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ABSTRACT 

Avian influenza poses a high-risk threat to poultry and human health. Monitoring and surveillance of 

the disease to acquire knowledge of antigenic variability is important to evaluate the current vaccine 

strain by examining the antigenic distance. Antigenic distance is calculated using R-acmac package in 

R-studio that provide cartography to help evaluate the distance visually. However, this mapping 

causes distortion as they reduce the dimensionality into two or three dimensions. Calculating an 

accurate antigenic distance is essential, especially for selecting the strain used for the vaccine update. 

Inaccurate antigenic distance calculation may result in unnecessary vaccine updates or the selection 

of the wrong strain. To provide a better view of the antigenic distance calculation method, this 

research aims to evaluate the distortion between the R-acmac method and real distance in 

consequence to the vaccine strain selection. Three datasets were used in this research to evaluate 

both methods. This research has shown that distortion is evident in R-acmac distance, potentially 

impacting the selection of vaccine strain. This shows the significance of accurately calculating antigenic 

distance to enhance precision in vaccine strain selection. Practical implication of these outcome can 

be utilized for vaccine development and avian influenza control strategies to formulate a broad 

protection vaccine that is aligns effectively with circulating strain.  

Keywords: Avian influenza, antigenic distance, distortion, vaccine strain selection 
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INTRODUCTION 

Avian flu is a highly contagious disease caused by Alphainfluenzavirus influenzae that belongs to the 

Orthomyxoviridae family (ICTV, 2022). Avian flu is recognised by severe depression, ruffled feathers, 

facial oedema extending to the comb, wattles and neck, and congested conjunctiva in chickens (Gaide 

et al., 2022; Theary et al., 2012). This disease creates severe economic losses in the poultry industry 

worldwide due to the massive mortality and morbidity caused by Highly Pathogenic Avian Influenza 

(HPAI), mainly caused by H5N1 (Swayne and Suarez, 2000). For instance, 30% of farms discontinued 

operating in three regions of Indonesia, West Java, East Java, and Lampung, during the HPAI outbreak 

in 2004 and 2005 (Basuno et al. 2010). It is also reported that the HPAI outbreak caused two to eleven 

times gross margin losses in independent broiler farms in West Java, Indonesia (Pramuwidyatama et 

al., 2023).  

Besides the threat in the poultry industry, HPAI H5N1 has emerged as a global concern for human 

health, including in Indonesia. These concerns are traced back to the first human infection with Avian 

Influenza (AI) in Hong Kong in 1997 (Wan, 2012). Since then, the disease has spread worldwide, with 

907 human H5N1 cases reported between 1997 and 2015, as reported by Lai et al. (2016). A recent 

update from the World Health Organization (WHO) documented 461 fatalities out of 882 cases of 

human infection with avian influenza from 2003 to 2023 (WHO, 2023). Taking a closer look at 

Indonesia, the initial HPAI in human cases was identified on Java Island in 2003 and reached the peak 

of disease detection in 2005-2006, with 100% case fatality in 2012 (Sumiarto and Arifin, 2008). Despite 

subsequent declines in the reported HPAI cases, no human cases have been reported to WHO from 

Indonesia from 2020 to 2023. Nevertheless, the persistent threat of HPAI to human infection remains 

evident as the occurrence of four deaths in humans caused by HPAI in Cambodia in 2023 (WHO, 2023). 

Given its proximity to the affected country, this situation might pose a new pandemic threat to 

Indonesia.  

Due to the high risk to animal and human health, control measures are essential. Aside from culling 

infected chickens, vaccination is used to control Avian Influenza in various countries (FAO, 2012). 

However, the use of vaccination for avian influenza is challenging. Avian influenza is a negative-sense, 

segmented, and single-stranded RNA virus(Fonville et al., 2016). The virus has two important surface 

glycoproteins, Hemagglutination (HA) and Neuraminidase (NA), which undergo continuous mutation 

and cause numerous genetic and antigenic variations (Cai et al., 2012; Sandie & Aris-Brosou, 2014). 

Swayne et al. (2014) have reviewed that antigenic matching between vaccine and field virus is critical 

in achieving optimal vaccine efficacy. Antigenic variation is used as the strategy of infectious 

pathogens to evade recognition of host antibodies by modifying their surface proteins, leading to 

inadequate vaccine protection against challenge viruses (Oli et al., 2020). A mismatch of antigenic 

variation between vaccine and field virus will not adequately protect against challenge viruses (Eggert 

& Swayne, 2010; Grund et al., 2011; Pfeiffer et al., 2010). Thus, monitoring Avian Influenza's antigenic 

variant is important to ensure vaccine efficacy. 

Antigenic analysis takes place as a crucial step in selecting vaccine strains and designing the type of 

vaccine for Avian influenza. The steps for selecting vaccine strains and developing the vaccine are 

similar to the seasonal influenza vaccine in humans, as shown in Figure 1 (WHO, 2007). Details of 

requirements specific to the Avian Influenza vaccine are written in the Manual of Diagnostic Tests and 

Vaccines for Terrestrial Animals, twelfth edition 2023 by WOAH(2023). After isolation, viruses must 
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undergo screening tests such as Hemagglutination (HA), Haemagglutination inhibition (HI) test or 

enzyme-linked immunosorbent assays (ELISA). Further, molecular tests such as the RT-PCR using a 

specific primer are performed to confirm HA and NA sequences. Vaccine strains must be well-

characterised and fulfil quality criteria (sterility, purity, freedom from extraneous agents). The final 

vaccine product must also comply with the safety and potency test. Over time, due to the improper 

use of vaccines or the immune escape ability of the virus due to the vaccine pressure, the current 

vaccine might inadequately protect the new circulating strain (Escorcia et al., 2008; Grund et al., 2011; 

Sitaras et al., 2014). To address this issue, several vaccine design strategies are used, such as creating 

a Differentiating Infected from Vaccinated Animals strategy (DIVA) (Capua et al., 2003), using several 

strains of AI in a vaccine (Bivalent) (Kim et al., 2023), subunit or DNA vaccine  (Harder et al., 2023; 

Nielsen et al., 2023). Thus, surveillance programs focusing on antigenic variety have become necessary 

to evaluate vaccine efficacy.  

