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A B S T R A C T   

Digital twins are a core industry 4.0 technology enabling the virtual replication of real-world objects, mimicking 
behaviours and states throughout their lifespan. While digital twins have shown significant benefits in industries 
such as manufacturing, transportation, and healthcare, their application in agriculture is still within its infancy. 
Their realisation also poses significant challenges, such as the creation of dynamic agricultural objects (e.g., 
plants). Existing literature on digital twins in agriculture identifies their limited ability to monitor physical 
objects without predictive capabilities and that there is a significant lack of 3D representations of plants with 
functional attributes. Yet, incorporating 3D representations of plants with underlying functionality in a digital 
twin can greatly improve growth, yield, and disease prediction accuracy. This enhancement enables various 
applications, such as assessing and developing pruning strategies, providing education to growers, guiding 
pruning robots, and optimizing spraying techniques. To that end, Functional Structural Plant Modelling presents 
a potential solution by representing the 3D architecture of plants and incorporating the functionality of different 
plant parts. By conducting a domain analysis of 3D plant phenotyping and FSPM, this study addresses the specific 
needs of digital twins in agriculture regarding FSPM. The investigation bridges the existing knowledge gap by 
identifying crucial concepts, including 3D plant modelling with underlying functionality and 3D plant pheno
typing for digital twins. Specifically, a framework for 3D FSPM integration into agricultural digital twins is 
proposed. The framework not only acknowledges the associated requirements and challenges identified in 
existing literature but also lays foundation for the advancement of digital twins in the agricultural domain.   

1. Introduction 

Digital twins (DT) represent a fundamental technology (Huang et al., 
2021), enabling the recreation of physical objects within a virtual 
environment, faithfully reproducing their characteristics and behaviour 
over time (Boschert & Rosen, 2016; Grieves & Vickers, 2017). This 
innovative concept has attracted considerable attention across various 
industries, including manufacturing, healthcare, and transportation, due 
to the technology’s potential to enhance efficiency, reduce costs, and 
improve decision-making (da Silva Mendonça et al., 2022). For example, 
Burke et al (2019) listed the DT as one of the top 10 strategic technology 
trends in 2019, and in 2020, it was identified as an emerging technology 
for the next 5–10 years (Tao et al., 2022). However, the adoption of DT 
in agriculture and logistics, which are integral parts of the food chain, 
has been relatively low, accounting for less than 2 % and 4 % of 
reviewed applications, respectively (Uhlenkamp et al., 2022). In a re
view conducted by Ariesen-Verschuur et al. (2022), a total of only eight 
articles were identified that specifically address the topic of DTs within 

the context of greenhouse horticulture. 
Current applications of DTs in agriculture involve remote execution, 

monitoring, control, and coordination of farming operations, separating 
physical and information aspects (Verdouw et al., 2021). These virtual 
representations integrate data from diverse sources, including sensors 
and satellites, enabling advanced analytics and simulation of future 
behaviour. Consequently, DTs provide real-time insights and facilitate 
prompt action for expected or unexpected deviations (Verdouw et al., 
2021). Furthermore, DTs in agriculture facilitate the testing of strategies 
for growers, including evaluating the trade-off between potential sav
ings and risk, as well as participation in energy flexibility markets 
(Nasirahmadi & Hensel, 2022). However, the technology’s imple
mentation within an agricultural setting faces challenges in capturing 
dynamic behaviour, ensuring data integrity and security in rural areas, 
managing interdependencies, enabling secure external access, and 
achieving interoperability (Verdouw et al., 2021). Consequently, due to 
these challenges, the widespread implementation of DTs in agriculture is 
still within its infancy, with limited studies conducted and potential 
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benefits yet to be fully realized, unlike in other domains (Pylianidis 
et al., 2021). 

For DTs within the agriculture domain, in order to deal with the 
dynamic behaviour and enable advanced analytics and simulation of 
future behaviour high-fidelity, the modelling process is essential. More 
specifically, physical modelling (involving the creations of detailed 
representations of real-world objects) can provide insights which can be 
used for understanding and analysis of dynamic behaviour of the 
physical objects in agriculture domain that rather than data driven 
modelling (Liu et al., 2021). Liu et al. (2021) argue that physical 
modelling, as opposed to data-driven modelling, can offer valuable in
sights for comprehending and analysing the dynamic behaviour of 
agricultural objects. Within this setting, data-driven models are trained 
by known inputs and outputs, using artificial intelligence methods 
which make them only valid for those specific inputs and without giving 
the opportunity of biological explanation of the prediction. Whereas 
physical models require comprehensive understanding of the physical 
properties and their mutual interaction. Specifically, crop modelling 
pursues three primary objectives: (1) enhancing the cognitive capacity 
of the human brain through the integration of existing knowledge, (2) 
extrapolating the effects of factors beyond the range of experimentation, 
and (3) enabling practical management decisions, such as climate and 
nutrient control in greenhouse settings (Evers et al., 2005). Thus, 
computational models used in both inference of the physical object’s 
current state and simulation can provide decision-making insights, 
optimizing future operations, forecasting degradation mechanisms, and 
predicting failures (Segovia & Garcia-Alfaro, 2022). 

Crop modelling in plant sciences can either be process-based models 
that take into account the functionality, omitting the structural aspect of 
the plants or functional structural plant models that concern the struc
tural aspect also. Further, Process-Based Models (PBMs) (Buck-Sorlin, 
2013) focus on eco-physiological processes, for example nutrient ab
sorption, light harvesting, photosynthesis, carbon assimilation, distri
bution, etc., for plant growth. Classical PBM addresses the 
implementation and simulation of the plant growth processes (e.g., 
Photosynthesis, C-N assimilation, and allocation) at the whole plant 
canopy level rather than individual plant organs level. Since PBM does 
not focus on the plant’s architecture, it does not consider the in
teractions between plant growth processes and architecture develop
ment as per changing environment (de Reffye et al., 1997). To address 
this issue, Functional Structural Plant (FSP) models, also called virtual 
plant models, depict the dynamic 3D architecture of plants as influenced 
by physiological processes and environmental factors (Prusinkiewicz & 
Lindenmayer, 1990; Sievänen et al., 2000; Godin & Sinoquet, 2005; Vos 
et al., 2007; Hanan & Prusinkiewicz, 2008). The FSP modelling process 
is a valuable tool for scientists seeking to comprehend and address the 
dynamic behaviour of plants. These models are computer simulations 
that represent the three-dimensional (3D) architecture of plants. By 
simulating the plant’s 3D structure, FSPM provide essential insights into 
plant parameters and their growth patterns (Patil et al., 2023). To that 
end, incorporating FSP modelling can enhance prediction accuracy of a 
DT and facilitate the assessment and creation of pruning strategies, 
enabling education of growers or guiding pruning robots. In addition, 
FSPM have practical applications in optimizing spraying techniques and 
can contribute to the construction of a more realistic dataset by incor
porating environmental conditions, ultimately enhancing the estimation 
of light interception. Furthermore, its suitability for precision agricul
ture lies in its ability to accurately model the specific requirements and 
physiology of individual plants. 

Consequently, plant modelling is essential for the creation of DT in 
agriculture to exploit their potential. In the existed explorative studies 
and cases about DTs in agriculture (Verdouw & Kruize, 2017; Jo et al., 
2018; Monteiro et al., 2018; Kampker et al., 2019; Sreedevi & Santosh 
Kumar, 2020; Skobelev et al., 2020), plant modelling is barely used in 
the fundamental form of it while FSPM is not introduced. Thus, this 
article’s contribution to knowledge is an analysis of how FSPM can be 

integrated in DTs. More specifically, the objective is to propose a con
ceptual framework (i.e., a systematic classification of concepts) for 
implementing FSPM in 3D-based DTs, where (as demonstrated in Sec
tion 2) there is a significant knowledge gap. 

The remainder of this paper is as follows. A background on DTs and 
FSPM is provided in Section 2 and Section 3 outlines the search protocol 
and methodology used for the investigation. The domain analysis in 
Section 4 defines work that has been done in the domain of 3D plant 
phenotyping and 3D plant reconstruction, and how this can be inter
preted in L-system formalism. Section 5 describes the conceptual 
framework developed, which comprises the main framework of inte
grating FSPM into DTs by relying in work that has be done already and 
the individual steps to achieve that. The main findings are summarized 
and discussed in Section 6 as well as, challenges and future work. Sec
tion 7 concludes the paper. 

2. 3D plant modelling and DT in agriculture 

2.1. DT in agriculture 

2.1.1. Type of DTs and terminology 
According to Verdouw et al. (2021), there are six distinct types of 

DTs that are classified based on their specific objectives. These types 
include Imaginary, Monitoring, Predictive, Prescriptive, Autonomous, 
and Recollection DTs. Verdouw et al. (2021) also proposed a conceptual 
framework that takes into consideration variations in architecture and 
incorporates different layers, which become increasingly complex as one 
progresses towards an autonomous DT. Furthermore, this led to the 
development of a control model based on a general systems approach, as 
well as an implementation model that presents a comprehensive tech
nical architecture for implementing DTs. For a more software 
engineering-oriented perspective, Tekinerdogan & Verdouw (2020) 
introduced a set of DT architecture design patterns that can be utilized to 
design systems catering to the requirements of each DT type. These 
patterns are formulated using the well-recognized context-problem
–solution template for pattern formulation. The terminology used to 
describe the components of DTs (Appendix A) in the study in this article 
was derived from Jones et al. (2020), who conducted a systematic 
literature review to establish a standardized set of terminology for the 
field. 

