWUE, umol mol™%), apparent maximum carboxylation rate of Rubisco
(Vemax KMol m™2s™1), apparent maximum electron transport rate for RuBP regeneration under saturating light Umax, LMol M 25™2), Jinax:Vemax
ratio, apparent quantum yield (®, pmol m™2s™%) and light compensation point (LCP, umol m™2s™Y). The dashed line represents no change, black
circle (®) an increase and open circle (0) a decrease under eCO,. The asterisks indicate significant treatment effect (***p < 0.001) and n.s. =no

significant, n =8 OTCs (4—aCO, and 4—eCO,).

TABLE 1 Gas exchange parameters of plants under ambient
(aC0O,) and elevated (eCO,) CO, concentration.

Variable aCO, eCO, p

Asat 3.7+0.7 6.1+0.8 <0.001
gs 0.077 +0.03 0.069 +0.008 0.5

E 1.11+£0.3 0.97+0.12 0.3
iWUE 54.1+9.9 96.2+19.2 <0.001
Viemax 184+1.3 18.8+2.3 0.7
e 26.1+0.7 31.1+£34 <0.001
Jonax:Vemax 1.45+0.10 1.72+0.10 <0.001
() 0.02 +0.005 0.03+0.003 <0.001
LCP 87+14 10.6£4.9 0.3

Note: Mean £ SD and p value for each parameter analysed between
treatments.

Net CO, assimilation at saturating light (A, tmol m™2s™%), stomatal
conductance (g5, mol m~2s™%), transpiration rate (E, mmol m~2s™%), intrinsic
water-use efficiency (iWUE, umol mol™1), maximum carboxylation rate of
Rubisco (Vmax Mol m~2s71), maximum electron transport rate for RuBP
regeneration under saturating light Umax, KMol M 25™%), Jnax:Vemax ratio,
apparent quantum yield (@, pumol m™2s7%) and light compensation point
(LCP, umol m™25s7%).

shade plants (DelLucia & Thomas, 2000; Hattenschwiler, 2001;
Kubiske & Pregitzer, 1996). The increase in A,; was sustained by
an enhancement in J;,ax, indicating a high energy demand for RUBP
regeneration, which suggests an enhancement in the capacity of

these plants to utilize sunflecks (DelLucia & Thomas, 2000; Pearcy,
1990). Thus, eCO, may facilitate shaded plants in the understory to
better exploit sunflecks which is the main, but erratic, light resource
available. Despite previous eCO, studies reporting a reduction in
Vemax under eCO, (Ainsworth & Long, 2004; Leakey et al., 2002;
Medlyn et al, 1999), we did not observe a downregulation of
carboxylation capacity. This may be linked to the relatively short
observation period of this study, implying insufficient time for the
process of downregulation to occur in these plants (Ainsworth et al.,
2004b; Moore et al., 1999; Sage, 1994). Alternatively, it might result
from non-limiting nitrogen availability. Similar studies have previously
demonstrated a reduction in LCP and an increase in @ under eCO,
and limited light (Hattenschwiler, 2001; Kubiske & Pregitzer, 1996).
We hypothesized that under eCO, and understory conditions, plants
decrease their LCP and increase @ to optimize light use and carbon
assimilation (Drake et al., 1997). Here, the eCO, did not lead to a
decrease in the LCP, a result also recorded by Norby et al. (2003) for
understory shaded leaves. Instead, there was a high variability among
plants in both treatments, which can be related to the diversity of
species present within the community (Drake et al., 1997; Kubiske &
Pregitzer, 1996) but not accounted for by our experimental design.
However, the higher values of @ reiterate the increase in assimilation
and consequent carbon gain observed in response to eCO, (Kubiske
& Pregitzer, 1996).

