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Digital twins are a core industry 4.0 technology enabling the virtual replication of real-world objects, mimicking
behaviours and states throughout their lifespan. While digital twins have shown significant benefits in industries
such as manufacturing, transportation, and healthcare, their application in agriculture is still within its infancy.
Their realisation also poses significant challenges, such as the creation of dynamic agricultural objects (e.g.,
plants). Existing literature on digital twins in agriculture identifies their limited ability to monitor physical
objects without predictive capabilities and that there is a significant lack of 3D representations of plants with
functional attributes. Yet, incorporating 3D representations of plants with underlying functionality in a digital
twin can greatly improve growth, yield, and disease prediction accuracy. This enhancement enables various
applications, such as assessing and developing pruning strategies, providing education to growers, guiding
pruning robots, and optimizing spraying techniques. To that end, Functional Structural Plant Modelling presents
a potential solution by representing the 3D architecture of plants and incorporating the functionality of different
plant parts. By conducting a domain analysis of 3D plant phenotyping and FSPM, this study addresses the specific
needs of digital twins in agriculture regarding FSPM. The investigation bridges the existing knowledge gap by
identifying crucial concepts, including 3D plant modelling with underlying functionality and 3D plant pheno-
typing for digital twins. Specifically, a framework for 3D FSPM integration into agricultural digital twins is
proposed. The framework not only acknowledges the associated requirements and challenges identified in
existing literature but also lays foundation for the advancement of digital twins in the agricultural domain.

1. Introduction

Digital twins (DT) represent a fundamental technology (Huang et al.,
2021), enabling the recreation of physical objects within a virtual
environment, faithfully reproducing their characteristics and behaviour
over time (Boschert & Rosen, 2016; Grieves & Vickers, 2017). This
innovative concept has attracted considerable attention across various
industries, including manufacturing, healthcare, and transportation, due
to the technology’s potential to enhance efficiency, reduce costs, and
improve decision-making (da Silva Mendonca et al., 2022). For example,
Burke et al (2019) listed the DT as one of the top 10 strategic technology
trends in 2019, and in 2020, it was identified as an emerging technology
for the next 5-10 years (Tao et al., 2022). However, the adoption of DT
in agriculture and logistics, which are integral parts of the food chain,
has been relatively low, accounting for less than 2 % and 4 % of
reviewed applications, respectively (Uhlenkamp et al., 2022). In a re-
view conducted by Ariesen-Verschuur et al. (2022), a total of only eight
articles were identified that specifically address the topic of DTs within
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the context of greenhouse horticulture.

Current applications of DTs in agriculture involve remote execution,
monitoring, control, and coordination of farming operations, separating
physical and information aspects (Verdouw et al., 2021). These virtual
representations integrate data from diverse sources, including sensors
and satellites, enabling advanced analytics and simulation of future
behaviour. Consequently, DTs provide real-time insights and facilitate
prompt action for expected or unexpected deviations (Verdouw et al.,
2021). Furthermore, DTs in agriculture facilitate the testing of strategies
for growers, including evaluating the trade-off between potential sav-
ings and risk, as well as participation in energy flexibility markets
(Nasirahmadi & Hensel, 2022). However, the technology’s imple-
mentation within an agricultural setting faces challenges in capturing
dynamic behaviour, ensuring data integrity and security in rural areas,
managing interdependencies, enabling secure external access, and
achieving interoperability (Verdouw et al., 2021). Consequently, due to
these challenges, the widespread implementation of DTs in agriculture is
still within its infancy, with limited studies conducted and potential
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benefits yet to be fully realized, unlike in other domains (Pylianidis
et al., 2021).

For DTs within the agriculture domain, in order to deal with the
dynamic behaviour and enable advanced analytics and simulation of
future behaviour high-fidelity, the modelling process is essential. More
specifically, physical modelling (involving the creations of detailed
representations of real-world objects) can provide insights which can be
used for understanding and analysis of dynamic behaviour of the
physical objects in agriculture domain that rather than data driven
modelling (Liu et al., 2021). Liu et al. (2021) argue that physical
modelling, as opposed to data-driven modelling, can offer valuable in-
sights for comprehending and analysing the dynamic behaviour of
agricultural objects. Within this setting, data-driven models are trained
by known inputs and outputs, using artificial intelligence methods
which make them only valid for those specific inputs and without giving
the opportunity of biological explanation of the prediction. Whereas
physical models require comprehensive understanding of the physical
properties and their mutual interaction. Specifically, crop modelling
pursues three primary objectives: (1) enhancing the cognitive capacity
of the human brain through the integration of existing knowledge, (2)
extrapolating the effects of factors beyond the range of experimentation,
and (3) enabling practical management decisions, such as climate and
nutrient control in greenhouse settings (Evers et al., 2005). Thus,
computational models used in both inference of the physical object’s
current state and simulation can provide decision-making insights,
optimizing future operations, forecasting degradation mechanisms, and
predicting failures (Segovia & Garcia-Alfaro, 2022).

Crop modelling in plant sciences can either be process-based models
that take into account the functionality, omitting the structural aspect of
the plants or functional structural plant models that concern the struc-
tural aspect also. Further, Process-Based Models (PBMs) (Buck-Sorlin,
2013) focus on eco-physiological processes, for example nutrient ab-
sorption, light harvesting, photosynthesis, carbon assimilation, distri-
bution, etc., for plant growth. Classical PBM addresses the
implementation and simulation of the plant growth processes (e.g.,
Photosynthesis, C-N assimilation, and allocation) at the whole plant
canopy level rather than individual plant organs level. Since PBM does
not focus on the plant’s architecture, it does not consider the in-
teractions between plant growth processes and architecture develop-
ment as per changing environment (de Reffye et al., 1997). To address
this issue, Functional Structural Plant (FSP) models, also called virtual
plant models, depict the dynamic 3D architecture of plants as influenced
by physiological processes and environmental factors (Prusinkiewicz &
Lindenmayer, 1990; Sievanen et al., 2000; Godin & Sinoquet, 2005; Vos
et al., 2007; Hanan & Prusinkiewicz, 2008). The FSP modelling process
is a valuable tool for scientists seeking to comprehend and address the
dynamic behaviour of plants. These models are computer simulations
that represent the three-dimensional (3D) architecture of plants. By
simulating the plant’s 3D structure, FSPM provide essential insights into
plant parameters and their growth patterns (Patil et al., 2023). To that
end, incorporating FSP modelling can enhance prediction accuracy of a
DT and facilitate the assessment and creation of pruning strategies,
enabling education of growers or guiding pruning robots. In addition,
FSPM have practical applications in optimizing spraying techniques and
can contribute to the construction of a more realistic dataset by incor-
porating environmental conditions, ultimately enhancing the estimation
of light interception. Furthermore, its suitability for precision agricul-
ture lies in its ability to accurately model the specific requirements and
physiology of individual plants.

Consequently, plant modelling is essential for the creation of DT in
agriculture to exploit their potential. In the existed explorative studies
and cases about DTs in agriculture (Verdouw & Kruize, 2017; Jo et al.,
2018; Monteiro et al., 2018; Kampker et al., 2019; Sreedevi & Santosh
Kumar, 2020; Skobelev et al., 2020), plant modelling is barely used in
the fundamental form of it while FSPM is not introduced. Thus, this
article’s contribution to knowledge is an analysis of how FSPM can be
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integrated in DTs. More specifically, the objective is to propose a con-
ceptual framework (ie, a systematic classification of concepts) for
implementing FSPM in 3D-based DTs, where (as demonstrated in Sec-
tion 2) there is a significant knowledge gap.

The remainder of this paper is as follows. A background on DTs and
FSPM is provided in Section 2 and Section 3 outlines the search protocol
and methodology used for the investigation. The domain analysis in
Section 4 defines work that has been done in the domain of 3D plant
phenotyping and 3D plant reconstruction, and how this can be inter-
preted in L-system formalism. Section 5 describes the conceptual
framework developed, which comprises the main framework of inte-
grating FSPM into DTs by relying in work that has be done already and
the individual steps to achieve that. The main findings are summarized
and discussed in Section 6 as well as, challenges and future work. Sec-
tion 7 concludes the paper.

2. 3D plant modelling and DT in agriculture
2.1. DT in agriculture

2.1.1. Type of DTs and terminology

According to Verdouw et al. (2021), there are six distinct types of
DTs that are classified based on their specific objectives. These types
include Imaginary, Monitoring, Predictive, Prescriptive, Autonomous,
and Recollection DTs. Verdouw et al. (2021) also proposed a conceptual
framework that takes into consideration variations in architecture and
incorporates different layers, which become increasingly complex as one
progresses towards an autonomous DT. Furthermore, this led to the
development of a control model based on a general systems approach, as
well as an implementation model that presents a comprehensive tech-
nical architecture for implementing DTs. For a more software
engineering-oriented perspective, Tekinerdogan & Verdouw (2020)
introduced a set of DT architecture design patterns that can be utilized to
design systems catering to the requirements of each DT type. These
patterns are formulated using the well-recognized context-problem-
—solution template for pattern formulation. The terminology used to
describe the components of DTs (Appendix A) in the study in this article
was derived from Jones et al. (2020), who conducted a systematic
literature review to establish a standardized set of terminology for the
field.

