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Abstract
Gas fermentation using autotrophic acetogenic bacteria has
been industrialized, however, its full potential remains un-
tapped, with only native products like ethanol being produced
thus far. Advancements in synthetic biology have enabled the
recombinant production of diverse biocommodities to broaden
their limited natural product spectrum from C1-gases. Addi-
tionally, co-culturing acetogens with other microorganisms
holds the potential for expanding the product spectrum further.
However, commercialization remains challenging due to com-
plex pathway and (co)culturing optimizations. To address this,
novel synthetic biology tools, including the use of high
throughput biopart screenings using reporter proteins, the
deployment of cell-free systems to combine best-performing
enzymes, and the identification and elimination of competing
pathways, can be employed. Incorporating genetically engi-
neered strains in co-cultures improves dependencies, directs
product formation, and increases resilience, enhancing bio-
production efficiency. This review emphasizes using these
tools to enhance the recombinant production of bio-
commodities, offering promising solutions to overcome existing
challenges.
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Introduction
The pressing need to mitigate the effects of greenhouse

gases on the climate represents a significant challenge in
our modern era. Therefore, the use of acetogenic bacteria
www.sciencedirect.com
to capture and convert greenhouse gases is outstanding.
Acetogens are strictly anaerobic bacteria, which employ
the Wood-Ljungdahl pathway to convert C1-carbon
sources such as CO, CO2þH2, formate, or methanol
into valuable biocommodities in the energetically most
efficient way when compared to other C1-capturing
pathways [1]. Despite the current commercial use of
acetogens like Clostridium autoethanogenum, their applica-
tions remain limited due to the restricted range of natu-
rally produced compounds, low product titers of
recombinant products, and the limited availability of ATP,
as these organisms operate at the thermodynamic limit of
life [2,3]. To overcome this hurdle, novel synthetic ap-
proaches andmolecular tools that are applicable to various
acetogens are essential. Currently, several genetic
manipulation methods are available for the two closely
related strainsClostridium ljungdahlii andC. autoethanogenum,
as well as the rapidly emergent acetogens Acetobacterium
woodii and Eubacterium limosum, making them popular

choices for synthetic microbial approaches [4,5].

In this review, we will discuss innovative molecular
techniques for better-studied acetogens but also
emphasize the potential of lesser-studied acetogens in
the realm of synthetic biology and their prospects of
being transformed into established biotechnological
workhorses with well-established molecular tools in the
future. We will commence with the implementation of
reporter proteins to screen favorable bioparts, progress
to the enhancement and customization of recombinant

pathways, touch on the manipulation of the carbon flow
with gene knockouts or knockdowns, and culminate on
improving the product platform using synthetic co-
cultures and less studied acetogens.
The first step to improve production:
screening for bioparts using fluorescent
reporter proteins
Despite the advancements in molecular tools for
different acetogens, and the reported recombinant
production of more than 50 products from C1-carbon
sources, reaching industrial levels remains a significant
challenge [6]. Initial attempts often involve enhancing
transcription or translation levels by using homologous
gene sequences, exchanging regulatory elements, or
employing replicons to control plasmid copy numbers.
However, studying novel bioparts can be cumbersome
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Box 1. The four steps of the iPROBE system

In the first step, the design step, homologous enzymes are selected,
which also implies the mining of homologous variants. In the second
phase, the build phase, cell lysates are generated and enriched with
pathway enzymes using overexpression before or cell-free protein
synthesis after cell lysis. Enriched cell lysates are precisely mixed
and product synthesis is activated by adding substrates and co-
factors. Interestingly, the authors demonstrated an in vitro to in vivo
correlation, where enzyme concentrations used in the cell-free ap-
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due to the limited availability of reporter proteins.
Enzyme-based reporters like CatP or GusA are often
used to study gene expression and promoter strength,
but their usage is time-consuming and unsuitable for
real-time assays and high-throughput screenings
[7e11]. Instead, fluorescent proteins (FPs) are usually
preferred. Unfortunately, most FPs, such as GFP or
those of the mFruit family, depend on oxygen for chro-

mophore maturation, which makes them challenging to
use in acetogens. Therefore, efforts are made to design
FPs that exhibit brightly fluorescent under anaerobic
conditions [12]. Flavin mononucleotide-based fluores-
cent proteins (FbFPs) exhibit weak green fluorescence
after excitation with blue light and were successfully
used in the acetogens C. ljungdahlii to study a
temperature-sensitive origin of replication, and in
E. limosum and the closely related strain Butyribacterium
methylotrophicum to assess promoter strength [13e15].
Ligand-dependent self-labeling FPs such as the

