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Abstract
The Monin–Obukhov Similarity Theory (MOST) is a cornerstone of boundary layer mete-
orology and the basis of most parameterizations of the atmospheric surface layer. Due to
its significance for observations and modelling, we generalize the dimensional analysis of
MOST by considering the bulk gradient directly, enabling the study of any sublayer of the
atmospheric surface layer. This results in a family of similarity relations describing all gradi-
ents from the local gradient to the full-layer bulk gradient. By applying the profiles derived
from the law-of-the-wall and MOST, we are able to derive analytic expressions for this fam-
ily of similarity relations. Under stable conditions, we discover that the log-linear profile of
Businger–Dyer generalizes from the local to the bulk shear where the slope is dependent on
the choice of the layer. The simplicity of the general log-linear relation allows for estimating
the influence of stability on the non-dimensional gradients. It is shown that bulk gradients
are less sensitive to stability than the local gradient. By correctly filtering cases where the
full-layer bulk gradient is influenced by stability, we demonstrate that MOST is compatible
with the Hockey-Stick Transition. For unstable conditions, the Kader and Yaglom (J Fluid
Mech 212(151):637-662, 1990) model represents the local gradient well but was not success-
ful in representing the bulk gradient, demonstrating the need for further analysis of scaling
relations for the unstable atmospheric surface layer.
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1 Introduction

Turbulence is the main driver for the mixing of momentum, heat, and other scalars in geo-
physical and engineering flows. Due to the multi-scale, complex nature of turbulent flows,
the prominent challenge is to quantify how turbulence affects the mean quantities, which
are the variables of interest for most applications. The first framework which can be applied
to this task dates back to Boussinesq (1897), who conceptualized that the mixing ability of
turbulence is analogous to viscous diffusion resulting in the eddy-viscosity model,

τ = νt
dU

dz
, (1)

where τ = −u′w′ is the Reynold’s stress, where u′ and w′ are the streamwise and nor-
mal velocity perturbations, U is the mean horizontal velocity, and νt is the eddy-viscosity
(analogous to kinematic viscosity).

The original theory lacked a determination of νt which is a property of turbulence and
not the fluid directly and therefore dependent on flow geometry. By drawing an analogy
to kinetic theory of gases, Prandtl (1925) chose νt = lmUT , where lm is a mixing length
(analogous to mean free path), and UT is a turbulent velocity scale. Mixing length can be
conceptually understood as the size of the eddies that dominate transport. Assuming the
mixing length is much smaller than the scales of the mean velocity gradient (i.e. the flow
consists of small-eddies), results in,

νt = l2m |dU
dz

|. (2)

The model becomes closed upon selection of the mixing length, lm , and is known as mixing-
length theory.

In the study of neutrally-stratified boundary layers, the pivotal discovery was made by von
Kármán (1930) who hypothesized that the mixing-length is proportional to the distance from
the surface, i.e lm = κz, where κ is the proportionality constant known as the von Kármán
constant. The implication is that the size of the dominant eddies scales with the distance from
the surface. Equations (1) and (2) taken together upon integration (assuming τ is constant
with height) results in the law-of-the-wall,

U (z)

u∗
= 1

κ
ln(z) + C, (3)

where u2∗ = −u′w′ is the velocity scale derived from the stress, known as the friction
velocity, and C is a constant of integration. The law-of-the-wall shows that the velocity
profile is logarithmic above the viscous sublayer.

As an alternative tomixing-length theory, dimensional analysis arrives to the same solution
without the use of assumptions about the structure of turbulence to simplify the dynamic
equations, and no conceptual assumption on the size of dominant eddies. The relations derived
from dimensional analysis will depend on which physical parameters are chosen as relevant
to the problem, thus the choice of parameters is the crux.More rigorously, the number of non-
dimensional parameters is determined through theBuckinghamπ theorem (B-π)which states
that, given a system with n physical variables which include k physical dimensions, there
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will be p = n − k non-dimensional groups which describe the system and are functionally
related (e.g. Stull 1988). For the remainder of this work we will base our presentation on
B-π .