2.1.2. Control model in DTs in agriculture

DTs offer users the capability to disentangle the physical operations
of agricultural farms from the information-related aspects (Verdouw &
Kruize, 2017). In order to decouple the management of agricultural
operations for users, the proposed control model framework by Verdouw
et al. (2021) was designed to convert data collected from the physical
systems of farms into a DT representation (Fig. 1). This control model is
structured into six layers, each orchestrating functions contributing to
the establishment of the DT and enabling seamless communication be-
tween its physical and digital counterparts. Initiating the control cycle,
the state of the object is perceived through the data function, which is
responsible for measuring the state of an object using sensors or external
data sources such as satellites and weather databases. The data collected
by the data function is then input into models within the meta model
function. These models, which can be data-driven, functional, or
process-based, or a combination, are instrumental in generating the DT
representation. However, solely representing the current state of the
object is insufficient for farmers. Therefore, an additional meta model
function can take the object’s current state as a starting point, utilizing
predictive models to forecast future states. Subsequently, these pro-
jected future states are assessed by the application function. Within the
application function, scenarios derived from the meta models are
compared with established norms, and the optimal scenario is selected
for implementation. Once the best scenario has been identified, the
decision maker function within the application layer determines how
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Fig. 1. Conceptual model for DTs, based on Verdouw et al. (2015). Rectangles denote the functions encapsulated within the layers, denoted by orthogonal symbols,

while arrows delineate the flow of information.

the subsequent management actions will be executed. The effector
function in the data layer receives instructions from the application
layer regarding the changes to be made in cultivation management. This
constitutes a single cycle, and it will be reiterated over time, dependent
on the DT’s time step. In the control model, data from the data layer is
directed towards the model-based data processing phase. This process
employs various models to analyse the data and generate the DT. This
process ensures the communication of the physical twin with the digital
and the opposite and keep informed each other. As previously
mentioned in the introduction, FSPM holds a significant advantage in
translating the data, enabling the creation of a DT that not only repre-
sents the 3D architecture of the physical twin but also its functionality. It
is imperative to acknowledge that the illustrations provided represent
only the overarching layers and their interconnections, while the in-
ternal structures within each layer are considerably more intricate
(Appendix A). In the scope of this research, particular emphasis will be
placed on expanding the model-based data processing layer and pro-
posing a framework for the integration of FSPM in it. Furthermore, the
development of this framework necessitates comprehensive consider-
ation of all layers to ensure seamless communication in real-time or near
real-time for the effective operation of the DT. Therefore, an examina-
tion of each layer was essential in formulating the framework.

2.2. Functional structural plant modelling

FSPMs incorporate physiological processes influenced by environ-
mental factors, allowing for the study of plant responses to various
environmental conditions and the influence of different traits on plant
performance. By employing mathematical algorithms, FSPMs offer
valuable insights into plant growth patterns, resource allocation, and
interactions with the environment, enabling scientists to understand and
predict plant behaviour in diverse scenarios. Since their inception, one
of the primary objectives of FSPMs has been to develop predictive
models in applied domains where plant architecture plays a critical role,
such as modelling plant growth in spatially heterogeneous environments
(e.g., understorey, greenhouses), assessing competition in plant com-
munities, studying selective canopy perturbations (e.g., herbivory,
pruning), and defining ideotypes for breeders (Louarn & Song, 2020).

In FSPMs, plants are represented as interconnected units called
phytomers or metamers, each comprising an internode, a node, and a
leaf. The plant architecture is described using L-system strings

(Prusinkiewicz & Lindenmayer, 1990), which employ a rewriting tech-
nique to progressively transform a simple initial object into a complex
structure through productions, also known as rules. Later, Kurth et al.
(2004) introduced relational growth grammars (RGG) as an extension of
the L-system, enabling the incorporation of non-linear relationships in
architectural modelling. Turtle geometry (Abelson & DiSessa, 1986) is
then employed to interpret L-systems and RGG for graphical purposes.
FSPMs capture the adaptive nature of plants, as they modify their
functions, such as photosynthesis, transpiration, and nitrogen alloca-
tion, as well as adjust their structure in response to environmental cues,
including bud breakage, dormancy maintenance, and organ shape and
orientation adjustments. This reciprocal relationship between structure
and function is explicitly captured in FSPMs, allowing for the repre-
sentation of feedback loops. These feedback can be examined at both the
local level, involving individual organs, and the global level, encom-
passing the functioning of the entire plant or plant stand. Key topics in
FSPM research include models of morphological development, models
of physical and biological processes, integrated models predicting the
dynamics of plants and plant communities, modelling platforms,
methods for acquiring 3D plant structures using automated measure-
ments, and practical applications in agronomy (Sievanen et al., 2014).
Despite making significant strides in plant science over the past two
decades, FSPMs have yet to fulfil their full potential (Louarn and Song,
2020).

2.2.1. Plant topology and geometry

In the field of FSPM, the plant architecture is described using the
concepts of topology and geometry. Topology pertains to the physical
connections among various components of the plant, while geometry
encompasses the characteristics such as shape, size, orientation, and
spatial location of these components (Godin et al., 1999). The initial step
in constructing a structural model involves identifying the different
types of plant organs that can be formed and understanding their con-
nections, ie., the topology. It is important to note that the in-
terconnections between organs can vary depending on the plant species.
For more complex tree architectures, a multigraph tree model is
employed. The topology of a tree is described using the multiscale tree
graph formalism (Godin & Caraglio, 1998), which accounts for different
levels of organization (Barthélémy, 1991) and captures plant structure
by incorporating associated variables like geometrical measurements
and phenological data. Multiscale tree graph formalism provides a
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suitable means for representing tree-like topologies concisely, consid-
ering aspects of scale and time.

2.2.2. Platform and software of FSPM

Several FSPM methods have been developed, with L-Studio being
one of the pioneers (Allen et al., 2007). L-Studio is based on the L-system
formalism (Lindenmayer, 1968; Prusinkiewicz et al., 1996) and utilizes
the modelling language L + C (Prusinkiewicz et al., 2007). Another
increasingly used platform is GroIMP, which is based on RGG and em-
ploys the modelling language XL (Kniemeyer, 2007). Zhou et al. (2020)
introduced CPlantBox, a Python-based whole-plant functional-structural
modelling framework that simulates both root and plant shoot struc-
tures. Barczi et al. (2008) proposed AMAPsim, a structural whole-plant
architecture simulator written in C++, which combines architectural
and physiological models. The GreenLab mathematical model (de Reffye
et al., 2021), integrates functional and structural aspects of metabolic
processes with a phytomere-level structure. These models contribute to
the advancement of FSPM methodologies, providing researchers with
diverse platforms and models for investigating plant development and
the interplay between functional and structural aspects.

2.2.3. FSPM applications

FSPM serves not only as a tool for scientists to test hypotheses and
conduct in silico experiments that are difficult to replicate in reality but
also finds practical applications in the field of agronomy. FSPM can help
on assessing how plant traits affecting light interception and conse-
quently processes like photosynthesis. Zhang et al. (2020) conducted a
quantitative investigation to explore the effects of different architectural
traits and canopy management on light interception and potential car-
bon accumulation. Similarly, Prieto et al. (2020) employed a compara-
ble approach in grapevine research, comparing photosynthetic gains
achieved by different training systems, including scenarios with free
shoots exhibiting complex architecture. Moreover, FSPM can be used for
optimization of management of the crop, such as spraying. Gu et al.
(2014) developed an FSPM for cotton that considered factors, such as
thermal time, population density, mepiquat chloride application, and
stem and branch topping. Simulation results indicated that mepiquat
chloride application reduced leaf area and internode length, resulting in
a more compact canopy, while having negligible effects on boll density.

The integration of FSPMs with AT holds great potential in the fields of
breeding and advanced phenotyping. Ubbens et al. (2018), for example,
employed a computer-generated model of Arabidopsis rosettes to
enhance leaf counting accuracy using convolutional neural networks. By
incorporating synthetic rosettes in conjunction with real training data,
they achieved a reduction in mean absolute count error compared to
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previous methods that exclusively utilized real plant images. Notably,
interoperability experiments demonstrated that a convolutional neural
networks trained solely on synthetic rosettes successfully counted leaves
in real rosettes. Additionally, Liu et al. (2017) focused on estimating the
green area index of wheat through ground-based LiDAR measurements,
utilizing a 3D canopy structure model. The utilization of 3D plant
models proves to be beneficial in training neural networks for image-
based plant phenotyping applications.

2.2.4. FSP models workflow

Considering the diverse range of FSPMs employed in different con-
texts and for various crops and objectives, development of a general
FSPM, which can then be modified by adapting its modules to specific
crops and objectives is beneficial (Henke et al., 2016). The study by
Henke et al. (2016) presents an initial step towards establishing a gen-
eral FSPM with standardized modules, processes, and communication
structure. This approach facilitates a clear and well-defined model
design that is easily parametrized, comprehensible, and expandable.
This generic FSPM comprises an initialization function init(), respon-
sible for initializing the plants (Axiom, i.e., the initial plant architec-
ture), parameters, and environmental conditions (Fig. 2).

Subsequently, in the run() function, the model executes growth
functions and assimilate allocation, applies relevant rules, and considers
the environmental factors. This represents the main loop, where the
model updates the plant state at each time step using ordinary differ-
ential equations (ODEs). At each iteration, the stop() function checks if
the plant has reached the end of its life cycle. If not, the model continues
within the main loop. For further details on the specific functionality of
each function, readers are referred to the work by Henke et al. (2016).

3. Domain analysis protocol

The research review process was organized in four phases: (i) DT
domain analysis, (ii) Functional structural plant modelling domain
analysis (iii) 3D plant reconstruction domain analysis and (iv) frame-
work design. Initially, a domain analysis was conducted in the field of
DTs to gather existing terminology from previous research. This step
aimed to ensure consistency in the use of terminology throughout the
study, thereby avoiding potential confusion caused by employing
different terms. Subsequently, a domain analysis has reviewed existing
literature on the usage of DTs in the context of agriculture and the role of
FSPM. At this, the search focused on articles that involved both DT and
agriculture or farming in the title, abstract or the keywords section. Non-
English and non-accessible papers were excluded from the study. Then,
the search was extended to include FSPM and 3D reconstruction of
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plants. Based on this domain analysis, a conceptual framework on how
functional structural plant modelling can be integrating into DT concept
was provided. Connecting all the information from the background
research on this topic a framework on how a single physical object (i.e.,
plant) can be transformed into the digital object for a DT.

