Necessary renewal of fertilization advice in outdoor crops

EUVRIN Work Group Fertilization & Irrigation 5th Workshop, Ljubljana/online 12 September, Janjo de Haan

Challenges around fertilization

Harmonize fertilization advices over Europe

Lab methods used per country

The same colour within a map indicates the same applied methodology:

- SOC soil organic carbon content;
 PSD – particle size distribution;
- pH_w pH-value in water;
- ECEC effective cation exchange capacity

EJP SOIL Stocktake of current fertilisation methodologies across Europe

CONTEXT

The European Commission has set targets to:

- Reduce nutrient losses > 50%
- Reduce fertiliser use >20% by 2030
- While ensuring no deterioration in soil fertility

OBJECTIVE

To assess fertiliser practices across Europe and discuss harmonisation of methodologies

METHODS

A stocktake study of current fertilisation guidelines across 23 European countries took place

RESULTS

 There are differences in fertiliser guidelines operating between neighbouring countries, even within the same environmental zone

BARRIERS TO HARMONISATION

- Guidelines need to be specific to soil and climatic variables
- There are significant agri-ecosystem differences across Europe

POTENTIAL BENEFITS OF HARMONISATION

- Shared learning in best practice
- Collective approach to tackling environmental concerns

SIGNIFICANCE: This data analysis across 23 European countries provides a baseline from which scientific solutions can be developed to deliver EU policy targets for nutrient loss and soil fertility

Recommended N-fertilization rates in wheat for two case studies based on methods of ten West European countries

Variables in the calculation of N-fertilisation rates of methods of ten West European countries

	Outputs (direct or through coefficient)					
	Send	Cend	L	A Atmos.	AUC	
	Soil end	Uptake	Leaching		Apparent Use Coefficient	
France						
Italy						
Switzerland						
Belgium (Wal.)				E.		
Germany						
United Kingdom				38		
Spain						
The Netherlands						
Ireland						
Luxembourg				12		

Number of variables (except AUC	Inputs (or not needed to be brought)										
	AdY	Atm D	M _{n1}	M ₁	Ir	IC	CR	Past	Hu F	C _{Start}	S _{start}
	Adjust. of the yield	Atmos. deposition	Manure Year-1	Manure	Irrigation	Interm. crops	Crop residues	Pasture min	Humus min.	Crop start	Soil start
10										i i	
10											
9										(*)	
9											
8			s								;
8					0				-		
8											
8									3		
6											
3										13	

In the Netherlands

"water quality crisis much bigger than nitrogen"

Nitrate concentrations groundwater in the Netherlands

All agricultural farms mg nitraat per liter 200 Loess Sand Clay 150 Peat 100 EU-norm Tussenliggende jaren zijn niet gemeten

Bron: RIVM, Landelijk Meetnet effecten Mestbeleid (LMM)

Fertilization advice in the Netherlands

- Two (active) standing committees
 - Arable farming & vegetables

www.handboekbodemenbemesting.nl

Grassland and fodder crops

www.bemestingsadvies.nl

- Independent
- Scientific based
- Researchers, advisors and farmers
- Privately financed by product boards
- Regular adaptations of current advices

Current fertilization advice in the Netherlands is outdated

Current fertilization advice: agronomic advice per nutrient and crop

Fertilization advice based on outdated methods for chemical soil analysis

New Dutch public-private cooperation project

- 4-year project
- Consortium of 3 research organizations & 13 private parties
 - Product board arable farming, industry organisations
 - Fertilizer producers and retail
 - Laboratories, arable industry
- Focus on arable crops
- Budget 1.5 Meuro
 - 50-50 financed by government and private parties

What is new

Integration of new knowledge on soil & plant processes

Set targets

Measure & observe

Integral advice at farm level

Advice

Part of methodology

Dynamic, flexible, time & site specific

Use of precision ag technology

Execution

Plan - Do -Check - Act

Practical applicable

Expected Results

- 1. Tested methodology for site specific integrated fertilization advice for N, P and organic matter
- 2. Tested methodology for dynamic (nitrogen) fertilization application within the growing season
- 3. New fertilization advices based on intensity & capacity (P, K, etc.)
- 4. Tested methodology for fertilizer choice based on objectives and field conditions
- 5. Integration of advices on field and farm level and publication of advices in the Dutch fertilization manual

International workshop fertilization advice

April 2024, Lelystad, The Netherlands

- Discuss new methodologies for fertilization advice on all aspects
- Get input for new Dutch fertilization advice methodology
- Inspire you to improve fertilization advice

To conclude

Big need for adapted fertilization advice with societal issues

Fertilization advices methods differ a lot over Europe

New knowledge and technology available but not used

Developing new fertilization advice is needed

Let's join forces!
→ Participate in our
workshop next spring

Thanks for your attention

Janjo.dehaan@wur.nl