HaloTag and the SNAP-tag show strong, oxygen-
independent fluorescence when they bind covalently
to a fluorescent ligand. As the choice of ligands can be
orthogonal to other FPs, they have been applied in
C. ljungdahlii to study co-culture dynamics and cellecell
interactions, and in E. limosum to screen genetic bioparts
[16e18]. Particularly suited for applications in anaerobic
environments are novel FPs of the fluorescence-
activating and absorption-shifting tag (FAST) family,
which upon binding a fluorogenic ligand result in bright
oxygen-independent fluorescence [19]. FAST’s small

size (14 kDa), immediate fluorescence after folding, and
specific, rapid, and fully reversible fluorogen binding
make it an ideal reporter for studying real-time molec-
ular processes such as protein synthesis or folding [20].
Through engineering, the protein and its fluorogenic
ligands have been enhanced, yielding variants with
adjustable spectral, optical, and physical properties. As a
result, the fluorescence of pFAST can span the visible
spectrum, ranging from blue to red [21]*. Various ver-
sions of FASTwere used in the acetogens C. ljungdahlii,
E. limosum, A. woodii, and Thermoanaerobacter kivui to
study promoter strength, synthetic co-cultures, and as a

tag to track protein production of heterologous pro-
duced enzymes [22e25]. The implementation of fluo-
rescent reporter proteins into the molecular toolbox of
acetogens represents a crucial step in screening and
studying regulatory bioparts, laying the basis for fine-
tuning the recombinant production of biocommodities.
proaches corresponded to different promoter regulatory strengths.
Hence, low enzyme concentrations used in vitro correlate with weak
promoter strengths in vivo, and vice versa. In the third step, the test
step, the so-called TREE (Titer, Rate, and Enzyme Expression)
score is calculated, which is the titer of the produced product
multiplied by the liner production rate and by the protein solubility
plus the total enzyme amount. The TREE score can be used to
easily rank cell-free pathway performance. Finally, in the fourth step,
the apply step, the best-performing cell-free pathways are assem-
bled and used in vivo in the host strain [27].
Cell-free systems: iPROBE as a novel
approach for rapid optimization of
biosynthetic enzymes in acetogens
Genetic manipulation in acetogens is still complex,
requiring specific transformation protocols for each
strain. Consequently, characterizing multiple promotere
enzyme combinations to enhance the productivity of
recombinant strains can be time-consuming, especially
Current Opinion in Systems Biology 2024, 37:100500
considering the slow growth rates of acetogens. Thus,
finding an efficient and time-saving strategy to enhance
productivity poses an important challenge. A promising
approach to speed up pathway design is using a cell-free
gene expression system for in vitro protein synthesis, as
recently developed for C. autoethanogenum [26]. Another
noteworthy method is the in vitro Prototyping and Rapid
Optimization of Biosynthetic Enzymes (iPROBE)

system, a cell-free system to rapidly screen for enzyme
combinations to advance recombinant pathways and in-
crease productivity [27] (Box1). Both methods circum-
vent the need to re-engineering strains, as only cellular
lysates rather than complete genetic constructs are used.

iPROBE has been used in C. autoethanogenum to optimize
the production of various biocommodities. In a first
attempt, 54 different pathway combinations were tested
in vitro to produce 3-hydroxybutyrate (3-HB) heterolo-
gously. Based on their TREE score, four thiolase and

hydroxybutyryl-CoA dehydrogenase combinations were
tested in vivo and resulted in the highest reported 3-HB
production by an acetogen yet. Notably, the in vivo pro-
duction correlated with results obtained in the cell-free
experiments [27]. Similarly, for butanol production, a
neural-network-based algorithm was trained using TREE
scores of 120 pathway combinations tested in vitro,
narrowing down the initial 314,928 possible combinations
to a promising set of nine. These pathways were applied
in vivo, leading to a remarkable over 200-fold improve-
ment in butanol production [27]. In a further study,

iPROBE was used to screen 392 enzyme combinations
for the initial four reactions of the reverse b-oxidation,
selectively producing C4eC6 acyl-CoA products. The
in vitro best-performing enzymes were combined with
termination enzymes to produce C4- and C6-acids, which
could be further converted to the respective alcohols in
C. autoethanogenum. Finally, 14 strains were constructed
expressing optimized iPROBE pathways that could
www.sciencedirect.com
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produce butanol and hexanol in vivo. While titers were
still low, hexanol was produced for the first time in
C. autoethanogenum using iPROBE pathways [28].