3.1. Search queries

The search queries were utilized to gather information within the
analysis domain for the research study (Table 1). The resulting papers
from these search queries were then subjected to forward and backward
snowballing techniques. This involved examining the references cited
within the papers (backward snowballing) as well as identifying newer
papers that have cited the original papers (forward snowballing). After
conducting the snowballing process, all the collected papers were
screened, and the full texts of the remaining papers were assessed.
Finally, based on this screening and assessment, the articles that met the
inclusion criteria were selected for the study (Fig. 4).

3.1.1. Research questions

In order to address the primary objective of this research, three
distinct research questions were formulated to yield relevant informa-
tion and valuable insights regarding the approach to be undertaken in
developing a conceptual framework for integrating FSPM into DTs
within the domain of agriculture. The subsequent research questions
were defined:

1) To what extent has plant and 3D plant modelling been employed to
develop DT applications in agriculture?

2) How has the physical object been perceived and reconstructed in
existing literature?

3) How can FSPM be used to support the creation of 3D DTs for
agriculture?

To answer the aforementioned research questions, a domain analysis
was performed by focusing on the Scopus digital library, with the search
strings displayed in Table 1. As mentioned, articles relevant for this
study but not included in Scopus were identified by means of snow-
balling. The time period for article inclusion encompassed all available
literature, except for studies specifically related to DTs, which were
restricted to the period from 2017 onwards. This approach was adopted
to ensure comprehensive coverage of the FSPM and 3D plant pheno-
typing domains, which have been established for over two decades. By
not excluding articles from these domains, we aimed to avoid over-
looking important contributions to the field.

Table 1
Search queries for the different domain analysis.

Database =~ Domain analysis Search string

Scopus DTs in agriculture (“digital twins” OR “Cyber- physical
system” OR “emulation” OR
“Simulation”) AND (“plant model*”)
AND (“agriculture” OR “farm*”)

Scopus Functional structural plant (“FSPM” AND “Plant™)

modelling domain analysis
Scopus 3d plant reconstruction and (“3d plant representation” OR * plant

phenotyping domain
analysis

rendering” OR “3d plant
reconstruction” OR “skeletonization™)
AND (“Plant” OR “agriculture” OR
“leaf” OR “plant structure” OR
“skeleton”) AND (“segmentation” OR
“machine learning” OR “computer
vision” OR “artificial intelligence™)

Computers and Electronics in Agriculture 218 (2024) 108733

3.2. Selection criteria

The selection process involved filtering the search query results
based on predetermined selection criteria outlined in (Table 2). Only
articles deemed relevant to the study’s objectives were chosen. The
collection of articles was obtained from Scopus database using the
research string and the snowball method to enhance the retrieval pro-
cess. Subsequently, data pertinent to the study, extracted exclusively
from the articles meeting the selection criteria, were compiled and
presented in (Table 3).

4. Domain analysis
4.1. 3D plant modelling for DT applications in agriculture

Although a conceptual framework for DTs in agriculture exists, the
practical implementation falls short of its theoretical potential. Litera-
ture review indicates that most DTs developed in the agricultural
domain are primarily focused on monitoring (Fig. 4). While Chaux et al.
(2021) proposed a complete architecture for DT s in controlled envi-
ronments like greenhouses, it remained generic without detailed ex-
planations or real case studies for workflow optimization. Two studies,
such as Ahmed et al. (2019) and Skobelev et al. (2020), utilized process
models and knowledge-based models and presented a framework uti-
lizing knowledge-based modelling to develop DT of plants. However,
none of these studies were able to provide predictive capabilities or
effectively evaluate different scenarios. Others, like Ahmed et al. (2019)
and Jans-Singh et al. (2020), concentrated on modelling aspects and the
use of meta models to facilitate DT implementation. These studies
explored modelling techniques and meta model approaches to enhance
functionality. Pylianidis et al. (2022) introduced a method for devel-
oping operational DTs that addressed data availability and resolution
challenges. They demonstrated the method’s effectiveness in nonlinear
scenarios, providing tactical advice for grass pasture nitrogen response
rate across different locations.

However, none of the reviewed articles (Fig. 4) showcased autono-
mous behaviour or an intelligent layer capable of learning and making
independent decisions for crop management optimization.

Most existing agricultural DTs primarily concentrate on the sensor
layer and data storage aspects, lacking the incorporation of functional
3D plant models. Only one study, namely Jans-Singh et al. (2020),
included 3D representations of the control environment and plants;
however, it did not encompass the exact physical objects themselves.
While a few studies briefly mentioned certain layers, such as Alves et al.
(2019) and Chaux et al. (2021), they lacked sufficient details on their
creation and derivation. Some studies, like Hemming et al. (2020) and
Howard et al. (2020), did not elaborate on the machine learning algo-
rithms used or how each layer could be implemented. Overall, there is a
need for a proposed conceptual framework that integrates a 3D plant
model of the physical object with functional capabilities, addressing the
limitations and gaps identified in the existing literature. While 3D plant
modelling has been utilized predominantly for non-existing plants, the
application of this technique to physical objects and the creation of DTs
requires 3D plant phenotyping to be performed.

4.2. Physical object reconstruction

Accurate representation of physical objects in DTs necessitates the
inclusion of 3D plant phenotyping. The ability to access and analyse the
plant architecture plays a crucial role in monitoring the geometric
development of plants and parameterizing various aspects, such as plant
canopies, individual plants, and plant organs (Godin, 2000). Obtaining
accurate and timely measurements of phenotypic traits, such as in to-
mato canopies is of significant importance for purposes such as variety
breeding, cultivation, and scientific management. However, the tradi-
tional approach of manual measurements is burdensome, time-
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consuming, and prone to errors (Zhu et al., 2023). In recent years, growth dynamics (Paulus et al.,, 2014). These phenotypic traits,
several studies have focused on plant phenotyping using 3D sensing including leaf area index, plant biomass, plant density, chlorophyll
technologies (Paturkar et al., 2021; Paulus, 2019; Liu et al., 2020). The content, and crown temperature, serve various biological purposes, for
non-destructive nature of 3D measuring allows for continuous moni- instance, in stress detection (Feng et al., 2021). In this regard, non-
toring over time, offering new possibilities in understanding plant destructive phenotyping techniques can be leveraged to develop DTs
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Table 2
Selection criteria of the study.

Exclusion criteria

Articles without full text available

Articles not written in English

Duplicate publication

Publications that are not articles (e.g., survey)

Articles do not associate to DT within agricultural domain
Articles do not associate with FSPM

Articles do not associate with 3D plant phenotyping

The articles related to DT were published before 2017

Table 3
Data extraction for the study.

Data per Article

Authors

Title

Year of publication

Process for creation of DT within agriculture domain

Process for 3D plant phenotyping

Data used for 3D plant phenotyping

Algorithms or models used for transformation of 3D plant reconstruction into L-system
and RGG

What Machine learning were implemented for 3D plant phenotyping

FSPM workflow

that facilitate disease analysis, stress detection, and other applications.

4.2.1. 3D measuring technologies

Various 3D sensing technologies (Table 4) are available for plant
reconstruction (Paturkar et al., 2021). Paulus (2019) conducted a
comprehensive survey on acquisition techniques, representations, and
analysis methods for 3D plant physiognomic analysis. Moreover,
different sensors, including RGB cameras, multispectral/hyperspectral
cameras, and thermal cameras, are used to extract various plant traits
such as size, shape, colour, stress detection, and temperature variations
(Minervini et al., 2015; Rumpf et al., 2010; Mahlein, 2016; Jones et al.,
2009). Liu et al. (2020) provide a review of the spectrum of technologies
used in plant phenotyping, highlighting the increasing interest in
hyperspectral imaging (HSI) and 3D sensing. LiDAR and Structure from
Motion are the dominant 3D sensing technologies used (Liu et al., 2020).
However, accurate 3D modelling of plants remains a challenge, espe-
cially for narrowleaf plants. The fusion of hyperspectral and 3D data
showed potential for improving plant phenotyping capabilities (Liu
et al., 2020).

4.2.2. 3d plant reconstruction

The representation of 3D plant architecture in computer graphics is
of clear significance for the creation of DTs. Li et al. (2022) proposed a
method for reconstructing 3D leaves using a single view, utilizing the
fusion of ResNet and differentiable rendering. Their approach focuses on
incorporating individual leaves into a plant growth DT system, rather
than reconstructing the entire plant. However, their study only focused
on a single leaf. Le Louédec & Cielniak (2021) constructed strawberry
plants in the Unity software platform, testing two different 3D tech-
nologies. For woody species reconstruction, Lau et al. (2018) derived the
skeleton of trees from point cloud data. However, these algorithms

Table 4
3D measuring technologies .
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provided the skeleton of the plant without considering the leaf area.
Further research on skeletonization considering plant leaves is worth
exploring to accurately reconstruct the geometry of leafy plants
(Chaudhury et al., 2020). Cuevas-Velasquez et al. (2020) presented a 3D
reconstruction method for rose bushes using stereo images, integrated
into a robotic system for automated pruning. Their segmentation
approach achieved a superior F1 score of 77 %, outperforming state-of-
the-art methods by 8.18 %.

Automated 3D reconstruction of plants is crucial for DT applications.
Various studies have focused on automatic reconstruction methods for
plant architecture using laser scanner data or high-resolution scans of
plants. These methods aim to achieve accurate plant reconstruction
without relying on manual intervention or the need for a branching
pattern. Examples include the work of Boudon et al. (2014), Japes et al.
(2018), and Guénard et al. (2013), which explored different approaches
for automated plant modelling and reconstruction using advanced
techniques such as analysis, synthesis, and semantic labelling of 3D
point clouds. Paproki et al. (2011) automated the reconstruction of
cotton plants. Moreover, Xiang et al. (2019) developed a cost-effective
machine vision system that utilized a commodity depth camera to cap-
ture sequential side-view images of sorghum plants at different growth
stages. Their system accurately detected individual leaves and distin-
guished tillers using 3D point cloud analysis. However, 3D plant
reconstruction provides the architecture without having the function-
ality that FSPM can provide.

