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A B S T R A C T   

Agricultural intensification has contributed to the loss of biodiversity and of the ecosystem services that it 
supports, such as natural pest control. Decision support tools are needed to understand and predict where natural 
pest control can be enhanced and pesticide applications decreased. While many studies have assessed the impact 
of field and landscape-scale management in a range of crops, few attempts have been made to synthesize this 
knowledge in a single model. In this study, we developed an expert-based moving window model of natural pest 
control potential. This model builds on the knowledge of 52 experts across Europe regarding the importance of 
herbaceous areas, forest interiors, and edges, and field scale agricultural management practices (i.e. farming 
system, field size and crop diversity) for the abundance of generalist predators (e.g. carabids, spiders), specialist 
predators (e.g. coccinelids) and parasitoid natural enemies. We assessed the model’s performance by comparing 
its predictions to field data on natural enemy abundance from 117 sites in Sweden. The natural pest control 
potential scores predicted by the model explained 11% of the variation in carabid field abundances. However, 
the model’s performance was less satisfactory for spiders and parasitoids. We provide guidance for improving 
this indicator, particularly by incorporating more ecological processes, such as accounting for the functional 
diversity of spiders and the density-dependent effects of parasitoid-host interactions. In addition, the model could 
be further refined by accounting for non-linear relations and potential threshold effects and interactions among 
field and landscape-scale management practices. In its current state, the developed indicator can be used to 
identify areas where further ecological intensification practices can be promoted to enhance natural pest control 
potential, especially for carabids.   

1. Introduction 

To increase crop production, natural habitats have been transformed 
into large agricultural monocrop fields, and farms have intensified and 
specialized on few cash crops, reducing crop diversity in space and time, 
and increasing cropping system reliance on pesticide for pest control 
(Robinson and Sutherland, 2002). This intensification has led to declines 
in biodiversity as well as the many ecosystem services it supports, 
including soil health, pollination and natural pest control (Hallmann 
et al., 2017; Landis, 2017; Rusch et al., 2016). Natural pest control is 
here defined as the service delivered by natural enemies to suppress 

pests in managed ecosystems (Bianchi et al., 2006). Declines in natural 
enemy abundances and the pest control services they support increase 
cropping systems’ vulnerability to pest outbreaks, insecticide depen-
dence and resistance, and crop yield losses due to pests (Deutsch et al., 
2018; IPCC, 2021). Managing agricultural landscapes by, for example, 
increasing non-crop habitats, reducing pesticide applications, reducing 
large-scale mono-cropping systems and increasing crop diversity to 
support populations of natural enemies, is key to the supply of natural 
pest control services and agroecosystem sustainability (Bonato et al., 
2023; Bommarco et al., 2013). These management practices allows for 
ecological intensification of agrosystems in which natural processes 
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replace human inputs, such as pesticides and fertilizers, while main-
taining or increasing food production per unit area (Bommarco et al., 
2013). The influence of these practices on natural pest control services 
depends on the spatial organization of agricultural landscapes (Bianchi 
et al., 2006; Chopin et al., 2019) such as the proximity between non-crop 
and crop habitats. Therefore, replacing insecticide use with natural pest 
control services requires spatially-explicit tools to, for example, identify 
areas with low natural pest control potential and target implementation 
of ecological intensification practices (Alexandridis et al., 2021; Bom-
marco et al., 2013; Perennes et al., 2023). Despite this need, natural pest 
control is one of the least spatially mapped ecosystem services (1 % of 
studies, among 17 major ecosystem services, Englund et al., 2017). 
Existing models primarily focus on landscape-scale land-use composi-
tion (Rega et al., 2018), seldom accounting for field-scale management 
practices, potentially misestimating natural pest control potential in 
agroecosystems. 