Such an increase in carbon assimilation (Asat, Jmax and @) resulted
in a higher Lfarea, BD and RGR under eCO,, which implies that these
plants prioritize investments towards increasing light capture and

processing into fixed carbon, perhaps boosting their performance in
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FIGURE 3 Mean leaf area (m?) of the open-top chambers (OTC,
n = 8) of leaves that flushed before (dark green bars—t;) and after
(light green bars—t,) the onset of CO, enrichment (November 2019).
Bars indicate the standard deviation of the means. The asterisks
indicate significant treatment effect (***p < 0.001), n=8 OTCs
(4—aCO, and 4—eCO,). [Color figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 4 Daily mean height increment (cm day™?) of plants
under aCO,, (grey bars) and eCO, (black bars), divided into three
height classes (20 < 80, 80 < 140 and 2140 cm). Error bars indicate
the standard deviation of the means. The asterisks indicate significant
treatment effect (**p < 0.01), n=8 OTCs (4—aCO, and 4—eCO,).
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FIGURE 5 Daily mean base diameter increment (mm day™%)

of plants under aCO, (grey bars) and eCO, (black bars), divided
into three diameter classes (3<9, 9 <15 and =15 mm). Error bars
indicate the standard deviation of the means. The asterisks indicate
significant treatment effect (*p < 0.05), n=8 OTCs (4—aCO, and
4—eCOz).
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FIGURE 6 Mean daily relative growth rate (RGR,

mm? cm™3 day™?) of plants under aCO, (grey bars) and eCO, (black
bars). Error bars indicate the standard deviation of the means. The
asterisks indicate significant treatment effect (*p < 0.05), n=8 OTCs
(4—aCO, and 4—eCO,).
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the understory environment (Valladares & Niinemets, 2008). Higher
BD and a weak Ht response of the individuals indicate that in this
forest, the understory community may be more responsive to eCO,
in terms of growth to acquire resources (Givnish, 1988). Plants
adapted to shade conditions may invest resources to optimize light
capture (Gommers et al., 2013) at the expense of vertical growth
(Valladares & Niinemets, 2008), in contrast to canopy species that
survive by waiting for better conditions, such as canopy openings, to
further develop (Swaine & Whitmore, 1988). Indeed, plants growing
under shaded conditions are expected to benefit disproportionally
from eCO, as they live closer to their LCP and are known to be more
responsive to eCO, (Curtis & Wang, 1998; Lloyd & Farquhar, 2008),
with our observations supporting the view that eCO, can stimulate
and change growth performance in the Amazonian understory. We
observed wide variations occurring in LCP, as well as growth
responses that could indicate very different overall eCO, responses
by different species in our plant community and suggest that some
species may develop competitive advantages over others under eCO,
scenarios in the future. While our study did not focus on specific
species, the results presented here reinforce the idea that, regardless
of the species or habit, a tropical plant community can respond to
environmental changes, such as eCO,. Marvin et al. (2015), in an
experiment with tropical liana and tree seedlings, showed that both
life forms had significant responses to eCO,, but no difference
between them, which supports the effect of eCO, on tropical plant
communities. This goes against the idea that increasing atmospheric
[CO,] is causing an expansion of the lianas in tropical forests
(Schnitzer and Bongers, 2011). However, the extent to which such
changes could alter the whole forest species composition in the
future remains speculative, and an in-depth evaluation of species or
functional group responses to eCO, is needed (Lapola et al., 2009;
Marvin et al., 2015). If species respond differently to eCO,, some
species could show a disproportional change in performance
compared to others. Perhaps species at the acquisitive end of
the conservative-acquisitive spectrum will benefit more from the
increasing atmospheric [CO,]. Their increased performance might
reflect on their population dynamics within the community (i.e.,
reproduction, recruitment and mortality rates), likely culminating in
alterations in community structure (i.e., species composition and/or

dominance and rarity patterns).

4.2 | Water-use efficiency under elevated CO,

We found that the increase in iIWUE was driven primarily by increased
Agyt, With little variation in g and E. Although it is widely known that eCO,
tends to reduce g (Ainsworth & Long, 2004; Ainsworth & Rogers, 2007;
Medlyn et al., 2011), this is not true in all cases (Ellsworth, 1999). The
smaller or nonsignificant changes in g5 under eCO, are more commonly
observed in plants with low rates of metabolism (Saxe et al., 1998), and
the CO,-induced reductions in gs decrease from the top to the bottom of
the canopy (Domingues et al., 2007; Gunderson et al., 2002; Wullschleger
et al., 2002), which was the case of this study. The no response of g to

