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A B S T R A C T   

Despite their ecological, economic, and social importance, mangrove ecosystems suffer from high levels of 
degradation caused by a combination of anthropogenic stressors and the effects of climate change. Their 
degradation inevitably reduces the provision of ecosystem services and ultimately impacts human well-being, 
especially in coastal communities of Small Islands Developing States (SIDS). To timely identify and manage 
stressors causing local mangrove degradation, in situ monitoring is required. However, the financial means and 
human capacity to do so are often limited in SIDS, hampering adequate management of their mangrove forests. 
In search of a cost-effective alternative, we evaluated the use of Sentinel-2 satellites to monitor mangrove extent 
and species distribution in Lac Bay, a bay located on the small tropical island of Bonaire (Caribbean Netherlands). 
We also evaluated the mangrove’s ecological condition through two biophysical variables 1) Effective Leaf Area 
Index (LAIe) and 2) Net Primary Productivity (NPP). Our results showed that Sentinel-2 data are a valuable tool 
for mapping the extent of mangrove forests in Bonaire and species composition (mean overall accuracy > 95 %). 
Using five Sentinel-2 images from 2021 and 2022, the extent of mangrove forests in Lac Bay was estimated to be 
on average 222.3 ha, of which 136.0 ha were classified as Rhizophora mangle (red mangrove) and 77.1 ha as 
Avicennia germinans (black mangrove). Mean values for predicted LAIe ranged from 3.37 to 3.85 for Lac Bay, with 
significantly higher values in the wet season (3.82 ± 0.57) compared to the dry season (3.40 ± 0.56). The 
generic Simplified Level-2 Prototype Processor (SL2P) underestimated the LAIe values in Lac Bay, with moderate 
differences between SL2P values and in situ data (BDE = 0.41, RMSE = 1.09). Mean NPP values were estimated to 
be 8.82 ± 1.46 (g Cm− 2 d -1). LAIe and NPP maps showed a zonal distribution, with highest values in the mid- 
West and East on the seaward side, and lowest values in the northern landward part of Lac Bay. The method 
developed in this study provides a cost-effective way to monitor the extent, composition, and ecological con
dition of mangrove forests, which can be used by small island states to make informed decisions about the 
management and protection of mangrove ecosystems.   

1. Introduction 

The global decline of mangrove forests is concerning, as these eco
systems provide many important ecological and socioeconomic benefits, 
including enhanced biodiversity, coastal protection, carbon sequestra
tion, and support of local fisheries (Bryan-Brown et al., 2020; Goldberg 
et al., 2020). Between 1980 and 2000, mangrove forests declined by 35 
% worldwide (Millennium Ecosystem Assessment, 2005) and kept 

declining globally but at a slower rate of 3.4 % between 1996 and 2020 
(Bunting et al., 2022). Compared to global trends, mangrove forests in 
the Caribbean have suffered even more damage over the last two de
cades, with a decline of 7.9 % between 1996 and 2020, which is mainly 
attributed to coastal development, demographic growth, and climate 
change (Bunting et al., 2022). If current rates of mangrove loss in the 
Caribbean are maintained, mangroves will go extinct from this region 
over the next three centuries (Rull, 2023). 
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The loss of these valuable ecosystems in the Caribbean has significant 
implications for biodiversity, coastal ecosystem resilience, and human 
well-being, especially for coastal communities on small island states that 
rely heavily on the ecosystem services provided by mangrove forests. 
Therefore, efforts to address mangrove loss in the Caribbean should be 
aligned with global conservation strategies, including protecting 
remaining mangrove areas, restoring degraded mangroves, and pro
moting sustainable management policies. However, ecological data 
about the condition and extent of mangrove forests are often missing, 
mostly due to the limited human capacity and financial means available 
on small islands, hampering the conservation and restoration of Carib
bean mangroves (Flores de Santiago, 2013; Rull, 2023). 

Field research campaigns are essential to collect data on the 
ecological condition of these ecosystems, but mangrove forests are 
challenging environments. The combination of soft sediment (mud), 
dense stands with complex aerial root systems under the influence of 
tides, along with the remoteness and inaccessibility of some areas, 
makes extensive sampling and long-term monitoring impractical and 
highly demanding in terms of human and financial resources (Green 
et al., 1998; Feka and Morrison, 2017). Remote sensing technology is 
considered a cost-effective alternative for providing long-term data on 
large areas of mangrove forests, including inaccessible and hazardous 
areas. Satellites can provide reliable information with temporal and 
spatial continuity, which is particularly important for small island 
developing states (SIDS) with limited access to geoinformation (Shrestha 
et al., 2019). Remote sensing has proven to be a valuable tool for 
studying and monitoring relatively large mangrove forests, providing 
important information on mangrove extent, species classification, ver
tical structure and biomass, carbon stock estimation, ecohydrology and 
climate change impacts (Wang et al., 2019). Many of these studies have 
used broad spatial resolution satellites such as MODIS (e.g., Barr et al., 
2013; Ishtiaque et al., 2016) or VIIRS (e.g., Waiyasusri, 2021) and even 
the Landsat series (e.g., Green et al., 1997; Giri et al., 2011). Due to their 
spatial resolution (>250 m in the case of MODIS) and limited revisit 
time (16 days in the case of Landsat series), these satellites are not very 
suitable for mapping and monitoring mangrove forests in small islands, 
which are usually distributed along coastlines in thin fringes less than 
250 m wide and which are often masked by clouds. Despite these limi
tations, remote sensing has been used to generate mangrove forests 
maps at global scales. Global Mangrove Watch (GMW) datasets include 
global maps of mangrove forests at 30 m of spatial resolution derived 
from L-band SAR (Tomas et al., 2017) and Landsat imagery (Bunting 
et al., 2018). However, at 30 m, small mangrove forests could still be 
missed (Bunting et al., 2022). Sentinel-2 satellites, operated by the Eu
ropean Space Agency (ESA) under the Copernicus Programme, provide 
new technical capabilities that appear suitable for monitoring small 
mangrove forests at higher scales of benefit for many small tropical 
islands. These satellites offer relatively high spatial resolutions (10 m in 
some of their bands), frequent revisit time (5 days at the equator), and 
free and open data policy. Recent efforts have been made to create 
global mangrove forests maps using Sentinel-2 data (Bunting et al., 
2022; Jia et al., 2023). Nevertheless, the incorporation of diverse data 
sources, coupled with varied classification methods and adherence to 
distinct cartographic standards, are likely to lead to inconsistent out
comes. Moreover, while global maps are generated at particular mo
ments in time, the temporal dynamics crucial for ongoing monitoring 
and analysis are often absent from these outputs. 

