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Abstract

In this paper, we take a historical perspective by going back to Verschaffelt’s landmark study published in 1910, in which he
found that glucosinolates were used as token stimuli by larvae of Pieris butterflies, specialist feeders on plants in the fam-
ily Brassicaceae. This classic discovery provided key evidence for Fraenkel (Science 129:1466—1470, 1959) to elaborate
on the function of secondary plant substances and for Ehrlich and Raven (Evolution 18:586—608, 1964) to put forward the
hypothesis of insect—plant coevolution. The discovery by Schoonhoven (Kon Nederl Akad Wetensch Amsterdam Proc Ser
C70:556-568, 1967) of taste neurons highly sensitive to glucosinolates in Pieris brassicae was an important milestone in
elucidating the chemosensory basis of host-plant specialization. The molecular basis of glucosinolate sensitivity was elu-
cidated recently (Yang et al., PLoS Genet 17, 2021) paving the way to unravel the evolution of gustatory receptors tuned to
glucosinolates that are crucial for host-plant selection of Pieris butterflies. We propose a hypothetical model for the evolution

of labeled-line neurons tuned to token stimuli.
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Introduction

Phytophagous insects can be separated into three categories
depending on their host-plant ranges. Polyphagous insects
feed on more than one family of chemotaxonomically unre-
lated plants, oligophagous insects feed on plants in several
genera but in the same family or families sharing second-
ary plant substances, and monophagous insects feed on a
single plant species or plants in the same genus (Bernays
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and Chapman 1994). Polyphagous insects are also called
generalists, while oligophagous and monophagous insects
are collectively called specialists. What factors determine
the diet breadth of phytophagous insects is a key question in
the field of insect—plant relationships since the beginning of
insect—plant research (Schoonhoven et al. 2005).

The discovery of token stimuli in insect—plant
research

In 1910, Verschaffelt published an article in the Proceed-
ings of the Royal Academy of Amsterdam entitled "What
determines the choice of food for certain herbivores" (Ver-
schaffelt 1910). In a series of feeding experiments, he found
that glucosinolates promoted feeding by the larvae of Pieris
brassicae L. and Pieris rapae L. (Lepidoptera: Pieridae),
and that the distribution of glucosinolates could account for
their host-plant range. Apios tuberosa is not used as a host
plant by either P. brassicae or P. rapae larvae. When the
juice obtained from the leaves of the brassicaceous (syn. cru-
ciferous) plant (Bunias orientalis) was smeared on A. tuber-
osa, this was immediately consumed by the larvae. When the
juice of B. orientalis was added to cornstarch or filter paper,
these were also consumed by Pieris larvae. This study has
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been recognized as the first to discover the chemical basis of
specialized insect—plant relationships. Later, using Plutella
maculipennis (nowadays named P. xylostella L.), another
specialist on brassicaceous plants, Thorsteinson re-examined
Verschaffelt's research and expanded it experimentally and
conceptually, and the results of Verschaffelt were fully con-
firmed (Thorsteinson 1955). Glucosinolates are secondary
substances unique to the Brassicaceae and a small number of
species in chemotaxonomically related plant families (e.g.,
Tropaeolaceae) that are hydrolyzed by the enzyme myrosi-
nase to various breakdown products arising during feeding
damage to plant tissues (Rask et al. 2000), such as nitriles
and isothiocyanates. Such secondary plant substances, with-
out a nutritional function, are mainly responsible for host-
plant recognition by phytophagous insects and were called
"token stimuli" (Dethier 1941, 1954; Lipke and Fraenkel
1956).