eCO, in our study may also have been due to the limited variation of
other environmental factors, such as humidity and temperature (and
consequently the vapour pressure deficit—VPD), since the stomata are
sensitive to environmental conditions (Grossiord et al., 2020; Gunderson
et al., 2002) and these variables are, in general, reasonably constant in the
understory of tropical forests (Mendes & Marenco, 2017). In these cases,
when the increase in iIWUE is due only to the increase in Ag,, there is no
improvement in the water economy (Saxe et al., 1998). However, there
could be changes in the understory water fluxes to the atmosphere since
we observed a significant increase in Lfae, in our study. Even without
significant changes in g, a higher transpirative foliar area may enhance
the contribution of the understorey stratum to ecosystem evapotran-
spiration rates, which may in turn affect land-atmosphere fluxes.

Maximizing E rates is a possible mechanism for plants to ensure
sufficient nutrient uptake when under competition, especially under
low phosphorus availability (Cernusak et al., 2011b). There are
experimental and modelling studies showing that the Central Amazon
Forest is limited by phosphorus (Cunha et al., 2022; Fleischer et al.,
2019). The lack of response in both g, and E observed in our
experiment might be the reflex of these variables being more strongly
influenced by phosphorus competition at the forest understory. Such
strategy might be facilitated by the fact that tropical forest
understory plants tend to maintain high g5 to minimize the stomatal
limitation of assimilation rates during brief sunflecks (Pearcy, 1990). It
makes sense that at the humid tropics such acquisitive strategies are
favoured, although drought events during El Nifio years certainly
favours the conservative species (Domingues et al., 2018). We still
have very limited understanding of how variable are tropical plant
species regarding their functional strategies, although species can be
remarkably different (Thompson et al., 2019).

Ecosystem level manipulation experiments are scientifically challeng-
ing and financially demanding. Many ecosystem processes are dependent
on relatively long timescales, especially for forests. Even more challenging
is the particular way that each species contributes to ecosystem
functioning. Considering the large diversity of species that are present
in tropical forests, replication of experimental units is the limiting factor
on extrapolations of single experiments to the whole tropical forest
biome. That is certainly the case for our experimental design. A way
forward is recognizing that groups of species converge are often
redundant on their functional ecology, forming functional groups. In the
past, species were simply grouped by anecdotal knowledge of their
distribution along the successional changes that communities undergo
after disturbances. Nowadays, the characterization of species based on
their functional traits is an interesting possibility of forming truly
functional groups that can simplify ecosystem studies and enable

extrapolation of local studies to larger scales.

5 | CONCLUSION

The Amazon forest understory, despite growing in a light-limited
environment, responded positively to CO, enrichment. We showed that
these understory plants improve their C gain, through higher A, and @,

85UB017 SUOLUIOD 8AITE.D) 9(cedl|dde Ly Aq peuenob o sajone YO 8sn Jo S9InJ 10} AIq1TaUIjUQ AB|1/M UO (SUO N IPUCO-pUE-SWLIBIALIOY A8 |1 Akeq 1 pul|uo//:Sdy) SUONIPUOD pue swe | 8u188s *[rz02/20/8Z] Uo Ariqiauluo AS(Im ‘1upeg Jre|ioe yosessey puy AisieAiun usbulueBem Aq zy8yT90d/TTTT 0T/I0p/L0Y A8 | AReiq 1 uljuo//:Sdny wouy pspeojumod ‘0 ‘0r0ESIET



AMAZONIAN UNDERSTORY RESPONSE TO ELEVATED CO,

and their growth, through higher BD increment and Lf,.e; under eCO.,.
These results depict how this light and phosphorus-limited ecosystem can
increase assimilation rates and modulate investments of resources to
enhance the capture and efficient use of light and potentially have
significant impacts on the structure and composition of the Amazon in
the future. No decrease in g5 was observed and, together with the
increase in Lfea, this result suggests an enhancement in the contribution
of understory to leaf-to-atmosphere moisture flux, predicted to decrease
in upper canopy trees. These results, together with several studies that
have already been carried out with eCO,, demonstrate the flexibility of
plant communities to adjust to the current scenario of increased
atmospheric CO, and its impact on global climate change. Still, a better
grasp of individual species abilities is a knowledge gap that needs

addressing.
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