Leaf Area Index (LAI) is a crucial parameter of vegetation structure 
and provides important information about the proportion of leaf area 
per unit ground area in a vegetation canopy (Chen and Black, 1992). LAI 
is often used as a proxy for total leaf biomass and vegetation produc
tivity and is closely related to other ecological processes (Lu et al., 
2017). For example, leaves affect the amount of water transpired by 
vegetation and can also impact nutrient cycling by influencing the 
amount of litterfall and litter decomposition rates, which in turn affect 
nutrient availability to the ecosystem. In addition, LAI is an important 

parameter in ecosystem models, often used as an input parameter for 
estimating energy and water balance and other ecosystem processes 
(Yan et al., 2012). As a result, LAI has been defined as an Essential 
Climate Variable (GCOS, 2011). One of the most widely used global LAI 
products is the MODIS sensor-derived product, which has a spatial res
olution of 500 m (Myneni et al., 2015) and include archive data since 
2000. More recently, the Copernicus Global Land Service has begun to 
produce LAI products with a spatial resolution of 300 m (De Grave et al., 
2021) including data from January 2014 to present. However, these 
spatial resolutions are too broad to monitor the ecological condition of 
small mangrove forests, like those present on small islands. The steep 
slopes of volcanic islands and/or the microtidal range give little space 
for mangroves to develop, often forming a small stretch along the 
coastline. Landsat satellites with a spatial resolution of 30 m have also 
been used to derive LAI (Gao et al., 2012), but their revisit time of 16 
days reduces the number of suitable images in areas frequently covered 
by clouds, which is the case for most islands in the tropics. The Coper
nicus mission Sentinel-2, currently comprising of two twin satellites on 
operation Sentinel-2A (launched in 2015) and Sentinel-2B (launched in 
2017), offers new opportunities to map LAI in small mangrove forests. 
Yet, while several studies have indeed proven that Sentinel-2 satellites 
can be an effective tool for deriving LAI in large mangrove forests in 
Asian countries such as China (Guo et al., 2021), Vietnam (Binh et al., 
2022) and India (Parida and Kumari, 2021), no such studies seem 
available for small mangrove forests, such as those found on small 
islands in the Caribbean Sea. 

Net Primary Productivity (NPP) is another important parameter for 
understanding ecological dynamics and carbon budgets of mangrove 
forests. NPP refers to the net carbon gain by vegetation over a particular 
period. It corresponds to the balance between carbon absorbed by 
photosynthesis and carbon released by plant respiration. NPP can be 
used as the main assessment factor in studies of regional carbon flux and 
regulation of ecological processes (Field et al., 1998). However, 
measuring this parameter is challenging because there are many sources 
of error. Some authors reported that most field measurements under
estimate actual NPP by at least 30 % (Chapin and Eviner, 2003). As NPP 
cannot be measured directly at regional or global scales, it is usually 
inferred by models (e.g., Piao et al., 2001). The use of remote sensing has 
improved the capabilities for NPP estimations due to the spatial and 
temporal continuity of the data, allowing large mangrove areas to be 
covered cost-effectively. Several models have been developed to esti
mate NPP using remote sensing data (Goetz et al., 2000; Pachavo and 
Murwira, 2014). Although satellite data have been used to monitor NPP 
in mangrove forests (e.g., Ishtiaque et al., 2016; Azhdari et al., 2020), 
the number of studies is lower than for other vegetation types, so that 
developments for its application in mangrove forests still lag behind. 
Moreover, as is the case for LAI, products such as the MODIS NPP 
(MOD17A3) with a spatial resolution of 1 km are too coarse for small 
mangrove forests. With a spatial resolution of 10 m and a revisit time of 
5 days, the freely available images from Sentinel-2 satellites also provide 
a great opportunity for monitoring NPP of small mangrove forests, as 
often present on small islands in the Caribbean, but to our knowledge 
this has not been studied so far. 

This study aims to provide a cost-effective method for monitoring the 
extent and ecological condition of small mangrove forests (<300 ha) 
that can be used by small island states, with often limited access to re
sources and capacity particularly in the Caribbean, to make informed 
decisions about management and protection of these valuable ecosys
tems. In this context, the present study will 1) evaluate the use of 
Sentinel-2 satellite images for mapping the extent and species compo
sition of small mangrove forests on Bonaire, a small Caribbean island 
and 2) validate and develop LAI and NPP products derived from 
Sentinel-2 images to assess mangrove forests ecological condition and 
their impact on climate regulation. 
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2. Material and methods 

2.1. Study area 

Bonaire (Caribbean Netherlands) is a small island in the Caribbean 
Sea, located around 87 km north of Venezuela, with a land area of 288 
km2 (Fig. 1). The population of Bonaire reached 21,745 residents on 1 
January 2021 (CBS, 2021). The climate is semi-arid and tropical, with 
little seasonal variation and average monthly air temperatures between 
26.6 ◦C (February) and 28.4 ◦C (October) (De Meyer, 1998). The dry 
season runs from February to August, and the wet season runs from 
October to January, with August and September as transition months 
towards the wet season (Dullaart and van Mannen, 2022). The current 
annual rainfall is ~ 500 mm (Slijkerman et al., 2019) but this amount is 
expected to decrease by 5 % to 6 % by the end of the century (IPCC, 
2013). 