In contrast to von Kármán’s initial theory which considers flow over a smooth surface,
we will consider a rough surface which introduces the roughness length scale z0, where
U (z0) = 0. The following set of variables are chosen for neutrally-stratified conditions,

dU

dz
, z, u∗, (4)

where u∗ is the friction velocity. This results in one non-dimensional groupwhich is therefore
constant, i.e.

z

u∗
dU

dz
= 1/κ, (5)

where κ is chosen tomatch the law-of-the-wall.Upon integration, from z0 to z, the logarithmic
profile is retrieved,

U (z) = u∗
κ

ln

(
z

z0

)
. (6)

This result is analogous to that of von Kármán for a smooth surface as it does not change the
solution but exchanges the viscous length scale, defined as ν/u∗, with the roughness length-
scale z0. Although generally considered universal, the value of κ remains debated and the
choice of value may result in significant differences depending on the application (George
2007). It should be noted that Eq. (5) holds evenwhen u∗ varieswith height. However, u∗ must
be constant to allow Eq. (5) to be integrated to the logarithmic profile of the law-of-the-wall
(Eq.6).

The atmospheric boundary layer (ABL) experiences a diurnal cycle due to radiative heating
and cooling of the surface. Buoyancy therefore plays a fundamental role in the structure of
turbulence in the ABL. The law-of-the-wall must therefore be modified to account for effects
of buoyancy. The natural extension is Monin–Obukhov Similarity Theory (MOST, Monin
and Obukhov 1954), which commonly applies dimensional analysis to the following set of
variables,

dU

dz
, w′θ ′, u∗,

g

θ0
, z. (7)

The turbulent fluxes (u∗ andw′θ ′) are both considered constantwith height inMOST, referred
to as the surface-layer scaling regime. The sublayer of the ABL near the surface where the
fluxes are constant is known as the Atmospheric Surface Layer (ASL). When the fluxes are
not constant with height, specifically under very stable conditions, the theory is valid through
the local scaling framework ofNieuwstadt (1984), where the fluxes aremeasured at the height
z. It is useful to note that the local scaling framework is a generalization of the surface-layer
scaling, as it is also valid when fluxes are constant with height. Additionally, B-π produces
relations which are inherently valid in the local scaling framework. However, it is not possible
to integrate these relations unless the vertical profiles of the fluxes are known.

By B-π , the five parameters have three physical dimensions resulting in the following two
non-dimensional groups. The first is the stability parameter,

ζ = −κgz

θ0

w′θ ′
u3∗

,
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which represents the competition between shear production of turbulence and buoyancy
production/consumption. When ζ > 0, ζ = 0, and ζ < 0, the conditions are said to be
stable, neutral, and unstable, respectively. The −κ in ζ is added for convenience to establish
the relationship between ζ and the flux-Richardson number,

R f = (g/θ0)w′θ ′

u′w′(dU/dz) + v′w′(dV /dz)
,

i.e. ζ can be derived from R f assuming the logarithmic wind profile (Eq.6). The Obukhov
length, L , scales the geometric height in ζ as ζ = z/L . The non-dimensional gradient, z

u∗
dU
dz ,

is the second non-dimensional group and is chosen to be the same as in the neutral (ζ = 0)
case which results in the law-of-the-wall.

The functional relationship as per B-π is:

zκ

u∗
dU

dz
= φM (ζ ), (8)

where φM is the universal function, determined from observations, that reduces to the law-of-
the-wall when ζ = 0, as φM (0) = 1 by the definition of κ . The wind profile can be computed
through integration (when fluxes are assumed constant) resulting in:

U (z) = u∗
κ

[ln(z/z0) − ψM (z/L) + ψM (z0/L)], (9)

where ψM is the stability correction to the law-of-the-wall defined as:

φM (z/L) = 1 − z
∂ψM (z/L)

∂z
. (10)

MOST in the form of Eqs. (8) or (9) (with the addition of analogous relations for tempera-
ture, moisture and other gases) forms the basis of turbulence parameterizations in the ASL
and is implemented in many weather, climate, air pollution, wind power, hydrological, and
ecological models.

Although a corner stone of boundary layer meteorology, Foken (2006) ascertained that
even under ideal conditions, MOST is only accurate to about 10–20%. The difficulty arises
in MOST when the atmosphere is non-stationary, heterogeneous, when other length-scales
are imposed on the system in addition to L , and when fluxes vary with height. Under very
stable conditions, where fluxes often varywith height, the validity of scalingmay be extended
through the local framework of Nieuwstadt (1984), with the caveat of requiring specification
of the vertical profiles of u∗ and w′θ ′.