Up-scaling the findings on natural enemy abundance and pest con-
trol from field surveys and experiments to larger spatial scales is difficult 
as pest control potential depends on the complex interactions between 
local field management practices, landscape composition and natural 
enemy traits (Petit et al., 2020). At the field scale, organic farming and 
temporal crop diversity (e.g. diversity in crop rotation) can promote 
natural pest control potential by providing natural enemies with com-
plementary food and shelter resources (Muneret et al., 2018; Redlich 
et al., 2018; Scheiner and Martin, 2020). Additionally, small field size 
can enhance natural pest control potential, by facilitating natural en-
emies’ movement from field margins or nearby semi-natural habitats 
(SNH) to field interiors and by increasing spatial crop diversity within 
the foraging range of many natural enemies (Haan et al., 2020; Redlich 
et al., 2021). At the landscape scale, increasing SNH cover generally 
supports source populations of natural enemies and favours their 
movement into crops (Chaplin-Kramer et al., 2011). However, these 
local and landscape scale effects on natural pest control services can be 
highly variable as they interact with each other (Bianchi et al., 2006; 
Petit et al., 2020). In addition, generalist and specialist natural enemies 
display different preferences for different types of SNH with, for 
instance, a general avoidance of forest interiors by generalist natural 
enemies (Moonen et al., 2016). To improve natural pest control services 
prediction and target the implementation of ecological intensification 
management practices, the complex interactions between local and 
landscape scale practices on different natural enemy functional groups 
(e.g. generalists and specialists) need to be included in spatially-explicit 
models of natural pest control services. 

Mapping pest control potential using, for instance, participatory 
approaches (Raymond et al., 2009), field experiments (Petz and van 
Oudenhoven, 2012), and mechanistic approaches based on natural en-
emies (Jonsson et al., 2014) have allowed for scale-up of natural pest 
control potential from field to landscape scales. However, these models 
remain limited in their scope, focusing on one system or not accounting 
for a diversity of land uses (e.g., field management practices, forest and 
herbaceous areas) and natural enemies. More complex models of natural 
enemy abundance at the European scale have accounted for the influ-
ence of different types of SNH on flying natural enemies (Rega et al., 
2018). However, there was little correlation between field observations 
and the level of natural pest control potential predicted by these models 
(Bonato et al., 2023). This is likely because they do not account for di-
versity in field-scale management practices in the landscape, such as the 
diversity of crops, the proportion and spatial organization of organic 
fields and field borders. Assessing the effect of several field-scale man-
agement practices and other land uses (i.e., forest and herbaceous areas) 
at multiple spatial scales is very difficult in the field. Currently, there are 
no meta-analyses estimating the relative effects of these practices on 
natural pest control services. To overcome this, estimates based on ex-
perts’ knowledge can allow the assessment of the relative effect of 
several land-use practices at multiple spatial scales (Burkhard et al., 
2012). 

In this paper, we aimed to develop a spatially-explicit, fine-resolu-
tion model to quantify and map the potential of intensively managed 
landscapes to support generalist and specialist predators and parasitoid 
natural enemy abundances. Including experts’ knowledge of natural 
enemy abundances and building on the model by Rega et al (2018), our 
model accounts for both field and landscape scale management practices 
influencing natural enemy abundance. Model performance was assessed 
using field data on natural enemies’ abundance from southern Sweden. 
Variation in model performance between natural enemy groups is 
further discussed as well as model potential application and further 
improvements. 

2. Materials and methods 

2.1. Model building and rationale 

We combined data from expert-based surveys on the capacity of 
various land uses including field management practices, herbaceous and 
forest areas (edge and interior) to support various natural enemy groups 
with a spatial model to estimate a score of natural pest control potential 
(Fig. 1). Predicted model scores were compared to field data on natural 
enemy abundances in Sweden to assess the model’s performance 
(Fig. 1). This pest control model is adapted for pest-predator systems in 
intensively managed temperate landscapes, which encompass oilseed 
rape and cereal systems. In these crops, pests such as aphids (Hemiptera: 
Aphididae), weevils (Coleoptera: Ceutorhynchus obstrictus, C. Assimilis), 
or pollen and flea beetles (Coleoptera: Brassicogethes aeneus, Psylliodes 
chrysocephala) are controlled by generalist and specialist predators as 
well as parasitoids. These pest-predator systems have specific resource 
and habitat requirements (Kröber and Carl, 1991; Williams, 2010) 
which may differ from other pest-predator systems. 