Lac Bay, located on the southeast coast of Bonaire, forms part of the 
Bonaire National Marine Park and has been declared a RAMSAR site 
since 2003 (Fig. 1). The tidal range within the bay is limited to about 0.3 
m (van Moorsel and Meijer, 1993) and combined with the shallow na
ture of the bay (mostly 0–3 m deep) translates into limited circulation. In 
combination with daily evaporation of 8.4 mm for fully sun-exposed 
open water (De Freitas et al., 2014), this limited water circulation has 
resulted in hypersaline conditions in the shallow Northern backwaters in 
the bay (Debrot et al., 2019). Lac Bay contains the most important 
mangrove populations on Bonaire and is considered the largest 
mangrove area in the former Netherlands Antilles (Wösten, 2013). The 

predominant mangrove species are Rhizophora mangle (red mangrove) 
and Avicennia germinans (black mangrove), while Laguncularia racemosa 
(white mangrove) is also known to be occasionally present (Davaasuren 
and Meesters, 2012). While A. germinans grows in muddy and highly 
saline sediments in the northern area (De Freitas et al., 2005; Davaa
suren and Meesters, 2012), R. mangle grows in more permanently floo
ded areas towards the lagoon. 

The mangrove system of Lac Bay exhibits a non-estuarine nature, 
which is common on small islands where freshwater run-off is absent 
(Nagelkerken, 2007). 

2.2. Fieldwork campaigns 

In the case of canopies with a random distribution of foliage, LAI can 
be determined by assessing the likelihood that a beam of direct radiation 
passes through the canopy without obstruction (Gower et al., 1999). 
This probability aligns with the principles of the Beer-Lambert Law 
(Nilson, 1971; Gower et al., 1999). Following this principle, Effective 
Plant Area Index (PAIe) was derived by indirect optical ground-based 
measurements using a handheld digital lux meter (HoldPeak HP- 
8801C, Range: 1–400 000 Lux; Resolution: 0.1 Lux/Fc) (DES, 2018). 

In situ PAIe data were collected at 51 haphazardly selected sites in Lac 
Bay between 23 September and 29 October 2021 (n = 3) and between 5 
March and 24 May 2022 (n = 48), covering a range of different 
ecological conditions (Fig. 2,3a; Table 1). In 2021, a 10 m by 10 m plot 
was haphazardly selected at each sampling site to characterise the forest 
structure (Fig. 2a). Within each plot, canopy height (m) and species 

Fig. 1. (a) Map showing the location of Lac Bay on Bonaire within the wider Caribbean region (Source: Google Earth imagery). (b) Sentinel-2 image (RGB) of Lac Bay 
registered on 28/12/2021. 
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composition were visually assessed. If tree density was too high in the 
plot, the plot size was reduced to 5 m x 5 m, which also was the plot size 
used in 2022. A minimum of 19 light readings were taken within each 
plot by walking along its boundaries and taking a light reading at 
roughly every meter in addition to a series of random readings taken 
inside the plot (Fig. 2c). Moreover, a minimum of 3 additional light 
readings were taken in direct sunlight in the nearest open space adjacent 
to the study plot right before and just after light readings within each 
plot. This process was done to assess the mean light intensity in direct 
sunlight as a proxy of the light intensity above the canopy. All light 
readings were done between 09:00 and 16:00 on sunny days. 

In situ PAIe was derived by calculating the ratio of mean light in
tensity within the plot to the mean light intensity in direct sunlight using 
the following equation (adapted from DES, 2018): 

PAIe =
Ln(lb

l0
)

− k⋅cos
(

∞π
180

) (1)  

where Ln = Natural logarithm, lb = Mean value of light below the 
canopy, l0 = Mean value of light above the canopy, k = Extinction co
efficient that accounts for the angle and orientation of the foliage (a k 
value of 0.55 has been chosen, which is appropriate for mangrove stands 
according to Clough et al., 1997), ∞ = Zenith angle of the sun and π =
3.14. NOAA solar calculation (https://gml.noaa.gov/grad/solcalc/cal 
cdetails.html) was used to retrieve the zenith angle based on the co
ordinates of the quadrats and the date and time of the measurements. 

PAIe includes both the leaf area and the woody material. For this 
reason, PAIe was converted into effective Leaf Area Index (LAIe) by 
applying a first-order correction for woody material (Chen et al., 1996): 

LAIe = (1 − α)⋅PAIe (2)  

where α is the woody-to-total-plant-area ratio, used to represent the 
contribution of woody material to the total area, including non-green 
leaves, branches, and tree trunks. 

The range of typical values of wood-to-total-plant areas ratio differs 
between vegetation types. Considering the mangrove forest as a 
broadleaf forest, a value of 0.2 was selected for α (Gower et al., 1999). 
An additional field campaign was performed on 14 March 2023 to 
identify homogenous areas of A. germinans and R. mangle. For this pur
pose, several GPS tracks were made, defining twelve monospecific areas, 
five for R. mangle with a total area of 2.98 ha and seven for A. germinans 
with a total area of 2.47 ha (Fig. 3b). 

2.3. Sentinel-2 imagery 

Both Sentinel-2A and Sentinel-2B satellites have a single multispec
tral instrument (MSI) onboard that can acquire optical images in 13 
spectral bands from Visible and Near Infrared (VNIR) to Shortwave 
Infrared (SWIR) with spatial resolutions of 10 m, 20 m, and 60 m 
(Drusch et al., 2012). Although primarily designed for terrestrial 
observation, the Sentinel-2 mission covers coastal waters up to 20 km 

Fig. 2. Photos taken during field campaigns to assess different variables of mangrove forest structure in Lac Bay, Bonaire. (a) Laying out a transect line to define a 
sampling quadrat. (b) Some sampling stations needed to be accessed by boat. (c) Taking light measurements underneath the mangrove canopy using a digital 
luxmeter. Photo credits: Cindy Cornet (a); Humming Drone HD-Prod (b,c). 

