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Abstract 

Crop growth and phenology are driven by seasonal changes in environmental variables, with temperature as one im-
portant factor. However, knowledge about genotype-specific temperature response and its influence on phenology 
is limited. Such information is fundamental to improve crop models and adapt selection strategies. We measured the 
increase in height of 352 European winter wheat varieties in 4 years to quantify phenology, and fitted an asymptotic 
temperature response model. The model used hourly fluctuations in temperature to parameterize the base tempera-
ture (Tmin), the temperature optimum (rmax), and the steepness (lrc) of growth responses. Our results show that higher 
Tmin and lrc relate to an earlier start and end of stem elongation. A higher rmax relates to an increased final height. 
Both final height and rmax decreased for varieties originating from the continental east of Europe towards the maritime 
west. A genome-wide association study (GWAS) indicated a quantitative inheritance and a large degree of indepen-
dence among loci. Nevertheless, genomic prediction accuracies (GBLUPs) for Tmin and lrc were low (r≤0.32) compared 
with other traits (r≥0.59). As well as known, major genes related to vernalization, photoperiod, or dwarfing, the GWAS 
indicated additional, as yet unknown loci that dominate the temperature response.

Keywords:   Correlated response to selection, genetic correlation, genomic prediction, growth dynamic, GWAS, modeling, trait 
extraction.
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Introduction

Mitigating climate change impacts on crops through genotypic 
adaptation requires understanding crop responses to environ-
mental factors (Ramirez-Villegas et al., 2015). Responses of 
major crops are well studied in controlled environments but 
the translation of insights to the field is not straightforward 
(Poorter et al., 2016). High-throughput field phenotyping 
(HTFP) may facilitate this transition (Araus et al., 2018).

A main driver of plant growth and development is tem-
perature (Porter and Gawith, 1999). Examining the influence 
of breeding on the temperature response is challenging: in 
17 crop species including wheat (Triticum aestivum L.), Parent 
and Tardieu (2012) found no indications of such relationships 
using mainly short-term experiments conducted under con-
trolled conditions. In contrast, Kronenberg et al. (2020a) found 
a genotype-specific temperature response for a set of European 
winter wheat genotypes in the field (the GABI-Wheat panel, 
Kollers et al., 2013; Gogna et al., 2022). A crucial difference 
between the two investigations is that the former normalized 
growth rates of genotypes to unity at 20 °C while the latter 
did not. Thus, Kronenberg et al. (2020a) have used an ap-
proach that allowed genotypes to differ in growth rates at op-
timal temperature. In addition, the ~300 GABI-Wheat panel 
genotypes represent a wide European diversity while the seven 
genotypes examined in Parent and Tardieu (2012) are mainly 
from Australia.

Gaining insights on adverse aspects of temperature response 
and phenology (i.e. the timing of key stages) is of high in-
terest for breeding. Investigations of historic US corn belt 
data, for example, indicated an indirect selection for temper-
ature response in commercial maize hybrids (Kusmec et al., 
2023). Increasing the duration of stem elongation by adjusting 
heading time or the beginning of stem elongation (jointing) 
has repeatedly been proposed as a possibility to increase wheat 
yield (Slafer et al., 1996; Miralles and Slafer, 2007). Phenology 
is driven by environmental (E) and genotype (G) character-
istics and corresponding interactions, and therefore is a result 
of G×E. In contrast, temperature response traits are only to a 
limited extent affected by—but are rather drivers of—G×E 
(Roth et al., 2022b, 2023). Describing such responses directly 
in the breeding nursery may allow breeders to predict the phe-
notypic performance in new unseen environments (Poorter 
et al., 2010). Yet, differences in the development of wheat vari-
eties originating from various world regions are not well docu-
mented and understood (Gbegbelegbe et al., 2017).

With the advent of high-throughput phenotyping methods, 
the characterization of large genotype panels has become fea-
sible. One of the most simple traits to detect is plant height. 
This trait can be analyzed at a temporal resolution of a few 
days with several methods. Kronenberg et al. (2020a) used a 
terrestrial laser scanner mounted on a rope-suspended pheno-
typing platform (Kirchgessner et al., 2017) to determine plant 
height. From a breeder’s perspective, such a stationary platform 

is highly inflexible as it does not allow screening of multi-
environment trials. Mobile platforms are better suited to screen 
large breeding populations (Aasen and Bareth, 2018), allowing 
the genetic gain of selection to be increased (Araus et al., 2018). 
Thus, the first aim of this study was to test the suitability of 
a drone-based phenotyping platform carrying RGB-cameras 
(Roth et al., 2018) as a replacement for laser scanning-based 
phenotyping (Kronenberg et al., 2020a).

Independent of the measurement device, modeling the 
temperature response from field-derived data bears flaws and 
pitfalls (Roth et al., 2022b). The eligibility of a temperature 
response curve (i.e. a dose–response curve) does not depend 
only on the (biological) response but also on the range of 
measured temperatures. Using a linear regression to model 
temperature response as done in Kronenberg et al. (2020a) is 
controversial: such a Type 1 response (Wang et al., 2017) will 
come to its limits when measurements span a whole growing 
season with temperatures also extending into supra-optimal 
ranges (Parent et al., 2019; Kronenberg et al., 2020a). Using 
an asymptotic temperature response curve may overcome 
this limitation and allows resolution of the temperature re-
sponse into a base temperature (Tmin), the growth rate at op-
timal temperatures (rmax), and the steepness of the temperature 
response (lrc) (Roth et al., 2022b). Phenology-related traits 
can be extracted from the same height time series using, for 
example, a spline approach (Roth et al., 2021). Having first 
assessed the quality of drone-based height data, the second aim 
of this study was to evaluate whether the asymptotic model 
and the spline approach are suitable to extract meaningful 
parameters from such data.

With the advent of global climate change, the adjustment 
of phenology was and is a major breeding aim. The hereafter 
examined GABI-Wheat panel (Kollers et al., 2013; Gogna 
et al., 2022) includes important genotypes from different cli-
matic regions of Europe. European countries have pursued 
country-specific, largely independent breeding programs. A 
certain degree of population structures may have arisen from 
a co-selection of different alleles based on country-specific 
climate constraints and management practices (Zanke et al., 
2014). On the other hand, phenology and other traits may also 
be genetically linked per se—showing pleiotropic effects. While 
genetic correlations can be used to analyze the correlated re-
sponse of traits to selection (Falconer and Mackay, 1996), 
genome-wide association studies (GWAS) allow insights into 
the genetic architecture of the investigated traits as well as their 
inter-relationships to be obtained.