4.2.3. Plant phenotyping traits and process pipeline for phenotyping traits

After obtaining the raw data, typically in the form of a point cloud,
from one of the aforementioned 3D sensing technologies, a processing
pipeline can be employed to extract different types of plant traits,
including non-complex traits, complex traits, and time-lapse traits
(Fig. 5). Focusing on specific areas of interest and removing outliers can
facilitate the calculation of straightforward attributes like plant height
and leaf length. For more complex attributes, such as organ biomass,
advanced ML techniques like classification, deep learning, and clus-
tering can be employed. Additionally, when time-series data is acces-
sible, ML algorithms can be used to determine attributes like the relative
growth rate of leaves. Ultimately, obtaining a 3D mesh and creating a
reconstructed rendering of the plant is essential. In this process,
rendering is integral to deriving parameters through the analysis of
diverse meshes.

However, the accuracy and complexity of these parameters depend
on the specific procedures employed. For instance, Zhu et al. (2023)
reconstructed a tomato canopy model and achieved high accuracy in
estimating plant height, canopy width, and leafstalk angle. The accuracy
rates were reported as 96.23 %, 95.17 %, and 91.76 %, respectively. In
the case of complex traits, Masuda (2021) aimed to estimate the leaf area
of tomato plants using an RGB-D sensor and semantic segmentation in a
sunlight-type plant factory. By applying Pointnet++ for semantic seg-
mentation and estimating leaf area based on the leaf points around the
stem, they achieved a relative error of approximately 20 %, comparable
to simplified non-destructive methods commonly used in cultivation
sites. However, the limited availability of ground truth data was a
constraint in the study. Lati et al. (2013) developed a 3D stereovision
model for accurate estimation of spatial growth measurements,
including biomass, in plants. Their model utilized a global optimization
method and ensured high confidence matching of corresponding points.

3D measuring Techniques
Active

Triangulation Time-of-Flight

Passive

Structure for motion Stereo Vision Light Field

Structured light Laser Triangulation Time-of-Flight camera

Lidar

adapted from Paturkar et al. (2021)
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Fig. 5. Pipeline of processing data for extraction of plant phenotyping traits adapted from (Paulus, 2019). The figure was constructed utilizing the Business Process
Model and Notation (BPMN) 2.0 framework, as outlined by Chinosi & Trombetta (2012).

By incorporating processing adjustments, such as parallel computing,
the algorithm could be applied in real-time scenarios. It should be noted
that plant phenotyping varies at different levels, and while the above
research focused on individual plants.

The architecture of trees presents greater complexity. For instance,
Lau et al. (2018) assessed the accuracy of using Terrestrial Laser Scan-
ning and TreeQSM to reconstruct tree architecture parameters in trop-
ical trees, such as branch length, branch diameter, branching order, and
tree volume. To address the time-consuming and manual-intensive na-
ture of plant 3D data processing techniques, Ghahremani et al. (2021)
proposed a method to directly utilize irregular point clouds for
measuring organ attributes in plant phenotyping, effectively handling
noise, distortions, and irrelevant data. Additionally, Li et al. (2022)
presented DeepSeg3DMaize, an automatic 3D point cloud segmentation
method for maize plants. By leveraging high-throughput data acquisi-
tion and deep neural networks, accurate segmentation of maize plants
was achieved at different growth stages, heights, and leaf numbers.

Time-lapse point cloud analysis offers valuable insights into plant
growth and various traits over time (Fig. 5). Automation plays a crucial
role in integrating these analyses into DT systems. For instance, Paulus
et al. (2014) developed an automated approach to track the organs
(leaves and stems) of barley plants over time. By combining surface
feature histograms with parametric modelling, the method facilitates
the calculation of parameters, such as cumulated height for the stem and
cumulated leaf area. Chebrolu et al. (2021) introduced an automated
method for tracking plant traits over time, eliminating the need for
manual intervention. Through alignment and transformation of 3D

scans, this approach enables the estimation of parameters like leaf area,
leaf length, stem diameter, and stem length, contributing to automated
phenotyping. Such automation allows for efficient monitoring of plant
development over time. Rincon et al. (2022) demonstrated the use of
low-density vertical LiDAR radars and multispectral images to examine
morphological changes and analyse variables and physiological pa-
rameters under different environmental conditions. However, it is
important to ensure compatibility between the physiological traits and
plant modelling for DT applications. Kattenborn et al. (2022) presented
AngleCam, a convolutional neural network based method that utilizes
low-cost outdoor cameras to estimate leaf angles from horizontal plant
photographs. The estimated angles, along with their derivatives, can be
applied in various applications, including FSPM. Magistri et al. (2020)
introduced a novel approach for tomato and maize plants, which
exhibited superior performance compared to existing techniques. Their
approach improves data association between point clouds of plants at
different growth stages, enabling the computation of multiple pheno-
typic traits at each time point.

4.3. Use of FSP modelling to support the creation of 3D DTs for
agriculture

Reconstruction involves creating plant shapes or structures that
resemble existing plants, while modelling focuses on simulating the
shapes and structures of non-existent plants. Okura (2022) discussed the
trends in 3D modelling and reconstruction of plants and trees. However,
the review did not touch upon the integration of 3D plant phenotyping
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into FSPM. This integration between FSPM and 3D reconstruction has
the potential to enhance both fields. Specifically, the integration can
improve mathematical biological modelling by allowing for more pre-
cise calculation of parameters, and it can provide a scientific basis for
generating more realistic plants in FSPM. There are several reasons for
adopting such an approach. Namely, from a theoretical perspective,
scientific data exists at multiple scales, and integrating this data can
improve model accuracy. From a practical standpoint, different scales of
screening and monitoring, such as disease and yield estimation, can
benefit from this integration (Scholer & Steinhage, 2015).

To achieve this, the outcomes from 3D phenotyping need to be
compatible with the inputs of FSPMs (as described in section 3.2).
Regarding this, algorithms used for automatic identification of
elementary units like nodes, internodes, foliage, buds, and cells can
facilitate parameterization of FSPMs and allow for their assessment
using accurate, real data (Boudon et al., 2014). Moreover, Scholer
(2014) proposed a 3D reconstruction approach for plant architecture
based on the interpretation of 3D laser scan point clouds. Their method
incorporated intelligent sampling and domain knowledge to constrain
the space of hypotheses. They used the Reversible Jump Markov Chain
Monte Carlo method for sampling and RGG for modelling of the plants.
They applied this approach to investigate stem skeletons of grapevine
bunches and derived phenotypical features based on the reconstructed
plants. Scholer & Steinhage (2015) developed an automated processing
chain for reconstructing grape clusters using 3D point clouds from a
laser range sensor. Their approach utilized a rule-based generative
model to handle occlusions and objectively extract phenotypic traits.
They suggested extending this model-based processing chain to other
plant organs, whole plants, and different species. In a recent study, Hu
et al. (2022) presented a framework for realistic 3D plant modelling and
agricultural scene rendering. Their automated approach, based on dual-
faced leaf model reconstruction, captured fine geometric details and
estimated light properties. The leaf reconstruction process was auto-
mated, except for acquiring real leaves, enabling the creation of diverse
agricultural vegetation scenes with high realism. This framework facil-
itated the generation of diverse agricultural scenes and improved weed
detection algorithms. Future research directions include simultaneous
reconstruction of reproductive organs and optical properties, as well as
capturing plant development patterns for species-specific parametric L-
systems. Based on the advancements in both 3D reconstruction and
FSPM, a conceptual framework for FSP modelling in DTs is proposed in
the next section. The proposed framework builds upon the identified
existing research in these two fields and aims to integrate their findings
and methodologies.

5. Proposed framework

The general control model including FSPM can be the conceptual
framework proposed showed the integration of the DT model with FSPM
approaches and is plant agnostic. The operational process of the control
model is outlined and structured into distinct steps (3D plant pheno-
typing, 3D Plant Reconstruction into L-System, FSPM, Parameterization
and Model Update, Evaluation of Model Performance), elaborated as
follows.

5.1. Control model operational process
A. 3D Plant Phenotyping

The initial step in integrating FSPMs into 3D DT entails 3D-based
plant phenotyping. This process captures a plant’s spatial structure
using a point cloud derived from advanced imaging methods (discussed
in section 4.2.1). This point cloud serves as the foundation for subse-
quent stages. Notably, the point cloud is segmented to isolate distinct
plant components, enabling detailed analysis. A key outcome of this
phase is the computation of a semantic skeleton, encapsulating the
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plant’s core structural framework. This skeletal representation simplifies
the architecture while providing informative insights into spatial
arrangement and branching patterns. This phase yields two main out-
puts: the semantic skeleton and crucial plant features like biomass,
pivotal for comprehending plant behaviour and growth.

B. 3D Plant Reconstruction into L-System

Output from the aforementioned step is utilized further to create a
plant architecture described in L-system and RGG. Leveraging the se-
mantic skeleton and the original point cloud, a sophisticated matching
process commences. This process aims to find the best-fitting architec-
tural model within an L-System and RGG using the RJMCMC algorithm.
The outcome of this phase is the semantic skeleton undergoes translation
into the L-System realm.

C. FSP Modelling

The plant architecture, transformed into L-system and RGG realm, is
then incorporated as the axiom within the FSPM. This axiom serves as
the initial state for the model’s operation. The model operates in discrete
time steps, simulating the plant’s growth and interactions within its
environment. The FSPM is executed to predict desired variables, such as
yield under different scenarios. While the foundational function of an
FSPM was discussed in section 2.2.4, it is notable that the FSPM
embedded within the DT framework can undergo calibration as the
crop’s lifecycle progresses and as new data becomes available.

D. Calibration and Model Update

Progressing chronologically, the proposed framework in this step
initiates a calibration and model update iteration at each time step.
Central to this iterative process is the pursuit of enhancement and
refinement. A focal point of this endeavour is the introduction of a
performance metric that seeks to mitigate disparities between model
predictions and empirical observations. For instance, the Levenberg-
Marquardt optimization technique (Moré, 2006) is employed as an
illustrative example to adjust the model’s parameters.