Table 1 
Fieldwork dates and number of sites where PAIe measure
ments were made.  

Fieldwork Date Number of sites (n) 

23/09/2021 2 
29/09/2021 1 
11/03/2022 13 
16/03/2022 9 
23/03/2022 1 
31/03/2022 1 
06/04/2022 1 
12/04/2022 2 
14/04/2022 1 
22/04/2022 2 
28/04/2022 2 
04/05/2022 2 
06/05/2022 5 
10/05/2022 1 
13/05/2022 3 
19/05/2022 1 
21/05/2022 3 
24/05/2022 1  
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from shore and islands larger than 100 km2 in area, thus including small 
islands such as Bonaire. 

Sentinel-2 images coincident with fieldwork dates were downloaded 
from the Sentinel Data Hub at the 2A level, Bottom Of Atmosphere 
reflectance images (BOA) (Table 2). Prior to analysis, these images were 
resized to focus on the Lac Bay study area (Fig. 1b). Seven Sentinel-2 
images were used to find the relationship between in situ and satellite 
data, while only five Sentinel-2 images were used for the creation of the 
thematic maps and average calculations due to cloud coverage issues. 
Examining multiple images enhances our methodology’s robustness, 
enabling a more comprehensive assessment of replicability and the 
identification of seasonal variations. 

2.4. Mangrove forest extent and species composition 

Mapping the extent and composition of mangrove forests over time is 
a prerequisite to identifying unwanted changes and developing targeted 
measures to address these changes in a timely manner. A typical method 
for mapping vegetation areas using remote sensing is the use of vege
tation indices. Vegetation indices use the relationship between different 
spectral bands to distinguish vegetation from other substrate types. 

Some authors reported that conventional vegetation indices are not 
suitable for mapping mangrove forests, and that their use can present 
some challenges in distinguishing mangroves from terrestrial vegetation 
(Winarso et al., 2014). For this reason, some researchers have developed 
mangrove-specific indices. To map mangrove extent in Lac Bay, Bonaire, 
we evaluated a traditional vegetation index, the Normalised Difference 
Vegetation Index (NDVI) (Rouse et al., 1973), and several 
mangrove-specific indices, namely the Combined Mangrove Recognition 
Index (CMRI) (Gupta et al., 2018), the Mangrove Forest Index (MFI) (Jia 
et al., 2019), and the Mangrove Vegetation Index (MVI) (Baloloy et al., 
2020) (Table 3). All these indices allow mangrove pixels to be classified 
by applying a simple threshold. Supervised classification based on 
Maximum Likelihood (ML) parametric decision rules was also tested, 
including the 10 m bands. The ML classifier differs from vegetation 

Fig. 3. (a) Sampling sites within Lac Bay, Bonaire, where PAIe was determined in situ (n = 51) (b) Homogeneous areas defined in field observations on 14 March 
2023 for red mangrove (R. mangle) (n = 5) and black mangrove (A. germinans) or black mangrove (n = 7). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 2 
Sentinel-2 images included in the analysis. Due to cloud coverage, Sentinel-2 
images registered on 22/04/2022 and 02/05/2022 were only used to evaluate 
the relationship between satellite and in situ data.  

Sentinel-2 Date Acquisition time (UTC) Satellite Granule Season 

19/09/2021 15:07:19 S2B T19PEP Dry 
28/12/2021 15:07:19 S2B T19PEP Wet 
12/01/2022 15:07:21 S2A T19PEP Wet 
23/03/2022 15:07:21 S2A T19PEP Dry 
02/04/2022 15:07:21 S2A T19PEP Dry 
22/04/2022 15:07:31 S2A T19PEP Dry 
02/05/2022 15:07:31 S2A T19PEP Dry  

Table 3 
Mangrove vegetation indices tested in this study, where ρ indicates the reflec
tance at the specified Sentinel-2 bands.  

Vegetation Index Formula Reference 

Normalised Difference 
Vegetation Index 
(NDVI) 

NDVI = (ρB8 - ρB4)/(ρB8 + ρB4) Rouse et al., 
1973 

Combined Mangrove 
Recognition Index 
(CMRI) 

CMRI = NDVI - NDWI Gupta et al., 
2018 where NDWI = (ρB3 - ρB8)/(ρB3 +

ρB8) 
Mangrove Forest Index 

(MFI) 
MFI = [(ρλ1- ρBλ1) + (ρλ2- ρBλ2) + (ρλ3- 

ρBλ3) + (ρλ4- ρBλ4)]/4 
Jia et al., 
2019 

ρBλi = ρB12 + (ρB4 − ρB12) × (2190 
− λi)/(2190–665) 
where the ρλ is the reflectance of the band 
centre of λ, and i ranged from 1 to 4; 1, 2, 
3, 4 are the centre wavelengths at B5 
(705 nm), B6 (740 nm), B7 (783 nm) 
and B8a (865 nm), respectively. 

Mangrove Vegetation 
Index (MVI) 

MVI = (ρB8 - ρB3)/ ρB11 - ρB3) Baloloy 
et al., 2020  
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indices as it assumes that the statistics for each class in each band are 
normally distributed and calculates the probability that a given pixel 
belongs to a given class (Bolstad and Lillesand, 1991). 

Different training and validation datasets were created for mangrove 
and non-mangrove areas. The training areas representative of mangrove 
cover included 30 polygons (355 pixels), while the validation areas 
included 36 polygons (283 pixels). Training areas for non-mangrove 
cover included 46 polygons (340 pixels), while validation areas 
included 22 polygons (338 pixels). Classification accuracy was deter
mined using a confusion matrix (also called error matrix) in which 
classification results were compared based on the established categories 
(classes). Commission errors correspond to values predicted in one class 
but not belonging to that class (false positives), while omission errors 
were predicted to be in a different class (false negatives). 