Hence, after evaluating the suitability of drone data to ex-
tract phenology and temperature response traits, the third aim 
of this study was to characterize the GABI-Wheat panel using 
phenotypic and genetic correlations and GWAS, providing 
insights on direct and indirect response to selection in breeding 
programs but also on general genetic relationships.
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Materials and methods

Experimental design
Experiments were performed in 4 consecutive years (2015–2018) in the 
field phenotyping platform FIP (Kirchgessner et al., 2017) at the ETH 
research station of agricultural sciences in Lindau Eschikon, Switzerland 
(47.449 N, 8.682 E, 556 m a.s.l.). Details about designs, genotypes, soil, 
and management can be found in Kronenberg et al. (2017, 2020a) for 
2015–2017 and in Roth et al. (2020) for 2018.

In brief, a GABI-Wheat subset (consisting of 300 European winter 
wheat cultivars from the GABI-Wheat panel, Kollers et al., 2013; Gogna 
et al., 2022) was complemented by 35–52 Swiss winter wheat variet-
ies of commercial importance. The resulting panel of, on average, 345 
genotypes was replicated twice per year and each replication was planted 
on a different lot in the FIP area. Each replication was augmented with 
checks in a 3 × 3 block arrangement (Supplementary Fig. S1). Designs 
were enriched with spatial coordinates based on unmanned aerial system 
(UAS) flights for the years 2017 and 2018. For 2015 and 2016, no UAS 
flights were available and therefore local coordinates (row and range) were 
used as the spatial context, as described by Kronenberg et al. (2020a).

Phenotyping and covariate measurements
Plant height measurements for the years 2015–2017 were taken using 
a terrestrial laser scanner (TLS) based on a light detection and rang-
ing (LiDAR) sensor (FARO R Focus3D S 120; Faro 113 Technologies 
Inc., Lake Mary, FL, USA) mounted on the FIP (Kronenberg et al., 
2017). Measurements were performed every 3–4 d from jointing to har-
vest in 2015 and 2016, and from tiller development to harvest in 2017 
(Kronenberg et al., 2020a).

For the year 2018, FIP measurements were replaced by the UAS plat-
form PhenoFly (Roth et al., 2018). The UAS captured RGB images with 
high spatial overlap that were processed using Structure-from-Motion 
(SfM) software (Agisoft Metashape, Agisoft LLC, St. Petersburg, Russia) 
to yield digital plant height models. General flight campaign settings are 
described in Roth et al. (2020). Flights were performed every 2–3 d from 
tiller development to harvest.

To ensure comparability between TLS and UAS data, measurements 
were performed with both platforms simultaneously on five dates in 
2018 (April 6, 11, and 19, and May 9 and 14) for one replication. The 
number of replications was reduced to one in order to reduce the data 
collection effort. Replicates allow the calculation of heritabilities and 
adjusted genotype means to compensate for, for example, spatial gradi-
ents. For comparing plot measurements, this is not required, as one aims 
at comparing (unadjusted) phenotype values.

Meteorological data were obtained from a weather station next to 
the experimental field (50 m). Data gaps were filled with data from a 
nearby public Agrometeo weather station (http://www.agrometeo.ch/, 
Agroscope, Nyon, Switzerland) in proximity (550 m).

Plant height extraction
For TLS measurements, individual plot-based plant height values were 
extracted from point clouds using a custom-developed Matlab script as 
described in Friedli et al. (2016) and Kronenberg et al. (2017). For UAS 
measurements, plot-based values were extracted in Python as described 
by Roth and Streit (2018) with one modification: before processing dig-
ital elevation models (DEMs) to plant height models, DEMs were spa-
tially corrected using reference ground control point (GCP) coordinates. 
To do so, differences between DEM elevations and known reference 
elevations were calculated at all GCP locations, and a cubic interpolation 
was performed on the whole experimental area. Interpolated differences 
were then subtracted from the original DEM to produce a corrected 
DEM.

Dynamic modeling

Timing of jointing, end of stem elongation, and final height
In a first step, a shape-constrained monotonically increasing P-spline was 
fitted to plot time series. Then, the quarter of maximum elongation rate 
(QMER) method (Roth et al., 2021) was applied to extract the growth 
stages jointing (tPHstart) and end of stem elongation (tPHstop). In brief, the 
QMER method determines the time point at which the elongation rate 
exceeds tPHstart or falls short of tPHstop by a certain threshold of the max-
imum elongation rate. The threshold was determined based on a wheat 
growth simulation (Roth et al., 2021) and empirical data for wheat (Roth 
et al., 2023) and soybean (Roth et al., 2022a) to 1/4, thus named ‘quarter 
of maximum elongation rate’ (QMER). Final height (PHmax) was calcu-
lated as the median of the top 24 spline predictions after the estimated 
stop of growth tPHstop (Fig. 1A). Further details on how to extract such 
timing and quantity traits are described in Roth et al. (2021).

Temperature dose–response parameters
Measuring plant height with high-throughput devices allows growth 
rates to be derived from successive measurements (Kronenberg et al., 
2020a). To extract the temperature response of growth from these time 
series, an asymptotic model (Fig. 1C) was fitted to hourly temperature 
values and irregular height measurements using maximum-likelihood fit-
ting as described in Roth et al. (2021). The model extracts the parameters 
rmax (the maximum elongation rate and therefore the asymptote of the 
curve), Tmin (the base temperature where the elongation rate is zero), and 
lrc (the steepness of the response).

To allow for a comparison with previous field-based studies (Grieder 
et al., 2015; Kronenberg et al., 2020a), an additional linear model was 
fitted to the data. This model regressed growth rates on mean air tem-
peratures of the corresponding measurement period (i.e. the mean of a 
3–5 d hourly temperature time series), thus extracting the temperature 
response parameter lmslope which corresponds to the slope reported in 
Kronenberg et al. (2020a).

Adjusted genotype means per year and repeatability
The above-described dynamic modeling of plot-based repeated measures 
into plot-based intermediate traits can be seen as a first stage of stage-wise 
processing (Roth et al., 2021). These plot-based intermediate traits were 
further processed in a stage-wise weighted linear mixed model analysis 
(stage two and three), in which the second stage averaged over within-
year effects (resulting in adjusted genotype-year means) and the third 
stage over between-year effects (resulting in overall adjusted genotype 
means). For the second stage, the R package SpATS (Rodríguez-Álvarez 
et al., 2018) was parameterized with a mixed model with spatial compo-
nents as described in Roth et al. (2021).

Weighting was only applied when decreasing the Bayesian information 
criterion (BIC) if compared with a model without weighting. Weights 
did not improve BIC for 2018 for rmax, for all years for Tmin, for 2015–
2017 for lrc, for 2017 for tPHstart, and for 2015, 2016, and 2017 for tPHstop.  
Within-year heritability (repeatability, H2

j) based on BLUPs was calcu-
lated according to Oakey et al. (2006).