 

Figure 1 Diagram Process of Influenza H5N1 vaccine virus selection based on the World Health Organization (). Specimens 

and epidemiological data are first collected (1). The specimens are then diagnosed and grown in Embryonated Eggs 

(2, 2a). Ferret antisera are produced to undergo antigenic and genetic analysis (3, 4, 4a). Next, the high-growth 

isolates are reviewed for virus reassortment, evaluate the growth property, and developed the standardized reagents 

for the inactivated vaccine. 

The vaccine's efficacy in protecting against transmission depends upon factors such as the antigen 

content, administration procedure and antigenic distance between the vaccine and challenge strain 

(Sitaras et al., 2016). The antigenic distance is the quantitative measure to determine the relations 

between two viruses from the reactions against the same antibody, for example, derived from the 

Hemagglutinin Inhibition (HI) assay, which determines the affinity of the antigen-antibody of AI virus 
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(Cai, Zhang, and Wan 2012; Lapedes and Farber, 2001). The antigenic distance between the viruses 

with similar HI profiles is closer and, in this case, smaller (Anderson et al. 2020). The distance is 

measured by antigenic units (AU), in which 1 AU equals log2 dilution in the HI assay (1AU = 2-fold 

dilution) (Zheng et al., 2022). Immunological assays are very crude as the results are usually averaged, 

and there are variations among individuals, often said to be low-resolution data (Barnett et al., 2012). 

To increase the resolution, antigenic distance is visualised with antigenic cartography, commonly used 

for influenza viruses (human, swine, equine, and avian) (Zheng et al., 2022). Antigenic cartography is 

projecting the antigens-antibody on a map (2 or 3 dimensions) by applying the multidimensional 

scaling method (MDS) (Cai et al., 2010). Antigen-antibody affinity is quantified to construct numerical 

spatial coordinates (Lapedes & Farber, 2001).  

The antigenic cartography claimed by Smith et al., (2004) to offer a greater resolution than the raw HI 

table by visualization of antigen-antibody in a 2- or 3- Dimension that provides easier analysis of the 

HI values. The algorithm was based on (Lapedes & Farber, 2001) ordinal multidimensional scaling 

(MDS) that was modified to modification metric MDS. An antigenic evolution could also be observed 

by seeing clustering on the map). Smith et al. 2004 further modified the ordinal MDS used by Lapedes 

to" modification metric MDS" to position the antigen and antibody in the map. This new approach 

offers computational advantages, allowing us to work with large datasets and reduce running time. 

Antigenic cartography is used by the World Health Organization (WHO) influenza reference 

laboratories and Indonesia Virus Monitoring (IVM) Online as the standard tool in influenza 

surveillance. The latter is a web-based animal health laboratory network system in Indonesia 

dedicated to managing antigenic and genetic data related to the country's circulating Highly 

Pathogenic Avian Influenza (HPAI) viruses. 

The vaccine is updated when there is a difference of at least two antigenic units with the recently 

circulated strain virus (Smith et al., 2004). The current method by Smith et al. (2004) is used as the 

basis of the website https://acmacs-web.antigenic-cartography.org, which is freely accessible. 

However, the website is sometimes out of order due to maintenance. Thus, this creates a hassle and 

delays when a new vaccine should be released. Following the website, a version of the R-acmac 

package has been published for use in R-studio. This R-studio version tackles technical problems such 

as low internet connection or website maintenance. Thus, allowing to researcher to analysis antigenic 

distance and cartography faster. However, distance distortion may occur since this method tries to 

project every point and reduce the dimension to 2- or 3-dimension. Cai et al. (2010) also reported that 

this method may contain relatively large errors due to the dependency on initial value. Consequently, 

it impacted the accuracy of this method for two-dimensional projection.  

Calculating an accurate antigenic distance is essential, especially for selecting the strain used for the 

vaccine update. Inaccurate antigenic distance calculation may result in unnecessary vaccine updates 

or the selection of the wrong strain (Sitaras et al. 2017). To provide a better view of the antigenic 

distance calculation method, this research aims to evaluate the distortion between the R-acmac 

method and real distance in consequence to the vaccine strain selection.  

 



6 
 

MATERIAL AND METHODS 

Dataset 

The dataset used in this research is obtained from previous research. Raw Hemagglutination Inhibition 

(HI), Virus Neutralization (VN) or both titers are extracted from the supplementary materials and used 

to calculate antigenic distance. 

The first dataset is obtained from Peeters et al. (2017). This study investigated the relation of genetic 

and antigenic differences among different HPAI H5N1. The datasets that were used are HI and VN 

titer. In brief, the titer was generated in chickens after vaccination with recombinant PR8-H5 influenza 

(PR8) inserted with HA genes from different low pathogenic H5N1 viruses. The information on the 

virus’s name, abbreviation and clade for the first dataset used in this study were listed in Table 1. In 

addition, another set of antisera was obtained by vaccinating chickens with soluble trimeric HA (SHA3) 

protein. Detailed methods for generating antisera and conducting serological tests are outlined in the 

paper. Titers were averaged before calculating the antigenic distance. This dataset was selected for 

the primary analysis because this paper provides a full cross-immunity table. Twelve virus strains from 

various clades were used to analyse the antigenic distance. This condition represents a situation where 

there are multiple clades of virus circulating. The complete cross-immunity table presented an ideal 

scenario for analyzing antigenic distance calculation. Moreover, this paper provides the R-script for 

calculating the real distance without having any distortion. 