Once the total extent of the mangrove forest was defined, the dif
ferentiation between A. germinans and R. mangle areas was evaluated. 
For this purpose, eight Sentinel-2 bands (443 nm − 842 nm) were 
included in the analysis and areas outside the mangrove forest were 
masked out. Species-specific training and validation areas were defined 
using the data acquired during the field campaigns (Fig. 3b). To be 
statistically representative, the minimum size of training and validation 
areas should include a minimum of m + 1 pixels per category according 
to (Chuvieco, 2020), with m being the number of bands used in the 
classification process. As we included eight Sentinel-2 bands, the mini
mum number of pixels per species category should be nine in our case, 
which is substantially lower than the number of pixels selected for 
training and validation that were used in this study for A. germinans 
areas (respectively 70 and 20 pixels) and R. mangle areas (respectively 
78 and 31 pixels). 

To evaluate species separability, two types of classifications were 
carried out: 1) Maximum Likelihood (ML) and 2) Maximum Likelihood 
after a Principal Component Analysis (PCA) to remove redundant in
formation before the classification. In both cases, classification accuracy 
was evaluated using a confusion matrix and the commission and omis
sion errors. Separability analysis using the Jeffries-Matusita (J-M) dis
tance analysis was also applied using the training and validation areas 
defined for each class. This separability index delivers a value between 
0 and 2. Following Vaiphasa et al. (2005), a threshold of ≥ 1.90 was used 
to define if both classes can be differentiated. 

2.5. Biophysical variables: Leaf area Index (LAI) 

LAI has been derived from remote sensing data using two main ap
proaches: physics-based approaches and empirical approaches. Empir
ical approaches generally model the relationship between in situ 
determined LAI and vegetation indices that enhance vegetation while 
minimising background soil reflectance or atmospheric effects (Huete 
et al., 2012). The modelled relationship is then used to create thematic 
maps of LAI using remote sensing imagery. To estimate LAI, most of 
these optical methods usually assume that leaves have infinitesimal size 
and are randomly distributed, which is referred to as effective LAI (LAIe) 
(e.g., Chen et al., 2005). More complex approaches have been developed 
in recent years, including physics-based approaches and radiative 
transfer models, which have proven successful in various environments 
such as semi-arid regions or agricultural fields (Qui et al., 2000; 
Haboudane et al., 2004; Wang et al., 2013). Physics-based approaches 
are based on radiative transfer models and show great flexibility in 
retrieving variables. However, these models need auxiliary information 
to parametrize the model, which may not be always available and has an 
associated risk of oversimplifying the plant cover architecture (Delegido 
et al., 2011). In this study, we modelled the empirical relationship be
tween a vegetation index (NDVI) and in situ LAIe measurements and 
validated the physics-based Simplified Level-2 Prototype Processor 
(SL2P) implemented in the Sentinel Application Platform (SNAP). 

2.5.1. LAI empirical approach 
Previous studies have evaluated the empirical relationship between 

LAI and various vegetation indices and have shown that NDVI generally 
provides the best results (Soudani et al., 2006; Kamal et al., 2016). 
Considering these studies, NDVI values were extracted from the sites 
where LAIe was measured in situ, and the relationship was modelled 
using both a linear function (equation 2) and a non-linear function 
(equation 3) derived from equation 10 reported by Baret and Guyot 
(1991). 

LAIe = a⋅NDVI + b (2)  

LAIe = −
ln NDVI− a

b− a

k
(3)  

Model selection was based on Akaike’s information criterion (AIC) 
(Burnham & Anderson, 2002). Parameter estimates, R2-values, and P- 
values of the most parsimonious model were reported, with the most 
parsimonious model being the model with the fewest parameters within 
2 ΔAIC of the top model (Burnham & Anderson, 2002). P-values < 0.05 
were considered significant. Statistical analyses were performed in R 
statistical software (R Core Team, 2023, version 4.3.0). 

2.5.2. LAI physics-based approach 
The SL2P algorithm (Weiss et al., 2020), implemented as open source 

in SNAP, can provide several biophysical variables of vegetation, 
including LAI. SL2P uses artificial neural networks (ANNs) trained with 
radiative transfer simulations from the coupled Leaf Optical Properties 
Spectra (PROSPECT) model (Jacquemoud and Baret, 1990; Féret et al., 
2008) and the Scattering by Arbitrarily Inclined Leaves (SAIL) model 
(Verhoef, 1984; 1985). The PROSPECT model describes leaf properties 
on canopy reflectance, while the SAIL model describes the influence of 
canopy structure. Two spatial resolutions of Sentinel-2 bands, 10 m and 
20 m, are considered in SNAP for the generation of the biophysical 
products, but only the 10 m bands were used in this study. Specific 
neuronal networks are trained for Sentinel-2A and Sentinel-2B due to 
their particular spectral response, but both training databases share the 
same simulation cases regarding model inputs. SL2P does not account 
for foliage clumping, so their retrievals correspond to LAIe. Detailed 
information on the SL2P algorithm can be found in the theoretical-based 
algorithm document (Weiss et al., 2020). 

The SL2P algorithm has been described as generic (Weis et al., 2020), 
but although some validation experiments have been conducted at 
different sites and periods (e.g., Djamai et al., 2019; Hu et al., 2020; 
Brown et al., 2021), a large validation effort is still required to cover 
different vegetation canopies. This validation effort is particularly 
needed for mangroves, where only a single published document from 
Vietnam was found (Binh et al., 2022). 

The accuracy of the SL2P algorithm was evaluated using the Bias 
Diagnostic Error (BDE, see equation 4) and the Root-Mean-Square Error 
(RMSE, see equation 5). The BDE reflects the tendency to overestimate 
or underestimate the in situ values (resulting in negative or positive bias 
values, respectively). The RMSE indicates the quality of the predictions, 
and its value shifts towards zero as quality improves. 