Across-year adjusted genotype means and heritability
For the third stage, the R package ASReml-R (Butler, 2018) was param-
etrized with the model

θ̂ij = µ+ uj + θi + (θu)ij + eij,
�  (1)

where θ̂ij  are adjusted year genotype means (BLUE) from the pre-
vious stage, μ is a global intercept, uj represents year effects, θi genotype 
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Fig. 1.  Schematic representation of derived traits (A, C) and real data trends in selection within country of registration groups (B, D). Traits were derived 
from the spline models followed by the quarter of maximum elongation rate (QMER) method based on extraction of timing of key stage traits jointing 
(tPHstart) and end of stem elongation (tPHstop) and quantity trait final height (PHmax) (A) and from the asymptotic model to determine the temperature response 
parameters maximum elongation rate (rmax), base temperature where the elongation rate is zero (Tmin), and steepness of the response (lrc) (C). Box plots 
(B, D) indicate the distribution of genotypes within country groups, and solid colored lines indicate the group medians. Significant (α=0.05) differences 
between country groups are indicated by letters (a–e; country groups not sharing a letter are significantly different).
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responses, (θu)ij genotype–year interactions allowing for year-specific 
variances (diagonal variance structure), and eij residuals weighted based 
on the inverse of the diagonal of the variance–covariance matrix from 
the previous stage.

For BLUEs calculations, μ and θi were set as fixed, and all other terms 
as random. For BLUPs and heritability calculations, θi was set as random 
with known variance structure based on the normalized genome-wide 
average identity by state (IBS) relationship structure calculated from 
single nucleotide polymorphism (SNP) marker data using the snpgdsIBS 
function in the R-package SNPRelate (Zheng et al., 2012).

Marker data were supplied by the GABI wheat consortium (Kollers 
et al., 2013; Gogna et al., 2022) for the GABI wheat genotypes and by 
Agroscope in the framework of the Swiss winter wheat breeding program 
(Fossati and Brabant, 2003) for the Swiss genotypes. For the IBS analysis, 
only non-monomorphic SNPs with unequivocal genome positions (see 
Kronenberg et al., 2020a), a missing rate <0.05, and a minor allele fre-
quency <0.05 were used, thus resulting in 9147 SNPs for 325 genotypes. 
Chromosome-specific distance thresholds of linkage disequilibrium (LD) 
decay below R2=0.2 were calculated as described in Kronenberg et al. 
(2020a). Heritability was calculated on a genotype difference basis fol-
lowing the H2

ΔBLUP method defined in Schmidt et al. (2019).

Phenotypic and genetic correlation calculation
The phenotypic correlations between traits were calculated for each of 
the 4 examined years as Pearson’s r of plot-based values. For reporting, the 
mean, maximum, and minimum of these four correlations per trait pair 
were calculated. For the genetic correlation calculation, the univariate 
model of Equation 1 was extended to a bivariate model (Wright, 1998; 
Holland et al., 2001),

(
θ̂t1ij

θ̂t2ij

)
=

Ç
µt1

µt2

å
+

Ç
ut1j
ut2j

å
+

Ç
θt1i
θt2i

å
+

(
(uθ)t1ij
(uθ)t2ij

)
+

Ç
et1ij
et2ij

å
,

�  (2)

where θ̂t1ij  and θ̂t2ij  are adjusted year genotype means (BLUEs) per trait 
[trait 1 (t1) and trait 2 (t2)] from the second stage, μt1 and μt2 are global 
intercepts per trait, ut1j  and ut2j  are year effects per trait, θt1i  and θt2i  are 
genotype responses (with known variance structure based on IBS), and 
(uθt1)ij and (uθt2)ij are the genotype responses to year interactions with 
uniform variances per trait. The terms μt1, μt2, ut1j  and ut2j  were set as 
fixed, and all other terms were random. Note that no variance–covari-
ance matrix from the previous stage for a bivariate model was available. 
Consequently, e and (uθ) are confounded, and so the two terms were 
summarized in one variance–covariance structure. Genetic correlations 
among traits were then calculated based on the estimated variance and 
covariance components (Holland et al., 2001),

Corr
(
θt1, θt2

)
=

Cov (θt1θt2)√
Var (θt1)

√
Var (θt2)

.

�  (3)

To investigate the effect of release year and country of origin on in-
termediate traits, the year and country of first registration of genotypes 
were looked up in the EU plant variety database (https://ec.europa.eu/
food/plant/plant_propagation_material/plant_variety_catalogues_data-
bases). Five multi-year groups ((1970, 1990], (1990, 1995], (1995, 2000], 
(2000, 2005], and (2005, 2018]) and seven countries groups (AT/CZ, PL, 
DE, CH, SE/DK, FR, and UK) were chosen, and phenotypic values per 
group were aggregated to means and SEs. Note that only country groups 
with a sample size ≥10 were considered, and that the first and last year 
clusters have, due to the focus of the GABI-Wheat panel on the release 
years 1990–2005, wider ranges than the other clusters.

Genomic prediction and genome-wide association studies
In a next step, the suitability of the extracted intermediate traits for ge-
nomic prediction was estimated. To align results with the existing litera-
ture (e.g. Bustos-Korts et al., 2019; Meher et al., 2022; Toda et al., 2022), 
overall genotype means (θ̂i in Equation 1) were used as phenotypic values.

The prediction accuracy was evaluated based on a genomic best linear 
unbiased prediction (GBLUP) model parametrized in the R package 
ASReml-R (Butler, 2018),

θ̂i = µ+Gi + ei,�  (4)

where θ̂i are across-year BLUEs (Equation 1), μ a global intercept, and Gi 
are random genotype effects with G=(G1,G2,…)T based on a variance–
covariance matrix calculated as the IBS relationship structure mentioned 
above. Residuals ei were weighted based on the inverse of the diagonal 
of the variance–covariance matrix from the previous stage (Equation 1). 
Prediction accuracy was calculated as mean Pearson’s r of 10-fold cross-
validations; random folds were repeated 10 times.

To investigate the underlying genetic architecture of the different traits 
and assess the observed phenotypic and genetic correlations in this context, 
we performed GWAS on the 325 wheat varieties present across all year–
sites. The same genotype data were used as for the IBS analysis (see above). 
Univariate GWAS were conducted for all traits using three different mod-
els implemented in the R package GAPIT3 (v. 3.1.0) (Wang and Zhang, 
2021). As a baseline approach, a single locus, compressed, mixed linear model 
(MLM) (Zhang et al., 2010) was used including the first three principal 
components (PCs) of the marker genotypes as fixed effects and a kinship 
matrix calculated following VanRaden (2008) as random effects for all traits. 
Further, the two multi-locus models FarmCPU (Liu et al., 2012) and Blink 
(Huang et al., 2018) were applied. The number of PCs was chosen based on 
visual inspections of the scree-plot and variance explained. For FarmCPU 
and Blink, PCs were omitted for all traits as the respective quantile–quantile 
plots showed better quality in the models without PCs compared with three 
PCs (Supplementary Fig. S2). While MLM effectively controls type I errors, 
the incorporated kinship and population structure can reduce the detection 
of true associations, especially for complex traits associated with popula-
tion structure (Atwell et al, 2010; Liu et al., 2012). FarmCPU and Blink 
have increased power as they reduce this confounding while maintaining 
the control of type I errors of MLM (Liu et al., 2012; Huang et al., 2018).