Table 1. List of viruses from Peeters et al. 2017 

Clade Abbreviation Full name 

1 VN04 A/Vietnam/1194/04 

1.1 Cam07 A/Cambodia/R0405050/2007 

2.2 Hunan02 A/duck/Hunan/795/2002 

2.2 MSD05 consensus based on clade 2.2 

2.2 TT05 A/turkey/Turkey/1/2005 

2.2.1 Eg10 A/Egypt/N03072/2010 

2.2.1.1 Eg08 A/chicken/Egypt/0879-NLQP/2008 

2.3.2.1 Hubei10 A/Hubei/1/2010 

2.3.2.1 VN11 A/duck/Vietnam/QT801/2011 

2.3.4 Anhui05 A/Anhui/1/2005 

2.3.4.2 VN08 A/Vietnam/HN31432M/2008 

7.1 VN0408 A/chicken/Vietnam/NCVD-04/2008 

The second dataset was obtained from Pawestri et al. (2020). This paper characterized the genetic and 

antigenic properties using HI assays for twenty-five isolates of H5N1 Influenza from human patients 

in Indonesia between 2008 and 2015. The information on the virus’s name, abbreviation, and clade 

for the second dataset used in this study were listed in Table 2. The isolates belong to the lineage of 

clade 2.1.3.x including subclade 2.1.3.2, 2.1.3.2a, 2.1.3.2b and 2.1.3.3. However, the twenty-five 

isolates were not tested against themselves. Instead, a panel of ferret antisera was raised against clade 

2.1.3.1 (A/Chicken/South Sulawesi/157/2011), different clade 2.1.3.2 viruses (A/Indonesia/5/2005, 

A/Chicken/Central Java/51/2009, A/Chicken/East Java/121/2010, A/Chicken/West Java/30/2007 and 

A/Chicken/West Java/119/2010) and against clade 2.1.3.3 (A/Chicken/North Sumatra/72/2010). 

Methodologies for generating antisera and conducting serological tests are explained in detail in the 
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paper. This situation provides examples of a more realistic scenario in which disease monitoring was 

conducted. Although more viruses were obtained, there are only four genetic differences, all within 

one monophyletic lineage 2.1.3.x. The viruses were not tested with the full panel of antisera, resulting 

in incomplete cross-immunity HI data. This condition highlighted the different conditions with Peeters 

et al., (2017) data set .  

Table 2. List of viruses from Pawestri 

Clade Abbreviation Full name 

2.1.3.2 05/05 A/ Indonesia/5/2005 

2.1.3.2 7393/2008 A/Indonesia/NIHRD7393/2008 

2.1.3.3 7781/2008 A/Indonesia/NIHRD7781/2008 

2.1.3.2 7802/2008 A/Indonesia/NIHRD7802/2008 

2.1.3.2b 8987/2008 A/Indonesia/NIHRD8987/2008 

2.1.3.2a 9160/2009 A/Indonesia/NIHRD9160/2009 

2.1.3.2b 9340/2009 A/Indonesia/NIHRD9340/2009 

2.1.3.2b 9653/2009 A/Indonesia/NIHRD9653/2009 

2.1.3.2b 9665/2009 A/Indonesia/NIHRD9665/2009 

2.1.3.2 10364/2010 A/Indonesia/NIHRD10364/2010 

2.1.3.2b 10459/2010 A/Indonesia/NIHRD10459/2010 

2.1.3.2b 10529/2010 A/Indonesia/NIHRD10529/2010 

2.1.3.2b 10728/2010 A/Indonesia/NIHRD10728/2010 

2.1.3.2b 11046/2011 A/Indonesia/NIHRD11046/2011 

2.1.3.2b 11073/2011 A/Indonesia/NIHRD11073/2011 

2.1.3.2b 11198/2011 A/Indonesia/NIHRD11198/2011 

2.1.3.2 11454/2011 A/Indonesia/NIHRD11454/2011 

2.1.3.2a 12078/2012 A/Indonesia/NIHRD12078/2012 

2.1.3.2a 12130/2012 A/Indonesia/NIHRD12130/2012 

2.1.3.2b 12162/2012 A/Indonesia/NIHRD12162/2012 

2.1.3.2a 12452/2012 A/Indonesia/NIHRD12452/2012 

2.1.3.2a 13157/2013 A/Indonesia/NIHRD13157/2013 

2.1.3.2b 13233/2013 A/Indonesia/NIHRD13233/2013 

2.1.3.2b 13269/2013 A/Indonesia/NIHRD13269/2013 

2.1.3.2a 14122/2014 A/Indonesia/NIHRD14122/2014 

2.1.3.2b 14157/2014 A/Indonesia/NIHRD14157/2014 

 

The third dataset was obtained from PT. Medion Farma Jaya Indonesia. Farmers sent samples to the 

diagnostic lab for further analysis when a disease occurred. This newly isolated virus was tested for 

cross-immunity compared to the current vaccine isolate. Nine viruses were collected and proceeded 

for the antigenic distance calculation. Among these, eight viruses belonged to the same clade and one 

from a distinct clade. M166 is the current strain used for the existing vaccine. However, only three-

panel antisera were used for the HI assay. The information on the virus’s name, abbreviation, and 

clade for the third dataset used in this study were listed in Table 2. The antisera were generated by 

vaccinating Specific Pathogen-Free (SPF) chickens with 0.5 ml of inactivated Avian Influenza water in 

oil (w/o) vaccine by intramuscular inoculation. This situation represents a realistic condition to 

evaluate whether the current vaccine needs updates. 
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Table 3. List of viruses from PT. Medion Farma Jaya 