E. Evaluation of Model Performance

As the plant’s journey approaches its conclusion, the FSPM directs its
attention toward evaluating model performance. This phase reflecting
how well the FSPM captures the essence of reality. Metrics take centre
stage: the Bayesian Information Criterion (BIC) measures model
complexity, the Root Mean Squared Error (RMSE) quantifies prediction
errors, and the efficiency metric gauges the model’s predictive
capability.

This algorithm weaves together advanced techniques of 3D plant
phenotyping, L-System reconstruction, FSP modelling, parameteriza-
tion, and performance evaluation. Each phase contributes its unique
threads to a tapestry that enhances a DTs’ capability to simulate and
predict the behaviours of plants within complex and dynamic
environments.

5.2. 3D plant phenotyping

The operational process of 3D plant phenotyping unfolds in a sys-
tematic sequence of steps, each contributing to a comprehensive un-
derstanding of plant features and characteristics. To begin, the process
involves gathering 3D plant model data, which is achieved either by
reading data from a file or by capturing it directly using specialized 3D
sensors. This initial dataset forms the foundational raw material for the
subsequent analysis. Once the data is collected, the control model un-
dertakes a refining phase. This step entails preprocessing the data to
eliminate unwanted noise and outliers. By tidying up the dataset in this
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manner, the model ensures that its subsequent operations are built upon
a clean and accurate foundation. Moving forward, the segmentation
phase comes into play. Here, the model delves into the intricate struc-
ture of the plant, effectively dividing it into discrete components such as
leaves, stems, and flowers. This segmentation process leverages so-
phisticated algorithms that dissect the complex plant structure into its
constituent parts. Having successfully identified the individual compo-
nents, the model progresses to the quantification of phenotypic traits.
This involves an in-depth analysis of each component, generating key
measurements to characterize its attributes. These quantified traits
encompass crucial aspects:

e Volume: The model computes the volume of each component
through integration of its 3D shape.

e Surface Area: Estimation of the component’s surface area is achieved
by summing the areas of its constituent surface polygons.

e Length: In cases of stems or branches, the model calculates their
lengths by aggregating the distances between consecutive points.

e Curvature: The model examines the curvature of the plant model,
effectively identifying features such as leaf angles or points of
bending.

o Width: Measurement of width, such as the diameter of branches or
the width perpendicular to the length of leaves, contributes to a
comprehensive characterization.

As the phenotypic traits are calculated, the model ensures their
retention for future reference. This accumulation of data serves as a
reservoir of insights for subsequent analysis or visualization purposes.
The iterative nature of the framework is evident as the control model
proceeds to journey through multiple time points, effectively mirroring
the plant’s lifecycle. This repetition is instrumental in capturing the
evolution of the plant’s traits over time, allowing for a dynamic un-
derstanding of its characteristics. With the phenotypic insights accu-
mulated, the model shifts its focus to visualization. This final step
involves the transformation of data into understandable forms. Visual-
izations, such as graphs, charts, and immersive 3D representations, are
deployed to convey the intricacies of the plant’s story to a wider audi-
ence, bridging the gap between raw data and meaningful understanding.

In essence, the control model orchestrates an intricate dance of data
collection, refinement, segmentation, quantification, retention, and
visualization. Each step seamlessly connects to the next, culminating in a
holistic process that sheds light on the rich world of plant characteristics
and behaviour. The pseudocode in Algorithm 1 provides a general
framework for 3D plant phenotyping. The specific implementation de-
tails will depend on the software or programming language you are
using and the available libraries for point cloud/mesh processing and
segmentation.

Algorithm 1. General process of 3d plant phenotyping

1: Read 3D plant model data (e.g., point cloud or mesh) from a file or capture it using
a 3D sensor.

2: Preprocess the plant model data to remove noise and outliers.

3: Segment the plant model into individual components (e.g., leaves, stems, flowers)
using segmentation algorithms.

4: Calculate various phenotypic traits for each component, such as:

Volume: Compute the volume of each component by integrating the 3D shape.

Surface Area: Estimate the surface area of each component by summing the areas of its
surface polygons.

Length: Measure the length of stems or branches by summing the distances between
consecutive points.

Curvature: Analyze the curvature of the plant model to detect features like leaf angles
or bending.

Width: Estimate the width of branches or leaves by measuring the diameter or width
perpendicular to the length.

5: Store the calculated phenotypic traits for further analysis or visualization.

6: Repeat the above steps for multiple time points till the end of lifecycle of the
product.

7: Visualize the phenotypic data using appropriate graphs, charts, or 3D
visualizations.
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5.3. 3D plant reconstruction into L-system

The process of translating the point cloud delineating the physical
twin into L-system architecture poses a formidable challenge within the
framework. Below is a delineation of the sequential steps essential for
accomplishing this task. The FSPM’s axiom is initialized based on the
reconstructed tree architecture obtained from computer vision tech-
niques, discussed in Section 4.4. To accomplish this objective, a point
cloud is obtained using the methodologies outlined in Section 4.2.1.
Subsequently, an algorithm, (Scholer et al., 2013; Lau et al., 2018; Du
et al., 2019), should be employed. This algorithm is tasked with trans-
lating the point cloud into an L-system, ensuring the inclusion of the
appropriate attributes such as length, internode, and radius, thereby
facilitating the creation of the tree architecture (Fig. 6).

For the comprehensive illustration of this step in this framework, the
proposed Algorithm 3 employs a RIMCMC (Green, 1995) approach
augmented with simulated annealing (Geyer & Thompson, 1995) to
optimize L-system architectures for accurately representing plant
structures based on observed point cloud data. At the heart of the al-
gorithm lies the Metropolis-Hastings framework (Chib & Jeliazkov,
2001), wherein candidate L-system states are stochastically generated
through random perturbations from the current state. These perturba-
tions serve to explore the solution space by proposing alterations in the
L-system parameters, which define the structure of the simulated plant.
The acceptance of proposed changes is determined probabilistically,
allowing for the exploration of potentially suboptimal solutions to avoid
local minima. Simulated annealing is employed to control the explor-
ation—-exploitation trade-off by gradually reducing the temperature
parameter over the course of iterations. This gradual cooling schedule
enables the algorithm to initially explore a wide range of solutions with
higher acceptance probabilities and subsequently focus on refining
promising regions as the temperature decreases. The effectiveness of the
algorithm in discovering optimal L-system architectures is demonstrated
through iterative refinement towards maximizing the fitness score,
indicative of the resemblance between the generated plant structures
and the observed point cloud data. Algorithm 2 does not explicitly
address the specific challenges, for example, related to handling occlu-
sions that are commonly encountered in the process. However, Scholer
& Steinhage (2015) have extensively covered this aspect in their work,
where they developed an automated processing chain utilizing a rule-
based generative model to address occlusions when reconstructing
grape clusters from 3D point clouds obtained from a laser range sensor.

It is imperative to underscore that within the domain of point cloud
translation into L-systems, a plethora of methodologies are available in
the extant literature, subject to continuous and intensive research ef-
forts. Notably, prominent among these methods are TreeQSM (Lau et al.,
2018) and AdTree (Du et al., 2019), both renowned for their efficacy in
accurately transforming tree skeletons into L-system representations.
However, a notable challenge persists in adequately capturing leaves
and fruits through these algorithms, necessitating the exploration of
alternative approaches. Recently, a pioneering method proposed by
Wang et al. (2023) has emerged for the reconstruction of trees from
incomplete point cloud data, exhibiting superior accuracy compared to
its predecessors. Furthermore, the integration of a Convolutional Neural
Network (CNN) coupled with Long Short-Term Memory (LSTM) archi-
tecture (Magnusson et al., 2023), offers a promising avenue for expe-
ditiously translating images depicting tree topologies into
corresponding L-system representations. This advancement holds sig-
nificant utility, particularly in facilitating the rapid translation of entire
L-system architectures from reconstructions of 3D plant architectures, a
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necessity for DTs operating in real-time or near real-time.

Algorithm 2. Reversible Jump Markov Chain Monte Carlo with annealing temperature
for L-System Optimization with Point Cloud Matching
Initialization:
current_L-system_state « initial L-system_state
best_L-system_state « current_L-system_state
current_fitness « calculate_fitness(current_L-system_state, point_cloud)
best_fitness « current_fitness
temperature « initial_temperature
cooling _factor < cooling factor
Main Loop:
for i « 1 to num_iterations do
proposed_L-system_state < perturb(current_L-system_state) // Randomly perturb the
current state
proposed _fitness « calculate_fitness(proposed_L-system state, point_cloud)
acceptance_ratio < min(1, exp((proposed_fitness - current_fitness) / temperature))
random_number < random_uniform(0, 1)
if random_number < acceptance_ratio then
current_L-system_state < proposed_L-system_state
current _fitness < proposed_fitness
if current fitness > best_fitness then
best_L-system_state « current_L-system_state
best_fitness « current_fitness
end if
end if
temperature « temperature * cooling_factor // Annealing schedule for temperature
end for
Output:
best_L-system_state

5.4. FSPM

After obtaining measurements from the bio-sensors and external data
variables, the plant model can utilize these measurements as variables
(Table 4). It is notable that additional variables are required for
comprehensive plant modelling. The purpose of including this demon-
stration is to provide an illustrative example. The selection of these four
input variables is based on their fundamental role in influencing various
physiological processes. These variables are crucial and widely appli-
cable in modelling. The number of variables in plant models increases in
complexity and granularity. Take, for instance, the CPlantbox model,
which incorporates intricate molecular processes like rubisco activity
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and water flow in photosynthesis. This model demands a multitude of
variables and parameters, many of which are challenging to obtain
(Zhou et al., 2020). Regarding parameters, their initial values are often
derived from previous parametrization experiments. However, certain
parameters that cannot be directly measured in plants are estimated
using statistical methods, such as Bayesian statistics, to parametrize and
calibrate FSPMs (Blanc et al., 2023). To provide an illustrative example
of some parameters within this framework, parameters from a well-
established crop model known as WOFOST (Van Diepen et al., 1989;
Gilardelli et al., 2018) are presented in (Table 5). These parameters were
chosen because of their relevance to plant architecture, which is one of
the advantages of FSPM in comparison to PBM. After all the variables,
parameters and the plant architecture (written in L-system and RGG
derived from the point cloud) are integrated into the FSPM and provide
the rendering needed to be able to visualize the DT, predictions for the
next states of the model attributes are possible (Algorithm 3).