In order to investigate putative pleiotropic structures among the 
observed traits and account for the correlation structure between traits, 
we conducted multivariate GWAS using the software GEMMA (Zhou 
and Stephens, 2014). To this end, traits (excluding lmslope) were grouped 
into two physiological and correlation-based multi-trait combinations: 
(i) temperature response traits (rmax, Tmin, lrc) and final height; and (ii) 
phenology traits (tPHstart and tPHstop) and final height. For all multivariate 
GWAS, the first three PCs were included to correct for population struc-
ture, and the same IBS matrix as used for genetic correlations was applied 
to correct for relatedness.

All GWAS were conducted on adjusted genotype means per year–
site (BLUEs), as well as for across-year adjusted genotype means (BLUEs 
and BLUPs). For the detection of significant marker–trait associations 
(MTAs), a Bonferroni threshold [α=0.05, –log10(P)=5.26] was applied 
to stringently correct for multiple testing.

Results

Plant height measurements reveal characteristics of 
growth dynamics

A total of 72 278 plant height estimation data points were 
extracted from TLS point clouds and UAS-based digital 
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elevation models, corresponding to 2936 plot-based time se-
ries (Fig. 2). These plant height time series exhibited a strong 
increase after the start phase in the early season, and a clear pla-
teau after reaching the maximum height mid-season. In 2016, 
time series indicated lodging for specific plots at the end of 
this extraordinarily wet growing season. The start phase of stem 
elongation exhibited a clear lag in the second half of April 
2017, but not for other years. The dynamics of the end phase 
of stem elongation visually did not differ between years. Final 
heights clearly differed between years, with tall plants in the 
wet year 2016 and short plants in the extraordinarily dry year 
2018.

TLS and UAS measurements performed in parallel in 2018 
revealed good correlations with moderate coefficients of deter-
mination for three early dates (R2=0.5–0.7) and strong coef-
ficients of determination for two later dates (R2=0.87–0.89) 
(Fig. 3). Intercepts of the first two dates were close to zero, 
negative for the two subsequent dates (–0.01 m, –0.04 m), and 
positive for the last date (0.075 m); slopes indicated a severe 
underestimation of height by UAS measurements for early 
dates but weaker underestimation for later dates.

Dynamic modeling allows extracting heritable timing of 
jointing, end of stem elongation, and final height traits

Fitted P-splines indicated a clear plateau after reaching final 
height (tPHstop/PHmax) (Supplementary Fig. 3B). Visualizing the 
first derivative of the splines revealed a non-steady growth 
phase with severe changes in growth rates (Supplementary Fig. 
S3A). Applying the QMER method to determine the timing 
of jointing and end of stem elongation (tPHstart and tPHstop)  
to these non-steady growth phases led to visually coherent 
results (Supplementary Fig. S3A, B, vertical lines). Nevertheless, 
extracting the timing of jointing was only possible for the 

years 2017 and 2018 when early measurements before joint-
ing were available. These early measurements are essential for 
the QMER method to determine the time point at which the 
growth rate first exceeds a certain threshold. In contrast, the 
end of stem elongation and final height could be extracted for 
all years, as late measurements after the stop of stem elongation 
were available.

Repeatabilities for year-specific adjusted genotype means 
were close to 1.0 for final height, and >0.68 for the timing 
of jointing and the end of stem elongation (Table 1). The 
heritability of across-year adjusted genotype means was 
highest for PHmax (0.98), followed by tPHstop (0.87) and tPHstart 
(0.77). The genomic prediction accuracy for final height 
was, at 0.78, superior to all other traits. For the timing traits, 
the prediction accuracies were, at 0.59–0.61, lower but still 
strong.

Temperature dose–response modeling allows 
extracting heritable curve parameters

Fitting the asymptotic model produced dose–response curves 
with a distinct base temperature (Tmin) (Supplementary Fig. 
S3C). The increase (lrc) in elongation rate between the base 
temperature and asymptote was very steep for some plots in 2016 
and 2017 (e.g. plot ‘FPWW0120005’ and ‘FPWW0180013’ 
in Supplementary Fig. S3C) but very flat for others in 2015 
and 2018 (e.g. plot ‘FPWW0070043’ and ‘FPWW0220044’ in 
Supplementary Fig. S3C).

For the parameter rmax, indicating the maximum elongation 
rate, the year-specific repeatabilities were generally high, but 
were lower for the years 2017 and 2018 than for other years 
(Table 1). High temperatures were more frequent in the years 
2017 and 2018 compared with 2015 and 2016 (Supplementary 
Fig. S3D).

Fig. 2.  Plant height measurements performed with the field phenotyping platform (FIP, green) using a terrestrial laser scanner and with the PhenoFly 
platform (UAS, orange) using Structure-from-Motion based on RGB images. Gray points indicate detected start (bottom row) and end (top row) points 
of growth phases (tPHstart and tPHstop) (note that tPHstartfor 2015 and 2016 was not reliably detected, thus 2015 and 2016 tPHstartvalues were skipped for 
subsequent analyses).
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For the parameter Tmin, indicating the base temperature of 
growth, year-specific repeatabilties were very low for the year 
2016, and higher for other years, with the highest value for 
2017 (Table 1). Temperatures below zero were frequent for 
the year 2017 (with extremely low temperatures at the end of 
April) but less frequent for other years.

For the parameter lrc, indicating the steepness of growth re-
sponse to temperature between the base temperature and max-
imum elongation rate, year-specific repeatabilities were very low 
for the year 2016 but higher for other years, with the highest 
value for 2018. The linear temperature response parameter lmslope 
that incorporates both response to temperature and growth at 

optimum temperature had a very high across-year heritability. 
Nevertheless, it showed a large variation in repeatability between 
years, with a very low value (0.37) for the 2018 season.

In general, repeatabilities revealed large variations for tem-
perature dose–response curve parameters among years (Table 1).  
Nonetheless, the across-year heritability was >0.63 for the two 
traits rmax and lrc, indicating a strong physiological basis. This 
finding was further confirmed by the strong genomic pre-
diction accuracy of 0.71 for rmax. Nevertheless, the prediction 
accuracies of Tmin and lrc were lower (0.18–0.32).

Grouping by country of registration reveals trends of 
selection

Significant effects of registration country were observed for 
the two phenology traits, all temperature response parameters, 
and PHmax (Fig. 1B, D). The genotype means for PHmax (final 
height) and rmax (growth rate at optimum temperature) showed 
the same pattern of AT/CZ≥PL>DE≥CH>SE/DK≥FR≥UK, 
and consequently the largest differences for PHmax (0.28 m) 
and rmax (0.20 mm h–1) were found between AT/CZ and UK.

In comparison, the pattern for tPHstart (jointing) was roughly 
inverted, with AT/CZ≤CH≤PL≤DE≤FR≤SE/DK≤UK. Again, 
the largest difference was found between early AT/CZ and late 
UK genotypes (3.8 d). The CH genotypes were also early, only 
0.2 d later than AT/CZ.