Clade Abbreviation Full name 

2.3.2.1c  M166 A/quail/Jawa Barat/12-M166/2019  

 2.3.2.1c  M250 A/duck/Sumatera Barat/12-M250/2021  

 2.3.2.1c  M254 A/duck/Sumatera Barat/12-M254/2021  

 2.3.2.1c  M290 A/duck/Jawa Barat/12-M290/2022  

 2.3.2.1c  M291 A/duck/Banten/12-M291/2022  

 2.3.2.1c  M296 A/chicken/Banten/12-M296/2022  

 2.3.2.1c  M310 A/chicken/Jawa Barat/12-M310/2022  

 2.3.2.1c  M320 A/duck/Sulawesi Selatan/12-M320/2022  

 2.3.4.4b  M294 A/duck/Hulu Sungai Utara/A1222294-1/2022  

 

Antigenic distance calculations 

The serological data is analyzed in Rstudio. HI titer values are shown in log2 values. All the dataset is 

analyzed using Peeters et al., (2017) script that will be called the real distance and R_acmac package 

(Wilks S. 2023) that will be called R_acmac distance throughout this research. In both scripts, HI titers 

are converted to a distance matrix where the distance between a specific antigen and antiserum pair 

is represented by the differences between the log2 value of the maximum observed titer to that 

antiserum from any antigen and the titer of the antigen to the same antiserum. 

The real distances are calculated based on the R_script written by Peeters et al., (2017)  which is 

available in the Supplemental material (). The titer HI matrix was standardized to ensure all differences 

were ≥ 0. This means that negative values were treated as 0. The antigenic distance is then calculated 

based on Euclidean distance between two points calculation according to Sitaras et al. 2014 with the 

following equation: 

 distij = √∑ (𝑚𝑖,𝑘 −𝑚𝑗,𝑘)
𝑛
𝑘=1  ,  

where i, j represents the antigen and antisera in an n-dimensional space. 𝑚𝑖,𝑘  and 𝑚𝑗,𝑘  are the 

coordinates of point in the i and j in the k-th dimension. Thus, the distance is calculated by summing 

the squared differences between coordinates of point and taking the square root of the result.  

Another way to calculate distances is using R_acmac packages based on the following website: 

https://acorg.github.io/Racmacs/. HI titer, in log2 values, is used to determine the table distances. 

First, the maximal titer value against each serum is considered to have a zero distance. This means the 

antigen with maximal titer is the closest to the sera. The maximal titer value against each serum is 

called the column base. Then, the distance can be obtained by subtracting each serum's column base 

and log titer. This is called the table distance. Further, MDS converts the table distance into a 

dimensional representation to construct the map as the acmac object. One hundred optimization 

numbers are used throughout the experiment. The script to obtain distances using R_acmac package 

is written in the Supplement material ().  
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R_acmac package validation 

The R_acmac package in R-studio is the alternative to the website https://acmacs-web.antigenic-

cartography.org/. With the guidance of GitHub, R-script was made and used for all data antigenic 

distance calculation. The same data was analyzed in websites and R-studio to validate the R-script. 

The results (map and antigenic distance) from the R-studio and website sites were compared. 

Distortion analysis 

The absolute result from subtracting the real distance and R_acmac distance defines the distortion in 

this research. Distortion was then visualized using the corrplot package in R-studio.  

Vaccine strain candidate selection 

The three data listed above are categorized in the variability of the clade as high (Peeters et al., 2017), 

moderate (Pawestri et al., 2020) and low (Medion). A threshold of  4 AU is used to eliminate a virus as 

a vaccine candidate for all types of data. This means a virus will be eliminated as a vaccine strain 

candidate when the antigenic distance of this strain to any other circulating strain is more than 4 AU.   

Out of the three datasets, only the Medion dataset particularly aimed to evaluate the current vaccine 

strain versus the other new isolates. The two other datasets were not aimed at selecting a strain as 

the vaccine candidate in the paper. Therefore, two scenarios were applied to choose a vaccine strain 

from the high and moderate datasets. Firstly, the biological interpretation would not be considered in 

the analysis. Biological interpretations here mean the viruses clade. The first scenario is applied to 

assume that there is no previous vaccine, and we need to choose one or several candidates for a 

vaccine strain despite of any clade circulating. Second, biological interpretation will then be 

considered. One virus strain is selected and assumed as the current vaccine strain, and some strain of 

interest is selected as the newly circulating strain. This scenario mimics the reality of vaccine 

evaluation and determining whether the vaccine strain needs to be updated. Clades of the current 

vaccine will be considered when analysis and suggestions will be made based on biological 

interpretation. 
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RESULTS 

A. Distortion Between R_acmac and Real Distance 

There were three datasets analyzed in this study, which were Peeters et al., (2017) (representing high 

variability of AI clade), Pawestri et al., (2020)(moderately variable in AI clade) and Medion’s data (low 

variability of AI clade). Antigenic distances in each dataset were compared pairwise for real distance 

calculation and R_acmac by the absolute value to acquire the distortion.  