In addition to the previouslymentioned issues inMOST, a recent trend in research initiated
by Sun et al. (2012) presents a theory known as the Hockey-Stick Transition (HOST). It is
assumed in HOST that large, non-local coherent eddies are generated at wind speeds larger
than a critical value and are said to mix the ASL, a phenomena which cannot be understood
through the concept of local eddy-viscosity as the turbulence scales with the bulk and not
the local shear. Many studies have observed HOST in their data including van de Wiel et al.
(2012), Mahrt et al. (2015), Acevedo et al. (2016), and Vignon et al. (2017). Grisogono et al.
(2020) extended MOST to make it compatible with HOST while Chechin (2021) argued that
HOST andMOST are already compatible. Alternatively, Pfister et al. (2021) and Peltola et al.
(2021) both demonstrate that HOST is a result of bin averaging different populations.

To improve the understanding of the ASL, the structure of different layers, and the length
scales of the system, we generalize the dimensional analysis of MOST by considering the
bulk gradient directly. The bulk gradient is important to both observations andmodelling as it

123



Novel Similarity Approach for ASL Bulk Shear Page 5 of 17 10

is commonly used for measuring turbulence and is applied as a surface flux parameterization
in numerical models. The general similarity theory is derived in Sect. 2; in Sect. 3 we present
the datasets which will be used to validate the theory for neutral conditions in Sect. 4 and
stratified conditions in Sect. 5. The implications of the novel similarity theory on HOST is
discussed in Sect. 6 followed by the conclusions in Sect. 7.

2 General Similarity Theory

To study the bulk structure of the ASL directly through a B-π approach, we generalize the
following set of variables already present in MOST,

w′θ ′, u∗,
g

θ0
, z, (11)

by replacing the local gradient by a bulk gradient and its associated length scale,

U (z) −U (z − δz)

δz
, δz. (12)

With the addition of one variable to the system, B-π requires an additional non-dimensional
group. We chose the ratio of length scales, r = δz/z, which is the thickness of a layer
relative to its distance to the surface. The parameter r is natural to the velocity difference in
a logarithmic wind profile since:

U (z) −U (z − δz)

u∗/κ
= ln

(
z

z0

)
− ln

(
z − δz

z0

)
= ln

(
1

1 − r

)
. (13)

The three non-dimensional parameters are ζ , r , and the non-dimensional bulk gradient defined
as:

G = z

u∗
U (z) −U (z − δz)

δz
. (14)

As per the B − π , there is a functional dependence between the three non-dimensional
groups i.e.,

G ∼ φG(ζ, r). (15)

Without loss of generality, for the neutral limit (ζ = 0) we select φG(0, r) = 1, which for
r = 0 retrieves the law-of-the-wall. This is accomplished by multiplying a factor to G which
can only be a function of r , resulting in the following family of similarity relations,

K (r)G = φG(ζ, r). (16)

The function K (r) can be interpreted as the normalization function of the bulk gradient during
neutral conditions for a given choice of r . The height z does not completely describe the effects
of a rough surface therefore an additional parameter is introduced, z0 such that U (z0) = 0,
i.e the mean wind speed is zero at z0. This additional length-scale is not fundamental as it
is not part of the non-dimensional analysis but constraints the system, i.e. δz ≤ z − z0. For
this study, Eq. (16) is considered in the local scaling regime, i.e. the fluxes are measured at
height z to extend its validity to higher stabilities.

The two limiting cases of Eq. (16) demonstrate the range of properties described by the
general similarity theory. When r → 0 the local gradient relation of MOST is retrieved, i.e.

K (0)
z

u∗
dU

dz
= φG(ζ, 0). (17)
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By the law-of-the-wall, K (0) is therefore the vonKármán constant κ , andφG(ζ, 0) = φM (ζ ).
In the limit where δz → z − z0 (the full-layer case), Eq. (16) reduces to:

U (z)

u∗
=

z−z0
z φG(ζ, z−z0

z )

K ( z−z0
z )

, (18)

leading to the surface stress, defined as Cd = (u∗/U )2, which is a function of both stability
and roughness length. The stress law is normally computed through the integration of the
local gradient similarity relation (Eq.17). By generalizing the dimensional analysis, they are
both members of the same family of similarity relations.

3 Datasets and Data Processing

We use data from four multi-level turbulence towers (Table 1) located in flat and gently
sloping terrain, over a range of surface roughness. The datasets include the Advective Hor-
izontal Array Turbulence Study (AHATS, Salesky and Chamecki 2012), the Cooperative
Atmosphere-Surface Exchange Study 1999 (CASES-99, Poulos et al. 2002), the NEAR
tower from the Second Meteor Crater Experiment (METCRAX II, Lehner et al. 2016), and
Central tower from Terrain-induced Rotor Experiment (T-Rex Central, Grubišič et al. 2008).
Both AHATS and CASES-99 are over grasslands in flat, horizontally homogeneous terrain
whileMETCRAX II and T-Rex Central are on sloping terrain over desert. Although the slope
is weaker than METCRAX II, T-Rex Central observes a more complicated region as it is on
a valley floor and influenced by the surrounding mountains, therefore in complex terrain. A
more in-depth discussion of individual dataset characteristics can be found in Stiperski et al.
(2019, 2021).