Key evidence for the coevolution of insects
and plants

Verschaffelt's results did not receive much attention at the
time. Only half a century later, the role of secondary plant
substances in insect—plant relationships was again empha-
sized. After years of studying insect nutrition, Fraenkel
(1959) came to the conclusion that the nutritional require-
ments of all insects were basically very similar, and the
presence of all required nutrients in plants was common,
so why were so many insects restricted in the plants they
would eat? Examination of the literature, including Dethier
(1941), led him to the insight that secondary substances in
different plants were responsible for the chemical signatures
characteristic for plant families and species and thereby
might provide a clue to the evolution of host-plant selec-
tion behavior (Fraenkel 1959). He took insects particularly
on Brassicaceae (Cruciferae), Umbelliferae, Leguminosae,
Solanaceae, Moraceae, and Gramineae as examples, and
clearly explained the role of secondary plant substances in
these plants, such as glucosinolates, alkaloids, and terpe-
noids, as repellents (deterrents) or attractants (stimulants).
Over the course of evolution, these compounds emerged as
defense mechanisms in plants against phytophagous insects
and against other organisms. Insects, in turn, have developed
defense mechanisms against the toxic effects of these sub-
stances, allowing them to process these molecules in many
different ways. In some cases, this plant defense—insect
counter-defense evolution gave rise to monophagous
and oligophagous insects that are attracted or stimulated
by these substances and will not feed or lay eggs in their
absence, as in the case of glucosinolates—Pieris and Plu-
tella, whereas polyphagous insects feed on plants that do not
contain strong repellents or deterrents to them. This plant
adaptation—insect counter-adaptation cascade, also termed
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‘chemical arms-race’, has been put forward to explain the
great diversity of secondary substances in plants and their
significance in insect-host-plant relationships (Fraenkel
1959, 1981). After intense debate and the growing knowl-
edge on plant chemistry and insect—host-plant selection
behavior, the importance of secondary plant substances,
next to plant nutrients, in host-plant acceptance by insects
was firmly established (Kennedy 1958; Thorsteinson 1960).

A few years after Fraenkel's paper, Ehrlich and Raven
(1964) came to a conclusion similar to Fraenkel's, based
on literature on butterfly—host-plant interactions, building
among others on Verschaffelt (1910), Dethier (1941, 1954,
and 1959) and Fraenkel (1959). That is, secondary plant sub-
stances play a dominant role in determining the pattern of
plant utilization by insects (Ehrlich and Raven 1964). Based
on this, they coined the term “coevolution” as a hypothesis
for how insect—plant interactions evolved, that is, plants pro-
duce a variety of secondary substances through accidental
gene mutations and genetic recombination, some genetic
variants are less consumed by insects, so that the plants
experience reduced fitness loss due to insect attack, giving
rise to an adaptive zone. As counter-adaptation, insect pop-
ulations may diversify, promoting speciation events. Such
adaptive interactions result in host-plant specialization of
insects and the impressive diversity of ecological relation-
ships between plants and insects. Such a stepwise ‘arms-
race’ evolution has been widely accepted by the academic
community, greatly promoting research progress in the field
of insect—plant relationships, and triggering a large number
of studies on species interactions, adaptation and differen-
tiation. However, the role of secondary plant substances as
token stimuli has in all cases been inferred from behavioral
observations, except for only two cases: the butterfly Papilio
xuthus in response to the oviposition stimulant synephrine
and for Pieris rapae in response to the glucosinolate token
stimulus sinigrin; for these two species, the sensory mecha-
nisms at both the electrophysiological and molecular levels
have been identified.

The taste perception of glucosinolates in Pieris

The study of insect—plant interactions has benefited from
multidisciplinary approaches at all times. In 1955, Hodgson
and his colleagues developed an electrophysiological tech-
nique called ‘tip recording’, which allowed to register the
electrophysiological activity of neurons in the taste sensilla
of insects (Hodgson et al. 1955). For phytophagous insects,
this technique was first used in studies on Colorado potato
beetles (Leptinotarsa decemlineata Say), silkworms (Bom-
byx mori L.), and the large cabbage white butterfly (. bras-
sicae) to study their chemosensory physiology (Ishikawa
1966; Schoonhoven 1967; Stiirckow 1959). Schoonhoven
(1967) was the first to identify gustatory receptor neurons in
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Pieris larvae highly sensitive to glucosinolates. The two neu-
rons located in the pair of sensilla styloconica on the maxil-
lary galea in P. brassicae larvae responded to glucosinolates,
the characteristic of brassicaceous plants. Their response
spectra overlap but are not identical, and the sensory thresh-
old concentration of the response to glucosinolates is in the
range of the behavioral threshold of the larvae. Such chemo-
receptor neurons can be designated as "labeled lines", that
is, along the lines (axons), information is transmitted to the
brain that is quantitatively correlated with the strength of
the behavioral response. In this case, the host acceptance
behavior can be explained by the chemosensory perception
of a number of chemically similar token stimuli by several
specialized chemoreceptors.