Peeters et al., (2017) data set  

 
Figure 2. Antigenic distance of Peeters dataset with A. real distance, B. R-acmac and C. Antigenic distance distortion. On the 

x-axis is the virus, and the number within the cell gives the antigenic distance between the virus and an antiserum 

derived from exposure against the virus listed on the y-axis with a color-coded scheme. The higher the antigenic 

distance, the darker the colour becomes. The X symbol indicates an antigenic distance value above 4 where the 

serum no longer is deemed protective against the virus listed on the x-axis. . Yellow and red boxes show a distortion 

by smaller and larger values, respectively. Figure 2.C. show distortion by the colour-coded scheme and circle 

representing the distortion's width. More distortions are observed at the widest circle with the darkest colour.  

Twelve strains, consisting of eight AI clades, were analyzed from HI and VN assays from Peeters data. 

Distortion in antigenic distance was observed between the first and R-acmac distances. The real 

distance refers to the real distance, and the second refers to the R_acmac method (Figure 2A and 2B). 

The crossed cells indicate that the antigenic distance between viruses exceeds 4 AU. The antigenic 
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distance from the R-acmac distance generates an overall higher distance than the first (red boxes). 

However, the value is not always higher. Some antigenic distances are shown smaller values than the 

real distance (yellow box). Three virus strains show a high range of distortion over other strains: 

VN0408, Cam07 and Eg08 (Figure 2C). The highest distortion is observed at VN0408 vs Hunan02 (3.09). 

Pawestri et al., (2020) dataset 

 
Figure 3. Antigenic distance of Pawestri et al., (2020) datasetset with A. real distance, B. R-acmac and C. Antigenic distance 

distortion. On the x-axis is the virus, and the number within the cell gives the antigenic distance between the virus 

and an antiserum derived from exposure against the virus listed on the y-axis with a color-coded scheme. The higher 

the antigenic distance, the darker the colour becomes. The X symbol indicates an antigenic distance value above 4 

where the serum no longer is deemed protective against the virus listed on the x-axis. Figure 3.C. show distortion 

by the colour-coded scheme and circle representing the distortion's width. More distortions are observed at the 

widest circle with the darkest colour.  

More strains were observed within Pawestri et al., (2020) dataset. Twenty-six strains, consisting of 

four different AI clades, were analyzed from HI assays of ferret antisera. More antigenic distances 

between viruses exceeds 4 AU in the R-acmac distance, marked by crosses in Figures 2A and 2B. A 

similar trend was observed in Pawestri et al., (2020) dataset: the antigenic distance from the R-acmac 

distance generates higher distances than the real distance. The 8987/08 strain was observed to have 

a high range of distortion over other strain, followed by 9160/09, 9340/09, 9635/09, 9665/09. The 
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highest distortion was observed at strain 9665/09 vs 12452/12 (4.25). Meanwhile, the 05/05 strain 

was observed to have an overall low distortion ranging from 0.14 to 1.62.  

Medion dataset 

 

Figure 4 Antigenic distance of A. Real Distance, B. R_acmac. On the x-axis is the virus, and on the y-axis is the antigenic 

distance with a colour-coded scheme. The higher the antigenic distance, the darker the colour becomes. The X 

symbol indicates an antigenic distance value above 4 AU. 

Medion data represents how vaccine effectivity towards new strains will be evaluated. Both methods 

agree that no values above 4 AU exist except for M294. An obvious difference observed is that no 

other viruses can cover strain M294 in the R_acmac distance. Further, the distance of M294 is the 

highest towards M296. However, In the real distance calculation, a surprising result was observed. 

M294 distance was all lower than four with an exact distance value as M250. 

B. Consequences of vaccine selection 

Both Peeters et al., (2017) and Pawestri et al., (2020) paper was not aimed at selecting a vaccine strain. 

Hence, two scenarios are used to help with the analysis: Not considering biological interpretation and 

considering biological interpretation.  

1. Not considering the biological interpretation 

The situation is assumed that there are no previous vaccines, multiple clades are circulating, and we 

need to pick up a candidate/s as the vaccine strain. This is done by creating a threshold of 4AU. The 

virus with an antigenic distance of more than 4 AU is considered ineffective. Viruses with broader 

protectivity (more value than 4AU) are preferable in this case. Viruses with more coverage towards 

other strains are selected as the vaccine candidate. Figures 2 and 3 (A and B) show that viruses with 

antigenic distances of more than 4AU are crossed and will be eliminated as vaccine candidates.  

It was observed that different numbers of viruses can be candidates using Real distance and R_acmac. 

The evaluation is then by quantifying the strain with the most antigenic distance value of less than 4 

AU over other strains. The number shown in Figure 5. is the number of strains with antigenic distances 

less than four towards the virus. The highest numbers of protectivity are used to select the candidate 
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of vaccine strain (10). It was shown that eight viruses can be selected as vaccine candidates from real 

distance calculation because they can protect towards 10 other viruses. Meanwhile, only two 

candidates can be selected from the R-acmac distance calculation while keeping the same standard. 

However, both methods agree that VN0408 and Eg08 are the most distant strains over other viruses 

(low number). 

 

Figure 5. Real distance vs R_acmac for Peeters data. The figure shows the table of strains with antigenic distances less than 

four towards the virus between Real distance and R_acmac.  

A similar observation is also seen from Pawestry data that different numbers of viruses can be 

candidates using Real distance and R_acmac distance (Figure 6). Firstly, the highest coverage for the 

real distance is towards 21 strains, while R-acmac is towards 22 strains. Thus, we also included 21 for 

the candidate of R_acmac. It is shown that there are supposedly 18 viruses that have more coverage 

in the real distance calculation. Meanwhile, only 12 viruses have more coverage towards other strains 

in the R_acmac. The summary of selected vs non-selected candidate number is represented in Figure 

7. 

 

 

Figure 6 Pawestri data of Real distance vs R_acmac. The figure shows the table of strains with antigenic distances less than 

four towards the virus between Real distance and R_acmac. 