Algorithm 3. Functional structural plant modelling workflow
1:
Load data from sensors
2:
Input variables Input(x)
3:
Initialize parameters
4:
Initialize plants
Axiom ==>PlantarhcitectureinL —systemandRGG
5:
Run()
for i € (growth days) do
Update sun and sky (Input x)
Run light model (Input x)
Update parameters
Apply rules
if i:Intenrode and l:Leaf and n:Node <= end of growth then
Update existing organs yo
if i:Intenrode and l:Leaf and n:Node = end of growth then Formation of new organs
end
Rules for substances transportation
end
Update output end
if i = (harvesting date) do
Store (Final output y)
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Fig. 7. DT control model architecture with FSPM integrated. The figure was constructed utilizing the Business Process Model and Notation (BPMN) 2.0 framework,
as outlined by Chinosi & Trombetta (2012).
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Table 5
Variables of a plant model.
Variable Description Units
X1 Growing date day
Xo Hourly global radiation MJ m 2 day !
X3 Hourly temperature °C
X4 Hourly carbon dioxide concentration (CO5) p mol/mol
y Total dry weight gm2
Yo Dry weights of different types of organs gm2

5.5. Parameterization, calibration and model Update

After obtaining the output from 3D phenotyping and FSPM, the
optimization of parameters for minimizing the difference between the
observed values and the predicted values, J(6;), was determined using
the mean square error and expressed as Eq. (1).

10) = 30— -) M
where y is the observed values coming from the 3d plant phenotyping
and y is the predicted values derived from the FSP model. The general
algorithm of this process can be seen in (Algorithm 4). Similar work was
investigated by Potapov et al, (2016) in which difference between the
model estimation and the real tree coming from treeQSM was calcu-
lating the smallest distance and then the algorithm was adjusting the
parameter values.

Algorithm 4. Estimation of parameters
1: Initialize parameters (6)
X1 oeoXy
load variables matrix ( |: P
Xp o Xp
for i < end of plant life cycle do:
2: Run FSPM Model f (x1,X2,X3,X4)
Output:y
3: Perform 3d plant phenotyping.
Output: y
4: Calculate

1 ~ —~
J6) =50 -39
5: Update parameters (6;)

t

:l ) from sensor data

1

5.6. Model evaluation

After the completion of the plant’s lifespan, the model’s validation
would involve assessing its performance based on the following criteria.
The BIC is a widely used criterion in model selection that facilitates the
evaluation and comparison of different models (Burnham & Anderson,
2002). It serves as a measure of the performance or goodness of fit of a
model. The BIC value is calculated using the following equation, as
proposed by Venables & Ripley (2002):

N o 2
BIC = N*log (W) +p7"'log(N) 2)

where N refers to the total number of available data points, y; represents
the observed values, y; represents the predicted values obtained from
the model, and p denotes the number of parameters used in the model.

The RMSE is a commonly used criterion for assessing the accuracy of
predictions by measuring the discrepancy between the predicted and
observed values. It is represented by Equation (2), which quantifies the
distance between these values.
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RMSE = 3

The modelling efficiency is a dimensionless metric utilized to assess the
overall quality of fit between predicted and observed values. It quan-
tifies the goodness of fit and is calculated using the formula proposed by
Baey et al. (2013).

L -5

Efficiency =1 —
Z?’:l o = yl)z

4

where y; is the average of the observed values.

The Integrated FSPM-DT framework amalgamates methodologies to
characterize and simulate plant behaviours and advance DTs in agri-
culture. Its initiation involves the aggregation of 3D plant model data,
which subsequently undergoes refinement, segmentation, and the
quantification of phenotypic attributes. This iterative progression spans
diverse temporal instances, aligned with the plant’s life cycle. The
resultant phenotypic data imparts substantial visualizations, translating
into L-system and RGG realm, thereby bridging the transition from raw
data to discerning insights. These reconstructed plant architectures are
then seamlessly incorporated into the FSPM. Consequently, the amal-
gamation of FSPM with the DT framework empowers dynamic analysis
and prognostication of plant responses within intricate environments.
FSPM serves as the pivotal substrate for comprehending growth, in-
teractions, and behaviours, thereby fostering advancements in agricul-
tural and ecological research. The integration of FSPM into the control
model (Fig. 1) is demonstrated in the updated version (Fig. 7).

6. Discussion

A domain analysis revealed the absence of 3D functional plant
modelling in existing agricultural DT systems. Subsequently, a
comprehensive study on 3D plant phenotyping was conducted, which
involved examining various 3D sensing technologies and establishing a
pipeline for plant reconstruction and derivation of plant traits (Fig. 5).
Building upon these findings and recognizing their potential, a con-
ceptual framework and pseudocode algorithms were proposed to inte-
grate FSPM into agricultural DT systems. It is important to note that the
proposed framework and algorithms specifically focus on the FSPM
component and do not encompass the broader control aspects of the DT
system (Fig. 1). The suggested approach revolves around leveraging 3D
plant phenotyping techniques to enrich the FSPM with accurate repre-
sentations of the physical object’s plant architecture. This enables the
creation of a DT that potentially faithfully captures the structural dy-
namics of the plant. Key plant traits, such as biomass and leaf area, are
utilized as observed values, eliminating the need for manual measure-
ments, and allowing for parameter estimation, calibration, and valida-
tion of the FSPM. This automated process of reconstructing the FSPM
during the physical object’s lifecycle paves the way for the development
of a predictive DT. However, it is important to emphasize that inte-
grating FSPM alone is insufficient to achieve a fully predictive DT. Other
crucial aspects need to be considered and incorporated. This conceptual
framework serves as an initial step towards integrating FSPM into DTs in
agriculture. It provides a starting point for future research and devel-
opment in this domain, highlighting the potential benefits of incorpo-
rating FSPM into DT systems. It is worth noting that DTs are highly
complex systems, and their creation should be approached progressively
by gradually adding and integrating various aspects to enhance their
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complexity (Pylianidis et al., 2022). While this proposed framework
addresses the integration of FSPM, it is important to acknowledge that
there are numerous other challenges and considerations that arise from
both the DT perspective and the FSPM perspective. These challenges
represent opportunities for further investigation and advancement in the
field.

The proposed framework in this study assumes the use of relational
growth grammars for 3D modelling. However, it should be noted that
different approaches to FSPM may require alternative approaches. The
choice of FSPM approach is typically determined by the researchers’
institution and available literature, without specific reasons stated for
selecting one approach over others. Nonetheless, Openalea (Pradal
et al., 2008) offer a software solution that can integrate different FSPM
software and approaches, enabling communication between models. In
addition to FSPM, efforts have been made to connect FSPM with data
models, resulting in improved performance compared to individual
models. DT systems, which encompass cloud-based data storage, can
support the fusion of data-driven models and FSPM to achieve more
accurate results. Data-driven models, considered a fundamental
approach in smart agriculture (Tantalaki et al., 2019), possess advan-
tages, such as the ability to approximate nonlinear functions, strong
predictive capabilities, and flexibility in adapting to multivariate system
inputs. However, they lack the physical explanations and structural
knowledge of the underlying system, treating internal processes as
black-box entities (Fan et al., 2015). By combining the strengths of
process-based plant models and data-driven models, the knowledge-
and-data-driven modelling approach has emerged, overcoming the
challenges of applying models in real-world agricultural settings (Kang
& Wang, 2017). Fan et al. (2015) introduced the KDDM approach for
plant growth simulation, which demonstrated the preservation of
interpretable parameters, accurate prediction of dry weights of plant
organs, compensation for uncertainties, and effective utilization of
domain knowledge and ecological data. Overall, the KDDM approach
greatly enhanced plant growth simulations. The KDDM approach has
been successfully applied in various studies. For instance, Nascimento
et al. (2020) implemented hybrid models that combine physics-
informed and data-driven kernels, with data-driven components used
to bridge the gap between predictions and observations, as well as
perform model parameter identification. Additionally, Xiao & Li (2022)
demonstrated a novel approach employing model fusion to integrate
non-destructive sensor data with a mechanistic model for kiwifruit
softening during cool storage, allowing for a temporal description of
flesh firmness retention.