The steepness of temperature response parameter lrc showed a 
pattern with PL and AT/CZ on the extremes, PL≤DE≤UK≤SE/
DK≤CH≤FR≤AT/CZ. Consequently, AT/CZ genotypes exhib-
ited a significantly steeper response to temperature (3.3 °C–1)  
than PL genotypes (2.6 °C–1). The genotype means for tPHstop 
(end of stem elongation) showed a comparable pattern: FR gen-
otypes were the earliest and PL and DE genotypes the latest, 
with the largest difference (1.3 d) between FR and DE. Finally, 
the temperature response parameter Tmin (minimum tempera-
ture of growth) was related to PHmax and rmax, with UK geno-
types among those with the lowest Tmin (mean: 5.5 °C) and AT/
CZ among those with the highest Tmin (mean: 5.8 °C).

Thus, varieties registered in UK were the latest to start joint-
ing and had the lowest minimum temperature of growth, while 

Fig. 3.  Comparison of terrestrial laser scanning- (TLS) based plant heights 
and drone- (UAS) based plant heights for five measurement dates in 2018. 
Colored lines are linear regressions for corresponding dates, the black line 
is a linear regression for all dates, the colored and black text lines denote 
the slope, intercept, and goodness of fit (R2) for the corresponding linear 
regressions, and the dashed line annotates a 1:1 relationship.

Table 1.  Repeatabilities (H2
j), heritabilities (H2

ΔBLUP), and genomic prediction accuracies (r, variance in parentheses) for extracted 
parameters and growing seasons

  2015  2016  2017  2018  All  All 

Parameter H2
j H2

j H2
j H2

j H2
ΔBLUP  r (var)

tPHstart  –  –  0.68  0.74  0.77  0.61 (0.010)
tPHstop  0.77  0.86  0.83  0.71  0.87  0.59 (0.013)

PHmax  0.98  0.99  0.98  0.97  0.98  0.78 (0.004)
rmax  0.78  0.78  0.74  0.67  0.89  0.71 (0.007)
Tmin  0.33  0.23  0.36  0.32  0.29  0.18 (0.022)
lrc  0.57  0.21  0.52  0.75  0.63  0.32 (0.022)
lmslope  0.74  0.90  0.88  0.37  0.78  0.71 (0.008)
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CH genotypes were among the earliest to start jointing and 
showed, together with AT/CZ varieties, the highest minimum 
temperature of growth.

When visualizing the temporal trends in selection in those 
three country groups AT/CZ, CH, and UK (Fig. 4), hardly any 
development of PHmax, rmax, and tPHstop was visible for genotypes 
registered in UK and AT/CZ. In contrast, the selection activity 
in CH resulted in strong and independent changes of lrc and 
tPHstop, and closely related changes of PHmax and rmax. Selection 
in AT/CZ affected lrc without affecting other traits. Different 
trends emerged when analyzing the traits tPHstart and Tmin. Here, 
CH and AT/CZ genotypes hardly showed any development 
over time, but selection activities in UK have shifted Tmin to 
lower values, also altering tPHstart to a later timing of jointing.

Trait correlations confirm connection between 
temperature response, phenology, and height

Based on genetic correlations (Fig. 4), it became evident that 
PHmax is driven by temperature response parameters (Tmin, rmax, 
and lrc) and a delayed end of stem elongation (tPHstop), indi-
cated by moderate to strong correlations. For the correlations 
between the temperature response parameters themselves, rmax 
was strongly correlated to Tmin and lrc. Nevertheless, there was 
only a moderate correlation between Tmin and lrc, indicating 
that they can be selected partly independently. The end of stem 
elongation was moderately to strongly correlated with all three 
temperature response parameters and tPHstart.

In summary, a stronger growth at the temperature optimum 
and a flat response to temperature delayed the end of stem 
elongation, which led to taller plants. A lower minimum tem-
perature of growth delayed the end of stem elongation as well, 
but resulted in smaller plants. In any case, delaying the end of 
stem elongation has also delayed jointing.

So far, the reported correlations were based on genetic cor-
relation calculations. Phenotypic correlations for individual years 
generally showed the same direction but differed in strength, with 
genetic correlations often being stronger (Fig. 4). This finding 
indicates confounding year effects that can be compensated for 
when screening multiple environments. Confounding effects 
were very evident for the correlations between the temperature 
response parameters and tPHstop for which phenotypic correlations 
were weak but genetic correlations strong to very strong. In two 
situations, phenotypic and genetic correlations were contradictory 
(rmax versus Tmin, lrc versus Tmin) with moderate to strong genetic 
correlations. For two other situations, phenotypic and genetic 
correlations were contradictory (rmax versus tPHstart, PHmax versus 
tPHstart) but genetic correlations were only weak anyway.

Genome-wide association studies reveal stable 
markers for across-year adjusted genotype means

The number of detected MTAs varied greatly among traits, 
year–sites, and depending on the applied model (Supplementary 

Figs S4–S11). No significant MTAs were detected for Tmin for 
2015, 2016, and the across-year BLUEs (Supplementary Fig. S4).  
Note that for tPHstart the trait values (BLUEs) for 2015 and 
2016 were missing, thus preventing the calculation of MTAs. 
For all traits except tPHstop and PHmax, the highest numbers of 
MTAs were detected using the across-year BLUPs. Among 
the three applied models, the highest numbers of significant 
MTAs were detected using Blink, followed by FarmCPU. The 
MLM method only detected one significant MTA for the trait 
PHmax in 2017. There was considerable overlap in the detected 
MTAs between the three GWAS models within single year–
sites and traits, as indicated by the sum of unique MTAs 
detected in one or more GWAS models (Supplementary Fig. 
S4; Supplementary Table S1). Apart from the overlap, there was 
also a considerable amount of MTA detected exclusively using 
FarmCPU or Blink, respectively. Yet, based on the inspection of 
quantile–quantile plots, FarmCPU and Blink appeared equally 
adequate in the control of false positives and false negatives 
(Supplementary Figs S4–S11).

Considering significant MTAs regardless of the GWAS 
model, stable markers consistently associated across several of 
the six analyzed models were investigated (four single year–site 
models for BLUE, one across-year model for BLUE, one across-
year model for BLUP) for each trait. Most stable markers were 
detected for PHmax, where 11 of the 23 unique MTAs in total 
were detected across 2–6 analyzed models (Supplementary Figs 
S5–S11; Supplementary Table S2). For the phenology traits 
tPHstart and tPHstop, four and eight stable MTAs were detected, 
respectively. Among the temperature response traits, four stable 
MTAs were found for rmax and two for lrc, whereas no stable 
MTAs were detected for Tmin. The linear model for tempera-
ture response lmslope yielded five stable MTAs. With the mul-
tivariate GWAS, considerably fewer significant MTAs were 
detected compared with the univariate GWAS, and significant 
MTAs were only detected in the 2017 and 2018 BLUEs and 
across-year BLUPs (Supplementary Fig. S12). The multivariate 
GWAS on the temperature response traits together with PHmax 
(Supplementary Fig. S12, top) yielded four significant MTAs. 
The multivariate GWAS on the temperature response traits to-
gether with PHmax (Supplementary Fig. S12, bottom) yielded 
one significant MTA.