2.2. Experts survey on land-use and agricultural management practices 

We aimed to quantify the potential of an intensively managed cereal- 
based agricultural landscape to support natural enemy (generalist and 
specialist predators and parasitoid) abundance and thereby its natural 
pest control service potential in a spatially-explicit way. Pest control 
services are the result of complex natural enemy-prey-environment 
dynamics that determine natural enemy species composition and 
abundance (Mei et al., 2023; Snyder, 2019). Nevertheless, the abun-
dance of natural enemies is a good proxy to assess the natural pest 
control potential across crop systems as a positive correlation between 
the two variables has been reported extensively in the literature (Bianchi 
et al., 2006; Tschumi et al., 2016). Therefore, we assumed that natural 
enemy abundance enhances pest suppression in agroecosystems 
(Chaplin-Kramer et al., 2011). Natural enemies can be broadly divided 
into three groups: ‘Generalist predators’ (i.e. includes ground and 
rovebeetles (Coleoptera: Carabidae, Staphylinidae), spiders (Arachnida: 
Araneae)…), ‘Specialist predators’ (includes aphidophagous predators 
such as coccinellids (Coleoptera: Coccinellidae), lacewing (Neuroptera: 
Chrysopidae), hoverfly larvae (Diptera: Syrphidae)…) and ‘Parasitoids’ 
(includes: parasitic wasps (Hymenoptera)…). For each natural enemy 
functional group, experts from around Europe were asked to rate the 
influence of forest and herbaceous areas and field management practices 
on their abundance and indicate their level of confidence as 1 (‘not 
confident’), 2 (‘fairly confident’) and 3 (‘confident’) (Campagne et al., 
2017) (Fig. 1). The survey used the example of an average intensive 
cereal-based agricultural region, i.e. producing at least 60 % cereals, 
commonly found in many productive regions in Europe (Figure S1). 

Experts were asked to rate the capacity of various land uses, 
including forest edge, forest interior, herbaceous and agricultural hab-
itats for supporting generalist and specialist predators and parasitoid 
natural enemy abundances. A Likert-scale from 0 − 10, ranging from ‘no 
relevant capacity’ to ‘very high relevant capacity’, was used to assess the 
capacity of one specific land-use type to support each natural enemy 
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group (Burkhard and Maes, 2017). The option ‘I don’t know’ was 
included to avoid ‘pseudo opinions’ (Rowley, 2014). Forest habitat was 
categorized as an area with more than 30 % of forest canopy cover (i.e. 
perennial plants such as trees or shrubs at a height > 1 m). Forest 
interior (large forest cores) were separated from forest edges and tree 
lines of up to 10 m width, as natural enemy abundances are differently 
affected by these features (Haan et al., 2020; Moonen et al., 2016). 
Herbaceous habitats (i.e. permanent and semi-natural pastures and 
permanent ley fields) were defined as habitats containing less than 30 % 
of forest canopy cover that were not ploughed for at least 5 years but 
could be mowed or grazed. The agricultural land use baseline was 
defined as a conventionally managed average field (with an average 
field size of 3–7 ha, fertilization and pesticide application compared to 
the region of interest) of medium crop diversity with three functional 
groups over 4 years (e.g., cereal, oilseed crop, root crop). 

Field-scale management changes in crop rotation diversity, produc-
tion system (from conventional to organic) and field size from the 
baseline agricultural system were rated for each natural enemy func-
tional group. Here, experts were asked to give a percentage indicating 
how much better or worse this changed scenario could support each 
natural enemy group compared to the score they provided for the 
agricultural land-use baseline. Experts could choose between 8 levels of 
change, ranging from − 100 % (‘considerably worse’) to + 200 % 
(‘extremely better’). For field size, experts were asked to compare the 
baseline (3–7 ha) to small (<3 ha) and larger (>7 ha) field sizes. These 
sizes correspond to the average size, first quartile and third quartile of 
the distribution of field size in southern Sweden (Jordbruksverket, 

2020). The average size of cereal fields declared by farmers in Scania is 
6.7 ha on average (median of 4.3 ha). In other cereal-producing regions 
in Europe, studies have reported similar order of magnitudes, with 
average field sizes around 4–5 ha in the Niort Plain in France (Barbottin 
et al., 2018) and in Saxony-Anhalt, Brandenburg, Lower Saxony, and 
Bavaria in Germany (Jänicke et al., 2022). For crop diversity in the 
rotation, experts were asked to compare the baseline crop diversity (3 
functional crop groups) with a lower level of diversity (max. 2 functional 
crop groups) and a higher level of diversity (min. 4 functional crop 
groups and/or containing ley). These levels of functional crop diversity 
are representative of the dominant types of crop rotations in European 
cereal landscapes, namely: i) a largely cereal-dominated crop sequence 
with two functional crops (e.g., oilseed rape-winter wheat-spring 
barley), ii) a crop sequences with several break crops (e.g., potatoes- 
spring barley-winter oilseed rape-winter wheat) and iii) a more diver-
sified sequence with three functional crops or with leys (e.g., potatoes- 
spring barley-winter oilseed rape-peas or potatoes with two year of 
leys followed by one year of wheat). These rotation types covered the 
functional crop diversity found in Skåne as we found a crop diversity of 
2.6 ± 0.7 crops per field from 2014 to 2017 (see details for calculation in 
the Supplementary material). Finally, experts were asked to grade the 
effect that a conversion from conventional to organic agriculture would 
have on each natural enemy group. Each factor was assessed separately 
and compared to the baseline. Finally, experts were asked to provide an 
estimate of the landscape radius (between 0–2000 m) affecting each 
natural enemy group. 