2.1.2. Control model in DTs in agriculture 
DTs offer users the capability to disentangle the physical operations 

of agricultural farms from the information-related aspects (Verdouw & 
Kruize, 2017). In order to decouple the management of agricultural 
operations for users, the proposed control model framework by Verdouw 
et al. (2021) was designed to convert data collected from the physical 
systems of farms into a DT representation (Fig. 1). This control model is 
structured into six layers, each orchestrating functions contributing to 
the establishment of the DT and enabling seamless communication be
tween its physical and digital counterparts. Initiating the control cycle, 
the state of the object is perceived through the data function, which is 
responsible for measuring the state of an object using sensors or external 
data sources such as satellites and weather databases. The data collected 
by the data function is then input into models within the meta model 
function. These models, which can be data-driven, functional, or 
process-based, or a combination, are instrumental in generating the DT 
representation. However, solely representing the current state of the 
object is insufficient for farmers. Therefore, an additional meta model 
function can take the object’s current state as a starting point, utilizing 
predictive models to forecast future states. Subsequently, these pro
jected future states are assessed by the application function. Within the 
application function, scenarios derived from the meta models are 
compared with established norms, and the optimal scenario is selected 
for implementation. Once the best scenario has been identified, the 
decision maker function within the application layer determines how 
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the subsequent management actions will be executed. The effector 
function in the data layer receives instructions from the application 
layer regarding the changes to be made in cultivation management. This 
constitutes a single cycle, and it will be reiterated over time, dependent 
on the DT’s time step. In the control model, data from the data layer is 
directed towards the model-based data processing phase. This process 
employs various models to analyse the data and generate the DT. This 
process ensures the communication of the physical twin with the digital 
and the opposite and keep informed each other. As previously 
mentioned in the introduction, FSPM holds a significant advantage in 
translating the data, enabling the creation of a DT that not only repre
sents the 3D architecture of the physical twin but also its functionality. It 
is imperative to acknowledge that the illustrations provided represent 
only the overarching layers and their interconnections, while the in
ternal structures within each layer are considerably more intricate 
(Appendix A). In the scope of this research, particular emphasis will be 
placed on expanding the model-based data processing layer and pro
posing a framework for the integration of FSPM in it. Furthermore, the 
development of this framework necessitates comprehensive consider
ation of all layers to ensure seamless communication in real-time or near 
real-time for the effective operation of the DT. Therefore, an examina
tion of each layer was essential in formulating the framework. 

2.2. Functional structural plant modelling 

FSPMs incorporate physiological processes influenced by environ
mental factors, allowing for the study of plant responses to various 
environmental conditions and the influence of different traits on plant 
performance. By employing mathematical algorithms, FSPMs offer 
valuable insights into plant growth patterns, resource allocation, and 
interactions with the environment, enabling scientists to understand and 
predict plant behaviour in diverse scenarios. Since their inception, one 
of the primary objectives of FSPMs has been to develop predictive 
models in applied domains where plant architecture plays a critical role, 
such as modelling plant growth in spatially heterogeneous environments 
(e.g., understorey, greenhouses), assessing competition in plant com
munities, studying selective canopy perturbations (e.g., herbivory, 
pruning), and defining ideotypes for breeders (Louarn & Song, 2020). 

In FSPMs, plants are represented as interconnected units called 
phytomers or metamers, each comprising an internode, a node, and a 
leaf. The plant architecture is described using L-system strings 

(Prusinkiewicz & Lindenmayer, 1990), which employ a rewriting tech
nique to progressively transform a simple initial object into a complex 
structure through productions, also known as rules. Later, Kurth et al. 
(2004) introduced relational growth grammars (RGG) as an extension of 
the L-system, enabling the incorporation of non-linear relationships in 
architectural modelling. Turtle geometry (Abelson & DiSessa, 1986) is 
then employed to interpret L-systems and RGG for graphical purposes. 
FSPMs capture the adaptive nature of plants, as they modify their 
functions, such as photosynthesis, transpiration, and nitrogen alloca
tion, as well as adjust their structure in response to environmental cues, 
including bud breakage, dormancy maintenance, and organ shape and 
orientation adjustments. This reciprocal relationship between structure 
and function is explicitly captured in FSPMs, allowing for the repre
sentation of feedback loops. These feedback can be examined at both the 
local level, involving individual organs, and the global level, encom
passing the functioning of the entire plant or plant stand. Key topics in 
FSPM research include models of morphological development, models 
of physical and biological processes, integrated models predicting the 
dynamics of plants and plant communities, modelling platforms, 
methods for acquiring 3D plant structures using automated measure
ments, and practical applications in agronomy (Sievänen et al., 2014). 
Despite making significant strides in plant science over the past two 
decades, FSPMs have yet to fulfil their full potential (Louarn and Song, 
2020). 

2.2.1. Plant topology and geometry 
In the field of FSPM, the plant architecture is described using the 

concepts of topology and geometry. Topology pertains to the physical 
connections among various components of the plant, while geometry 
encompasses the characteristics such as shape, size, orientation, and 
spatial location of these components (Godin et al., 1999). The initial step 
in constructing a structural model involves identifying the different 
types of plant organs that can be formed and understanding their con
nections, i.e., the topology. It is important to note that the in
terconnections between organs can vary depending on the plant species. 
For more complex tree architectures, a multigraph tree model is 
employed. The topology of a tree is described using the multiscale tree 
graph formalism (Godin & Caraglio, 1998), which accounts for different 
levels of organization (Barthélémy, 1991) and captures plant structure 
by incorporating associated variables like geometrical measurements 
and phenological data. Multiscale tree graph formalism provides a 

Fig. 1. Conceptual model for DTs, based on Verdouw et al. (2015). Rectangles denote the functions encapsulated within the layers, denoted by orthogonal symbols, 
while arrows delineate the flow of information. 
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suitable means for representing tree-like topologies concisely, consid
ering aspects of scale and time. 

2.2.2. Platform and software of FSPM 
Several FSPM methods have been developed, with L-Studio being 

one of the pioneers (Allen et al., 2007). L-Studio is based on the L-system 
formalism (Lindenmayer, 1968; Prusinkiewicz et al., 1996) and utilizes 
the modelling language L + C (Prusinkiewicz et al., 2007). Another 
increasingly used platform is GroIMP, which is based on RGG and em
ploys the modelling language XL (Kniemeyer, 2007). Zhou et al. (2020) 
introduced CPlantBox, a Python-based whole-plant functional-structural 
modelling framework that simulates both root and plant shoot struc
tures. Barczi et al. (2008) proposed AMAPsim, a structural whole-plant 
architecture simulator written in C++, which combines architectural 
and physiological models. The GreenLab mathematical model (de Reffye 
et al., 2021), integrates functional and structural aspects of metabolic 
processes with a phytomere-level structure. These models contribute to 
the advancement of FSPM methodologies, providing researchers with 
diverse platforms and models for investigating plant development and 
the interplay between functional and structural aspects. 

2.2.3. FSPM applications 
FSPM serves not only as a tool for scientists to test hypotheses and 

conduct in silico experiments that are difficult to replicate in reality but 
also finds practical applications in the field of agronomy. FSPM can help 
on assessing how plant traits affecting light interception and conse
quently processes like photosynthesis. Zhang et al. (2020) conducted a 
quantitative investigation to explore the effects of different architectural 
traits and canopy management on light interception and potential car
bon accumulation. Similarly, Prieto et al. (2020) employed a compara
ble approach in grapevine research, comparing photosynthetic gains 
achieved by different training systems, including scenarios with free 
shoots exhibiting complex architecture. Moreover, FSPM can be used for 
optimization of management of the crop, such as spraying. Gu et al. 
(2014) developed an FSPM for cotton that considered factors, such as 
thermal time, population density, mepiquat chloride application, and 
stem and branch topping. Simulation results indicated that mepiquat 
chloride application reduced leaf area and internode length, resulting in 
a more compact canopy, while having negligible effects on boll density. 

The integration of FSPMs with AI holds great potential in the fields of 
breeding and advanced phenotyping. Ubbens et al. (2018), for example, 
employed a computer-generated model of Arabidopsis rosettes to 
enhance leaf counting accuracy using convolutional neural networks. By 
incorporating synthetic rosettes in conjunction with real training data, 
they achieved a reduction in mean absolute count error compared to 

previous methods that exclusively utilized real plant images. Notably, 
interoperability experiments demonstrated that a convolutional neural 
networks trained solely on synthetic rosettes successfully counted leaves 
in real rosettes. Additionally, Liu et al. (2017) focused on estimating the 
green area index of wheat through ground-based LiDAR measurements, 
utilizing a 3D canopy structure model. The utilization of 3D plant 
models proves to be beneficial in training neural networks for image- 
based plant phenotyping applications. 

2.2.4. FSP models workflow 
Considering the diverse range of FSPMs employed in different con

texts and for various crops and objectives, development of a general 
FSPM, which can then be modified by adapting its modules to specific 
crops and objectives is beneficial (Henke et al., 2016). The study by 
Henke et al. (2016) presents an initial step towards establishing a gen
eral FSPM with standardized modules, processes, and communication 
structure. This approach facilitates a clear and well-defined model 
design that is easily parametrized, comprehensible, and expandable. 
This generic FSPM comprises an initialization function init(), respon
sible for initializing the plants (Axiom, i.e., the initial plant architec
ture), parameters, and environmental conditions (Fig. 2). 

Subsequently, in the run() function, the model executes growth 
functions and assimilate allocation, applies relevant rules, and considers 
the environmental factors. This represents the main loop, where the 
model updates the plant state at each time step using ordinary differ
ential equations (ODEs). At each iteration, the stop() function checks if 
the plant has reached the end of its life cycle. If not, the model continues 
within the main loop. For further details on the specific functionality of 
each function, readers are referred to the work by Henke et al. (2016). 

3. Domain analysis protocol 

The research review process was organized in four phases: (i) DT 
domain analysis, (ii) Functional structural plant modelling domain 
analysis (iii) 3D plant reconstruction domain analysis and (iv) frame
work design. Initially, a domain analysis was conducted in the field of 
DTs to gather existing terminology from previous research. This step 
aimed to ensure consistency in the use of terminology throughout the 
study, thereby avoiding potential confusion caused by employing 
different terms. Subsequently, a domain analysis has reviewed existing 
literature on the usage of DTs in the context of agriculture and the role of 
FSPM. At this, the search focused on articles that involved both DT and 
agriculture or farming in the title, abstract or the keywords section. Non- 
English and non-accessible papers were excluded from the study. Then, 
the search was extended to include FSPM and 3D reconstruction of 

Fig. 2. Functional structural plant model workflow . 
adapted from Henke et al. (2016) 
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plants. Based on this domain analysis, a conceptual framework on how 
functional structural plant modelling can be integrating into DT concept 
was provided. Connecting all the information from the background 
research on this topic a framework on how a single physical object (i.e., 
plant) can be transformed into the digital object for a DT. 

3.1. Search queries 

The search queries were utilized to gather information within the 
analysis domain for the research study (Table 1). The resulting papers 
from these search queries were then subjected to forward and backward 
snowballing techniques. This involved examining the references cited 
within the papers (backward snowballing) as well as identifying newer 
papers that have cited the original papers (forward snowballing). After 
conducting the snowballing process, all the collected papers were 
screened, and the full texts of the remaining papers were assessed. 
Finally, based on this screening and assessment, the articles that met the 
inclusion criteria were selected for the study (Fig. 4). 