Turbulence statistics were computed using 5-min block averaging (Sun et al. 2020) for
stable conditions and 30-min block averaging for unstable conditions, both with a prior linear
detrending. The averaging period for stable conditions was chosen to ensure the filtering of
waves in near-neutral and weakly stable conditions, while retaining the turbulent signal.
We used double rotation (for AHATS, CASES-99, and T-Rex Central) and planar fit (for
METCRAX II) to rotate the data, correcting for instrument misalignment and the sloping
surface.

The wind speed gradients were computed from the analytically fitted mean wind speed
profiles. Due to the different behaviour of each datasets (e.g., tower heights, occurrence and
placement of low-level jets), the following functionswere chosen:U (z) = a+b ln z+c(ln z)2

for AHATS,U (z) = a+ bz+ cz2 + d ln z+ e(ln z)2 for CASES-99 and METCRAX II, and
U (z) = a + bz + cz2 + d ln z for T-Rex Central. If the higher order fitting functions resulted
in poor behaviour at the lowest observational level, a log-linear relation was applied between
z0 and that level. The roughness length for each dataset was computed from the logarithmic
profile in neutral conditions (|ζ | < 0.02).

To consider a regime where MOST is applicable, we removed data points with R f > 0.2
following Grachev et al. (2005). As the height of the ASL varies considerably for different
conditions, we considered all levels with observations to test the theory, regardless of whether
or not the fluxes are constant with height. Additionally, intervals where w′2 > 2 m2/s2 or
when missing/unreliable data exceeded 5% of points were removed from the analysis to
ensure high quality data.
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Table 1 Datasets used in the study

Dataset Levels z0(m) Slope angle (◦)

AHATS 1.55, 3.3, 4.24, 5.53, 7.08, 8.05 0.014 0

CASES-99 5, 10, 20, 30, 40, 50, 55 0.0263 0

METCRAX II 3, 10, 15, 20, 25, 30, 35, 40, 45, 50 0.042 1

T-Rex Central 5, 10, 15, 20, 25, 30 0.102 0.2

4 Neutral Conditions

We chose K (r) in the general similarity relation (Eq.16) to be defined such that in neutral
conditions, φG(0, r) = 1 or K (r) = 1/G. Expanding G from its definition leads to:

K (r) = ru∗
U (z) −U (z − δz)

, (19)

and applying the law-of-the-wall results in the analytic expression:

K (r) = κr

ln( 1
1−r )

. (20)

Consistentwith the definition of K (r), the vonKármán constant is retrieved in the limit r → 0
by applying L’Hopital’s rule, i.e limr→0 K (r) = κ . Figure1 presents the bin averaged K (r)
values computed from all four datasets and for all measurement height combinations by
normalizing the non-dimensional gradient during neutral conditions (as seen in Fig. 2). The
law-of-the-wall successfully explains the observed bulk structure of the ASL during neutral
conditions.

The von Kármán constant κ is computed from the data through regression to Eq. (20),
and ranges from 0.30 to 0.37. The von Kármán constant can also be computed directly by
normalizing the local gradient (r = 0), which as seen in the bin averaged values in Fig. 1
does not result in significant differences. The advantage of applying Eq. (20) to compute
κ is to remove the sensitivity of the local gradient calculation on the estimation of κ . Our
values for AHATS, CASES-99, and T-Rex Central are smaller than the range of 0.35−0.43
reported in Foken (2006) and smaller than most values reported in Högström (1996). The
smallest value is for T-Rex Central which exhibits κ = 0.30. Deviations for T-Rex Central
can be associated to the effects of complex terrain on scaling and have been investigated
in Babić et al. (2016b). Although deviating from canonical conditions, T-Rex Central fits
Eq. (20) as well as the datasets which are closer to canonical just with a lower κ . Although
treated identically as the other datasets, CASES-99 exhibits poor behaviour, most likely due
to measurement or processing error.