BDE =
∑N

i=1

ρobserved − ρpredicted

N
(4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(ρobserved − ρpredicted)
2

N

√

(5)  

2.6. Biophysical variables: Net Primary Productivity (NPP) 

Models for Net Primary Productivity (NPP) require specific mea
surements in the field and associated complex analysis. Given the dif
ficulty of conducting field campaigns in mangrove forests and the lack of 
specific data in this study, we applied a simple empirical model to obtain 
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an estimate of NPP in our study areas. The selected model defined by 
equation 6 was chosen for its simplicity and its use in previous studies (e. 
g., English et al., 1994; Karmaker, 2006): 

NPP = A⋅d⋅LAIe (6)  

where A is the average photosynthetic rate (gC m− 2 leaf area hr-1) for all 
leaves in the canopy, d corresponds to day length (hr), and LAIe is the 
effective leaf area index estimated for each 10 m pixel of Sentinel-2 data. 
For mangroves with high soil salinity in the dry season, we have used A 
= 0.216 gC m− 2 hr-1 (Edwards, 1997) while day length in Bonaire av
erages about 12 h. Due to the lack of values for A in the wet season, the 
model was only applied to the dry season. To understand how the un
certainty in the NDVI-based LAIe predictions translate to our NPP pre
dictions, we have used the following formulas (Equations 7 and 8) to 
calculate the lower (lcl) and upper (ucl) 95 % confidence limits for NPP: 

lcl(NPP) = A⋅ d⋅ lcl(LAIe) (7)  

ucl(NPP) = A⋅d⋅ucl(LAIe) (8)  

3. Results 

3.1. Mapping mangrove extent and species composition 

When using vegetation indices developed specifically for mapping 
mangrove forests, the results were unsatisfactory. Visual assessment of 
results based on MFI and MVI indices showed confusion between man
groves and surrounding substrates, especially water, probably because 
these indices have been developed and tested in regions with different 
environmental conditions and mangrove species than those on Bonaire. 
Given the similar performance of NDVI and CMRI and considering that 
NDVI is one of the most used indices in mangrove remote sensing (Tran 
et al., 2022), NDVI was selected for mapping the mangrove extent in Lac 
Bay. Several threshold values from NDVI ≥ 0.2 to NDVI ≥ 0.4 at 0. 05 
intervals were evaluated, and results were visually assessed, selecting 
0.3 as the one producing the best results. 

The accuracy of the NDVI mapping (threshold of NDVI ≥ 0.3) was 
evaluated using a confusion matrix. The confusion matrix showed an 
overall average accuracy of 93.67 %, while the mangrove class reached 
an accuracy percentage of 97.17 %, indicating good agreement between 
observed and predicted values. However, differences were found be
tween the dry and wet seasons, with lower overall accuracies for images 
acquired in the wet season (Table 4). The average accuracy of the 
mangrove class was estimated to be 97.2 %, while the commission and 
omission errors had average values of 9.44 % and 2.82 %, respectively. 
These errors indicated that the extent of the mangrove forest was 
generally overestimated. Commission errors were higher during the wet 
season compared to the dry season (Table 4). Based on the NDVI, the 
extent of the mangrove forest in Lac Bay varied between 240.34 ha and 
271.94 ha, depending on the date the satellite image was taken 

(Table 4). 
Visual comparison of the NDVI results for images from the wet and 

dry seasons showed that the NDVI results are influenced by some sea
sonal events that cause local variations in the bay. For example, during 
the wet season, a strong NDVI signal is detected in a small patch of the 
northern part of Lac Bay, which was classified as mangrove forest 
(Fig. 4b, c). However, this isolated patch is not detected during the dry 
season (Fig. 4a, d, e). In addition, in the wet season, a strong vegetation 
signal is sometimes detected by NDVI in the small lagoon in the south
western part of Lac Bay (Fig. 4b), which was never detected in the dry 
season. The seasonal presence of holopelagic Sargassum spp. rafts in the 
southwest of Lac Bay may also explain some of the observed seasonal 
variability in NDVI at certain sites, as was probably the case for the 
Sentinel-2 image acquired in March 2022 (Fig. 4d) and to a lesser extent 
in April 2022 (Fig. 4e). The highest estimations were obtained in the 
image registered on 28/11/2021 where a patch with a strong vegetation 
signal was detected in the northern part of the bay and in the small 
lagoon (Fig. 4b). However, these values can be considered over
estimated due to the local processes described above. 

Supervised classification methods such as Maximum Likelihood were 
also evaluated for mapping the mangrove forest extent. The confusion 
matrix (Table 4) showed an overall mean accuracy of 98.62 %, which is 
higher compared to NDVI (i.e. 93.68 %). The mangrove class mean 
achieved a value of 98.42 % and commission and omission errors of 
1.24 % and 1.58 %, respectively, indicating less confusion between 
mangrove and non-mangrove classes than when classification is based 
on NDVI. Using the classification based on ML, the extent of mangrove 
forest ranged from 213.46 ha to 238.80 ha, depending on the image, and 
showed higher values in the wet season. Visual analysis of the supervised 
ML classification results showed that the patches identified by NDVI in 
the northern part of the bay in the wet season were also present in the 
supervised classification results, confirming the presence of a substrate 
with a strong vegetation signal (Fig. 4 g,h). Supervised classification 
results showed less confounding effects with other vegetation and urban 
areas and did not detect any vegetation signal in the small lagoon in the 
southwestern part of the bay (Fig. 4g). Given these considerations, the 
supervised classification based on ML was the preferred method for 
mapping mangrove extent in Lac Bay. 