3.1.1. Research questions 
In order to address the primary objective of this research, three 

distinct research questions were formulated to yield relevant informa
tion and valuable insights regarding the approach to be undertaken in 
developing a conceptual framework for integrating FSPM into DTs 
within the domain of agriculture. The subsequent research questions 
were defined:  

1) To what extent has plant and 3D plant modelling been employed to 
develop DT applications in agriculture?  

2) How has the physical object been perceived and reconstructed in 
existing literature?  

3) How can FSPM be used to support the creation of 3D DTs for 
agriculture? 

To answer the aforementioned research questions, a domain analysis 
was performed by focusing on the Scopus digital library, with the search 
strings displayed in Table 1. As mentioned, articles relevant for this 
study but not included in Scopus were identified by means of snow
balling. The time period for article inclusion encompassed all available 
literature, except for studies specifically related to DTs, which were 
restricted to the period from 2017 onwards. This approach was adopted 
to ensure comprehensive coverage of the FSPM and 3D plant pheno
typing domains, which have been established for over two decades. By 
not excluding articles from these domains, we aimed to avoid over
looking important contributions to the field. 

3.2. Selection criteria 

The selection process involved filtering the search query results 
based on predetermined selection criteria outlined in (Table 2). Only 
articles deemed relevant to the study’s objectives were chosen. The 
collection of articles was obtained from Scopus database using the 
research string and the snowball method to enhance the retrieval pro
cess. Subsequently, data pertinent to the study, extracted exclusively 
from the articles meeting the selection criteria, were compiled and 
presented in (Table 3). 

4. Domain analysis 

4.1. 3D plant modelling for DT applications in agriculture 

Although a conceptual framework for DTs in agriculture exists, the 
practical implementation falls short of its theoretical potential. Litera
ture review indicates that most DTs developed in the agricultural 
domain are primarily focused on monitoring (Fig. 4). While Chaux et al. 
(2021) proposed a complete architecture for DT s in controlled envi
ronments like greenhouses, it remained generic without detailed ex
planations or real case studies for workflow optimization. Two studies, 
such as Ahmed et al. (2019) and Skobelev et al. (2020), utilized process 
models and knowledge-based models and presented a framework uti
lizing knowledge-based modelling to develop DT of plants. However, 
none of these studies were able to provide predictive capabilities or 
effectively evaluate different scenarios. Others, like Ahmed et al. (2019) 
and Jans-Singh et al. (2020), concentrated on modelling aspects and the 
use of meta models to facilitate DT implementation. These studies 
explored modelling techniques and meta model approaches to enhance 
functionality. Pylianidis et al. (2022) introduced a method for devel
oping operational DTs that addressed data availability and resolution 
challenges. They demonstrated the method’s effectiveness in nonlinear 
scenarios, providing tactical advice for grass pasture nitrogen response 
rate across different locations. 

However, none of the reviewed articles (Fig. 4) showcased autono
mous behaviour or an intelligent layer capable of learning and making 
independent decisions for crop management optimization. 

Most existing agricultural DTs primarily concentrate on the sensor 
layer and data storage aspects, lacking the incorporation of functional 
3D plant models. Only one study, namely Jans-Singh et al. (2020), 
included 3D representations of the control environment and plants; 
however, it did not encompass the exact physical objects themselves. 
While a few studies briefly mentioned certain layers, such as Alves et al. 
(2019) and Chaux et al. (2021), they lacked sufficient details on their 
creation and derivation. Some studies, like Hemming et al. (2020) and 
Howard et al. (2020), did not elaborate on the machine learning algo
rithms used or how each layer could be implemented. Overall, there is a 
need for a proposed conceptual framework that integrates a 3D plant 
model of the physical object with functional capabilities, addressing the 
limitations and gaps identified in the existing literature. While 3D plant 
modelling has been utilized predominantly for non-existing plants, the 
application of this technique to physical objects and the creation of DTs 
requires 3D plant phenotyping to be performed. 

4.2. Physical object reconstruction 

Accurate representation of physical objects in DTs necessitates the 
inclusion of 3D plant phenotyping. The ability to access and analyse the 
plant architecture plays a crucial role in monitoring the geometric 
development of plants and parameterizing various aspects, such as plant 
canopies, individual plants, and plant organs (Godin, 2000). Obtaining 
accurate and timely measurements of phenotypic traits, such as in to
mato canopies is of significant importance for purposes such as variety 
breeding, cultivation, and scientific management. However, the tradi
tional approach of manual measurements is burdensome, time- 

Table 1 
Search queries for the different domain analysis.  

Database Domain analysis Search string 

Scopus DTs in agriculture (“digital twins” OR “Cyber- physical 
system” OR “emulation” OR 
“Simulation”) AND (“plant model*”) 
AND (“agriculture” OR “farm*”)  

Scopus Functional structural plant 
modelling domain analysis 

(“FSPM” AND “Plant”)  

Scopus 3d plant reconstruction and 
phenotyping domain 
analysis 

(“3d plant representation” OR “ plant 
rendering” OR “3d plant 
reconstruction” OR “skeletonization”) 
AND (“Plant” OR “agriculture” OR 
“leaf” OR “plant structure” OR 
“skeleton”) AND (“segmentation” OR 
“machine learning” OR “computer 
vision” OR “artificial intelligence”)  
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consuming, and prone to errors (Zhu et al., 2023). In recent years, 
several studies have focused on plant phenotyping using 3D sensing 
technologies (Paturkar et al., 2021; Paulus, 2019; Liu et al., 2020). The 
non-destructive nature of 3D measuring allows for continuous moni
toring over time, offering new possibilities in understanding plant 

growth dynamics (Paulus et al., 2014). These phenotypic traits, 
including leaf area index, plant biomass, plant density, chlorophyll 
content, and crown temperature, serve various biological purposes, for 
instance, in stress detection (Feng et al., 2021). In this regard, non- 
destructive phenotyping techniques can be leveraged to develop DTs 

Fig. 3. Literature review methodology diagram.  

Fig. 4. Composition of layers of existing DTs in agriculture domain. Dotted line indicates non-existent DTs with 3D functional modelling. (Ahmed et al., 2019; Alves 
et al., 2019; Angin et al., 2020; Howard et al., 2020; Chaux et al., 2021, Hemming et al.,2020; Moshrezadeh et al., 2020). 
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that facilitate disease analysis, stress detection, and other applications. 

4.2.1. 3D measuring technologies 
Various 3D sensing technologies (Table 4) are available for plant 

reconstruction (Paturkar et al., 2021). Paulus (2019) conducted a 
comprehensive survey on acquisition techniques, representations, and 
analysis methods for 3D plant physiognomic analysis. Moreover, 
different sensors, including RGB cameras, multispectral/hyperspectral 
cameras, and thermal cameras, are used to extract various plant traits 
such as size, shape, colour, stress detection, and temperature variations 
(Minervini et al., 2015; Rumpf et al., 2010; Mahlein, 2016; Jones et al., 
2009). Liu et al. (2020) provide a review of the spectrum of technologies 
used in plant phenotyping, highlighting the increasing interest in 
hyperspectral imaging (HSI) and 3D sensing. LiDAR and Structure from 
Motion are the dominant 3D sensing technologies used (Liu et al., 2020). 
However, accurate 3D modelling of plants remains a challenge, espe
cially for narrowleaf plants. The fusion of hyperspectral and 3D data 
showed potential for improving plant phenotyping capabilities (Liu 
et al., 2020). 

4.2.2. 3d plant reconstruction 
The representation of 3D plant architecture in computer graphics is 

of clear significance for the creation of DTs. Li et al. (2022) proposed a 
method for reconstructing 3D leaves using a single view, utilizing the 
fusion of ResNet and differentiable rendering. Their approach focuses on 
incorporating individual leaves into a plant growth DT system, rather 
than reconstructing the entire plant. However, their study only focused 
on a single leaf. Le Louëdec & Cielniak (2021) constructed strawberry 
plants in the Unity software platform, testing two different 3D tech
nologies. For woody species reconstruction, Lau et al. (2018) derived the 
skeleton of trees from point cloud data. However, these algorithms 

provided the skeleton of the plant without considering the leaf area. 
Further research on skeletonization considering plant leaves is worth 
exploring to accurately reconstruct the geometry of leafy plants 
(Chaudhury et al., 2020). Cuevas-Velasquez et al. (2020) presented a 3D 
reconstruction method for rose bushes using stereo images, integrated 
into a robotic system for automated pruning. Their segmentation 
approach achieved a superior F1 score of 77 %, outperforming state-of- 
the-art methods by 8.18 %. 

Automated 3D reconstruction of plants is crucial for DT applications. 
Various studies have focused on automatic reconstruction methods for 
plant architecture using laser scanner data or high-resolution scans of 
plants. These methods aim to achieve accurate plant reconstruction 
without relying on manual intervention or the need for a branching 
pattern. Examples include the work of Boudon et al. (2014), Japes et al. 
(2018), and Guénard et al. (2013), which explored different approaches 
for automated plant modelling and reconstruction using advanced 
techniques such as analysis, synthesis, and semantic labelling of 3D 
point clouds. Paproki et al. (2011) automated the reconstruction of 
cotton plants. Moreover, Xiang et al. (2019) developed a cost-effective 
machine vision system that utilized a commodity depth camera to cap
ture sequential side-view images of sorghum plants at different growth 
stages. Their system accurately detected individual leaves and distin
guished tillers using 3D point cloud analysis. However, 3D plant 
reconstruction provides the architecture without having the function
ality that FSPM can provide. 

4.2.3. Plant phenotyping traits and process pipeline for phenotyping traits 
After obtaining the raw data, typically in the form of a point cloud, 

from one of the aforementioned 3D sensing technologies, a processing 
pipeline can be employed to extract different types of plant traits, 
including non-complex traits, complex traits, and time-lapse traits 
(Fig. 5). Focusing on specific areas of interest and removing outliers can 
facilitate the calculation of straightforward attributes like plant height 
and leaf length. For more complex attributes, such as organ biomass, 
advanced ML techniques like classification, deep learning, and clus
tering can be employed. Additionally, when time-series data is acces
sible, ML algorithms can be used to determine attributes like the relative 
growth rate of leaves. Ultimately, obtaining a 3D mesh and creating a 
reconstructed rendering of the plant is essential. In this process, 
rendering is integral to deriving parameters through the analysis of 
diverse meshes. 