Interestingly, all four datasets converge quite well on the upper domain of r as seen in
the sub-panel of Fig. 1. The κ predicted by the upper domain (r > 0.99) is around 0.38,
which we use for this study. The von Kármán constant, as measured through the whole r
domain, varies considerably. Local and non-local processes, heterogeneity, and the effects of
complex terrain result in deviations from the law-of-the-wall, which could contribute to the
observed variations between the datasets. Variations between the κ values computed in this
study and those presented in earlier literature is most likely a result of improvements in flux
measurement and processing techniques. A thorough investigation of the sensitivity of κ to
different methods is warranted but beyond-the-scope of this work.
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Fig. 1 The bin averaged values (x symbols) of K (r) for various datasets. The solid curves are the regression
to Eq. (20) for κ for each dataset. The dashed curve shows the theoretical curve for κ = 0.4

5 Stratified Conditions

To consider stratified conditions (ζ �= 0) analytically, φG(ζ, r) can be expressed in terms of
the ψM (ζ ) function from MOST, which is the deviation from the law-of-the-wall (Eq.10).
First, the non-dimensional bulk gradient, G, is expanded from its definition in Eq. (16) and
applying the analytic K (r) derived from the law-of-the-wall (Eq.20), results in:

φG(ζ, r) = κ

ln( 1
1−r )

U (z) −U (z − δz)

u∗
. (21)

The wind profile, U (z), is then selected to be the stability-modified wind profile of MOST
(Eq.9), which results in the MOST prediction of φG ,

φG(ζ, r) = 1 − ψM (ζ ) − ψM (ζ(1 − r))

ln( 1
1−r )

. (22)

Ultimately, it is possible to determine empirically whether MOST, via the selection of ψM ,
is effective in representing the non-dimensional bulk gradient φG .

5.1 Stable Conditions

The Businger–Dyer relation for stable conditions is ψM = −βζ , where β ≈ 5 (Högström
1996). Applying Businger–Dyer to Eq. (22) results in the general log-linear relation,

φG(ζ, r) = 1 + β
K (r)

κ
ζ. (23)
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Fig. 2 The similarity curves for stable conditions of the bulk gradient for a AHATS, b CASES-99, c
METCRAX II, and d T-Rex Central. All possible separations (δz) are considered with each curve colour
coded by its r value, blue for the full-layer bulk gradient and red for the local gradient

It should be noted that having a log-linear wind profile is the only relation which is form
preserving in Eq. (22). The similarity curves, φG , are presented in Fig. 2 for all possible r
values, i.e. every combination of the measurement heights. With the exception of CASES-99
which behaves poorly, the data shows log-linear behaviour with large values of r exhibiting
a delayed onset of the influence of stability (i.e. the curves with larger r deviate from φG ≈ 1
at larger ζ ).

To test the validity of the general log-linear relation, Eq. (23) is rearranged to separate out
the dependence on r , i.e

φG(ζ, r) − 1

K (r)/κ
= βζ. (24)

The bin averaged medians for each dataset, which include every instrument height and pos-
sible separation (δz), are plotted in Fig. 3. All the datasets collapse extremely well to the
generalized log-linear relation with β = 5 for ζ < 2. The datasets over flat terrain (AHATS,
CASES-99) have extended validity and are valid up to ζ ≈ 10. Variations becomes excessive
at large stabilitymatching the already understood limitations ofMOST for such conditions, i.e
when turbulence is non-stationary, non-Kolmogorov, highly anisotropic, and/or intermittent
(e.g. Grachev et al. 2013, Babić et al. 2016a).

The dependence of φG on stability can be treated from the general log-linear relation. The
slope in Eq. (23) is independent of the von Kármán constant, and its dependence on r only
originates from K (r). As K (r) is a monotonically decreasing function of r , an immediate
consequence is that the stability dependence of φG is weaker for larger values of r as already
demonstrated in Fig. 2. The full-layer bulk gradient (δz = z − z0) is therefore more robust
to stability than the local gradient (δz = 0).

A threshold for when stability has significantly influenced φG can be derived from the
general log-linear relation. We chose the threshold as the value of ζ for which φG is 50%
larger than its neutral value, i.e. φG = 1.5. Applying Eq. (23) with β = 5, and setting
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Fig. 3 The scaled (for r ) stability curves of the bulk gradient for each datasets using all possible separations
(δz). The black line is the generalized log-linear relation with β = 5. The shaded region shows the range
between the 25th and 75th percentile for the full dataset

φG = 1.5 results in:

ζt (r) = κ

2βK (r)
= ln( 1

1−r )

10r
. (25)

For the local gradient (r = 0), the threshold is ζt (0) = 0.1, which coincides with the upper
limit for the weakly stable regime of Grachev et al. (2005), defined as the regime where u∗
andw′θ ′ are approximately constant with height. Considering the upper limit of r and taking
z = 10 m as an example (i.e. δz = 10 − z0), ζt ranges from 0.46 to 0.66 due to variations
in z0 (Table 1). A larger z0 (as observed in T-Rex Central) leads to a smaller value of r and
consequently a smaller ζt . Compared to the ζt (0) = 0.1 of Grachev et al. (2005), there is
a factor of 4.6 to 6.6 increase in ζt for the full-layer bulk. This implies that for the datasets
considered in this study, the full-layer bulk gradient through the lowest 10m’s is robust to
stability for a 4.6 to 6.6 larger domain of ζ than the local gradient at 10m.