Common marker–trait associations between different 
traits reflect genetic correlations

To see whether the genetic correlations found in the pheno-
typic data are reflected in the GWAS results, all MTAs—ir-
respective of the year the association was detected and the 
GWAS model—were compared among traits. Most detected 
associations were unique to the respective trait. However, 17 
markers in total were significantly associated in multiple uni-
variate and multivariate GWAS models (Fig. 5).

The strong genetic correlation between rmax and PHmax was 
confirmed by four common MTAs (Fig. 5, intersection 5–4). 
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Nevertheless, one common MTA for Tmin and PHmax (inter-
section 6–4) and one common MTA for Tmin, rmax, and PHmax 
(intersection 6–5–4) indicated that growth at optimum tem-
perature was not the only driver of final height. Indeed, one 
common MTA each was found between the multivariate GWAS 
for temperature response traits/PHmax and the two narrow-
sense temperature response parameters Tmin and lrc, respectively 

(intersections 1–2 and 6–2), but no common MTA was found for 
rmax. Although lrc and Tmin were moderately genetically corre-
lated, they shared no common MTA. Nevertheless, their genetic 
correlations to rmax were confirmed by one and two common 
MTAs, respectively, with rmax (intersections 1–5 and 6–5).

The significant genetic correlations of Tmin and lrc to the 
phenology trait tPHstop were confirmed by one and two common 

Fig. 4.  Genetic trait correlations for all 352 genotypes (upper triangle, bold), phenotypic correlations for all 352 genotypes (upper triangle, italic, mean 
value with minimum and maximum values indicated in parentheses), and mean and SE for genotype BLUPs of AT/CZ, CH, and UK genotype (lower 
triangle; see color key). The country-specific vector paths (arrows) represent the temporal development of the trait dependent on the registration year (see 
symbol key). All correlations are significant ((α=0.05) unless otherwise indicated (ns).
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MTAs, respectively (intersections 8–6 and 8–1). The connec-
tion of tPHstop to the temperature response parameters but also 
PHmax was further confirmed by one common MTA among 
the multivariate GWAS for temperature response traits/PHmax, 
Tmin, PHmax, and tPHstop (intersection 8–6–4–2) as well as one 
common MTA among the multivariate GWAS for phenology 
traits/PHmax, rmax, PHmax, and the multivariate GWAS for tem-
perature response traits/PHmax (intersection 3–5–4–2). The 
common MTA between rmax, PHmax, and tPHstop (intersection 
8–5–4) indicated that growth at optimum temperature may 
also influence phenology traits, independent of narrow-sense 
temperature response parameters.

Together, these results confirm that the investigated traits 
are largely independent of a genomic level. Nevertheless, there 
are common factors between height and temperature response, 
temperature response and phenology, as well as factors shared 
among all three trait groups, reflecting the pattern found in the 
correlation analysis.

Analyzing and discussing underlying genes for the detected 
MTA in detail is beyond the scope of this work. Nevertheless, 
we searched the IWGSC refseq1.0 (Appels et al., 2018) func-
tional annotation within chromosome-specific LD windows 
around each MTA (on average 7 Mb, Supplementary Dataset S1;  
an overview is given in Fig. 6). To briefly name the most 

prominent genes: we detected Rht-B1 in the vicinity of 
Tdurum_contig64772_417 (Tmin–rmax–PHmax intersection 
6–5–4, distance 4.3 Mb), Tdurum_contig33737_157 (Tmin 
MTA, distance 6.8 Mb), and RAC875_rep_c105718_672 
[rmax–PHmax–MV(i)–MV(ii) intersection 3–5–4–2, distance 
7.4 Mb]. Rht-D1 was found 6 Mb upstream of PHmax MTA 
Kukri_rep_c68594_530, and Ppd-D1 was found 4.1 Mb up-
stream of lrc MTA Excalibur_c20196_503. Furthermore, we 
detected Vrn-A1 6.3 MB upstream of the lrc quantitative trait 
locus (QTL) wsnp_Ra_c12183_19587379. These genes were 
mapped to the IWGSC refseq1.0 using blastn. Around the 
remaining MTAs, we detected an increased presence of genes 
associated with growth [i.e. gene motifs related to auxin and 
gibberellin (DELLA/GAI) signal transduction pathways, as 
well as motifs related to GRAS/SCARECROW, WALLS 
ARE THIN 1, CLAVATA3/ESR and WUSCHEL]; phe-
nology [i.e. gene motifs related to FLOWERING LOCUS T 
(FT), CONSTANS (CO), AGAMOUS (AG), EMBRYONIC 
FLOWER 1 (EMF1), Flowering-promoting factor 1-like 
protein 1 (FLP1), LIGHT-DEPENDENT SHORT 
HYPOCOTYLS (LSH), and LAFY (LFY)]; temperature 
response [i.e. FLOWERING LOCUS C (FLC), FRIGIDA 
(FRI),VERNALIZATION INSENSITIVE 3 (VIN3), 
VERNALIZATION 2 (At_VRN2), cold response- and 

Fig. 5.  UpSet plot (Lex et al., 2014; Krassowski et al., 2021) depicting overlapping marker–trait associations (MTAs) between the GWAS for the 
temperature response traits rmax, Tmin, and lrc, the phenology traits tPHstart and tPHstop, PHmax, and two multivariate GWAS combining temperature response 
parameters with PHmax, and combining PHmax with tPHstart and tPHstop.
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low temperature- and salt response-associated proteins]; and 
motifs associated with the circadian clock [i.e. response regu-
lators and SENSITIVITY TO RED LIGHT REDUCED 1 

(SRR1)]. However, no clear pattern emerged as to the trait 
groups of the respective MTA and the gene motifs found 
nearby (Fig. 6).