However, the accuracy and complexity of these parameters depend 
on the specific procedures employed. For instance, Zhu et al. (2023) 
reconstructed a tomato canopy model and achieved high accuracy in 
estimating plant height, canopy width, and leafstalk angle. The accuracy 
rates were reported as 96.23 %, 95.17 %, and 91.76 %, respectively. In 
the case of complex traits, Masuda (2021) aimed to estimate the leaf area 
of tomato plants using an RGB-D sensor and semantic segmentation in a 
sunlight-type plant factory. By applying Pointnet++ for semantic seg
mentation and estimating leaf area based on the leaf points around the 
stem, they achieved a relative error of approximately 20 %, comparable 
to simplified non-destructive methods commonly used in cultivation 
sites. However, the limited availability of ground truth data was a 
constraint in the study. Lati et al. (2013) developed a 3D stereovision 
model for accurate estimation of spatial growth measurements, 
including biomass, in plants. Their model utilized a global optimization 
method and ensured high confidence matching of corresponding points. 

Table 2 
Selection criteria of the study.  

Exclusion criteria 

Articles without full text available 
Articles not written in English 
Duplicate publication 
Publications that are not articles (e.g., survey) 
Articles do not associate to DT within agricultural domain 
Articles do not associate with FSPM 
Articles do not associate with 3D plant phenotyping 
The articles related to DT were published before 2017  

Table 3 
Data extraction for the study.  

Data per Article 

Authors 
Title 
Year of publication 
Process for creation of DT within agriculture domain 
Process for 3D plant phenotyping 
Data used for 3D plant phenotyping 
Algorithms or models used for transformation of 3D plant reconstruction into L-system 

and RGG 
What Machine learning were implemented for 3D plant phenotyping 
FSPM workflow  

Table 4 
3D measuring technologies .  

3D measuring Techniques  
Active Passive 
Triangulation Time-of-Flight Structure for motion Stereo Vision Light Field 

Structured light Laser Triangulation Time-of-Flight camera Lidar    

adapted from Paturkar et al. (2021) 
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By incorporating processing adjustments, such as parallel computing, 
the algorithm could be applied in real-time scenarios. It should be noted 
that plant phenotyping varies at different levels, and while the above 
research focused on individual plants. 

The architecture of trees presents greater complexity. For instance, 
Lau et al. (2018) assessed the accuracy of using Terrestrial Laser Scan
ning and TreeQSM to reconstruct tree architecture parameters in trop
ical trees, such as branch length, branch diameter, branching order, and 
tree volume. To address the time-consuming and manual-intensive na
ture of plant 3D data processing techniques, Ghahremani et al. (2021) 
proposed a method to directly utilize irregular point clouds for 
measuring organ attributes in plant phenotyping, effectively handling 
noise, distortions, and irrelevant data. Additionally, Li et al. (2022) 
presented DeepSeg3DMaize, an automatic 3D point cloud segmentation 
method for maize plants. By leveraging high-throughput data acquisi
tion and deep neural networks, accurate segmentation of maize plants 
was achieved at different growth stages, heights, and leaf numbers. 

Time-lapse point cloud analysis offers valuable insights into plant 
growth and various traits over time (Fig. 5). Automation plays a crucial 
role in integrating these analyses into DT systems. For instance, Paulus 
et al. (2014) developed an automated approach to track the organs 
(leaves and stems) of barley plants over time. By combining surface 
feature histograms with parametric modelling, the method facilitates 
the calculation of parameters, such as cumulated height for the stem and 
cumulated leaf area. Chebrolu et al. (2021) introduced an automated 
method for tracking plant traits over time, eliminating the need for 
manual intervention. Through alignment and transformation of 3D 

scans, this approach enables the estimation of parameters like leaf area, 
leaf length, stem diameter, and stem length, contributing to automated 
phenotyping. Such automation allows for efficient monitoring of plant 
development over time. Rincón et al. (2022) demonstrated the use of 
low-density vertical LiDAR radars and multispectral images to examine 
morphological changes and analyse variables and physiological pa
rameters under different environmental conditions. However, it is 
important to ensure compatibility between the physiological traits and 
plant modelling for DT applications. Kattenborn et al. (2022) presented 
AngleCam, a convolutional neural network based method that utilizes 
low-cost outdoor cameras to estimate leaf angles from horizontal plant 
photographs. The estimated angles, along with their derivatives, can be 
applied in various applications, including FSPM. Magistri et al. (2020) 
introduced a novel approach for tomato and maize plants, which 
exhibited superior performance compared to existing techniques. Their 
approach improves data association between point clouds of plants at 
different growth stages, enabling the computation of multiple pheno
typic traits at each time point. 

4.3. Use of FSP modelling to support the creation of 3D DTs for 
agriculture 

Reconstruction involves creating plant shapes or structures that 
resemble existing plants, while modelling focuses on simulating the 
shapes and structures of non-existent plants. Okura (2022) discussed the 
trends in 3D modelling and reconstruction of plants and trees. However, 
the review did not touch upon the integration of 3D plant phenotyping 

Fig. 5. Pipeline of processing data for extraction of plant phenotyping traits adapted from (Paulus, 2019). The figure was constructed utilizing the Business Process 
Model and Notation (BPMN) 2.0 framework, as outlined by Chinosi & Trombetta (2012). 
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into FSPM. This integration between FSPM and 3D reconstruction has 
the potential to enhance both fields. Specifically, the integration can 
improve mathematical biological modelling by allowing for more pre
cise calculation of parameters, and it can provide a scientific basis for 
generating more realistic plants in FSPM. There are several reasons for 
adopting such an approach. Namely, from a theoretical perspective, 
scientific data exists at multiple scales, and integrating this data can 
improve model accuracy. From a practical standpoint, different scales of 
screening and monitoring, such as disease and yield estimation, can 
benefit from this integration (Schöler & Steinhage, 2015). 

To achieve this, the outcomes from 3D phenotyping need to be 
compatible with the inputs of FSPMs (as described in section 3.2). 
Regarding this, algorithms used for automatic identification of 
elementary units like nodes, internodes, foliage, buds, and cells can 
facilitate parameterization of FSPMs and allow for their assessment 
using accurate, real data (Boudon et al., 2014). Moreover, Schöler 
(2014) proposed a 3D reconstruction approach for plant architecture 
based on the interpretation of 3D laser scan point clouds. Their method 
incorporated intelligent sampling and domain knowledge to constrain 
the space of hypotheses. They used the Reversible Jump Markov Chain 
Monte Carlo method for sampling and RGG for modelling of the plants. 
They applied this approach to investigate stem skeletons of grapevine 
bunches and derived phenotypical features based on the reconstructed 
plants. Schöler & Steinhage (2015) developed an automated processing 
chain for reconstructing grape clusters using 3D point clouds from a 
laser range sensor. Their approach utilized a rule-based generative 
model to handle occlusions and objectively extract phenotypic traits. 
They suggested extending this model-based processing chain to other 
plant organs, whole plants, and different species. In a recent study, Hu 
et al. (2022) presented a framework for realistic 3D plant modelling and 
agricultural scene rendering. Their automated approach, based on dual- 
faced leaf model reconstruction, captured fine geometric details and 
estimated light properties. The leaf reconstruction process was auto
mated, except for acquiring real leaves, enabling the creation of diverse 
agricultural vegetation scenes with high realism. This framework facil
itated the generation of diverse agricultural scenes and improved weed 
detection algorithms. Future research directions include simultaneous 
reconstruction of reproductive organs and optical properties, as well as 
capturing plant development patterns for species-specific parametric L- 
systems. Based on the advancements in both 3D reconstruction and 
FSPM, a conceptual framework for FSP modelling in DTs is proposed in 
the next section. The proposed framework builds upon the identified 
existing research in these two fields and aims to integrate their findings 
and methodologies. 

5. Proposed framework 

The general control model including FSPM can be the conceptual 
framework proposed showed the integration of the DT model with FSPM 
approaches and is plant agnostic. The operational process of the control 
model is outlined and structured into distinct steps (3D plant pheno
typing, 3D Plant Reconstruction into L-System, FSPM, Parameterization 
and Model Update, Evaluation of Model Performance), elaborated as 
follows. 

5.1. Control model operational process  

A. 3D Plant Phenotyping 

The initial step in integrating FSPMs into 3D DT entails 3D-based 
plant phenotyping. This process captures a plant’s spatial structure 
using a point cloud derived from advanced imaging methods (discussed 
in section 4.2.1). This point cloud serves as the foundation for subse
quent stages. Notably, the point cloud is segmented to isolate distinct 
plant components, enabling detailed analysis. A key outcome of this 
phase is the computation of a semantic skeleton, encapsulating the 

plant’s core structural framework. This skeletal representation simplifies 
the architecture while providing informative insights into spatial 
arrangement and branching patterns. This phase yields two main out
puts: the semantic skeleton and crucial plant features like biomass, 
pivotal for comprehending plant behaviour and growth.  

B. 3D Plant Reconstruction into L-System 

Output from the aforementioned step is utilized further to create a 
plant architecture described in L-system and RGG. Leveraging the se
mantic skeleton and the original point cloud, a sophisticated matching 
process commences. This process aims to find the best-fitting architec
tural model within an L-System and RGG using the RJMCMC algorithm. 
The outcome of this phase is the semantic skeleton undergoes translation 
into the L-System realm.  

C. FSP Modelling 

The plant architecture, transformed into L-system and RGG realm, is 
then incorporated as the axiom within the FSPM. This axiom serves as 
the initial state for the model’s operation. The model operates in discrete 
time steps, simulating the plant’s growth and interactions within its 
environment. The FSPM is executed to predict desired variables, such as 
yield under different scenarios. While the foundational function of an 
FSPM was discussed in section 2.2.4, it is notable that the FSPM 
embedded within the DT framework can undergo calibration as the 
crop’s lifecycle progresses and as new data becomes available.  

D. Calibration and Model Update 

Progressing chronologically, the proposed framework in this step 
initiates a calibration and model update iteration at each time step. 
Central to this iterative process is the pursuit of enhancement and 
refinement. A focal point of this endeavour is the introduction of a 
performance metric that seeks to mitigate disparities between model 
predictions and empirical observations. For instance, the Levenberg- 
Marquardt optimization technique (Moré, 2006) is employed as an 
illustrative example to adjust the model’s parameters.  

E. Evaluation of Model Performance 

As the plant’s journey approaches its conclusion, the FSPM directs its 
attention toward evaluating model performance. This phase reflecting 
how well the FSPM captures the essence of reality. Metrics take centre 
stage: the Bayesian Information Criterion (BIC) measures model 
complexity, the Root Mean Squared Error (RMSE) quantifies prediction 
errors, and the efficiency metric gauges the model’s predictive 
capability. 