5.2 Unstable Conditions

Applying the stability correction function for unstable conditions from Brutsaert (1992),

ψM = 1 − b

n
ln

(
a + |ζ |n

a

)
− 3c|ζ |1/3, (26)
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Fig. 4 The similarity curves for unstable conditions of the bulk gradient for a AHATS, b CASES-99, c
METCRAX II, and (4) T-Rex Central. All possible separations (δz) are considered with each curve colour
coded by its r value, blue for the full-layer bulk gradient and red for the local gradient

which is based on the Kader and Yaglom (1990) model, results in the following similarity
relation,

φG(ζ, r) = 1 − 1

ln 1
1−r

{
1 − b

n
ln

(
a + |ζ |n

a + |ζ |n(1 − r)n

)
− 3c|ζ |1/3(1 − (1 − r)1/3)

}
.

(27)

The Kader and Yaglom (1990) model differs from the Businger–Dyer relations and analytical
solutions of the O’KEYPS equation (e.g. Li 2021) by predicting an increase in φM for
ζ < −1, instead of a monotonically decreasing behaviour. The increasing φM is consistent
with measurements (see Fig. 4).

The non-linearity of the stability correction function for unstable conditions inhibits a
result as simple as Eq. (23) and the effects of ζ and r on φG are not separable as is the
case for stable conditions (Eq.24). This implies the collapse of the curves in Fig. 3 is not
possible for the full range of unstable ζ values. The φG function based on Brutsaert (1992)
with the original parameter values is plotted in Fig. 5a as well as the curve fits for the four
datasets. Values of a, b, c and n for each is presented in Table 2. Rearranging φG in same
form as Eq. (24) shows an approximate collapse of the curves when ζ > −0.2 (Fig. 5b). This
collapse occurs for the Brutsaert (1992) values as well as for the four datasets (not shown),
and corresponds to the transition from the dynamic-convective to dynamic sublayers of the
Kader and Yaglom (1990) model. The results suggest that the dependence of φG on ζ and r
is not separable during unstable conditions when buoyancy production is comparable-to or
larger-than the dynamical production of turbulence.

Figure 4 shows φG for all possible values of r for the four datasets. Similar to stable
conditions, the bulk gradients are more robust to stratification than the local gradients. The
lack of collapse of the curves with the same r is indicative of missing parameters to the
problem as discussed in Salesky and Chamecki (2012). As seen in Fig. 5, the analytic curves
from Eq. (27) show a reverse in ordering at around ζ = −1. This was not observed in the
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Fig. 5 The analytic similarity curves of the bulk gradient for unstable conditions (Eq.27). Each coloured
curve is Eq. (27) with the parameter values from Brutsaert (1992) and is coded by its r value, blue for the full-
layer bulk gradient and red for the local gradient. The black curves are the curve fits to AHATS, CASES-99,
METCRAX II and T-Rex Central for r = 0

Table 2 Parameters of the ψM
function of Brutsaert 1992
(Eq.26) from the original study
and from AHATS, CASES-99,
METCRAX II, and T-Rex Central

a, b, c, n

Brutsaert (1992) 0.37, −0.24, 0.50, 0.72

AHATS 0.08, 0.04, 0.12, 1.18

CASES-99 0.09, 0.06, 0.19, 1.29

METCRAX II 0.12, 0.037, 0.091, 1.11

T-Rex Central 0.084, 0.14, 0.12, 1.43

datasets with exception of T-Rex Central, implying the ψM considered is not reconstructing
φG universally. In contrast to stable conditions, the four datasets exhibit different properties
for unstable conditions, including theminimum values of φG and the transition from dynamic
to dynamic-convective conditions. This can also be seen in the range of values presented in
Table 2. This analysis demonstrates that the bulk shear similarity, as treated in this study, was
not successful in explaining the observations and indicates the need for further work on the
scaling relations of the bulk shear in the unstable ASL.