Fig. 1. Methodological framework adopted in the paper that combines expert surveys and a spatial model to determine the potential level of natural pest control for 
generalist and specialist predators and parasitoid natural enemies. 
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2.3. Expert selection and implementation of the survey 

To identify experts in the natural pest control field, we selected au-
thors who had published papers in the past 5 years on the topic in Web of 
Science (on January 30, 2021) and had affiliations with academia, 
government or relevant NGOs. We filtered out authors without publi-
cations in the European Union or the UK and without expertise in cereal- 
based cropping systems. We identified 124 experts that we contacted 
individually. The survey was conducted online through a questionnaire 
implemented with Alchemer for 3 weeks, from the 20th of April 2021 
until the 7th of May 2021. In total, 52 experts replied to the survey 
(response rate of 42 %). On average the survey lasted 27 min (±SD 12 
min). Those experts worked in Sweden (n = 11), France (n = 14), Ger-
many (n = 7), Switzerland (n = 5), Finland (n = 4), UK (n = 4), Italy (n 
= 2), Austria (n = 1), Denmark (n = 1), Hungary (n = 1), Portugal (n =
1) and the Netherlands (n = 1). The surveyed experts had on average 
13.6 years (+/- 8.5) of experience in the field of natural pest control. 
Most of them were from academia (n = 45) and the rest were working in 
governmental organisations (n = 5), NGOs (n = 1) or environmental 
consultancies (n = 1). 

2.4. Analyses of survey responses 

To assess differences in experts’ scoring of natural enemies’ group 
land-use preference, survey responses scored with high and medium 
confidence (i.e. confidence level > 1) were analysed using cumulative 
link mixed effect models (clmm function), appropriate for ordered cat-
egorical data such as Likert-scores, with land use type as the main factor 
and respondent identity as a random effect. Including low-confidence 
responses did not qualitatively change the results (Table S1b, S2b). 
Scores of individual alternative management practices were calculated 
for each respondent by adding or subtracting the percentage change 
from the baseline scenario. To compare scores of field-scale agricultural 
management practice changes for each natural enemy group, high 
confidence survey scores (i.e. confidence level > 1) were analysed using 
linear mixed models (glmmTMB), with agricultural practice as a fixed 
factor and respondent as a random factor. Post-hoc tests were performed 
using emmeans package (Lenth, 2021). All analyses were performed in R 
(version 4.1.3) (R Core Team, 2020). 

2.5. Model building for Sweden 

2.5.1. Input data used for crop and non-crop habitats 
Forest interiors and edge and herbaceous areas were identified using 

Sweden’s land cover dataset (“Nationella Marktackedata”) distributed 
by the Swedish Environmental Protection Agency (https://www.nat 
urvardsverket.se, accessed on 9th June 2023). Pine, spruce, conif-
erous, deciduous, and hardwood were all considered forest habitats. 
Open land with vegetation and temporary non-forest were considered as 
herbaceous areas. In addition, leys and grassland under production 
which are part of the arable land were added to the map of herbaceous 
areas using the Land Parcel Identification System (LPIS) data from 2017 
which represent farmers’ declaration (Trubins, 2013). The differentia-
tion between forest interior and forest edge was done using morpho-
logical spatial pattern analysis of all forest patches and forest lines across 
the landscape using the Morphological indices from Vogt et al. (2007) to 
delimitate a 10 m forest edge around all forest patches. Field size and 
crop diversity were obtained from the Land Parcel Identification System 
(LPIS). More details on the production of data are provided in the 
Supplementary material. 