This algorithm weaves together advanced techniques of 3D plant 
phenotyping, L-System reconstruction, FSP modelling, parameteriza
tion, and performance evaluation. Each phase contributes its unique 
threads to a tapestry that enhances a DTs’ capability to simulate and 
predict the behaviours of plants within complex and dynamic 
environments. 

5.2. 3D plant phenotyping 

The operational process of 3D plant phenotyping unfolds in a sys
tematic sequence of steps, each contributing to a comprehensive un
derstanding of plant features and characteristics. To begin, the process 
involves gathering 3D plant model data, which is achieved either by 
reading data from a file or by capturing it directly using specialized 3D 
sensors. This initial dataset forms the foundational raw material for the 
subsequent analysis. Once the data is collected, the control model un
dertakes a refining phase. This step entails preprocessing the data to 
eliminate unwanted noise and outliers. By tidying up the dataset in this 
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manner, the model ensures that its subsequent operations are built upon 
a clean and accurate foundation. Moving forward, the segmentation 
phase comes into play. Here, the model delves into the intricate struc
ture of the plant, effectively dividing it into discrete components such as 
leaves, stems, and flowers. This segmentation process leverages so
phisticated algorithms that dissect the complex plant structure into its 
constituent parts. Having successfully identified the individual compo
nents, the model progresses to the quantification of phenotypic traits. 
This involves an in-depth analysis of each component, generating key 
measurements to characterize its attributes. These quantified traits 
encompass crucial aspects:  

• Volume: The model computes the volume of each component 
through integration of its 3D shape.  

• Surface Area: Estimation of the component’s surface area is achieved 
by summing the areas of its constituent surface polygons.  

• Length: In cases of stems or branches, the model calculates their 
lengths by aggregating the distances between consecutive points.  

• Curvature: The model examines the curvature of the plant model, 
effectively identifying features such as leaf angles or points of 
bending.  

• Width: Measurement of width, such as the diameter of branches or 
the width perpendicular to the length of leaves, contributes to a 
comprehensive characterization. 

As the phenotypic traits are calculated, the model ensures their 
retention for future reference. This accumulation of data serves as a 
reservoir of insights for subsequent analysis or visualization purposes. 
The iterative nature of the framework is evident as the control model 
proceeds to journey through multiple time points, effectively mirroring 
the plant’s lifecycle. This repetition is instrumental in capturing the 
evolution of the plant’s traits over time, allowing for a dynamic un
derstanding of its characteristics. With the phenotypic insights accu
mulated, the model shifts its focus to visualization. This final step 
involves the transformation of data into understandable forms. Visual
izations, such as graphs, charts, and immersive 3D representations, are 
deployed to convey the intricacies of the plant’s story to a wider audi
ence, bridging the gap between raw data and meaningful understanding. 

In essence, the control model orchestrates an intricate dance of data 
collection, refinement, segmentation, quantification, retention, and 
visualization. Each step seamlessly connects to the next, culminating in a 
holistic process that sheds light on the rich world of plant characteristics 
and behaviour. The pseudocode in Algorithm 1 provides a general 
framework for 3D plant phenotyping. The specific implementation de
tails will depend on the software or programming language you are 
using and the available libraries for point cloud/mesh processing and 
segmentation.  

Algorithm 1. General process of 3d plant phenotyping 
1: Read 3D plant model data (e.g., point cloud or mesh) from a file or capture it using 

a 3D sensor. 
2: Preprocess the plant model data to remove noise and outliers. 
3: Segment the plant model into individual components (e.g., leaves, stems, flowers) 

using segmentation algorithms. 
4: Calculate various phenotypic traits for each component, such as: 
Volume: Compute the volume of each component by integrating the 3D shape. 
Surface Area: Estimate the surface area of each component by summing the areas of its 

surface polygons. 
Length: Measure the length of stems or branches by summing the distances between 

consecutive points. 
Curvature: Analyze the curvature of the plant model to detect features like leaf angles 

or bending. 
Width: Estimate the width of branches or leaves by measuring the diameter or width 

perpendicular to the length. 
5: Store the calculated phenotypic traits for further analysis or visualization. 
6: Repeat the above steps for multiple time points till the end of lifecycle of the 

product. 
7: Visualize the phenotypic data using appropriate graphs, charts, or 3D 

visualizations.  

5.3. 3D plant reconstruction into L-system 

The process of translating the point cloud delineating the physical 
twin into L-system architecture poses a formidable challenge within the 
framework. Below is a delineation of the sequential steps essential for 
accomplishing this task. The FSPM’s axiom is initialized based on the 
reconstructed tree architecture obtained from computer vision tech
niques, discussed in Section 4.4. To accomplish this objective, a point 
cloud is obtained using the methodologies outlined in Section 4.2.1. 
Subsequently, an algorithm, (Schöler et al., 2013; Lau et al., 2018; Du 
et al., 2019), should be employed. This algorithm is tasked with trans
lating the point cloud into an L-system, ensuring the inclusion of the 
appropriate attributes such as length, internode, and radius, thereby 
facilitating the creation of the tree architecture (Fig. 6). 

For the comprehensive illustration of this step in this framework, the 
proposed Algorithm 3 employs a RJMCMC (Green, 1995) approach 
augmented with simulated annealing (Geyer & Thompson, 1995) to 
optimize L-system architectures for accurately representing plant 
structures based on observed point cloud data. At the heart of the al
gorithm lies the Metropolis-Hastings framework (Chib & Jeliazkov, 
2001), wherein candidate L-system states are stochastically generated 
through random perturbations from the current state. These perturba
tions serve to explore the solution space by proposing alterations in the 
L-system parameters, which define the structure of the simulated plant. 
The acceptance of proposed changes is determined probabilistically, 
allowing for the exploration of potentially suboptimal solutions to avoid 
local minima. Simulated annealing is employed to control the explor
ation–exploitation trade-off by gradually reducing the temperature 
parameter over the course of iterations. This gradual cooling schedule 
enables the algorithm to initially explore a wide range of solutions with 
higher acceptance probabilities and subsequently focus on refining 
promising regions as the temperature decreases. The effectiveness of the 
algorithm in discovering optimal L-system architectures is demonstrated 
through iterative refinement towards maximizing the fitness score, 
indicative of the resemblance between the generated plant structures 
and the observed point cloud data. Algorithm 2 does not explicitly 
address the specific challenges, for example, related to handling occlu
sions that are commonly encountered in the process. However, Schöler 
& Steinhage (2015) have extensively covered this aspect in their work, 
where they developed an automated processing chain utilizing a rule- 
based generative model to address occlusions when reconstructing 
grape clusters from 3D point clouds obtained from a laser range sensor. 

It is imperative to underscore that within the domain of point cloud 
translation into L-systems, a plethora of methodologies are available in 
the extant literature, subject to continuous and intensive research ef
forts. Notably, prominent among these methods are TreeQSM (Lau et al., 
2018) and AdTree (Du et al., 2019), both renowned for their efficacy in 
accurately transforming tree skeletons into L-system representations. 
However, a notable challenge persists in adequately capturing leaves 
and fruits through these algorithms, necessitating the exploration of 
alternative approaches. Recently, a pioneering method proposed by 
Wang et al. (2023) has emerged for the reconstruction of trees from 
incomplete point cloud data, exhibiting superior accuracy compared to 
its predecessors. Furthermore, the integration of a Convolutional Neural 
Network (CNN) coupled with Long Short-Term Memory (LSTM) archi
tecture (Magnusson et al., 2023), offers a promising avenue for expe
ditiously translating images depicting tree topologies into 
corresponding L-system representations. This advancement holds sig
nificant utility, particularly in facilitating the rapid translation of entire 
L-system architectures from reconstructions of 3D plant architectures, a 
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necessity for DTs operating in real-time or near real-time.  
Algorithm 2. Reversible Jump Markov Chain Monte Carlo with annealing temperature 

for L-System Optimization with Point Cloud Matching 
Initialization: 
current_L-system_state ← initial_L-system_state 
best_L-system_state ← current_L-system_state 
current_fitness ← calculate_fitness(current_L-system_state, point_cloud) 
best_fitness ← current_fitness 
temperature ← initial_temperature 
cooling_factor ← cooling_factor 
Main Loop: 
for i ← 1 to num_iterations do 
proposed_L-system_state ← perturb(current_L-system_state) // Randomly perturb the 

current state 
proposed_fitness ← calculate_fitness(proposed_L-system_state, point_cloud) 
acceptance_ratio ← min(1, exp((proposed_fitness - current_fitness) / temperature)) 
random_number ← random_uniform(0, 1) 
if random_number < acceptance_ratio then 

current_L-system_state ← proposed_L-system_state 
current_fitness ← proposed_fitness 
if current_fitness > best_fitness then 

best_L-system_state ← current_L-system_state 
best_fitness ← current_fitness 

end if 
end if 
temperature ← temperature * cooling_factor // Annealing schedule for temperature 

end for 
Output: 
best_L-system_state  

5.4. FSPM 

After obtaining measurements from the bio-sensors and external data 
variables, the plant model can utilize these measurements as variables 
(Table 4). It is notable that additional variables are required for 
comprehensive plant modelling. The purpose of including this demon
stration is to provide an illustrative example. The selection of these four 
input variables is based on their fundamental role in influencing various 
physiological processes. These variables are crucial and widely appli
cable in modelling. The number of variables in plant models increases in 
complexity and granularity. Take, for instance, the CPlantbox model, 
which incorporates intricate molecular processes like rubisco activity 

and water flow in photosynthesis. This model demands a multitude of 
variables and parameters, many of which are challenging to obtain 
(Zhou et al., 2020). Regarding parameters, their initial values are often 
derived from previous parametrization experiments. However, certain 
parameters that cannot be directly measured in plants are estimated 
using statistical methods, such as Bayesian statistics, to parametrize and 
calibrate FSPMs (Blanc et al., 2023). To provide an illustrative example 
of some parameters within this framework, parameters from a well- 
established crop model known as WOFOST (Van Diepen et al., 1989; 
Gilardelli et al., 2018) are presented in (Table 5). These parameters were 
chosen because of their relevance to plant architecture, which is one of 
the advantages of FSPM in comparison to PBM. After all the variables, 
parameters and the plant architecture (written in L-system and RGG 
derived from the point cloud) are integrated into the FSPM and provide 
the rendering needed to be able to visualize the DT, predictions for the 
next states of the model attributes are possible (Algorithm 3).  