6 Implications for the Hockey-Stick Transition

The Hockey-Stick Transition (HOST), developed by Sun et al. (2012, 2016), states that there
are two distinct regimes observed in UT −U space (e.g. Figure6a), where UT is a turbulent
velocity scale. For weak winds,UT exhibits a weak dependence on wind speed until a critical
wind speed (UHo) is reached where the relation becomes linear, i.e. UT ∼ U . The branch
where U < UHo is considered stable while U > UHo is considered neutral. The threshold
between the two,UHo, increases with the measurement height while the slope forU > UHo
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is considered constant with height. Physically, the threshold is interpreted as the wind speed
whereupon large, non-local coherent eddies are generated which mix the ASL.

We address two contradictions between HOST and the law-of-the-wall, which by relation
implies a contradictionwithMOST.Firstly,HOSTclaims that for the so-called neutral branch,
extending the linear trend to the low wind speed limit results in a negativeUT . Secondly, the
slopes of the neutral branch are constant with height. The law-of-the-wall (Eq.6), for which
u∗ is taken as UT , gives the following u∗ −U relation,

u∗ = κ

ln(z/z0)
U . (28)

We can see from Eq. (28) that limU→0 u∗ = 0, and the slope is dependent on height through
z/z0, contradicting HOST. We will demonstrate that the contradictory features are a result
of erroneously identifying the U > UHo of HOST as the neutral branch.

The bin averaged UT − U relations during stable conditions for the four datasets are
presented in Fig. 6, for which u∗ is chosen asUT . Figure6(c, d) shows the CASES-99 dataset
which was used for the original study of HOST (Sun et al. 2012). When examining the full
dataset, the shape of the curves (left column) resembles a hockey stickwhere the lower branch
shows a weak dependence on wind speed until a certain wind speed (UHo), where the curve
transitions to a steeper slope. The region with a steeper slope does not coincide with the
law-of-the-wall, which predicts a range of straight lines (shown in grey) due to dependence
on z/z0.

As HOST considers the data in u∗ − U space, then the relevant φG is for the full layer
with δz = z − z0 as it provides the relation between U and u∗ (Eq.18). We demonstrated
in Sect. 5.1 that separating regimes through ζ depends on which layer is considered. For the
full layer, the ζ value for which φG is 50% larger than its neutral value is:

ζ
z0
t = ζt

(
z − z0

z

)
= z · ln(z/z0)

10(z − z0)
. (29)

We therefore apply ζ
z0
t to separate cases where stability has significantly (by 50%) modified

φG and the cases for which it has not. The curves with ζ < ζ
z0
t and ζ > ζ

z0
t are presented

in the right column of Fig. 6. For ζ < ζ
z0
t , the curves show slopes which mostly fall in the

range predicted by the law-of-the-wall. The slight variations from the law-of-the-wall are
likely a result of weak stability, instrument errors and uncertainty in the computation of z0.
For low wind speeds, the u∗ values for ζ < ζ

z0
T approach a positive, non-zero value which

is contradictory to both HOST and MOST, and is attributed to submeso scale motions (e.g.
Urbancic et al. 2020). For ζ > ζ

z0
t , the different levels exhibit a weakly increasing curve

that significantly overlaps in the wind speed domain with the ζ < ζ
z0
t case. This curve is not

physically insightful as it involves the bin-averaging of points with a wide range of stabilities
and properties. Regardless, as seen in the left column, the values of the lower branch extend
to much larger wind speeds than UHo. For example, the CASES-99 data at 40m has UHo

occurring at around 6m/s while stable cases occur up to 9m/s. We conclude that wind speeds
larger than UHo do not necessarily result in the transition to a neutral conditions since the
neutral branch of HOST is not exclusively derived from neutral conditions. Furthermore, our
results demonstrate that HOST is an artifact of bin-averaging distinct populations.

The two branches in u∗ − U space, as described by HOST (left column in Fig. 6), do
not identify features which are incompatible with MOST as their properties depend on the
distribution of ζ . For example, the value ofUHo depends on the population of points in each
stability bin and is therefore not a physical constant. This may explain the variations inUHo

between different sites discussed in Acevedo et al. (2021). The increase inUHo for different
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Fig. 6 The u∗–U curves for (a, b) AHATS, (c, d) CASES-99, (e, f) METCRAX II, and (g, h) T-Rex Central.
Left column (a, c, e, g) show the bin average for the full dataset while the right column (b, d, f, h) show the
bin average for ζ < ζt (solid) and ζ > ζt (dashed). The shaded grey region shows the range expected from
the log-wind profile, i.e. for neutral conditions, for the range of heights considered