 
Figure 7. Summary of the number of selected candidate (teal) and not candidate (orange) in real distance and R-acmac 

distances. A. Peeters, et al. (2017) and B. Pawestri, et al. (2020) 
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2. Considering the biological interpretation 

The second scenario applies to the highly and moderately variable data to further analyse the 

consequence of the vaccine candidate selection. In this scenario, the biological interpretation (clade 

of the current vaccine vs circulating strain matters) is included in the analysis. The situation is where 

there is an existing vaccine and an introduction of new or several strains within or out of the same 

clade.  

MSD05 was selected as the vaccine strain because this strain is a consensus sequence of clade 2.2 AI 

H5N1 from the Peeters et al. (2017) dataset. Using the real distance, MSD05 cannot protect the other 

two strains, VN0408 (clade 7.1) and Eg08 (clade 2.2.1.1). Meanwhile, using the R-acmac distance, 

there is one more strain that MSD05 cannot protect: the Cam07 (1.1). This can be seen as the crossed 

cells in Figure 2A and 2B. It is observed that there is a different conclusion when using the antigenic 

distance from the first and R-acmac distances.  

For the Pawestri et al. (2020) dataset, the 05/05 virus (2.1.3.2) was selected because it was the virus 

isolated from early human cases in Indonesia. WHO has listed this strain as a candidate for the vaccine 

virus. The Pawestri et al., (2020) dataset contains a more homogeneous clade, which was the 

monophyletic lineage of 2.1.3.X. Both methods agree that isolate 05/05 is not protective against other 

viruses except for 7781/08 (2.1.3.3) and 10364/10 (2.1.3.2) which cells are uncrossed in Figure 3A and 

3B. Thus, the conclusion remains the same for both the real distance and R-acmac distance.  

DISCUSSION 

Understanding the antigenic variations by carefully observing the antigenic distance between 

circulating strains is essential to determine vaccine strain selection in avian influenza vaccine strategy 

development. It is a critical initial step in the selection process to decide when and with which strain 

to update an AI vaccine in poultry. The analysis of antigenic distances between strains in various 

datasets using real distance and R_acmac methods reveals distortion that has implications for vaccine 

selection. In this study, two methods of antigenic distance calculation are compared using two 

previous serological data. The first data was acquired from Peeters et al. (2017), which aimed to see 

the correlation between genetic and antigenic differences among H5N1. The second data was 

acquired from Pawestri et al. (2020), which aimed to characterise the genetic and antigenic properties 

of H5N1 Influenza from human patients in Indonesia. A surprising result was observed from the 

Medion data, which will be explained later. Thus, Medion data is excluded for distortion analysis. 

Therefore, this study requires two scenarios to help analyse the differences between the two methods 

in real-life situations. 

This research confirms that calculating distance using R-acmac distorts the real distance and affects 

vaccine strain selection. Distortion is the absolute subtraction of the real distance and R-acmac 

distance. The distortion observed within the datasets of Peeters et al. (2017) and Pawestri et al. (2020) 

varies from very small to high (0.05 to 4.25). This distortion indicates a consequence of the vaccine 

strain selection, further confirmed by the scenario made up for analysis.  
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In the first scenario, no biological interpretations are considered. This situation represents multiple 

clades circulating; a strain with wide coverage is preferable because we want a vaccine covering 

various clades. From Peeters et al. (2017) dataset, eight candidates can be selected using the real 

distance, while only two candidates appeared to be able to be selected using R-acmac distance. The 

Pawestri et al. (2020) dataset also observed a different conclusion. For example, the 8987/07 strain. 

The real distance implies the potential selection of this strain as a vaccine candidate, whereas the 

R_acmac distance suggests otherwise, indicating it may not be a suitable candidate. This conclusion 

presents a potential limitation in vaccine strain choices. The antigenic distance between candidate 

vaccine strains and the circulating strains is just one of several factors to consider when choosing a 

vaccine strain. A wider range of choice for potential vaccine strains, indicated by the antigenic 

distances, simplifies several other constraints in the actual production of the vaccine. A practical 

implication is to look at the virus’s yield. For instance, if the 8987/07 strain provides a higher yield 

than another virus candidate but is excluded as a vaccine candidate by the R-acmac method, an 

alternative candidate with a lower yield might be selected. High virus yield is an important parameter 

for vaccine production (Aslam et al., 2023; Lee et al., 2017). Optimal virus yield could still be achieved 

through serial passages in embryonated eggs (Lee et al., 2017). However, this may extend production 

time and lead to mutation in the HA gene, affecting viral antigenicity (Ping et al., 2016). 

The second scenario considers biological interpretation. A virus is selected as the existing vaccine 

strain, while new genetically different virus strains are circulating. Thus, we will decide whether our 

current vaccine needs to be updated. The results confirm that different methods lead to different 

conclusions for the Peeters et al. (2017) dataset. MSD05, clade 2.2, is shown to have an antigenic 

distance of more than 4 AU to VN0408 (clade 7.1) and Eg08 (clade 2.2.1.1). This outcome indicates the 

need to update the MSD05 vaccine strain. This outcome aligns with the in vivo cross-protection 

findings in the Peeters et al. (2017) paper. MSD05, VN11 and Eg08 vaccines were challenged with 

TT05, VN11, Eg08 and VN0408 virus. The paper reported that complete protection against mortality 

was achieved when the antigenic distance between the vaccine and challenge strain was less than 

4AU. Since they are both different clades from the current vaccine and no other strain have an 

antigenic distance below 4 towards these strains, the MSD05 (2.2) strain does not need to be replaced. 