Algorithm 3. Functional structural plant modelling workflow 
1: 
Load data from sensors 
2: 
Input variables Input(x) 
3: 
Initialize parameters 
4: 
Initialize plants 
Axiom ==>PlantarhcitectureinL − systemandRGG 
5: 
Run() 

for i ∈ (growth days) do 
Update sun and sky (Input x) 
Run light model (Input x) 
Update parameters 
Apply rules 

if i:Intenrode and l:Leaf and n:Node <= end of growth then 
Update existing organs y0 
if i:Intenrode and l:Leaf and n:Node = end of growth then Formation of new organs 
end 

Rules for substances transportation 
end 

Update output end 
if i = (harvesting date) do 
Store (Final output y)  

Fig. 6. Translation of 3d point cloud to 3d architecture in L-system and relation growth grammars.  
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Fig. 7. DT control model architecture with FSPM integrated. The figure was constructed utilizing the Business Process Model and Notation (BPMN) 2.0 framework, 
as outlined by Chinosi & Trombetta (2012). 
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5.5. Parameterization, calibration and model Update 

After obtaining the output from 3D phenotyping and FSPM, the 
optimization of parameters for minimizing the difference between the 
observed values and the predicted values, J(θi), was determined using 
the mean square error and expressed as Eq. (1). 

J(θ) =
1
2
(y − ŷ)T

(y − ŷ) (1)  

where y is the observed values coming from the 3d plant phenotyping 
and ŷ is the predicted values derived from the FSP model. The general 
algorithm of this process can be seen in (Algorithm 4). Similar work was 
investigated by Potapov et al, (2016) in which difference between the 
model estimation and the real tree coming from treeQSM was calcu
lating the smallest distance and then the algorithm was adjusting the 
parameter values.  

Algorithm 4. Estimation of parameters 
1: Initialize parameters (θ)

load variables matrix (

⎡

⎣
x1 ⋯ x1t

⋮ ⋱ ⋮
xn ⋯ xnt

⎤

⎦) from sensor data 

for i ≤ end of plant life cycle do: 
2: Run FSPM Model f (x1,x2,x3,x4) 

Output:ŷ 
3: Perform 3d plant phenotyping. 

Output: y 
4: Calculate 

J(θi) =
1
2
(y − ŷ)T

(y − ŷ)

5: Update parameters (θi)

5.6. Model evaluation 

After the completion of the plant’s lifespan, the model’s validation 
would involve assessing its performance based on the following criteria. 
The BIC is a widely used criterion in model selection that facilitates the 
evaluation and comparison of different models (Burnham & Anderson, 
2002). It serves as a measure of the performance or goodness of fit of a 
model. The BIC value is calculated using the following equation, as 
proposed by Venables & Ripley (2002): 

BIC = N*log

(∑N
l=1(yl − ŷl)

2

N

)

+ p*log(N) (2)  

where N refers to the total number of available data points, yl represents 
the observed values, ŷl represents the predicted values obtained from 
the model, and p denotes the number of parameters used in the model. 

The RMSE is a commonly used criterion for assessing the accuracy of 
predictions by measuring the discrepancy between the predicted and 
observed values. It is represented by Equation (2), which quantifies the 
distance between these values. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

l=1
(yl − ŷl)

2

√
√
√
√ (3)  

The modelling efficiency is a dimensionless metric utilized to assess the 
overall quality of fit between predicted and observed values. It quan
tifies the goodness of fit and is calculated using the formula proposed by 
Baey et al. (2013). 

Efficiency = 1 −
∑N

l=1(yl − ŷl)
2

∑N
l=1(yl − yl)

2 (4)  

where yl is the average of the observed values. 
The Integrated FSPM-DT framework amalgamates methodologies to 

characterize and simulate plant behaviours and advance DTs in agri
culture. Its initiation involves the aggregation of 3D plant model data, 
which subsequently undergoes refinement, segmentation, and the 
quantification of phenotypic attributes. This iterative progression spans 
diverse temporal instances, aligned with the plant’s life cycle. The 
resultant phenotypic data imparts substantial visualizations, translating 
into L-system and RGG realm, thereby bridging the transition from raw 
data to discerning insights. These reconstructed plant architectures are 
then seamlessly incorporated into the FSPM. Consequently, the amal
gamation of FSPM with the DT framework empowers dynamic analysis 
and prognostication of plant responses within intricate environments. 
FSPM serves as the pivotal substrate for comprehending growth, in
teractions, and behaviours, thereby fostering advancements in agricul
tural and ecological research. The integration of FSPM into the control 
model (Fig. 1) is demonstrated in the updated version (Fig. 7). 

6. Discussion 

A domain analysis revealed the absence of 3D functional plant 
modelling in existing agricultural DT systems. Subsequently, a 
comprehensive study on 3D plant phenotyping was conducted, which 
involved examining various 3D sensing technologies and establishing a 
pipeline for plant reconstruction and derivation of plant traits (Fig. 5). 
Building upon these findings and recognizing their potential, a con
ceptual framework and pseudocode algorithms were proposed to inte
grate FSPM into agricultural DT systems. It is important to note that the 
proposed framework and algorithms specifically focus on the FSPM 
component and do not encompass the broader control aspects of the DT 
system (Fig. 1). The suggested approach revolves around leveraging 3D 
plant phenotyping techniques to enrich the FSPM with accurate repre
sentations of the physical object’s plant architecture. This enables the 
creation of a DT that potentially faithfully captures the structural dy
namics of the plant. Key plant traits, such as biomass and leaf area, are 
utilized as observed values, eliminating the need for manual measure
ments, and allowing for parameter estimation, calibration, and valida
tion of the FSPM. This automated process of reconstructing the FSPM 
during the physical object’s lifecycle paves the way for the development 
of a predictive DT. However, it is important to emphasize that inte
grating FSPM alone is insufficient to achieve a fully predictive DT. Other 
crucial aspects need to be considered and incorporated. This conceptual 
framework serves as an initial step towards integrating FSPM into DTs in 
agriculture. It provides a starting point for future research and devel
opment in this domain, highlighting the potential benefits of incorpo
rating FSPM into DT systems. It is worth noting that DTs are highly 
complex systems, and their creation should be approached progressively 
by gradually adding and integrating various aspects to enhance their 

Table 5 
Variables of a plant model.  

Variable Description Units 

x1 Growing date day 
x2 Hourly global radiation MJ m− 2 day− 1 

x3 Hourly temperature ◦C 
x4 Hourly carbon dioxide concentration (CO2) μ mol/mol 
y Total dry weight g m− 2 

y0 Dry weights of different types of organs g m− 2  
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complexity (Pylianidis et al., 2022). While this proposed framework 
addresses the integration of FSPM, it is important to acknowledge that 
there are numerous other challenges and considerations that arise from 
both the DT perspective and the FSPM perspective. These challenges 
represent opportunities for further investigation and advancement in the 
field. 

The proposed framework in this study assumes the use of relational 
growth grammars for 3D modelling. However, it should be noted that 
different approaches to FSPM may require alternative approaches. The 
choice of FSPM approach is typically determined by the researchers’ 
institution and available literature, without specific reasons stated for 
selecting one approach over others. Nonetheless, Openalea (Pradal 
et al., 2008) offer a software solution that can integrate different FSPM 
software and approaches, enabling communication between models. In 
addition to FSPM, efforts have been made to connect FSPM with data 
models, resulting in improved performance compared to individual 
models. DT systems, which encompass cloud-based data storage, can 
support the fusion of data-driven models and FSPM to achieve more 
accurate results. Data-driven models, considered a fundamental 
approach in smart agriculture (Tantalaki et al., 2019), possess advan
tages, such as the ability to approximate nonlinear functions, strong 
predictive capabilities, and flexibility in adapting to multivariate system 
inputs. However, they lack the physical explanations and structural 
knowledge of the underlying system, treating internal processes as 
black-box entities (Fan et al., 2015). By combining the strengths of 
process-based plant models and data-driven models, the knowledge- 
and-data-driven modelling approach has emerged, overcoming the 
challenges of applying models in real-world agricultural settings (Kang 
& Wang, 2017). Fan et al. (2015) introduced the KDDM approach for 
plant growth simulation, which demonstrated the preservation of 
interpretable parameters, accurate prediction of dry weights of plant 
organs, compensation for uncertainties, and effective utilization of 
domain knowledge and ecological data. Overall, the KDDM approach 
greatly enhanced plant growth simulations. The KDDM approach has 
been successfully applied in various studies. For instance, Nascimento 
et al. (2020) implemented hybrid models that combine physics- 
informed and data-driven kernels, with data-driven components used 
to bridge the gap between predictions and observations, as well as 
perform model parameter identification. Additionally, Xiao & Li (2022) 
demonstrated a novel approach employing model fusion to integrate 
non-destructive sensor data with a mechanistic model for kiwifruit 
softening during cool storage, allowing for a temporal description of 
flesh firmness retention. 

6.1. The adding value of adding 3D functional plant modelling in DT for 
agriculture 

The integration of 3D FSPM into DTs for agricultural purposes yields 
manifold benefits. In Table 6, a qualitative validation of the proposed 
framework is provided by means of reflection on how the framework 
could be realised in real world case study settings in comparison process- 
based models or data driven models; an approach adopted in earlier 
work by Tekinerdogan et al. (2020). The proposed framework demon
strates its potential utility in various real-world case study scenarios, 
particularly in enhancing yield prediction, disease prediction, and 

intercropping strategies. In the case of DTs modelling greenhouse crops 
for yield prediction, FSPM-integrated DTs provide comprehensive in
sights into crop physiology, including detailed examinations of plant 
architecture, microclimate, and light absorption. This enables proactive 
identification and mitigation of potential issues, offering a more holistic 
understanding of crop yield dynamics compared to other DTs. Similarly, 
for disease prediction in greenhouse crops, FSPM-integrated DTs 
outperform others by providing insights into affected plant parts, of
fering detailed understandings of disease causation, and exploring the 
efficacy of preventive measures such as pruning techniques or crop 
formation. This allows for more effective disease management strate
gies. In the scenario of intercropping, FSPM-integrated DTs excel in 
providing abundant insights crucial for understanding the interactive 
dynamics between different crops. By capturing spatial and temporal 
factors vital for intercropping dynamics, FSPM-integrated DTs facilitate 
the creation of scenarios for optimizing the mixture ratio of intercropped 
crops, thereby enhancing decision-making in intercropping practices. 
The absence of 3D functional plant modelling within DTs would hinder 
interaction with the architectural characteristics of plants, thereby 
complicating subsequent steps, such as the application of scenarios 
generated by the model. Moreover, essential practices like pruning re
gimes, which significantly contribute to yield and fruit quality in crops 
such as tomato, peaches, and apples (Ara et al., 2007; Kumar et al., 2010; 
Hampson et al., 2002), would be impracticable. This limitation extends 
to disease prevention strategies as well. Overall, the incorporation of 
FSPMs into DTs significantly enhances their capabilities in under
standing and managing agricultural systems, offering more nuanced 
insights, and facilitating more informed decision-making compared to 
other DT approaches.Table 7 