To understand the molecular basis of recognition of glu-
cosinolates, the next question was which gustatory receptors
are expressed on the taste neurons tuned to glucosinolates.
However, the molecular mechanisms of glucosinolate per-
ception remained an enigma during 54 years. The first study
addressing the molecular basis of glucosinolates sensing in
an insect was published by Yang et al. (2021). The latter
authors screened two highly expressed ‘bitter’-sensitive
gustatory receptor genes, PrapGr28 and PrapGrl5, from
the taste organs of female adults of Pieris rapae using tran-
scriptome sequencing and fluorescent quantitative PCR
detection, and hypothesized that they might be involved in
the perception of glucosinolates (Yang et al. 2021). Further
experiments on Xenopus oocytes and two-electrode volt-
age-clamp studies showed that only the oocytes expressing
PrapGr28 were sensitive to the glucosinolate sinigrin. To
verify this result, they heterogeneously expressed PrapGr28
in the Gr5a gustatory receptor neurons of Drosophila L-type
sensilla, successfully conferring their sensitivity to sini-
grin. Finally, they used RNAI to reduce the expression of
PrapGr28 and found that the electrophysiological response
of the taste sensilla of the foreleg tarsi of adults to sinigrin
was significantly reduced, confirming that PrapGr28 is the
gustatory receptor tuned to sinigrin in P. rapae (Yang et al.
2021). Glucosinolates occur in three chemically distinct
types, i.e., aliphatic (e.g., sinigrin), aromatic, and indolic,
based on the side chain of these molecules. Thus far, the
molecular receptors for sensing other aliphatic, aromatic,
and indolic glucosinolates remain unknown.

Prevalence of glucosinolates as token stimuli
for specialist insects on crucifers

Glucosinolates and their breakdown products have been
shown to deter and repel generalist insects (Louda and
Mole 1991; Renwick 2002), and various specialist insects on
Brassicaceae use glucosinolates as token stimuli to promote
feeding in addition to Pieris species and P. xylostella men-
tioned earlier, for example, the aphid Brevicoryne brassicae

(Wensler 1962), the weevil Ceutorhynchus inaffectatus
(Larsen et al. 1992), various chrysomelid beetles (Phyl-
lotreta cruciferae, P. nemorum, P. undulata, P. tetrastigma,
P. armoraciae, P. tetrastigma, and Phaedon cochleariae)
(Hicks 1974; Nielsen 1978a, b; Nielsen et al. 1979; Reif-
enrath and Miiller 2008), or to promote oviposition, e.g.,
P. rapae and P. brassicae (Renwick et al. 1992; Van Loon
et al. 1992), the fly Delia radicum (Nair and McEwen 1976;
Stéadler 1978), the sawfly Athalia rosae (Barker et al. 2006).
Apparently, the specialist insects on Brassicaceae seem
to employ a simple “lock and key” model, triggering ste-
reotypical host acceptance behaviors through a few token
stimuli (Hopkins et al. 2009). Currently, there are only a few
documented insect—plant interactions outside of the Brassi-
caceae for which secondary plant substances have unequivo-
cally been identified as token stimuli at both behavioral and
physiological levels, e.g., Chrysolina brunsvicensis—Hyperi-
cum (Rees 1969), Diabrotica spp.—Cucurbita spp. (Metcalf
et al. 1980; Mullins et al. 1994), Papilio polyxenes—Daucus
carota (Feeny et al. 1988; Roessingh et al. 1991), Papilio
xuthus—Citrus unshiu (Ohsugi et al. 1991; Ozaki et al. 2011),
Manduca sexta—Solanum spp. (del Campo et al. 2001), and
Tyria jacobaeae—Senecio jacobaea (Bernays et al. 2004).
However, the molecular aspects have only been studied in
two cases (Ozaki et al. 2011; Yang et al. 2021).

Evolution of taste neurons coding for token stimuli

The behavioral response of insects to potential food plants
consists of a reaction chain during which multiple sensory
inputs are utilized, including optical, mechanosensory, olfac-
tory and gustatory cues. There is ample evidence that in
the final step in the chain gustatory cues are of overriding
importance and provide the highest degree of specificity in
the form of plant family-, genus-, or species-specific second-
ary chemicals (Chapman 2003; Schoonhoven et al. 2005).
Stimulatory and inhibitory inputs are transmitted to the cen-
tral nervous system and may be processed in an additive
manner such that the decision-making can be visualized as a
balance: if the positive inputs outweigh the negative inputs,
the insect feeds or lays eggs, if the negative inputs prevail,
the insect rejects the food (Dethier and Crnjar 1982; Schoon-
hoven and Blom 1988).