2.5.2. Calculation of the natural pest control potential 
Each land use type was assigned a value of natural pest control po-

tential using the predicted value from the experts’ survey mixed effect 
models for forest edge, forest interior, herbaceous area, and agriculture 
baseline. This analysis excluded low confidence responses. The 

agriculture baseline was defined as an agricultural area which comprises 
a cropping system of average diversity in an average field size with 
conventional management - for each natural enemy group. The average 
score of individual alternative management practices was extracted 
from the models’ predictions. For land uses that combined several 
practices, we summed the differences of all individual alternative 
management practices effects. This encompasses differences between 
cropping systems with either lower or higher crop diversity, smaller or 
larger field size, and those managed conventionally or organically. 
While assuming additive effects between land-use practices does not 
account for interactive effects, this is likely a more conservative and 
realistic approach than other available aggregation methods. The nat-
ural pest control potential was calculated by a weighted sum of the 
contributions from all surrounding source cells whose centre is at a 
given distance as done in Rega et al. (2018). The distances considered 
were the average buffer area provided by experts in the survey for each 
natural enemy group (mean ± se for generalist predators: 775 ± 57 m, 
specialist predators: 831 ± 63 m, and parasitoids: 765 ± 81 m). In the 
same way as Rega et al. (2018), we used a rotationally symmetrical 2Dt- 
distribution as a distance-weighted function, shaped like a normal dis-
tribution and rescaled so as to assign a value of 1 at distance = 0 and a 
value of 0 beyond the average buffer area. The outcome is a value of 
natural pest control potential produced on a 100 m resolution basis. 
Mathematically, this index is calculated based on the equation below 
(adapted from Rega et al. (2018)): 

NPCx =
∑n

i=1
f (ri)*pk*LUk  

Where NPCx is the natural pest control potential indicator in target cell 
x, ri is the Euclidian distance between cell i (source) and cell x (target), f 
(ri) is the weight extracted from the distance function, n is the number of 
cells surrounding x for which f(ri) > 0 and LUk is the score of natural pest 
control support from land use k in cell i and pk is the proportion of land 
use k. 

2.6. Model validation 

We retrieved 234 field-measured values for natural enemy abun-
dances across 117 Swedish landscapes from several published datasets 
(Table 1). This included 116 measurements for carabids across 6 
studies), 93 for spiders in 5 studies and 25 for parasitoids in 2 studies). 
We used a linear models approach to assess the relationship between in- 
field measurements of natural enemies’ abundance (the sum of all col-
lections per field) and the calculated indicator of natural pest control 
potential. The value of natural pest control used for this comparison was 
the average value over all pixels included within the field boundaries. 
Prior to analyses, natural enemy field abundances were log-transformed 
to improve normality. Natural enemy abundance and the value of nat-
ural pest control potential were scaled and centred within studies for 
each natural enemy functional group to account for in-between studies 
variations in sampling methods and years. Linear models (lme4 package) 
for each natural enemy group were built with the observed field abun-
dances (scaled and centred) as the response variable and the modelled 
values of natural pest control potential (scaled and centred) in interac-
tion with study identity as explanatory variables. For all models, as-
sumptions were visually checked. 

3. Results 

3.1. Analyses of survey responses 

Survey scores for all three natural enemy groups’ land-use preference 
were higher for herbaceous and forest edge habitats compared to the 
agricultural land baseline and the forest interior habitats (Fig. 2a, 
Table S1). In addition, for parasitoids, the agriculture habitat had higher 
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scores than forest interior habitats (Fig. 2a, Table S1). When comparing 
experts’ scores for local scale agricultural practices, organic manage-
ment, small field size and high diversity in the crop rotation all had 
higher scores, while large field size had lower scores compared to the 
baseline for all natural enemies (Fig. 2b, Table S2). The positive effect of 
transition from conventional to organic, of decreasing field size and 
increasing crop diversity were greater for generalist predators 
(Table S2). 

3.2. Model simulation 

The value for natural pest control potential in the Skåne region 
showed similar patterns for the different natural enemy groups, with 
high values in cereal and oilseed production areas and much lower 
values in the north of the region where the proportion of forest cover 
increases from 5 % to 60 % (Fig. 3). Scores closer to 100 % were more 
frequently found for generalist predators (Fig. 3B) than for specialist 
predators and parasitoids natural enemies (Fig. 3C and D). Those were 
driven by higher scores for conventionally managed agricultural habi-
tats for generalist natural enemies. 