Moreover FSPM-integrated DTs can assist to create dynamic DTs in 
virtual reality, Spyrou et al. (2023) showcased a DT for cannabis culti
vation; however, the static nature of plant representation in the virtual 
environment precluded the incorporation of actual growth dynamics 
inherent in mechanistic models. Integration of FSPM within the DT 
framework can address this limitation, facilitating immersive experi
ences wherein plant growth and physiology are dynamically simulated. 
Extending beyond virtual environments, Extended Reality (XR) tech
nologies hold transformative potential for agricultural domains (Anas
tasiou et al., 2023). XR technologies offer avenues for enhanced 
decision-making, training, and system development across agricultural 
sectors. The integration of 3D plant functional modelling into DTs is 
paramount, as it enables seamless interaction between crop models and 
plant architecture, thereby facilitating scenario-based applications such 
as pruning regimes and disease prevention strategies. A study conducted 
by Majeed et al. (2020) demonstrated the use of deep neural networks 
for segmenting apple branches and trunks. However, a limitation arises 
from the absence of radius information of the branches, crucial for 
pruning decisions. Integration with DTs can bridge this gap, enabling the 
incorporation of radius data into neural network models. Furthermore 
this integration, coupled with techniques like L-system transformation 
and hybrid AI-procedural models, fosters synergies between architec
tural details and pruning algorithms. Consequently, autonomous DTs 
can leverage this amalgamation to provide comprehensive instructions 
to robots for precise pruning operations, benefiting from enhanced 
branch information and scenario assessment facilitated by FSPM- 
integrated DTs. 

The paramount significance of high-quality data in facilitating the 
efficacious utilization of AI remains integral to ensuring food security 
(Tsiligiridis & Ainali, 2018). Despite the increasing availability of data 
and advancements in AI methodologies, a gap persists in leveraging AI 
tools effectively within the plant science community (Williamson et al., 
2021). DTs offer a conduit for generating and disseminating high-quality 
data, thereby facilitating advancements in plant phenotyping and 
training of deep neural networks. This is exemplified by the utilization of 
time-series data of plant architectures for training ML models to capture 
complex relationships. Additionally, in the realm of food security, efforts 

Table 6 
Sample of parameters of the WOFOST model.  

Parameter Description Units 

TBASEM Base temperature for emergence ◦C 
TSUMEM Thermal sums to reach emergence ◦C 
TSUM1 Thermal sums from emergence to anthesis ◦C-d 

LAIEM Leaf area index at emergence ha ha− 1 

RGRLAI Maximum relative increase in leaf area index ha ha− 1 ◦C − 1 d− 1 

PHYL Phyllocron ◦C day•leaf− 1 

CVL Efficiency of conversion into leaves kg ka − 1  
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in breeding aim to integrate breeding practices with crop modelling to 
elucidate Genotype x Environment x Management (GxExM) in
teractions, thus enhancing predictive capabilities and annual yield gains 
(Cooper et al., 2021). Furthermore, it is imperative to highlight the 
significance of end-users, predominantly farmers, who stand to benefit 
from interacting with procedural modelling. The quantitative nature of 
outputs derived from process-based modelling often proves challenging 
for farmers to comprehend and utilize effectively. Conversely, FSPMs 
provide visual representations, making DTs with integrated FSPMs more 
user-friendly and accessible to end-users. By providing optical outcomes 
of experimental scenarios, such as assessing pruning schemes and their 
subsequent impacts on plant growth, DTs equipped with FSPMs enable 
farmers to comprehend and engage with the results more effectively 
compared to conventional process models, which typically present re
sults in abstract graphical formats. Furthermore, this facilitates practical 
training in agronomic practices such as pruning, contributing to 
enhanced usability and adoption of agricultural DTs among end-users. 
Ultimately, the integration of FSPMs within DTs holds promise for 
advancing agricultural DT technology, fostering greater accuracy and 
usability for end-users. 

6.2. Challenges in the integration of 3D modelling in DTs 

6.2.1. Training of ML algorithms 
The process regarding the ML training was not discussed in this 

paper. Many research studies face the challenge of limited data avail
ability for training ML algorithms (Masuda, 2021; Chebrolu et al., 
2021). However, an alternative source of training data can be derived 
from plant images generated by FSP models. Chaudhury et al. (2020) 
have introduced a generalized approach for generating labelled 3D point 

cloud data from procedural plant models. 

6.2.2. Scaled up 
The proposed framework in this article focused on representing in

dividual plants within a physical object, but further research is needed to 
parametrize the FSPM at different scales. Most existing research in the 
literature primarily focuses on parametrization at the plant level, while 
parametrization at the field level is less explored. It is essential to 
consider the functional differences between plants at the individual and 
field levels. However, deriving 3D parameters from the single plant scale 
to the field scale poses significant challenges (Paulus, 2019). Further
more, accurately representing each plant’s location within the growing 
environment, such as a greenhouse or field, is crucial for the model to 
incorporate plant-to-plant interactions. Therefore, the digital object 
must include information about its position, such as GPS coordinates, to 
accurately place the plant in the virtual experiment. Additionally, if the 
DT aims to consider other stakeholders involved in decision support 
systems, as well as market connections, the agricultural domain presents 
unique challenges. Agriculture is a complex system involving multiple 
stakeholders. Wang et al. (2020) proposed a blockchain-enabled Inte
grated Horticulture Supply Chain (IHSC) and introduced a simulation- 
based DT to enhance transparency, safety, security, and efficiency in 
the supply chain. This platform enables process risk analysis and pro
vides decision-making guidance. Empirical results demonstrate the 
promising performance of the proposed platform. 

6.2.3. Communication 
Effective communication between different components of the DT is 

a crucial aspect. While extensive work has been done on the Internet of 
Things domain, where various communication protocols have been 

Table 7 
Advantages of DT with integrated FSPMs in comparison process-based models (PBM) or data driven models.   

Dt with no model Dt data driven Dt with PBM Dt with FSPM 

DT of a crop in a 
greenhouse for 
yield prediction 

Illustration of greenhouse crop 
cultivation minus functional 
attributes and crop physiology 
insights. Devoid of yield 
projections and disease 
predictions.  

Depiction of greenhouse crop 
without functionality or insights. 
Nonetheless, future predictions and 
scenarios may be presented without 
elucidation of underlying reasons. 

Depiction of greenhouse crops with 
limited insights and functionality 
confined to a one-dimensional aspect. 
Additionally, prospective scenarios 
and predictions can be evaluated to 
identify potential measures for 
preventing solutions. 

Representation of greenhouse crop 
with insights and functionality in 
three dimensions. Additionally, 
potential scenarios and predictions 
can be evaluated to proactively 
identify and address issues. Thorough 
insights explore the influence of plant 
architecture and formation on crop 
yield, including a detailed 
examination of microclimate and 
light absorption. 

DT of a crop in a 
greenhouse for 
disease 
prediction 

Monitoring crop without delving 
into disease progression or 
causative factors. 

Monitoring crop, incorporating 
probabilities of disease occurrence. 
However, lacking insights into 
preventive strategies. 

Monitoring crop while providing 
insights into diseased plants, 
expressed as a ratio or count. Offering 
insights on potential infections and 
advising on management measures to 
avoid. 

Monitoring crops with insights into 
affected plant parts. Providing 
insights on potential infections, 
recommending avoidance of specific 
management measures, and offering a 
more detailed understanding of 
disease causation. Additionally, 
exploring the efficacy of preventive 
measures such as pruning techniques, 
planting distances, or crop formation. 

DT of 
intercropping 

Representation and monitor of 
the intercropping. 

Representation and monitoring of 
intercropping with minimal 
insights, as data-driven models face 
challenges in achieving high 
accuracy due to numerous non- 
linear factors. 

Representation and monitoring of 
intercropping with a more substantial 
number of insights derived from data- 
driven models. However, the intricate 
nature of intercropping, influenced 
by various spatial and temporal 
factors, remains a challenge for 
precise modelling with PBMs. 

Representation and monitoring of 
intercropping with abundant insights 
facilitated by FSPM. FSPMs allow 
capturing spatial and temporal factors 
crucial for intercropping dynamics. 
Creating scenarios for the mixture 
ratio of intercropped crops, these 
insights aid in understanding the 
interactive dynamics between 
different crops.  
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developed for DT applications (Popović et al., 2017; Dholu & Ghodinde, 
2018), challenges still remain in connecting and synchronizing data 
from proposed algorithms and coordinating the different compartments 
of the DTs’ control model (Fig. 3). The diverse range of applications in 
digital phenotyping necessitates the use of multiple frameworks within 
the same cluster, as it is not feasible to develop all applications within a 
single framework. Apache Mesos provides an optimal solution by 
enabling fine-grained resource utilization within a cluster without the 
drawbacks associated with multiple Virtual Machines or cluster parti
tioning. Debauche et al. (2017) proposed a novel approach that com
bines logic synthesis and cloud architecture in a lambda cloud 
framework, specifically tailored to meet the requirements of digital 
phenotyping. This approach enables real-time storage and processing of 
the substantial amount of data involved. A case study conducted in a 
controlled environment system, such as a growth chamber, focused on 
growing basil plants, showcasing the practical implementation of this 
approach. 

6.2.4. Environment 
FSPMs not only simulate the plants themselves but also incorporate 

the modelling of the surrounding environment, including the simulation 
of microclimates within different parts of the plant. This comprehensive 
approach enhances the realism of the virtual environment and improves 
the accuracy of the FSPM, thereby enhancing the fidelity of the DT. 
While the initial proposed conceptual framework overlooked the envi
ronment, numerous researchers have since dedicated their efforts to 
accurately simulating and incorporating the environmental factors. A 
numerical simulation model was developed to accurately predict 
greenhouse temperature and radiation distributions for the purpose of 
greenhouse microclimate control (Ma et al., 2019). The model was 
successfully applied to simulate temperature and radiation profiles over 
time and space within the greenhouse at Purdue University. By 
leveraging the simulation results, this study demonstrated how the 
optimization of conveyor system movement could be informed quanti
tatively to minimize greenhouse microclimate variations. Light 
modelling. 