6.1. The adding value of adding 3D functional plant modelling in DT for
agriculture

The integration of 3D FSPM into DTs for agricultural purposes yields
manifold benefits. In Table 6, a qualitative validation of the proposed
framework is provided by means of reflection on how the framework
could be realised in real world case study settings in comparison process-
based models or data driven models; an approach adopted in earlier
work by Tekinerdogan et al. (2020). The proposed framework demon-
strates its potential utility in various real-world case study scenarios,
particularly in enhancing yield prediction, disease prediction, and

Table 6
Sample of parameters of the WOFOST model.
Parameter Description Units
TBASEM Base temperature for emergence °C
TSUMEM Thermal sums to reach emergence °C
TSUM1 Thermal sums from emergence to anthesis ocd
LAIEM Leaf area index at emergence ha ha™!
RGRLAI Maximum relative increase in leaf area index haha'°c1d!
PHYL Phyllocron °C dayeleaf !
CVL Efficiency of conversion into leaves kgka —1
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intercropping strategies. In the case of DTs modelling greenhouse crops
for yield prediction, FSPM-integrated DTs provide comprehensive in-
sights into crop physiology, including detailed examinations of plant
architecture, microclimate, and light absorption. This enables proactive
identification and mitigation of potential issues, offering a more holistic
understanding of crop yield dynamics compared to other DTs. Similarly,
for disease prediction in greenhouse crops, FSPM-integrated DTs
outperform others by providing insights into affected plant parts, of-
fering detailed understandings of disease causation, and exploring the
efficacy of preventive measures such as pruning techniques or crop
formation. This allows for more effective disease management strate-
gies. In the scenario of intercropping, FSPM-integrated DTs excel in
providing abundant insights crucial for understanding the interactive
dynamics between different crops. By capturing spatial and temporal
factors vital for intercropping dynamics, FSPM-integrated DTs facilitate
the creation of scenarios for optimizing the mixture ratio of intercropped
crops, thereby enhancing decision-making in intercropping practices.
The absence of 3D functional plant modelling within DTs would hinder
interaction with the architectural characteristics of plants, thereby
complicating subsequent steps, such as the application of scenarios
generated by the model. Moreover, essential practices like pruning re-
gimes, which significantly contribute to yield and fruit quality in crops
such as tomato, peaches, and apples (Ara et al., 2007; Kumar et al., 2010;
Hampson et al., 2002), would be impracticable. This limitation extends
to disease prevention strategies as well. Overall, the incorporation of
FSPMs into DTs significantly enhances their capabilities in under-
standing and managing agricultural systems, offering more nuanced
insights, and facilitating more informed decision-making compared to
other DT approaches.Table 7

Moreover FSPM-integrated DTs can assist to create dynamic DTs in
virtual reality, Spyrou et al. (2023) showcased a DT for cannabis culti-
vation; however, the static nature of plant representation in the virtual
environment precluded the incorporation of actual growth dynamics
inherent in mechanistic models. Integration of FSPM within the DT
framework can address this limitation, facilitating immersive experi-
ences wherein plant growth and physiology are dynamically simulated.
Extending beyond virtual environments, Extended Reality (XR) tech-
nologies hold transformative potential for agricultural domains (Anas-
tasiou et al., 2023). XR technologies offer avenues for enhanced
decision-making, training, and system development across agricultural
sectors. The integration of 3D plant functional modelling into DTs is
paramount, as it enables seamless interaction between crop models and
plant architecture, thereby facilitating scenario-based applications such
as pruning regimes and disease prevention strategies. A study conducted
by Majeed et al. (2020) demonstrated the use of deep neural networks
for segmenting apple branches and trunks. However, a limitation arises
from the absence of radius information of the branches, crucial for
pruning decisions. Integration with DTs can bridge this gap, enabling the
incorporation of radius data into neural network models. Furthermore
this integration, coupled with techniques like L-system transformation
and hybrid Al-procedural models, fosters synergies between architec-
tural details and pruning algorithms. Consequently, autonomous DTs
can leverage this amalgamation to provide comprehensive instructions
to robots for precise pruning operations, benefiting from enhanced
branch information and scenario assessment facilitated by FSPM-
integrated DTs.

The paramount significance of high-quality data in facilitating the
efficacious utilization of AI remains integral to ensuring food security
(Tsiligiridis & Ainali, 2018). Despite the increasing availability of data
and advancements in Al methodologies, a gap persists in leveraging Al
tools effectively within the plant science community (Williamson et al.,
2021). DTs offer a conduit for generating and disseminating high-quality
data, thereby facilitating advancements in plant phenotyping and
training of deep neural networks. This is exemplified by the utilization of
time-series data of plant architectures for training ML models to capture
complex relationships. Additionally, in the realm of food security, efforts
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Table 7
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Advantages of DT with integrated FSPMs in comparison process-based models (PBM) or data driven models.

Dt with no model Dt data driven

Dt with PBM

Dt with FSPM

DT of a crop in a
greenhouse for
yield prediction

Illustration of greenhouse crop
cultivation minus functional
attributes and crop physiology
insights. Devoid of yield
projections and disease
predictions.

DT of a crop in a
greenhouse for

Monitoring crop without delving
into disease progression or

disease causative factors. However, lacking insights into
prediction preventive strategies.

DT of Representation and monitor of Representation and monitoring of
intercropping the intercropping. intercropping with minimal

insights, as data-driven models face

Depiction of greenhouse crop
without functionality or insights.
Nonetheless, future predictions and
scenarios may be presented without
elucidation of underlying reasons.

Monitoring crop, incorporating
probabilities of disease occurrence.

challenges in achieving high

accuracy due to numerous non-

linear factors.

Depiction of greenhouse crops with
limited insights and functionality
confined to a one-dimensional aspect.
Additionally, prospective scenarios
and predictions can be evaluated to
identify potential measures for
preventing solutions.

Monitoring crop while providing
insights into diseased plants,
expressed as a ratio or count. Offering
insights on potential infections and
advising on management measures to
avoid.

Representation and monitoring of
intercropping with a more substantial
number of insights derived from data-
driven models. However, the intricate
nature of intercropping, influenced
by various spatial and temporal
factors, remains a challenge for
precise modelling with PBMs.

Representation of greenhouse crop
with insights and functionality in
three dimensions. Additionally,
potential scenarios and predictions
can be evaluated to proactively
identify and address issues. Thorough
insights explore the influence of plant
architecture and formation on crop
yield, including a detailed
examination of microclimate and
light absorption.

Monitoring crops with insights into
affected plant parts. Providing
insights on potential infections,
recommending avoidance of specific
management measures, and offering a
more detailed understanding of
disease causation. Additionally,
exploring the efficacy of preventive
measures such as pruning techniques,
planting distances, or crop formation.
Representation and monitoring of
intercropping with abundant insights
facilitated by FSPM. FSPMs allow
capturing spatial and temporal factors
crucial for intercropping dynamics.
Creating scenarios for the mixture
ratio of intercropped crops, these
insights aid in understanding the

interactive dynamics between
different crops.

in breeding aim to integrate breeding practices with crop modelling to
elucidate Genotype x Environment x Management (GxExM) in-
teractions, thus enhancing predictive capabilities and annual yield gains
(Cooper et al., 2021). Furthermore, it is imperative to highlight the
significance of end-users, predominantly farmers, who stand to benefit
from interacting with procedural modelling. The quantitative nature of
outputs derived from process-based modelling often proves challenging
for farmers to comprehend and utilize effectively. Conversely, FSPMs
provide visual representations, making DTs with integrated FSPMs more
user-friendly and accessible to end-users. By providing optical outcomes
of experimental scenarios, such as assessing pruning schemes and their
subsequent impacts on plant growth, DTs equipped with FSPMs enable
farmers to comprehend and engage with the results more effectively
compared to conventional process models, which typically present re-
sults in abstract graphical formats. Furthermore, this facilitates practical
training in agronomic practices such as pruning, contributing to
enhanced usability and adoption of agricultural DTs among end-users.
Ultimately, the integration of FSPMs within DTs holds promise for
advancing agricultural DT technology, fostering greater accuracy and
usability for end-users.

6.2. Challenges in the integration of 3D modelling in DTs

6.2.1. Training of ML algorithms

The process regarding the ML training was not discussed in this
paper. Many research studies face the challenge of limited data avail-
ability for training ML algorithms (Masuda, 2021; Chebrolu et al.,
2021). However, an alternative source of training data can be derived
from plant images generated by FSP models. Chaudhury et al. (2020)
have introduced a generalized approach for generating labelled 3D point
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cloud data from procedural plant models.

6.2.2. Scaled up

The proposed framework in this article focused on representing in-
dividual plants within a physical object, but further research is needed to
parametrize the FSPM at different scales. Most existing research in the
literature primarily focuses on parametrization at the plant level, while
parametrization at the field level is less explored. It is essential to
consider the functional differences between plants at the individual and
field levels. However, deriving 3D parameters from the single plant scale
to the field scale poses significant challenges (Paulus, 2019). Further-
more, accurately representing each plant’s location within the growing
environment, such as a greenhouse or field, is crucial for the model to
incorporate plant-to-plant interactions. Therefore, the digital object
must include information about its position, such as GPS coordinates, to
accurately place the plant in the virtual experiment. Additionally, if the
DT aims to consider other stakeholders involved in decision support
systems, as well as market connections, the agricultural domain presents
unique challenges. Agriculture is a complex system involving multiple
stakeholders. Wang et al. (2020) proposed a blockchain-enabled Inte-
grated Horticulture Supply Chain (IHSC) and introduced a simulation-
based DT to enhance transparency, safety, security, and efficiency in
the supply chain. This platform enables process risk analysis and pro-
vides decision-making guidance. Empirical results demonstrate the
promising performance of the proposed platform.

6.2.3. Communication

Effective communication between different components of the DT is
a crucial aspect. While extensive work has been done on the Internet of
Things domain, where various communication protocols have been
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developed for DT applications (Popovic et al., 2017; Dholu & Ghodinde,
2018), challenges still remain in connecting and synchronizing data
from proposed algorithms and coordinating the different compartments
of the DTs’ control model (Fig. 3). The diverse range of applications in
digital phenotyping necessitates the use of multiple frameworks within
the same cluster, as it is not feasible to develop all applications within a
single framework. Apache Mesos provides an optimal solution by
enabling fine-grained resource utilization within a cluster without the
drawbacks associated with multiple Virtual Machines or cluster parti-
tioning. Debauche et al. (2017) proposed a novel approach that com-
bines logic synthesis and cloud architecture in a lambda cloud
framework, specifically tailored to meet the requirements of digital
phenotyping. This approach enables real-time storage and processing of
the substantial amount of data involved. A case study conducted in a
controlled environment system, such as a growth chamber, focused on
growing basil plants, showcasing the practical implementation of this
approach.

6.2.4. Environment

FSPMs not only simulate the plants themselves but also incorporate
the modelling of the surrounding environment, including the simulation
of microclimates within different parts of the plant. This comprehensive
approach enhances the realism of the virtual environment and improves
the accuracy of the FSPM, thereby enhancing the fidelity of the DT.
While the initial proposed conceptual framework overlooked the envi-
ronment, numerous researchers have since dedicated their efforts to
accurately simulating and incorporating the environmental factors. A
numerical simulation model was developed to accurately predict
greenhouse temperature and radiation distributions for the purpose of
greenhouse microclimate control (Ma et al., 2019). The model was
successfully applied to simulate temperature and radiation profiles over
time and space within the greenhouse at Purdue University. By
leveraging the simulation results, this study demonstrated how the
optimization of conveyor system movement could be informed quanti-
tatively to minimize greenhouse microclimate variations. Light
modelling.