heights can be simply attributed to an increase in ζ as ζ ∼ z, altering its distribution, as well
as a decrease in u∗ occurring with height, as commonly observed in the SBL. If the weakly-
stable condition (ζ < 0.1) of Grachev et al. (2005) was applied instead of ζ

z0
T , then points

which are not significantly influenced by stability (0.1 < ζ < ζ
z0
T ) would affect the statistics

of the stable branch resulting in a variant of HOST. Both Pfister et al. (2021) and Peltola
et al. (2021) also demonstrate that HOST is an artifact of bin-averaging by separating the
data into two populations by their position in relation to thermal submesofronts and by being
in coupled and decoupled states, respectively. Therefore,UHo is not a physical prognostic of
the ASL.

The approach of explaining HOST as an artifact of bin-averaging populations with differ-
ent properties is not contradictory to Chechin (2021), who showed that MOST can recreate
theHOST. Chechin (2021) applied Eq. (9) to extract the u∗−U relation by empirically setting
L as a function of u∗ through bin-averaging. This approach still treats the full population of
points irrespective of ζ , naturally resulting in HOST.

7 Conclusions

To investigate the structure of bulk shear in the ASL we generalize MOST from the local
gradient to a bulk gradient. This generalized approach results in a practical and therefore
elegant family of similarity relations. Through this theory, we can establish the similarity of
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different shear layers in the ASL based on the thickness of the layer relative to its height
above the surface. The seamless transition through this family of similarity relations, from
the scaling of the local gradient to the full-layer bulk gradient, demonstrates the unified
identity of these variables. Care should therefore be taken when considering the bulk and
local gradients as competing influences on the ASL.

Under neutral conditions, the normalization function of the non-dimensional bulk gradient,
K (r), can be thought of as a vonKármán function and is correctly predicted by the logarithmic
wind profile of the law-of-the-wall. The von Kármán constant, κ , is the limiting case of K (r)
for a local gradient (r = 0) and once known, fully defines the K (r) function. As the other
limit (full-layer case) is not universal, due to dependence on z0, it is clear that the local
gradient is in-fact the natural variable of consideration as it is through the local gradient that
the universal constant κ is found. If HOST was correct in saying that the slope of u∗ − U
was constant during neutral conditions and independent of height, then a new constant, other
than κ , would be extracted in the observed K (r) function. However, this was not the case in
our data which obeys the law-of-the-wall.

Under stable conditions,we determined that the log-linear relation ofBusinger–Dyer in the
stable boundary layer can be generalized to all bulk gradients (Eq.23), where the constant
slope is a function of r . This allows for quantifying the influence of stability on the bulk
gradients and to demonstrate how this dependence varies on the choice of r . The full-layer
bulk gradient (and by association the surface stress) is considerably more robust to stability
than the local gradient. By taking this into account in the threshold value of ζ (Eq.29) we are
able to correctly filter the data influenced by stability to demonstrate thatMOST is compatible
with HOST. We also show that high stability cases also occur under moderate to high wind
speeds. There is therefore no critical wind speed threshold where large, non-local coherent
eddies become significant and mix the ASL. Therefore, it seems likely eddies of all sizes
contribute to establishing the wind speed profile of the ASL.

For unstable conditions, φG assumes a complicated analytical form due to the non-linear
dependency on ζ of the stability correction functions. This non-linearity prevents the sepa-
ration of the influence of r and ζ in the dynamic-convective and free convective sublayers
of the Kader and Yaglom (1990) model, making the situation more complicated than in sta-
ble conditions. Additionally, the non-dimensional bulk gradient, G, is not fully described
by ζ and r implying the need to introduce more parameters to the dimensional analysis.
For all datasets, we observed non-monotonic behaviour at large values of −ζ which is not
represented in the Businger–Dyer relation but predicted by the model of Kader and Yaglom
(1990). The stability correction function from Brutsaert (1992), which is based on the Kader
and Yaglom (1990) model, does not successfully represent the bulk gradient. Further analysis
on the scaling relations of the unstable atmospheric surface layer is warranted.

The Monin–Obukhov Similarity Theory remains the foundational theory explaining the
structure of the atmospheric surface layer. Improvements and extensions are needed to
increase the regimes of its validity. Promising advances are under way including taking
into account the anisotropy of the system, extending the work of Stiperski and Calaf (2018,
2021, 2022), and/or machine learning methods (e.g. McCandless et al. 2022) which may
represent processes which are not easily accessible through classical theory.
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