3.3. Model validation 

Natural pest control potential scores were associated with in-field 
abundances for carabids (p = 0.001, Fig. 4a, Table S4) and explained 
11.3 % of the variation measured. Individual studies did not interact, 
indicating that in-field abundances of carabids for each study positively 
related to model predictions (Table S4). However, the model differed in 
how well it fitted each individual study, explaining 42 % in one case 
study (Fig. 4b “Cab”) and between 0 and 21 % for the other studies 
(Fig. 4b). The model predictions did not relate to field abundances of 
spiders and parasitoids and explained low percentages of the variation in 
each model (Figure S3). For spiders, the relation between the natural 
pest control potential indicator and field measurements varied from 

positive to negative amongst case studies (Figure S3). To note, spider 
and carabid species richness did not relate to the natural pest control 
index (Table S4). 

4. Discussion 

4.1. Current model limitations and potential developments 

The predictive power of the model varied greatly between natural 
enemies’ functional groups. Despite variation between datasets, carabid 
abundances in the field positively related to the model’s predictions for 
natural pest control potential. However, the model performed worse for 
parasitoids and spiders. Previous work assessing the model by Rega et al. 
(2018) on flying predators pest control potential, indicated little or no 
evidence of correlations between modelled and field-measured values of 
natural pest control (Bonato et al., 2023). Our indicator, which included 
local field agricultural practices and expert knowledge on generalist 
predator abundance, explained 11 % of the variation in carabids abun-
dance in the field. Many carabid species found in crop habitats are 
agrobionts, crop field specialists which rely on crop resources 
throughout their life cycle, and cropping practices greatly impact their 
abundances and distribution in agroecosystems (Labruyere et al., 2016; 
Muneret et al., 2023). Variation in model performance for the different 
carabid datasets might be related to crop types and farming system with 
greater predictability in organically managed cereal systems (‘Cab’, R2: 
42 %, Caballero-López et al., 2012) compared to conventionally 
managed oilseed rape and cereal systems. This difference in predict-
ability might be due to interactive effects between local farming system 
practices and landscape scale land use on carabid abundances. Local- 
scale field habitat quality for natural enemies mediates the effects of 
landscape on field communities and abundances, i.e. the intermediate 
landscape-complexity hypothesis (Jonsson et al., 2015; Tscharntke et al., 
2012). We could therefore expect greater benefits of increasing SNH 
cover on carabid communities in generally more intensive conventional 

Table 1 
Characteristics of the studies from which data were extracted for this study. Values shown are the mean; min–max SNH (%) cover in 1-km landscapes.  

Original study/project N◦ of landscapes Crop System SNH cover (%) Organisms studied Year 

Rus: Rusch et al., 2014 42 barley Conventional 30; 2–67 carabids; spiders 2011 
Lib: Gagic et al., 2017 (Swedish data) 16 wheat Conventional 17; 4–36 carabids; spiders 2014 
Cab: Caballero-López et al., 2012 24 barley/wheat Organic 25; 1–89 carabids 2007 
Tam: Aguilera et al., 2020 (Tamburini, G. 2017. raw data.) 10 oilseed rape Conventional 19; 8–34 carabids; spiders 2017 
Rig: Riggi et al., 2017 14 oilseed rape Conventional 43; 14–87 carabids; spiders; parasitoids 2013 
Agu: Aguilera et al., 2020 (Aguilera, G. 2017. raw data.) 11 oilseed rape Conventional 12; 0.4–33 carabids; spiders; parasitoids 2017  

Fig. 2. Model predictions of the expert scores (Likert-scale from 0 to 10) showing the influence of (a) land-use on each natural enemy group and (b) field scale 
agricultural practices relative to the baseline system (conventional, average field size and average crop diversity) on each natural enemy group (Table S1 and S2). 
Error bars indicate 95 % CI (confidence intervals). Colours represent the different functional groups of natural enemies with generalist predators in grey, specialist 
predators in yellow and parasitoids in blue. Shaded areas and vertical lines in panel (b) indicate CI and the mean of the baseline system. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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systems compared to organic systems. Our current model does not ac-
count for interactive effects between land use and farming practices and 
could therefore underestimate their combined effects. In addition, our 
model does not allow for non-linear relationships between natural 
enemy abundances and practices. However, carabid responses to many 
farming practices, including pesticide applications, were found to be 
hump-shaped (Muneret et al., 2023). Therefore, to improve model 
performance, the model should account for non-linear relations and 
interactions between local and landscape scales habitat quality for 
natural enemies. In addition, current landscape elements included in the 
model, such as herbaceous land uses and crop diversity, could be further 
refined. This could be done by distinguishing low and high-intensity 
herbaceous systems (e.g. meadows versus pastures), and by weighting 
crops’ pest control potential so that perennial crops (such as leys) that 
generally benefit natural enemies get a higher score. 