The above examples show that iPROBE can rapidly
speed up pathway design and optimization in
C. autoethanogenum from month to just days. This system
has the potential to be tested in less studied acetogens

to improve the recombinant production of com-
plex biocommodities.
Compete against competing pathways:
gene knockouts and knockdowns for
improved production
Genome engineering tools such as homologous recom-
bination, ClosTron, transposon mutagenesis, and
CRISPR-Cas-based systems were applied in various
acetogens for gene mutations, deletions, and insertions
and are reviewed in detail elsewhere [4,5]. While gene
deletions are outstandingly important for physiological
studies, they also play a key role in pathway optimization
to improve native, but also recombinant production.

Due to their industrial relevance, enhancing ethanol

production in C. autoethanogenum and C. ljungdahlii by
mutating and deleting competing pathways has been a
topic of interest in the past. Particularly, genes encoding
bi-functional aldehyde/alcohol dehydrogenase or the
aldehyde:ferredoxin oxidoreductase have been targeted
[29e35]. These studies have yielded diverse outcomes,
which range from improved to depleted ethanol pro-
duction. An intriguing example of gene deletion facili-
tating production is the heterologous lactate production
in A. woodii. To produce the platform chemical, the rapid
lactate consumption-ability of A. woodii required the
deletion of its lactate consumption complex, followed by

heterologous expression of a non-native lactate dehy-
drogenase [24,36]. Regardless, generating knockout
strains is still complex and time-consuming for
most acetogens. Recently, the demonstration, that
knocking out genes of unclear functions can massively
impact growth characteristics and production in
C. autoethanogenum showcased how complex the identifi-
cation of competing enzymes can be [37]. To overcome
this, CRISPR interference (CRISPRi) has emerged as an
easy-to-use tool for studying gene functions in acetogens
by knocking down gene expression without the need for

knockout generations. Here, swapping sgRNAs enables
rapid knock-down gene expression of various genes in a
plasmid-based manner. CRISPRi was employed in
C. ljungdahlii to enhance 3-HB production, resulting in a
2.3-fold increased titer by targeting the phospho-
transacetylase gene, albeit only in heterotrophic condi-
tions [38]. Additionally, downregulating the bifunctional
aldehyde/alcohol dehydrogenase adhE1 not only reduced
ethanol production but also boosted recombinant buty-
rate production [39]. In C. autoethanogenum, 2,3-
www.sciencedirect.com
butanediol formation was depleted by knocking down
the essential gene for its production encoding the alpha-
acetolactate decarboxylase budA. Moreover, repression of
the secondary alcohol dehydrogenase sADH decreased
the conversion of acetone to isopropanol [40]. In
E. limosum, a CRISPRi library targeting each gene in its
genome was used to achieve a fourfold increase in auto-
trophic growth [41]*.
Case example: acetone production from
steel mill off-gas
Although acetogens are not capable of producing
acetone naturally, recombinant production was achieved

by expressing genes encoding thiolase (ThlA), CoA-
transferase (CtfAB), and acetoacetate decarboxylase
(Adc) [8,23,42,43]. However, low titers made them
unappealing for usage at an industrial scale. Recently, a
highly engineered C. autoethanogenum strain was
designed, which produces acetone (or isopropanol,
which will not be discussed in this review) with high
selectivity by pathway, strain, and process optimizations
[44]**.

Initially, novel acetone biosynthesis enzymes were

identified by screening 272 naturally performing
acetone-butanol-ethanol fermentation bacteria. This
approach resulted in 30 promiscuous gene homologous,
which were combined with high-, medium-, and low-
strength promoters to construct a plasmid library. The
resulting transcription units were assembled into
expression vectors and applied for acetone production in
C. autoethanogenum. The deletion of the native secondary
alcohol dehydrogenase prevented the conversion to
isopropanol. Screening the resulting 247 recombinant
strains revealed varied acetone production levels based
on promoter strength, emphasizing their significance as

bioparts. The top-performing five pathways were
genome-integrated, which resulted in the initial acetone
production strain.