6.2.5. Twinning and twinning rate 
The determination of twinning and twinning rate within a DT is a 

crucial aspect that currently lacks comprehensive research. In the study 
in this article, we propose adopting a flexible time step depending on the 
objectives of the DT usage. For applications that primarily focus on 
capturing fast-changing biological states and assessing plant conditions, 
a longer time step, such as daily, may be deemed insufficient for 
capturing meaningful differences and retaining crucial states. Dis
cretizing time is a common practice in modelling and simulation, 
particularly since many processes cannot be analytically integrated over 
time and, therefore, require discretization. The choice of time step 
should be carefully adjusted and considered for future investigations. In 
simulation models of plant development, physiological processes 
occurring within plants are often described using Ordinary Differential 
Equations. In this context, the incorporation of artificial intelligence AI 
techniques can be advantageous. By integrating Ordinary Differential 
Equations with AI, the proposed approach allows for real-time controls 
(Nascimento et al., 2020). It is important to note that a main limitation 
of the resulting model is the assumption of a constant system, which may 
be unrealistic in practical settings. Furthermore, the current state of the 
model only considers time-independent covariates, indicating a need for 
further refinement and consideration of time-varying factors. 

6.2.6. Metrology 
Although the proposed conceptual framework did not initially 

consider metrology, it is an essential and highly technical aspect that 
must be addressed in order to adapt to the specific circumstances of the 
physical object’s environment. The incorporation of metrology is chal
lenging but crucial. Farooq et al. (2020) conducted a comprehensive 
study on the application of IoT technology in agriculture, which may 
provide valuable insights in this regard. 

6.2.7. Abstraction level of FSPM 
The paper under discussion does not provide an explicit discussion 

on the level of granularity of the FSPMs. However, it is important to note 
that the choice of granularity depends on the objectives of the DT. 
Moreover, as the complexity of the model increases, so does the 
computational time required for the entire DT system. For instance, in 
the case of CPlantBox, the inclusion of a higher number of modules re
sults in an increased number of parameters and intermediary outputs, 
which subsequently leads to longer computational time (Giraud et al., 
2023). Furthermore, certain variables and parameters cannot be 
measured experimentally, such as the separation of respiration between 
maintenance and growth, making their evaluation more challenging. It 
is worth mentioning that while some FSPMs are stochastic, for the 
purposes of DT implementation, mechanistic models are recommended 
as they provide a rationale behind predictions that are contingent upon 
the environmental conditions of the digital environment. On the other 
hand, stochastic models are parameterized based on experimental con
ditions, limiting their applicability to specific experimental setups. 
Furthermore, the inclusion of realistic leaflet representation in FSPMs 
has a significant impact on dynamic models but is less influential in 
static models (Vermeiren et al., 2020). Lastly, it is noteworthy that only 
a few FSPMs consider both the root and upper plant systems, as well as 
their interconnectedness. The selection of FSP models depends on the 
objectives of the DT, allowing for the choice between models that solely 
consider the upper plant or those that incorporate the root system as 
well. An example of a comprehensive FSPM that accounts for both shoot 
and root growth, as well as their interactions, is the RoCoCau structural 
whole-plant growth model, which employs the architectural unit 
concept and incorporates specific functions based on experimental 
measurements in the shoot and root compartments (Masson et al., 
2022). 

6.2.8. Decision making with AI and FSPM 
The article does not address the connection between the predictions 

and outcomes of FSPMs and their integration with decision support 
systems. However, there have been efforts to combine FSPM outcomes 
with decision support systems for improved decision-making in various 
domains. For instance, Utama et al. (2022) employed a plant dataset, the 
GroIMP-FSPM platform, and fuzzy logic to develop a model that could 
assist researchers in making informed decisions based on the Break-Even 
Point evaluation. By integrating FSPM predictions into the decision 
support system, the model provided valuable insights to researchers, 
aiding them in making more effective decisions. Moreover, the inte
gration of virtual plant models with other constructed models, such as 
Dynamic Simulation Models, has been explored to simulate investment 
strategies in green-leaf vegetable production. Utama & Wibowo (2021) 
proposed a model that recommended the optimal number of plants to be 
cultivated in a hydroponic system in order to maximize profitability. 
This integration of the FSPM with the Dynamic Simulation Models 
enabled investors to make informed decisions regarding their 
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investment in green-leaf vegetable production. Furthermore, Jabar & 
Utama (2021) successfully utilized a combination of the Plant Con
struction Model and Dynamic Simulation Models methods in a virtual 
hydroponic green amaranth plant model. This research facilitated 
decision-making for farmers engaged in hydroponic green amaranth 
plant cultivation, enabling them to make strategic decisions based on the 
outcomes of the virtual plant model. These studies highlight the po
tential of integrating FSPM predictions with decision support systems, 
offering valuable guidance and support for decision-makers in various 
agricultural contexts. 

6.2.9. Virtual to physical 
The control model depicted in this article demonstrates the 

communication and influence of the DT on physical objects through the 
utilization of actuators. However, an extensive review of the literature 
revealed that most existing studies primarily focus on unidirectional 
data flow, specifically from the physical realm to the DT. The investi
gation into the data flow from the DT to the physical twin, occurring 
after the execution of the DT simulation and involving the use of actu
ators, requires further in-depth research (Segovia & Garcia-Alfaro, 
2022). Furthermore, the current body of literature lacks research on 
how the DT, through the implementation of actuators, impacts the 
physical twin. Furthermore, the discussion on the integration of 
enabling technologies was notably absent. For a comprehensive analysis 
of the enabling technologies utilized in existing DT implementations, 
one can refer to a systematic review conducted by Fuller et al. (2020). 

6.2.10. Parametrization, Validation, calibration. 
The parametrization and validation of the DT framework proposed 

rely on observed values obtained through 3D phenotyping. While 3D 
phenotyping is increasingly approaching reality (Paulus, 2019), it is not 
considered the ground truth. Therefore, it is crucial for 3D phenotyping 
to achieve high accuracy and closely resemble reality. This is important 
because a DT should be able to parametrize and validate its models using 
non-destructive methods, as the actual crops are intended for sale and 
cannot be treated as experimental samples. Furthermore, it is important 
to note that the incorporation of the 3D plant architecture derived from 
3D plant phenotyping into the FSPM introduces the possibility of bias, as 
the model may exhibit similar behaviour. Therefore, caution must be 
exercised in this regard. Additionally, the validation process can include 
evaluating different previously saved stages in the history of predictions 
for DTs. This allows for overtime calibration and parametrization, 
although the discussion of this aspect is more complex, as it involves 
processing and assessing historical data alongside the final yield. 

7. Conclusion 

In this study, the Integrated FSPM-DT framework combines meth
odologies to characterize and simulate plant behaviours. Starting with 
3D plant data, it refines, segments, and quantifies phenotypic traits 
iteratively across the plant’s life cycle. This results in visualizations 
translated into L-system and RGG representations, seamlessly integrated 
into the FSPM. This fusion enables dynamic analysis and prediction of 
plant responses in complex environments, advancing agricultural and 
ecological research. The proposed framework offers dual benefits. 
Firstly, it replaces traditional plant sampling for model optimization and 

calibration with data sourced from 3D plant phenotyping. This shift not 
only streamlines the process but also enables DTs to validate and cali
brate FSPMs using non-destructive methods. Secondly, this approach 
carries the potential to enhance prediction accuracy beyond that of 
conventional FSPMs, potentially leading to even more accurate pre
dictions. Ultimately, providing an interactive environment to end-users 
can significantly enhance adoption rates. 

However, this is a conceptual framework explaining how an FSPM 
approach can be integrated with DTs. To that end, to create a DT in 
agriculture many different domains need to collaborate and work 
together, as all the parts of the DT need to be connected and be 
compatible. We suggest that, in future work, a unified platform must be 
created that can be user-centric. It appears that FSPMs can be benefited 
from DTs and DTs in agriculture can further evolve to incorporate pre
diction and automation services more widely. Also, FSPMs can be used 
in the training of the ML algorithms in a DT. Plant models are valuable 
for predicting and optimizing plant growth while reducing costs and 
resource usage. Despite their benefits, farmers often don’t use them due 
to complex software, unfamiliar plant terminology, and challenging 
graph interpretation. DTs can offer a solution by providing user-friendly 
interfaces and using non-scientific language for easy interaction with 
plant models. To that end, DTs and FSPMs can benefit at the same time 
each other. Future research should focus on implementing and modi
fying existing codes to meet the specific needs of a case study within the 
context of DTs. This implementation should be guided by the proposed 
conceptual framework, aiming to assess computational time and ensure 
data compatibility across different output sources. By customizing the 
codes and integrating them into the framework, researchers can eval
uate computational efficiency and harmonize data outputs effectively. 
Consideration should be given to factors such as software compatibility, 
code dependencies, and case study requirements to ensure successful 
implementation. This research will contribute to advancing 3D DT ap
plications and improving their reliability and effectiveness. 

CRediT authorship contribution statement 

Christos Mitsanis: Writing – original draft, Validation, Software, 
Project administration, Methodology, Investigation, Conceptualization. 
William Hurst: Writing – review & editing, Writing – original draft, 
Validation, Supervision, Project administration, Methodology, Investi
gation, Formal analysis, Conceptualization. Bedir Tekinerdogan: . 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors.  

C. Mitsanis et al.                                                                                                                                                                                                                                



Computers and Electronics in Agriculture 218 (2024) 108733

18

Appendix 

Appendix A. Conceptual model for Digital Twins, based on Verdouw et al. (2015). The figure was constructed utilizing the Business Process Model 
and Notation (BPMN) 2.0 framework, as outlined by Chinosi & Trombetta (2012). 

Appendix B. Key concepts related to DTs (adapted from Jones et al.,2020).   

Term Explanation 

Physical twin The physical object that exists in the real world 
Virtual twin The virtual object that exists in the virtual world 
Physical Environment The environment in which the physical object exists 
Virtual Environment The environment in which the virtual object exists 
State The recorded values for all parameters associated with the physical or virtual entity/twin and its surrounding environment. 
Metrology The process of capturing the state of the physical/virtual entity 
Realization The process of altering the state of the physical/virtual entity. 
Twinning The process of aligning the states of the physical and virtual entity. 
Twinning Rate The frequency at which twinning takes place. 
Physical-to-Virtual 

communication 
The data connections and processes involved in capturing the state of the physical twin/environment and replicating that state in the virtual twin/ 
environment. 

Virtual-to-Physical 
communication 

The data connections and processes involved in capturing the state of the virtual twin/environment and replicating that state in the physical twin/ 
environment.  
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