Fig. 6.  Chromosome plot depicting all SNP markers (gray ticks, lower side of chromosomes), detected MTAs grouped by trait category intersections 
(lower side of chromosomes; see color key), and potentially interesting gene motifs (upper side of chromosomes; see color key) that were found in the 
IWGSC refseqv1.0 functional annotation within chromosome-specific LD windows around the respective MTA (indicated by gray boxes on the upper side 
of the chromosomes).
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Discussion

Field-based phenotyping allows extraction of robust 
basic physiological traits

In a previous study, it was shown that frequent and accurate 
canopy height measurements enable the extraction of phe-
nological stages as well as temperature response parameters 
(Kronenberg et al., 2020a). The latter were extracted using 
linear regressions between growth rates and average tempera-
tures in the measurement interval. Within the observed data, 
the extracted temperature response parameters were highly 
heritable and allowed an accurate prediction of final height 
(Kronenberg et al., 2020a). However, as the model did not 
account for the non-linearity of the temperature response, 
the interpretability of the parameters was limited. In addi-
tion, Kronenberg et al. (2020a) used averaged temperatures, 
disregarding temperature fluctuations during measurement 
intervals. Considering the diurnal temperature pattern is of 
particular significance: height measurements are usually done 
every few days and hence the measured growth between time 
points is the result of multiple diurnal covariate cycles, such 
as temperature courses. Aggregating these temperature courses 
to the frequency of canopy height measurements shrinks the 
observed temperature distribution towards the mean (Roth 
et al., 2022b). In soybean, diurnal temperature patterns have 
been shown to strongly affect leaf growth as well as carbo-
hydrate metabolism and gene expression (Kronenberg et al., 
2020b). Based on simulations, Roth et al. (2022b) demonstrated 
that using an asymptotic dose–response model and optimizing 
the parameters based on temperature courses instead of mean 
temperatures allows a more accurate description of tempera-
ture response in the stem elongation phase of winter wheat.

The results of this study demonstrate the applicability of 
such an asymptotic model for field-derived data. Both fixed 
platform and UAS-based canopy height measurements were 
equally suited for this purpose. While repeatabilities varied 
depending on the year, across-year heritabilities were high. 
Apparently, a skewed distribution of temperatures towards 
very high temperatures decreased the repeatability of rmax, a 
skewed distribution towards low temperatures decreased the 
repeatability of Tmin, and frequent temperatures in the mid-
range decreased the repeatability of lrc. These limitations may 
be seen as systematic artifacts of fitting a temperature response 
to measurements with irregular measurement frequencies and 
seasonal temperature courses (Roth et al., 2022b). None of the 
seasons showed all these characteristics at the same time, but 
none was completely free of them either.

Consequently, depending on the temperature constellation 
in the respective environment, temperature response param-
eters are difficult to quantify with high precision. However, 
high across-year heritabilities and a high number of significant 
MTAs for across-year BLUPs indicated that genotype-by-year 
interactions are small compared with genotype effects. Hence, 

temperature dose–response parameters represent robust basic 
physiological traits if monitored in multi-year trials. Roth et al. 
(2023) could show that such basic physiological traits are cor-
related to manually measured phenology parameters, and allow 
the phenomic prediction of yield, yield stability, and protein 
content for a Swiss elite winter wheat set. The reported herita-
bilities and genetic correlations of this study of phenology and 
temperature response traits are in accordance with those re-
ported in Roth et al. (2023), raising hope that similar methods 
will also work on less diverse genotype sets.

Temperature response traits are independent drivers of 
phenology and height

The results revealed a clear region-driven structure within the 
observed population regarding the origin of the genotypes. 
The findings indicate that final height, phenology, and tem-
perature response traits are related to the adaptation to various 
climatic regions and production systems. A connection among 
temperature response, phenology, and height was previously 
reported (Kronenberg et al., 2020a). While the current results 
confirmed these findings, using the asymptotic temperature re-
sponse model further allowed dissection and clarification of 
temperature response relationships and their genetic make-up.

The genetic correlations and concurring shared MTAs 
among rmax, PHmax, tPHstart, and tPHstop indicated some common 
genetic basis. The GWAS results further confirmed that all of 
these traits are highly quantitative and only a fraction of the 
detected QTLs are shared among these traits. With respect to 
the applied GWAS models, our results show that multi-locus 
models appear more adequate in terms of power compared 
with MLM to detect associations with complex traits in wheat. 
This is in accordance with results from soybean and maize 
(Kaler and Purcell, 2019).

It is known that the stem elongation rate of genotypes with 
comparable phenology but different final heights (e.g. near-
isogenic lines for gibberellin-insensitive dwarfing genes) differs 
(Youssefian et al., 1992). The effect of reduced height genes 
on growth rates was confirmed by the strong genetic correla-
tion between rmax and PHmax, but the correlations with other 
parameters and common shared MTAs indicated that dwarfing 
genes were not the only driver of the growth rate.

In their study investigating the effect of breeding on tempera-
ture response, Parent and Tardieu (2012) normalized the elonga-
tion rates at optimal temperatures (or better to say at 20 °C which 
is close to the optimum). This was done to enable the comparison 
of different growth processes at different scales. However, the ab-
solute growth at optimal temperature is a relevant component 
of plant adaptation. In contrast to the functional temperature re-
sponse model used by Parent and Tardieu (2012), the asymptotic 
temperature response model used in this study allowed insights 
to be gained on the base temperature of growth, the steepness of 
the response, and the maximum growth rate rmax.
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The parameter rmax is not a temperature response in the 
narrow sense but rather represents the growth at the temper-
ature optimum. In contrast, the curvature parameter lrc and 
the base temperature Tmin may indicate temperature depen-
dencies of growth. It is not within the scope of this study to 
explore and elucidate the physiological basis of these traits. 
Nevertheless, a contextualization is given here for the inter-
ested reader. Although there has been significant progress re-
garding the molecular mechanisms of temperature sensing 
and their integration in signal transduction and response 
pathways in Arabidopsis, the understanding of tempera-
ture response remains limited (Wigge, 2013; Vu et al., 2019; 
Kerbler and Wigge, 2023). In Arabidopsis, the transcription 
factor PHYTOCHROME INTERACTING FACTOR 4 
(PIF4) has been identified as a central hub integrating tem-
perature and light signals and controlling transcriptional and 
post-transcriptonal regulation of plant thermomorphogenesis 
(Quint et al., 2016; Jin et al., 2020). PIF4 is regulated by the 
circadian clock genes ELF4, ELF3, LUX, and TOC1 (Nusinow 
et al., 2011; Zhu et al., 2016; Gangappa and Kumar, 2017), and 
acts on a large number of genes related to phytohormone 
biosynthesis and growth (Quint et al., 2016; Martínez et al., 
2018). Furthermore, PIF4 interacts with the flowering pathway 
involving the genes FLC, FRI, FT, and CO (Proveniers and 
van Zanten, 2013; Fernández et al., 2016; Jenkitkonchai et al., 
2021). In contrast, very little is known about the physiological 
basis of ambient temperature response in wheat. The protein 
kinase MAP4K4/TOT3 has been found to be required for 
thermomorphogenesis in wheat (Vu et al., 2021). Furthermore 
an interaction effect between ELF3 expression and tempera-
ture on heading date has been reported in wheat (Ochagavía 
et al., 2019). Dixon et al. (2019) reported that VRN2 and 
ODDSOC2 are re-activated after vernalization when wheat 
experiences warmer temperature, and Kiss et al. (2017) showed 
that the expression of VRN1, VRN2, and PPD1 was affected 
by ambient temperature and photoperiod, and correlated with 
plant development.