By identifying and deleting competing pathways, the
production of this strain was improved. Deletion of the
gene responsible for 2,3-butanediol formation, identi-
fied through a genome-scale model and evolutionary
algorithm, resulted in the abolition of production. In
addition, 13 gene candidates responsible for 3-HB pro-
duction were identified using an in silico homology

search, which could potentially act alone or in combi-
nations to produce this byproduct. As knocking out all
these genes would take several months, the authors
adapted the iPROBE system to prototype knockout
targets for these candidates. Cell-free acetone biosyn-
thesis using in vitro-produced ThlA, CtfAB, and Adc was
achieved in the presence and absence of the 13
knockout candidates. Decreased acetone production
compared to the control indicated that the added
knockout candidates shifted the carbon flow from
Current Opinion in Systems Biology 2024, 37:100500
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acetone to the byproduct. By using this system, three
genes were identified and deleted, which abolished 3-
HB production completely. Finally, iPROBE was used
to evaluate enzyme importance in acetone biosynthesis
and found, that high levels of CtfAB enhance produc-
tion. Consequently, CtfAB was overexpressed in a
plasmid-based manner.

The final engineered strain harbors four gene deletions
to circumvent by production, the acetone production
operon integrated into its genome, and a plasmid to
additionally overexpress ctfAB. This strain resulted in
the highest acetone pilot-scale production reported so
far, with a productivity of w2.5 g L�1 h�1.
Expanding the product platform for
acetogens through synthetic co-cultures
Synthetic co-cultures containing at least one acetogenic
partner can be used to convert C1 substrates into non-
native products for acetogens that are more valuable.
Acetogens play a crucial role as C1-utilizers and provider
of intermediate substrates, such as acetate or ethanol,
that other organisms within the consortia can further
metabolize. With respective co-cultures the production

of C4eC8 fatty acids and alcohols was successfully
demonstrated, as reviewed elsewhere [45]. However,
the utilization of engineered acetogens in co-cultures is
scarce, possible due to the limited number of available
genetic tools. The dependency on antibiotic pressure of
plasmid-based recombinant strains could impede their
use in co-cultures, potentially inhibiting the growth of
the co-culture partner. Nevertheless, engineered
acetogens have the potential to produce novel inter-
mediate substrates for the co-culture partner, as
discussed later [47] or to generate artificial de-
pendencies. Moreover, population dynamics can be

tracked in co-cultures, combining engineered FP pro-
ducing strains with flow cytometry [16,46]. Engineered
strains of Clostridium acetobutylicum and C. ljungdahlii were
used to study protein exchange when co-cultured. Au-
thors utilized FAST and the HaloTag and showed that
upon cell fusion, the FPs can be quantified in both cells
[17]. The aforementioned engineered lactate producing
A. woodii strain was co-cultured to produce caproate
[47]*. In this study, A. woodii was cultivated until the
stationary phase to facilitate the conversion of H2 and
CO2 to lactate. Subsequently, Clostridium drakei was

added to the co-culture, utilizing lactate as a substrate
to produce caproate. As far as we know, this represents
the only reported instance of producing a platform
chemical using an engineered acetogen in a synthetic
co-culture. Although currently underutilized, engi-
neered acetogens have the potential to produce favor-
able substrates for co-culture partners or might be
engineered to be more robust. Alternatively, by
combining an acetogen with a genetically accessible
model organism such as Escherichia coli, an incredible
Current Opinion in Systems Biology 2024, 37:100500
opportunity arises to produce valuable compounds from
C1 substrates in a synthetic co-culture [48,49].
Applying genetic tools for less studied
acetogens with unique features
Unique metabolic features make several acetogens
intriguing for synthetic biology approaches, despite
their limited exploration in terms of genetic tools.
Thermophilic acetogens like Moorella thermoacetica and
T. kivui are outstanding from an industrial perspective
due to their optimal growth temperature at 55� and 66�,
respectively, which limits the risk for contaminations or
cooling costs during fermentation and facilitates the

separation of volatile products. In addition, T. kivui is
exceptional as it can take up foreign DNA naturally,
circumventing the need for time-intensive and often
arduous electroporation or conjugation protocols [50].
Although suicide vectors for gene deletions and in-
sertions based on homologous recombination were
applied for both thermophiles, making use of replicating
shuttle vectors is challenging due to the sparse amount
of functional Gram-positive replicons and thermostable
bioparts [50e52]. Kanamycin serves thermostable
antibiotic and respective resistance gene was already