The model did not predict spider or parasitoid abundance in the field. 
For spiders, field data represented only a subset of the overall spider 
community as spiders were sampled using pit-fall traps placed in the 

ground. Therefore, spiders inhabiting the vegetation, which can repre-
sent a high portion of the spider community (Spafford and Lortie, 2013), 
are not accounted for. Testing our model’s predictions with data 
including both ground and vegetation dwelling spiders might improve 
model fit. Similarly, we are lacking data on parasitoid and specialist 
predator natural enemy field abundances. Only two field datasets were 
available for parasitoids. However, an important factor that the model 
did not account for is pest abundance. Parasitoids, as well as specialist 
predator natural enemies, show density-dependent reproductive and/or 
aggregative numerical responses to pest densities (Onstad and Flexner, 
2023). Pest densities generally increase with host crop cover (i.e. 
resource concentration hypothesis) and are expected to concentrate in 
landscapes with interannual host crop reduction and dilute in land-
scapes with interannual host crop expansion. These dynamics might 
result in lower pest control potential with interannual host crop ex-
pansions (Thies et al., 2008). Future spatially-explicit models for para-
sitoid and specialist predator natural pest control potential should 
account for interannual changes in host crop cover. Ultimately, 

Fig. 3. Map of Sweden and the area of interest (Skåne) with its agricultural land (A) (provided in larger format with site locations in the Supplementary Material 
Figure S5), Score of natural pest control for generalist predators (B), specialist predators natural enemies (C) and parasitoids (D). The score is normalized from 0 to 1 
for each natural enemy group separately. 
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combining indicators for natural enemy distribution with information 
on pest traits (e.g. transient or resident pests) would allow for identifi-
cation of vulnerable areas and targeting of pest management in-
terventions (Alexandridis et al., 2022; Rouabah et al., 2022). Models 
simulating both the demand and provision of natural pest control po-
tential (based on natural enemy species richness), using bioclimatic 
variables and land-use cover have shown some success in predicting pest 
control mismatches in crop fields (Perennes et al., 2023). Eventually, we 
need to assess our model predictions using field data on biological 
control rather than natural enemy abundances to avoid bias due to 
sampling artefacts or species interactions (Redlich et al., 2018). 

When assessing experts survey results, high variability in scoring was 
found for ‘forest interior’, especially for generalist predators, indicating 
that there is disagreement and generally low confidence in the value of 
this habitat type across natural enemy groups (Table S3, Figure S2). For 
generalist predators, combining carabid beetles and spiders might 
explain the variation in respondents’ results, as spiders rely more on 
forest habitats for overwintering than carabids (Mestre et al., 2018). 
Therefore, weighing of forest interior might be improved by accounting 
for different habitat requirements between carabid and spider groups. 

4.2. Model applications and improvements compared to previous 
ecosystem assessment models 

Although our regression analysis explains a small proportion of 
variability, our indicator shows a positive correlation with the abun-
dance of carabids in the field. This is a significant contribution to the 
development of an indicator for natural pest control services. However, 
we acknowledge that the predictive power of our indicator is low. In its 
current state the indicator can nevertheless serve as a proxy for natural 
pest control services as it is able to capture the level of adoption of 
ecological intensification practices known to sustain natural enemies’ 
populations (e.g. crop diversity, organic practices, SNHs, Kremen, 
2020). Our indicator allows for scenario analysis of management 
changes at various spatial scales, from field to regional, as to pinpoint 
potential pathways of desired changes in terms of practices (Verburg 
et al., 2016). In landscapes with high potential natural pest control 
services, pesticides could be reduced or used carefully to avoid nega-
tively impacting local natural enemy populations. On the other hand, 
landscapes with low natural pest control potential might benefit from 
targeted integrated pest management approaches or ecological intensi-
fication practices such as integration of field margins/buffer strips 
which have been shown to be accepted practices among farmers (Jowett 
et al., 2022). Increasing crop diversity in crop rotations can promote 

natural enemy communities by increasing crop and resource diversity 
for natural enemies at the landscape scale (Thenail et al. 2009). 