The gustatory receptor neurons in the taste sensilla of
generalist insects are generally divided into two types (Chap-
man 2003): the first type is called the ‘common stimulus’
neuron, which senses nutritive compounds such as sugars
and amino acids that stimulate the insects to feed or lay eggs;
the second type is called ‘deterrent’ neuron, sensing sec-
ondary plant substances that prevent insects from feeding
or laying eggs. In addition to the above two, in specialist
insects a third type of neuron has evolved, which senses
token stimuli that are specific secondary plant substances

@ Springer
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Fig.1 Schematic representation of a hypothetical molecular genetic
scenario for evolution of a token stimulus gustatory receptor neuron
acting as a “labeled line”. Top left: ancestral situation with ‘com-
mon stimulus’ gustatory receptor neurons (GRN) expressing recep-
tor proteins (Grs, depicted as green rectangles) and deterrent neurons
expressing “bitter” receptor proteins (red rectangles) responding to
deterrent secondary plant substances including the glucosinolate
sinigrin. Synapses between GRNs and neurons in the central nerv-
ous system (CGN) involved in gustatory integration and process-
ing either depolarize (excitation, indicated by ‘+’) or hyperpolarize
(inhibition, ‘-°) to different degrees depending on the number of syn-
apses of each type, reflected by the number of ‘+’ and ‘—° symbols.
At the next level of gustatory information processing (red circle), the
intensity of stimulatory neural activity is lower than the intensity of
inhibitory activity and the host plant is rejected for feeding or ovi-
position. This scenario corresponds to the chemosensory system of a

that stimulate the insects to feed and lay eggs. In addition,
in Pieris species, a specialized type of deterrent neuron has
been discovered that is tuned to a group of steroidal deterrent
compounds, cardenolides, found only in some genera of the
Brassicaceae (Van Loon and Schoonhoven 1999).
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generalist phytophagous insect species that avoids sinigrin-containing
plants. Step 1 leads to duplication of ‘common stimulus’ neurons,
thereby increasing the intensity of stimulatory neural activity to the
brain CGNs, yet rejection ensues. In Step 2, certain “bitter” Gr genes
are mis-expressed in the ‘common stimulus’ GRNs, causing a shift to
increased intensity of excitatory inputs of CGNs and the probability
of behavioral acceptance increased (orange circle). In Step 3, muta-
tions in these Grs occurred and variants were selected that specifi-
cally bind to host-plant taxon-specific secondary chemicals, thereby
favoring host-plant specialization by allowing fast behavioral deci-
sion-making through labeled-line coding (thick green line): neural
activity in this processing pathway triggers acceptance of the plant for
feeding or oviposition (green circle). The neurons that evolved in this
way to “token stimulus GRNSs” retained sensitivity to a few secondary
substances and lost Grs to chemically unrelated compounds

In general, glucosinolates are feeding or oviposition
deterrents for generalist insects and token stimuli for spe-
cialist insects on Brassicaceae (Hopkins et al. 2009). We
hypothesize that token stimuli originally acted as deterrents
to insects. Our reasoning is based on the molecular evidence
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that the few gustatory receptors tuned to token stimuli identi-
fied so far belong to ‘bitter’ gustatory receptors, which are
expressed by deterrent neurons (Ozaki et al. 2011; Yang
et al. 2021). The following molecular genetic scenario could
be envisaged (Fig. 1): initially the token stimulus neurons
originated from the duplication of ‘common stimulus’ neu-
rons, relaying stimulatory information to the brain. Next,
certain bitter Gr genes expressed in deterrent neurons were
mis-expressed in the common stimulus cells, causing sub-
tle changes in the balance of positive and negative inputs.
Subsequently, these Grs changed over time as a result of
mutation and variants were selected that favor host-plant
specialization, e.g., because they allow fast behavioral deci-
sion-making through labeled-line coding (Bernays 2001).
The neurons that evolved in this way retained sensitivity
to a few secondary substances and lost Grs to chemically
unrelated compounds. If the deterrent plant molecules are
toxic, the molecular changes at the dendritic membrane of
gustatory receptor neurons need to be accompanied by adap-
tations that allow overcoming the toxicity through enzymatic
degradation or other mechanisms rendering these toxicants
harmless. However, as was pointed out by Bernays (1991),
there seems to be no strong relationship between deterrency
and toxicity, which supports the plausibility of the hypotheti-
cal scenario outlined here.

Conclusions

It is a well-established fact that glucosinolates are token
stimuli for many specialist insects on brassicaceous plants.
These insects are equipped with specialized gustatory recep-
tor neurons that act as “labeled lines” to sense the presence
of glucosinolates. An interesting question from the per-
spective of neural coding is how phytophagous insects with
their limited number of such neurons sense and discrimi-
nate between different glucosinolate mixtures in plants. We
are just beginning to understand the molecular interactions
that occur on the dendrite membranes of gustatory receptor
neurons in phytophagous insects. Undoubtedly, elucidating
the coding mechanisms of token stimuli at the molecular
level and the evolution of Gr genes will reveal fundamental
principles of insect—plant coevolution.
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