used in both thermophiles [50,52]. Functional Gram-
positive replicons were recently reported for
M. thermoacetica and T. kivui [25,53]. Ethanol production
was achieved in M. thermoacetica by constructing a
replicating shuttle vector to overexpress the native
alcohol dehydrogenase aldh or the non-native bifunc-
tional aldehyde/alcohol dehydrogenase adhE1 of
C. autoethanogenum. In T. kivui, an replicating shuttle
vector was used to establish a promoter library, making
use of the reporter protein pFAST [25]. Moreover,
acetone production was achieved by genomic integra-
tion of respective pathway into the genome of

M. thermoacetica [54,55]. As the strain can grow above the
boiling point of acetone, recombinant production seems
promising in an industrial perspective.

With its toolbox expanding rapidly, the aforementioned
E. limosum is gradually stepping into the spotlight
(Table 1). Despite most other acetogens, E. limosum can
utilize a broad range of substrates, including the C1
sources, CO2, CO, methanol, and formate, to produce
acetate, butyrate, and traces of hexanoate and butanol
[56]. Several constitutive and inducible promoters and

genetic bioparts were investigated using enzymatic but
also fluorescent reporter proteins [14,18,23,57,58].
CRISPR-Cas9 was applied to knock out genes of the
Wood-Ljungdahl pathway and genes encoding hypo-
thetical proteins [14,58], while its native homologous
recombination machinery was used to delete biofilm
synthesis genes by transforming linear DNA with ho-
mologous overhangs [59]*. The deletion of respective
genes not only showcases the functionality of this tool,
but also improves handling of the strain in further
www.sciencedirect.com
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Table 1

Genetic toolbox of Eubacterium limosum DSM 20543T and closely related strains (KIST612†, B2‡, and DSM 3468*).

Reporter proteins Genetic manipulation Recombinant production

Reporter Purpose Literature Tool Target Literature Product Substrate Amount Literature

FbFP Inducible
promoter
screening

[14]
[15] *

CRISPR-Cas9 folD, acsC,
hypothetical
protein

[14] Acetone Methanol 1.6 mM [23] ‡

b-glucuronidase
(GUS)

Promoter
screening

[58] † pyrF [58] †

FAST Promoter
screening,
fluorescent tag,
population
dynamics

[23,46] ‡ CRISPRi fhs1, folD,
acsC, acsD,
ptsF

[14] Butanol Methanol 0.6 mM [23] ‡

eGFP
HaloTag
SNAP-tag

Biopart
screening
(promoters,
30 UTRs,
50 UTRs)

[18] All genes
using a
CRISPRi
library

[41] Butanol Formate
/methanol

1.5 mM [61] *

Chloramphenicol
acetyltransferase
(CatP)

Promoter
screening

[57] Native
homologues
recombination

sinI, tasA,
epsFML,
epsABC/ptkA/
tmkA

[59] Acetoin H2/CO2 1.3 mM [18,41]

Genome editing
based on RelBE-
family toxin-
antitoxin

hisI, mtaA,
mtaC, mtcB

[60] ‡
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engineering approaches. In addition, an inducible toxin-

antitoxin system was established and used to generate
various gene knockouts, focusing on methanol meta-
bolism [60]. As mentioned above, a genome scale
CRISPRi screening identified essential genes for auto-
trophic acetogenesis and genes that enhanced growth
when repressed [40]*. The CRISPRi library successfully
pinpointed three genes for enhancing autotrophic
growth and, upon repression, led to a significant fourfold
increase in autotrophic growth. Although the recombi-
nant production of biocommodities at an industrial scale
is currently lacking, the rapid establishment of these

powerful tools holds the potential to transform
E. limosum into a biotechnological workhorse.
Conclusion
The number of molecular tools increases for acetogens,

and first steps are made to improve production. How-
ever, demonstrating the ability of metabolically engi-
neered acetogens to produce significant amounts of
certain products, while reducing greenhouse gases at an
industrial scale remains to be achieved. So far, promising
and closest to use industrially seems C. autoethanogenum
to produce acetone or isopropanol. Moreover, the rapidly
increasing molecular toolbox of E. limosum commence
high expectations, although producing chemicals
recombinantly seems far from being commercialized.
www.sciencedirect.com
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