Accounting for landscape-scale influence on natural pest control 
potential is relevant as it is the scale at which the processes underlying 
ecosystem services take place (Dale et al., 2013). Moreover, our indi-
cator contributes to more spatially-explicit assessment of natural pest 
control services as it goes beyond landscape composition by also ac-
counting for landscape configuration, via including a measure of dis-
tance between the different types of land uses in the landscape, which is 
still very much lacking in ecosystem services assessments (Metzger et al., 
2021). This is important as landscape configuration impacts arthropod 
distribution (González-Chaves et al., 2020). As current research on 
ecosystem services in agrosystems predominantly considers only a 
limited number of ecosystem services (Agudelo et al., 2020; Tancoigne 
et al., 2014), adding our indicator for assessing the magnitude of 
adoption of ecological intensification practices supporting natural 
enemy abundances is of value. With further development, this indicator 
could be added to existing tools and models allowing the assessment of 
ecosystem services. As an example, the InVEST model (Sharp et al., 
2018), a widely used GIS-tool collection developed under the Natural 
Capital Project, can assess food supply, soil conservation, water con-
servation, and habitat quality for biodiversity or pollination but 
currently does not integrate natural pest control. Our indicator could 
allow for assessment of the trade-offs between magnitude of adoption of 
ecological intensification practices supporting natural enemy abun-
dance and other ecosystem services. 

Our approach to evaluate natural pest control potential is relatively 
simple and can be easily integrated to assess other ecosystem services in 
agroecosystems, such as pollination. The model can be applied on local 
to large scales by taking advantage of the wealth of high-resolution 
spatial and temporal data. Crop and semi-natural habitat maps are 
becoming widely available using Land Parcel Identification Systems or 
outputs from large-scale remote sensing studies like the crop map pro-
duced by d’Andrimont et al. (2021) at European level or semi-natural 
habitats maps from land cover information such as Corine land cover 
(Büttner et al., 2021). For crop diversity, extra processing is required to 
derive crop rotation diversity but methods are available with for 
instance combining land parcel identification system data (Levavasseur 
et al., 2016), statistical model of crop rotation (Castellazzi et al., 2008) 
or expert-based assessment of typical crop rotations in landscapes (Dury 
et al., 2012). Characterizing cropping systems requires collection of 
farm-level information regarding certificate of organic farming and link 
it to field information at global scale (Malek et al., 2019). In the same 
way, field size can be obtained from existing maps (Lesiv et al., 2019) or 

Fig. 4. Model prediction of in-field carabids abundance (scaled and centred) and potential for natural pest control indicator (scaled and centred) (a) across all case 
studies (est ± se = 0.64 ± 0.20, p = 0.001) and (b) for each case study, for “Cab” case study there was a positive and significant relation (est ± se = 0.66 ± 0.20, p <
0.001). Solid lines indicate significant and dashed lines non-significant relationships. Band indicates 95 % confidence intervals for significant relationships. For 
studies’ abbreviations, see Table 1 and for regressions with data points per study see Figure S4. 
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can eventually be manually drawn from satellite images. The integration 
of data from various sources and locations would yield spatially-explicit 
synthesized information to guide targeted policy interventions at 
different scales. 

5. Conclusion 

Our results show that a simple indicator integrating the magnitude of 
adoption of different ecological intensification practices that support 
natural enemy abundances positively correlated with the abundance of 
carabids, despite a very large variation in predictions and a low 
explanatory power. In its current state, this indicator can be used to 
identify areas with low levels of adoption of ecological intensification 
practices (e.g. crop diversity, SNHs, organic practices) where we expect 
low natural pest control services. These areas should be targeted to 
foster and support the adoption of ecological intensification practices. 
Predictions can ultimately be improved by developing models which 
include more specific associations between local and landscape-scale 
habitat interactions. Experimental research and meta-analyses investi-
gating multiple ecological intensification practices along land-use gra-
dients are necessary to quantify such interactive effects between scales. 
We also stress that to ultimately support farmers’ decisions and support 
a shift toward low-pesticide agriculture, models need to be trained and 
tested using field data. Given the huge amount of field research on 
natural pest control, we urgently need field data to be readily accessible 
and spatially explicit in online databases. 

6. Data statement 

The code for the model is provided with the manuscript, along with a 
training dataset. The experts’ survey data used to parameterize the 
model are provided with the manuscript and will be made available in 
the data repository Zenodo. Field collected data can be either found in 
the respective published papers or by directly contacting the authors of 
the papers. 
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