6.2.5. Twinning and twinning rate

The determination of twinning and twinning rate within a DT is a
crucial aspect that currently lacks comprehensive research. In the study
in this article, we propose adopting a flexible time step depending on the
objectives of the DT usage. For applications that primarily focus on
capturing fast-changing biological states and assessing plant conditions,
a longer time step, such as daily, may be deemed insufficient for
capturing meaningful differences and retaining crucial states. Dis-
cretizing time is a common practice in modelling and simulation,
particularly since many processes cannot be analytically integrated over
time and, therefore, require discretization. The choice of time step
should be carefully adjusted and considered for future investigations. In
simulation models of plant development, physiological processes
occurring within plants are often described using Ordinary Differential
Equations. In this context, the incorporation of artificial intelligence Al
techniques can be advantageous. By integrating Ordinary Differential
Equations with Al the proposed approach allows for real-time controls
(Nascimento et al., 2020). It is important to note that a main limitation
of the resulting model is the assumption of a constant system, which may
be unrealistic in practical settings. Furthermore, the current state of the
model only considers time-independent covariates, indicating a need for
further refinement and consideration of time-varying factors.
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6.2.6. Metrology

Although the proposed conceptual framework did not initially
consider metrology, it is an essential and highly technical aspect that
must be addressed in order to adapt to the specific circumstances of the
physical object’s environment. The incorporation of metrology is chal-
lenging but crucial. Farooq et al. (2020) conducted a comprehensive
study on the application of IoT technology in agriculture, which may
provide valuable insights in this regard.

6.2.7. Abstraction level of FSPM

The paper under discussion does not provide an explicit discussion
on the level of granularity of the FSPMs. However, it is important to note
that the choice of granularity depends on the objectives of the DT.
Moreover, as the complexity of the model increases, so does the
computational time required for the entire DT system. For instance, in
the case of CPlantBox, the inclusion of a higher number of modules re-
sults in an increased number of parameters and intermediary outputs,
which subsequently leads to longer computational time (Giraud et al.,
2023). Furthermore, certain variables and parameters cannot be
measured experimentally, such as the separation of respiration between
maintenance and growth, making their evaluation more challenging. It
is worth mentioning that while some FSPMs are stochastic, for the
purposes of DT implementation, mechanistic models are recommended
as they provide a rationale behind predictions that are contingent upon
the environmental conditions of the digital environment. On the other
hand, stochastic models are parameterized based on experimental con-
ditions, limiting their applicability to specific experimental setups.
Furthermore, the inclusion of realistic leaflet representation in FSPMs
has a significant impact on dynamic models but is less influential in
static models (Vermeiren et al., 2020). Lastly, it is noteworthy that only
a few FSPMs consider both the root and upper plant systems, as well as
their interconnectedness. The selection of FSP models depends on the
objectives of the DT, allowing for the choice between models that solely
consider the upper plant or those that incorporate the root system as
well. An example of a comprehensive FSPM that accounts for both shoot
and root growth, as well as their interactions, is the RoCoCau structural
whole-plant growth model, which employs the architectural unit
concept and incorporates specific functions based on experimental
measurements in the shoot and root compartments (Masson et al.,
2022).

6.2.8. Decision making with Al and FSPM

The article does not address the connection between the predictions
and outcomes of FSPMs and their integration with decision support
systems. However, there have been efforts to combine FSPM outcomes
with decision support systems for improved decision-making in various
domains. For instance, Utama et al. (2022) employed a plant dataset, the
GroIMP-FSPM platform, and fuzzy logic to develop a model that could
assist researchers in making informed decisions based on the Break-Even
Point evaluation. By integrating FSPM predictions into the decision
support system, the model provided valuable insights to researchers,
aiding them in making more effective decisions. Moreover, the inte-
gration of virtual plant models with other constructed models, such as
Dynamic Simulation Models, has been explored to simulate investment
strategies in green-leaf vegetable production. Utama & Wibowo (2021)
proposed a model that recommended the optimal number of plants to be
cultivated in a hydroponic system in order to maximize profitability.
This integration of the FSPM with the Dynamic Simulation Models
enabled investors to make informed decisions regarding their



C. Mitsanis et al.

investment in green-leaf vegetable production. Furthermore, Jabar &
Utama (2021) successfully utilized a combination of the Plant Con-
struction Model and Dynamic Simulation Models methods in a virtual
hydroponic green amaranth plant model. This research facilitated
decision-making for farmers engaged in hydroponic green amaranth
plant cultivation, enabling them to make strategic decisions based on the
outcomes of the virtual plant model. These studies highlight the po-
tential of integrating FSPM predictions with decision support systems,
offering valuable guidance and support for decision-makers in various
agricultural contexts.

6.2.9. Virtual to physical

The control model depicted in this article demonstrates the
communication and influence of the DT on physical objects through the
utilization of actuators. However, an extensive review of the literature
revealed that most existing studies primarily focus on unidirectional
data flow, specifically from the physical realm to the DT. The investi-
gation into the data flow from the DT to the physical twin, occurring
after the execution of the DT simulation and involving the use of actu-
ators, requires further in-depth research (Segovia & Garcia-Alfaro,
2022). Furthermore, the current body of literature lacks research on
how the DT, through the implementation of actuators, impacts the
physical twin. Furthermore, the discussion on the integration of
enabling technologies was notably absent. For a comprehensive analysis
of the enabling technologies utilized in existing DT implementations,
one can refer to a systematic review conducted by Fuller et al. (2020).

6.2.10. Parametrization, Validation, calibration.

The parametrization and validation of the DT framework proposed
rely on observed values obtained through 3D phenotyping. While 3D
phenotyping is increasingly approaching reality (Paulus, 2019), it is not
considered the ground truth. Therefore, it is crucial for 3D phenotyping
to achieve high accuracy and closely resemble reality. This is important
because a DT should be able to parametrize and validate its models using
non-destructive methods, as the actual crops are intended for sale and
cannot be treated as experimental samples. Furthermore, it is important
to note that the incorporation of the 3D plant architecture derived from
3D plant phenotyping into the FSPM introduces the possibility of bias, as
the model may exhibit similar behaviour. Therefore, caution must be
exercised in this regard. Additionally, the validation process can include
evaluating different previously saved stages in the history of predictions
for DTs. This allows for overtime calibration and parametrization,
although the discussion of this aspect is more complex, as it involves
processing and assessing historical data alongside the final yield.

7. Conclusion

In this study, the Integrated FSPM-DT framework combines meth-
odologies to characterize and simulate plant behaviours. Starting with
3D plant data, it refines, segments, and quantifies phenotypic traits
iteratively across the plant’s life cycle. This results in visualizations
translated into L-system and RGG representations, seamlessly integrated
into the FSPM. This fusion enables dynamic analysis and prediction of
plant responses in complex environments, advancing agricultural and
ecological research. The proposed framework offers dual benefits.
Firstly, it replaces traditional plant sampling for model optimization and
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calibration with data sourced from 3D plant phenotyping. This shift not
only streamlines the process but also enables DTs to validate and cali-
brate FSPMs using non-destructive methods. Secondly, this approach
carries the potential to enhance prediction accuracy beyond that of
conventional FSPMs, potentially leading to even more accurate pre-
dictions. Ultimately, providing an interactive environment to end-users
can significantly enhance adoption rates.

However, this is a conceptual framework explaining how an FSPM
approach can be integrated with DTs. To that end, to create a DT in
agriculture many different domains need to collaborate and work
together, as all the parts of the DT need to be connected and be
compatible. We suggest that, in future work, a unified platform must be
created that can be user-centric. It appears that FSPMs can be benefited
from DTs and DTs in agriculture can further evolve to incorporate pre-
diction and automation services more widely. Also, FSPMs can be used
in the training of the ML algorithms in a DT. Plant models are valuable
for predicting and optimizing plant growth while reducing costs and
resource usage. Despite their benefits, farmers often don’t use them due
to complex software, unfamiliar plant terminology, and challenging
graph interpretation. DTs can offer a solution by providing user-friendly
interfaces and using non-scientific language for easy interaction with
plant models. To that end, DTs and FSPMs can benefit at the same time
each other. Future research should focus on implementing and modi-
fying existing codes to meet the specific needs of a case study within the
context of DTs. This implementation should be guided by the proposed
conceptual framework, aiming to assess computational time and ensure
data compatibility across different output sources. By customizing the
codes and integrating them into the framework, researchers can eval-
uate computational efficiency and harmonize data outputs effectively.
Consideration should be given to factors such as software compatibility,
code dependencies, and case study requirements to ensure successful
implementation. This research will contribute to advancing 3D DT ap-
plications and improving their reliability and effectiveness.
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Appendix A. Conceptual model for Digital Twins, based on Verdouw et al. (2015). The figure was constructed utilizing the Business Process Model
and Notation (BPMN) 2.0 framework, as outlined by Chinosi & Trombetta (2012).
Appendix B. Key concepts related to DTs (adapted from Jones et al.,2020).

Term Explanation

Physical twin The physical object that exists in the real world

Virtual twin The virtual object that exists in the virtual world

Physical Environment  The environment in which the physical object exists

Virtual Environment The environment in which the virtual object exists

State The recorded values for all parameters associated with the physical or virtual entity/twin and its surrounding environment.

Metrology The process of capturing the state of the physical/virtual entity

Realization The process of altering the state of the physical/virtual entity.

Twinning The process of aligning the states of the physical and virtual entity.

Twinning Rate The frequency at which twinning takes place.

Physical-to-Virtual The data connections and processes involved in capturing the state of the physical twin/environment and replicating that state in the virtual twin/
communication environment.

Virtual-to-Physical The data connections and processes involved in capturing the state of the virtual twin/environment and replicating that state in the physical twin/
communication environment.
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