Once the extent of mangrove cover was determined, the ability to 
distinguish between R. mangle and A. germinans was examined. Sepa
rability analysis based on the Jeffries-Matusita distance showed an 
average value of 1.95. This value was higher than 1.90 in all the ana
lysed images, indicating sufficient power to distinguish both mangrove 
species. These results were supported by the spectral signatures for each 
mangrove species that were extracted using the training and validation 
areas (Fig. 5). Whereas the spectral signatures for both R. mangle and 
A. germinans showed a common peak at 560 nm, the signatures in the red 
edge and infrared region differed, especially from the 705 nm spectral 
band onwards (Fig. 5b). 

On average, using a PCA before the ML-based classification of 

Table 4 
Overall accuracies and commission and omission errors resulting from NDVI and Maximum Likelihood (ML) classifications, as well as the estimated extent of mangrove 
forest in hectares (ha) for each image for each classification method.  

Classification method Date Season Overall Accuracy % Mangrove class % Commission error % Omission error % Extent (ha) 

NDVI 19/09/2021 Dry  94.45  97.57  8.45  2.43  251.27 
28/12/2021 Wet  91.86  97.57  12.83  2.43  271.94 
12/01/2022 Wet  92.45  97.57  11.87  2.43  267.53 
23/03/2022 Dry  94.81  96.59  7.03  3.41  240.98 
02/04/2022 Dry  94.81  96.56  7.03  3.41  240.34 
Mean NDVI 93.68  97.17  9.44  2.82  254.41 

ML 19/09/2021 Dry  99.84  99.65  0.00  0.35  213.46 
28/12/2021 Wet  98.56  98.03  0.85  1.97  226.28 
12/01/2022 Wet  99.52  100.00  1.05  0.00  238.80 
23/03/2022 Dry  97.12  95.49  1.17  4.51  217.64 
02/04/2022 Dry  98.07  98.94  3.11  1.06  215.15 
Mean ML 98.62  98.42  1.24  1.58  222.27  
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mangrove species improved results by increasing overall accuracies 
(Table 5). The highest overall accuracies (100 %) were obtained for the 
images acquired in the early dry season on 23 March 2023 and 2 April 
2022 (Table 5). These results were supported by spectral signatures that 
showed a clear difference between species (Fig. 5b). Commission and 
omission errors were also considerably reduced when PCA was applied 
before ML. Commission errors for A. germinans were higher than omis
sion errors, indicating an overestimation of the black mangrove class, 
while omission errors for R. mangle indicated a slight underestimation of 
this class (Table 5, Fig. 5a). 

3.2. Biophysical variables: Leaf area Index (LAI) 

3.2.1. LAI empirical approach 
Comparison of a linear function and a non-linear function to model 

the relationship between NDVI derived from Sentinel-2 imagery and in 
situ measured LAIe showed that the linear function provided the most 
parsimonious model (linear function: AIC = 140.7, df = 3; non-linear 
function AIC = 142.64, df = 4). Using a linear function, we observed 
a significant positive relationship between NDVI and LAIe (p < 0.001, 
R2 = 0.74; Fig. 6), described as LAIe = -0.0282 + 4.516 * NDVI. 

Subsequently, LAIe thematic maps were produced for the mangrove- 
covered area in Lac Bay using the obtained linear regression model and 
NDVI values derived from the Sentinel-2 images. Only images 
completely free of clouds were used (n = 3 and n = 2 for dry and wet 
seasons, respectively; Table 6). Estimated mean values of LAIe in Lac Bay 
ranged from 3.37 to 3.85 depending on the image, with significantly 
higher values in the wet season compared to the dry season (t-test, p <
0.05, Table 6, Fig. 7). LAIe values showed a zonal distribution with 
increasing values when moving from the backwaters towards the 

seashore (Fig. 7). 

3.2.1.1. Validation of LAI physical-based approach. Comparison between 
the in situ values of LAIe and SL2P-derived LAIe showed a strong rela
tionship (R2 = 0.67, Fig. 8). Yet, BSE was positive (BSE = 0.41) indi
cating an underestimation of LAIe values based on the SL2P model 
(Fig. 8). 

The mean LAIe values for the mangrove cover in Lac Bay (Bonaire) 
were also estimated using the SL2P model (Table 7) but were much 
lower than the ones produced by the LAIe empirical model, confirming 
the underestimation of LAIe values by the SL2P model. 

3.3. Biophysical variables: Net Primary Productivity (NPP) 

Using the empirically derived model products for LAIe and the model 
described in equation 5, NPP thematic maps were produced for Lac Bay 
(Fig. 9). Using this model, a mean NPP value of 8.82 ± 1.46 g Cm− 2 d-1 

was obtained for the three Sentinel-2 images that were registered in the 
dry season (Table 8). 

The obtained maps show a zonal distribution of NPP values in Lac 
Bay, with the highest values in the mid-west and on the east side of the 
bay, near the seashore (see Fig. 9). 

4. Discussion 

4.1. Mangrove forest extent and species composition 

We evaluated the use of Sentinel-2 satellite images to map the extent 
and species composition of a small mangrove forest, using Lac Bay, 
Bonaire, as a case study. Results showed that a threshold value of NDVI 