However, constructing a combination vaccine with multiple clades, including VN0408 (7.1) and Eg08 

(2.2.1.1) with MSD05 is suggested as this development vaccine strategy may increase vaccine efficacy 

towards the strain with high antigenic distance. This strategy has been proven to be protective 

towards the heterologous strain and reducing viral shedding (Hu et al., 2021; Kandeil et al., 2018; Kim 

et al., 2023). However, R-acmac distance shown that MSD05 is also not protective towards Cam07 

(1.1). This result shows a different conclusion. While the real distance analysis suggests excluding 

Cam07 from the vaccine combination, this finding suggests that including Cam07 may be necessary. A 

classical alternative is to find another strain that has an antigenic distance below 4 towards all of these 

strains, which may take longer time and effort. However, with the current vaccine development, 

alternatives such as subunit vaccines could be used as another strategy (Dey et al., 2023; Nielsen et 

al., 2023; Oli et al., 2020). 
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A different conclusion was obtained by looking at the R-acmac distance outcome. In the Pawestri et 

al. (2020) dataset, both antigenic distance calculation methods agreed that 05/05 vaccine strains have 

more than 4 AU across most strains and that this vaccine must be updated. The 05/05 virus strain was 

Indonesia's early isolated virus from human-infected H5N1 HPAI. These results indicate that this strain 

might not offer protection against the emerging sublineages HPAI 2.1.3.2a and 2.1.3.2b. Both methods 

for calculating antigenic distance indicate no variation, likely due to the small range of distortion 

observed from both methods. Consequently, conclusions drawn from the Pawestri et al. (2020) 

dataset are the same.  

The R_acmac method uses Metric MDS developed by Smith et al., (2004). This algorithm generates a 

random initial vector for each virus or antiserum in either 2 or 3 dimensions. The process involves 

iteratively adjusting the vector coordinates of each virus and antiserum to minimize the error function, 

ensuring that the calculated distances closely match the measured real distances. The method 

requires a pre-defined dimension L as input representing the virus and antiserum in the L-dimensional 

vector (Cai et al. 2010). Therefore, distortion is evident and observed in this research. The distortion, 

however, may lead to a different or similar conclusion as the real distance calculation. The extent of 

distortion can potentially be reduced by adjusting the optimization number in R-acmac. Optimization 

finds the optimal arrangement of antigens and antisera to reflect their antigenic similarity (Wilks S. 

2023). However, determining the appropriate number of optimizations needs to be done carefully. In 

the ideal situation, conducting sufficient runs would result in the lowest stress that will end up with 

similar solutions (Wilks S. 2023). In general, a higher number of optimizations is preferable. An 

interesting outcome was observed when performing antigenic distance calculation in both the website 

and R-studio versions. With the same 100 optimizations, the web version consistently produced 

identical results in each run. However, different results were obtained in the R-studio versions after 

multiple runs of antigenic distance calculations. This outcome indicates that the web version has a 

fixed random seed, whereas the R-studio does not. Thus, careful attention needs to be given due to 

the potential variability in the results of antigenic distance using the R-studio version. 

The R-acmac distance offers the advantage of visualizing on a map rather than raw serologic titer 

numbers. Antigenic cartography also aids in the visualization of the classification of antigens into 

groups/ clusters. Wang et al. (2023) analyzed antigenic variation in AI H9N2 in China.  He reported that 

antigenic cartography categorized strains into three antigenic groups: Group 1, Group 2, and Group 3. 

Clustering revealed that Group 3 had underwent antigenic drift, attributed to 11 potential antigenic 

amino acid residue differences between the old and new clades in the HA sequence, including H48Q, 

G72E, S127D, D135G, Q146R, N149G, E163G, T182R, N183D, T202I, N238D. This major shifted due to 

antigenic drift may result in immune escape causing low immunity efficacy of the used vaccine strain 

(Sitaras et al., 2014). Pawestri et al. (2020) used antigenic cartography and identified two clusters of 

distinct antigenic groups. This finding leads to the recommendation that creating a bivalent vaccine 

representing both groups was required to optimize protection against the two antigenic groups. Kim 

et al. (2023) reported that using one vaccine containing two different strains (bivalent) induces high 

level of immunogenicity and protective efficacy.  
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Calculating the real distance is advantageous as it represents the distance without distortion in the 

multidimensional space. Inaccurate distance measurements can significantly influence vaccine update 

decisions, potentially resulting in either unnecessary updates or the retention of a vaccine with health 

and economic consequences (Sitaras, et al. 2017). While R-acmacs claims an increase in accuracy of 

the distance measurements by reducing the number of dimensions, The distance accuracy can also be 

increased by raising sera in more than one animal, without the drawbacks of the reduction in 

dimensions. According to Sitaras et. al. (2017), inter-animal variation in immune titers after 

vaccination can significantly vary the calculated distances between strains. Even using sera from two 

animals results in significant improvement in the accuracy of the antigenic map. This way, preserving 

the original distance matrix maintains the geometry and avoids distortion from reducing 

multidimensionality. 

When calculating real distance, it is important to utilize a complete cross-immunity table or at least 

consists of a panel of antisera representing various clades to calculate the antigenic distance. This 

observation is evident in Medion dataset, particularly with the genetically distinct M294 strain 

belonging to the new clade 2.3.4.4b. While it was expected that the antigenic distance of M294 would 

be higher than another strains, the actual result revealed that the antigenic distance is consistently 

below 4 and very similar to M250. This outcome might be attributed to the absence of panel antisera 

specific to the newclade itself. During the calculation process, the centered matrix is derived by 

subtracting the raw HI titer from the mean titer. Consequently, the centred matrix of M294 and M250 

were identical, influencing the subsequent calculation step and resulting in the exact antigenic 

distance for both strains. Conversely, the R-acmac distance results aligned more closely with the 

hypothesis, indicating that all antigenic distance from M294 are above 4. This alignment is expected 

because the raw HI data shows consistently lower titers compared to the others. However, further 

studies are required to validate these findings.  