In the current study, we found the major genes VRN1, 
RHT1, and PPD1, as well as several predicted gene motifs 
related to growth, phenology, temperature response, and the 
circadian clock in the vicinity of SNPs associated with dif-
ferent temperature response and phenology traits as well as 
final height. However, the experimental set-up and the applied 
methods do not allow us to draw any conclusions regarding 
any association between these gene motifs and the investigated 
traits, as illustrated in Fig. 6. The size of LD (on average 7 Mb) 
means that a large number of gene motifs are potentially as-
sociated with a specific MTA. Furthermore, the clustering of 
MTAs from different traits in specific chromosomal regions 
causes the LD windows to overlap, making it impossible to 
disentangle individual MTAs and underlying genomic regions. 
The same applies to putative pleiotropic structures with respect 
to shared MTAs between individual traits and multivariate 

GWAS. Even though the genetic correlations in conjunc-
tion with shared univariate and multivariate MTAs may point 
towards pleiotropy, the size of LD does not allow any such 
conclusion to be drawn.

Thus, further research is warranted to elucidate the under-
lying physiological mechanisms of these traits. In order to do 
so, the use of a designed bi-parental population in combination 
with QTL mapping and gene expression assays may be applied 
in future studies. In the meantime, phenomic approaches in 
combination with genomic selection may provide the means 
to further investigate temperature response traits under field 
conditions.

Based on genetic correlations and shared MTAs, one can 
conclude that increased Tmin leads to an early end of stem 
elongation while only marginally affecting PHmax. Importantly, 
lrc has a strong connection to rmax, but a less strong connection 
to PHmax and no common MTAs, while rmax has a strong corre-
lation to PHmax and shares four MTAs. Therefore, adapting lrc 
(and, according to genetic correlations, also Tmin) seems to have 
little side effect on final height. Interestingly, the steepness of 
response lrc and Tmin have a stronger correlation to the end of 
stem elongation than rmax. Consequently, temperature response 
in the narrow sense (Tmin and lrc) is more closely connected to 
phenology than growth at optimum temperatures.

As these narrow-sense temperature response parameters ap-
pear to be partly genetically independent, these traits may be 
of key interest for breeding. Both final height and phenology 
are key traits of local adaptation. Selection for specific temper-
ature response trait combinations may thus allow phenology 
and height to be independently adjusted, offering opportuni-
ties towards improved adaptation to specific environments. On 
the downside, low heritabilities and genomic prediction accu-
racies for Tmin and lrc based on GBLUPs indicated potential 
difficulties in the selection process.

In the examined set of genotypes, both phenology and tem-
perature response appear to drive local adaptation. For varieties 
registered in Great Britain, selection in breeding throughout 
the years 1970–2018 led to later jointing and to decreasing 
the minimum temperature of growth. These two features 
compensated each other with respect to generating varieties of 
comparable height that were registered throughout the years. 
For varieties registered in Switzerland, plant height decreased 
throughout the years, coinciding with an earlier end of stem 
elongation and a decrease of growth at optimum tempera-
ture. In Austria and the Czech Republic, final height, jointing, 
and end of stem elongation remained similar throughout the 
decades, but the steepness of temperature response increased. 
It has to be noted that the observed region-specific difference 
may be driven not only by climatic conditions (increase in 
temperature and overall decrease of water availability) but also 
by management and policy in the particular country. Yet, the 
data show that country-specific strategies for the development 
of phenology have been selected for, allowing yield potential 
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to be maintained throughout the decades under the effect of 
a globally changing climate. Future studies need to reveal the 
physiological advantages that the observed, country-specific 
selection strategies have brought with them.

Yet, most clearly for the case example of varieties registered 
in Great Britain, the advantages of such selection strategies can 
be made clear: given the applicability of the concept of temper-
ature sum, a warming climate leads to the possibility of accu-
mulating the same biomass in a shorter period of time. Hence, 
the shift of jointing towards a later time of the year (within the 
limits of ensuring unstressed flowering) can be compensated. 
Moreover, the decreasing base temperature increases chances 
to grow demonstrably even during days with relatively low 
temperature that still remain frequent also towards later times 
of the season (Supplementary Fig. S3D).

Conclusion

In this study, we could demonstrate that temperature response 
parameters are heritable traits with a strong physiological basis. 
HTFP allows the extraction of such response curves and timing 
parameters for jointing and the end of stem elongation. Flexible 
and affordable drone and RGB hardware is as suitable as sta-
tionary phenotyping platforms such as the FIP, allowing breed-
ers to scale up phenotyping to large breeding populations.

Nevertheless, response parameters are occasionally difficult 
to quantify with high precision in the field, as the efficiency 
of HTFP will depend on temperature fluctuation during stem 
elongation. Combining multiple years will mitigate these 
limitations.

Analyzing the dependencies of traits and population struc-
tures revealed that breeding indeed has affected the phenology 
and temperature response of the stem elongation phase of 
wheat. Genotypic variances in both (narrow-sense) response 
to temperature and growth rates at the optimum were in-
dicated. Final height was driven not only by the maximum 
growth rate at the optimum, but also by phenology and by the 
responsiveness to temperature between cardinal temperatures. 
A high number of MTAs were detected for temperature re-
sponse traits, highlighting their quantitative nature. Although 
not equally strong for all traits, the measured prediction accura-
cies promise a high potential of genomic selection approaches 
for temperature response and phenology traits.

Supplementary data

The following supplementary data are available at JXB online.
Fig. S1. Experimental fields at the FIP site.
Fig. S2. Examples of Q–Q plots showing inflation and de-

flation, respectively, for the Blink and FarmCPU models with 
three principal components (3PC) and omitted principal com-
ponents (0PCs).

Fig. S3. Fitted curves to height data.

Fig. S4. Number of detected significant marker–trait associa-
tions (MTAs) among the three univariate GWAS models.

Fig. S5. Manhattan plots and quantile–quantile plots depict-
ing the GWAS results for rmax.

Fig. S6. Manhattan plots and quantile–quantile plots depict-
ing the GWAS results for Tmin.

Fig. S7. Manhattan plots and quantile–quantile plots depict-
ing the GWAS results for lrc.

Fig. S8. Manhattan plots and quantile–quantile plots depict-
ing the GWAS results for lmslope.

Fig. S9. Manhattan plots and quantile–quantile plots depict-
ing the GWAS results for PHmax.

Fig. S10. Manhattan plots and quantile–quantile plots depict-
ing the GWAS results for tPHstop.

Fig. S11. Manhattan plots and quantile–quantile plots depict-
ing the GWAS results for tPHstart.

Fig. S12. Manhattan plots and quantile–quantile plots depict-
ing the multivariate GWAS results.

Table S1. Total number of significant marker–trait associa-
tions (MTAs) for each trait across all years and for all traits in 
each year.

Table S2. Stable marker–trait associations (MTAs) over years.
Dataset S1. IWGSC refseq1.0 functional annotation within 

chromosome-specific LD windows around each MTA.
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