The real distance calculation is limited in terms of visualization, as it merely provides numerical values. 

To address this limitation, (Sitaras et al., 2014) proposed an alternative map that represents distances 

in a 2D space without reducing dimensionality. However, these maps may not effectively reveal 

clustering or grouping patterns. In response, alternative methods such as an antigenic dendrogram 

combined with a heat map can serve as an option to visualized antigenic similarity as suggested by A. 

C. K. Lai et al., (2012). Additionally, clustering algorithms including k-means, clara, hierarchical, EM,  

hcmodel, Spectral, subspace, optics, dbscan (Rodriguez et al., 2019) could be explored for further 

development to analyze clustering, even though it falls outside the scope of this research.  

Researchers commonly use a four-fold increase in antigenic units in antigenic distance calculation as 

a benchmark to identify influenza antigenic drift (Anderson et al., 2018; Barnett et al., 2012; Cai et al., 

n.d., 2010, 2012a; M Fouchier, 2010; Y. Wang et al., 2016). These findings are taken further to 

confirmed the relation of antigenic distance vs vaccine efficacy in vivo in chickens by Nguyen et al., 

(2018). The findings revealed an inverse correlation between percent survival of chickens post-

vaccination challenge and antigenic distance. Specifically, when It was found that percent survival of 

chickens post-vaccine challenge demonstrated an inverse relationship between survival rate and 

antigenic distance. the antigenic distance ranged from 3.7 to >4.9 HAU, less than 50% of chickens 

survived. Overall, comparing antigenic distances and percent survival suggested a trend towards lower 

survival rates as the antigenic distance between the challenge virus and vaccine virus increased. 
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Further, Sitaras et al. (2016) suggest evaluating the vaccine efficiency in stopping transmission of HPAI 

H5N1 by studying the vaccine dose (low or high) and the implication on HI titer. (Karo-karo et al., 2022) 

Malek & Hoque, (2022) conducted a mathematical modeling study on bird flu in poultry farms, 

incorporating vaccination and treatment. A Susceptible-Exposed-Infectious-Treatment-Recovered 

(SEITR) model has been built, integrating the vaccine effective rate (1-ε) into the model. The findigs 

revealed that basic reproductive numbers (R0) are influenced by the transmission rate in the host 

individual and the vaccine effectivity rate. In summary, using vaccines that have efficiency of more 

than 70% will eradicate the disease along with proper diagnosis, the use of antiviral, hygienic farming 

system and density of the problem. without proper implementation, surveillance, robust vaccine 

strategies, and stringent bio-security measures, vaccination might contribute to the rapid evolution 

and antigenic change of H5N1 viruses, allowing them to evade vaccine protection. This underlined the 

urgent need of an effective animal health control and prevention measures, such as sustainable and 

efficacious vaccination strategies for poultry in controlling Avian Influenza (Capua & Marangon, 2007). 

Thus, highlighting the role of calculating accurate antigenic distance during vaccine strain selection.  

It is essential to acknowledge the limitations of this research. This research uses three complexities in 

the variability in clades of viruses. To gain a better understanding of the distortion between real 

antigenic distance and R-acmac distance, additional data will be necessary. Collecting more serological 

datasets, either from the HI or VN test, is suggested for further study. Additionally, data simulation 

will help to create more datasets. Unfortunately, simulated HI data could not be generated during the 

study. Initially, deriving a biological interpretation from random data proved challenging. Cai et al. 

(2012) addressed this challenge by randomly designating 5% of the HI values as low or missing reactors 

(indicating weak immunological reactions). The study also accounted for variations induced by noises, 

such as inconsistencies in virus titration or experimental conditions. This method may be used to 

create HI simulation data that helps validate the outcome of this research further. In addition, the 

clustering algorithm may be beneficial to study as an alternative to visualizing the antigenic distances 

in future studies.  

Following the use of this distance in a company view. Real antigenic distance calculation is suggested 

as it gives direct information about the distance between viruses. One consideration must be 

considered, which is using full cross-immunity data, or at least there should be all represented antisera 

for each virus clade. As shown in this research outcome, a similar HI titer pattern may give the same 

result of antigenic distance. Furthermore, conducting a trial using more chicken to create serum has 

proven to give more precise results of antigenic distance. The company can perform and validate this 

to enhance the precision of antigenic distance to help select the vaccine strain. However, the use of 

R-acmac still has advantages in visualization, especially when many strains are isolated. Using R-acmac 

might be inevitable as it is easier to look at the map. However, R-acmac distance result needs to be 

carefully optimized. It has been shown that there is a potential variability in the results of antigenic 

distance using the R-studio version. Validation, for example, by running the code 10 times and 

averaging the outcome may be used to minimize distortion. Given its advantage and validation, the 

use of R-acmac still possesses a distance distortion that always needs to be taken into consideration 

while judging the map and concluding the result. Further research about the different outcomes may 

also be an interesting analysis for further study to understand more about how this algorithm works. 
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CONCLUSION 

This research has shown that distortion is evident in R-acmac distance, potentially impacting vaccine 

strain selection. This shows the significance of accurately calculating the antigenic distance to enhance 

precision in vaccine strain selection and measuring a few chickens per virus-serum combination to 

reduce error. The practical implications of this outcome can be utilized for vaccine development and 

avian influenza control strategies to formulate a broad protection vaccine that aligns effectively with 

circulating strains.  
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