Fig. 4. Extent of mangrove forest based on NDVI estimates (a − e) and supervised classification (f − j). White arrows in (b) and (c) indicate areas with a strong 
chlorophyll signal, while the arrow in (d) marks the possible presence of pelagic Sargassum spp. rafts that seasonally accumulate in this part of the bay. 
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≥ 0.3 provided accurate maps of the mangrove forest extent. However, 
some seasonal variability in mangrove cover was observed based on this 
vegetation index. For example, during the wet season, NDVI elucidated a 
small patch with a strong chlorophyll signal in the Northern backwaters 
of Lac Bay, within the range of NDVI values classified as mangrove forest 
(Fig. 4 b,c). These patches correspond to an opportunistic seagrass 
species (i.e., Ruppia maritima) that is known to grow in this area during 
the wet season when salinity levels drop, after which it dies off when 
salinity increases again during the following dry season (pers. obs.). 
Another strong vegetation signal was identified by NDVI in the small 
lagoon in the southwestern part of Lac Bay during the wet season 
(Fig. 4b). Due to the inaccessibility of this lagoon, we could not deter
mine the cause of this effect. Possible causes could be natural processes 
in the lagoon, such as rain-induced algal blooms, or satellite image ef
fects, such as sun glint, even though they could not be visually detected 
in the image. NDVI results may also have been influenced by holopelagic 
Sargassum spp. rafts that have been drifting into the bay seasonally since 
2018 (López-Contreras et al., 2021). Most likely, the influence of hol
opelagic Sargassum spp. can be observed in the Sentinel-2 image ac
quired on 23 March 2022, when Sargassum spp. rafts were known to be 
concentrated near Punta Kalebas (pers. obs.), exactly at the location 
where NDVI identified a strong vegetation signal (Fig. 4d). Together, 
these local environmental factors may have influenced the NDVI results, 
which consequently tend to overestimate the extent of the mangrove 
forest, especially during the wet season (i.e., October to January) and 
during the Sargassum spp. influx season (i.e., March to August). As such, 
we conclude that NDVI can be effectively used to map the extent of small 
mangrove forests but that knowledge about local environmental con
ditions is needed to select the most optimal period for which remote 

sensing images are acquired to do so. For long-term NDVI-based moni
toring of the extent of the small mangrove forests in Lac Bay, Bonaire, it 
is therefore recommended to use remote sensing images that are ac
quired in September (i.e., after the holopelagic Sargassum spp. influx 
season and before the wet season). 

Regarding mapping the extent of small mangrove forests, classifi
cation based on Maximum Likelihood estimation (ML) provided more 
robust results than the classification based on NDVI. For example, 
mapping based on ML did not show the strong vegetation signal detected 
by NDVI in the lagoon. After eliminating the area of strong vegetation 
signal detected in the northern part, which does not correspond to the 
mangrove forest, classification based on ML identified an average extent 
of 222.26 ha of mangrove forest, of which 136.03 ha was classified as 
R. mangle and 77.10 ha as A. germinans. Note that the remaining un
classified mangrove area (~9 ha) most likely was dominated by 
L. racemosa, although this needs validation in the field. These numbers 
correspond to the average of the five Sentinel-2 images analysed in this 
study. A recent study that used two Sentinel-2 images taken on 30 
October 2018 and 8 January 2019 reported that the extent of the 
mangrove area in Lac Bay covered 247 ha, of which 199 ha was iden
tified as intact mangroves and 48 ha as degraded mangroves (Senger 
et al., 2021). If we compare these data with the estimations obtained in 
this study in 2022, for example for the image registered on 23 March 
2022, we obtain a loss of 10 % in the extent of the mangrove area in just 
over 3 years (i.e., between 8 January 2019 and 23 March 2022). 
Although this potential decline in mangrove cover is in line with the 
general trend of mangrove loss reported for the Caribbean region over 
the last two decades (Bunting et al., 2022), comparison of our results 
with those reported by Senger et al. (2021) should be taken with care, as 

Fig. 5. (a) Thematic map of the distribution of the black mangrove A. germinans (in blue) and the red mangrove R. mangle (in red) in Lac Bay derived from the 
Sentinel-2 image registered on 23/03/2022. (b) Species-specific mean (± standard deviation) spectral signatures extracted from the Sentinel-2 images using the 
training and validation areas defined during field campaigns. 
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different classification methods were used (i.e., Random Forest 
compared to ML in this study). 

Using a commercially available Worldview-2 image with 2 m reso
lution acquired on 28 October 2010, Davaasuren and Meesters (2012) 
estimated the mangrove area in Lac Bay to be 293.60 ha, of which 
121.10 ha consisted of R. mangle, 58.10 ha of A. germinans and 123.4 ha 
of mixed mangrove forest (Table 9). Considering our mean estimation (i. 
e., 222.26 ha), this would suggest that the extent of the mangrove forest 
in Lac Bay has declined by 24.3 % (i.e., 71.3 ha) in 11.5 years only. Yet, 
this potential mangrove loss between 2010 and 2022 should also be 
taken with care as the satellite source and the classification methodol
ogy used in both studies were different. Unlike Davaasuren and Meesters 
(2012), the extent of mixed mangrove populations was not estimated in 
this study, so that we were unable to compare our results for species- 
specific mangrove extent with their results. Although at a lower rate, 
mangrove losses were also reported between 1961 and 1996, during 
which an area of 82 ha died-off, most of which occurred in the northern 

Table 5 
Overall accuracies and commission and omission errors for A. germinans and R. mangle obtained for each Sentinel-2 image. ML = Maximum Likelihood, PCA + ML =
Principal Component Analysis previously applied to the ML supervised classification.  

Classification 
method 

Date General 
Overall 
Accuracy % 

Accuracy 
A. germinans 
% 

Accuracy 
R. mangle 
% 

Commission 
error 
A. germinans % 

Commission 
error 
R. mangle % 

Omission error 
A. germinans % 

Omission 
error 
R. mangle % 

Extent (ha) 
A. germinans 

Extent 
(ha) 
R. mangle 

ML 19/ 
09/ 
2021  

95.35  100.00  93.55  14.29  0.00  0.00  6.45  64.15  148.93 

28/ 
12/ 
2021  

90.70  100.00  87.10  25.00  0.00  0.00  12.90  72.95  140.15 

12/ 
01/ 
2022  

90.70  100.00  87.10  25.00  0.00  0.00  12.90  79.45  133.63 

23/ 
03/ 
2022  

93.02  100.00  90.32  20.00  0.00  0.00  9.68  73.18  139.90 

02/ 
04/ 
2022  

93.02  100.00  90.32  20.00  0.00  0.00  9.68  73.18  139.90 

Mean 
ML  

92.56  100.00  89.68  20.86  0.00  0.00  10.32  72.58  140.50 

PCA + ML 19/ 
09/ 
2021  

95.34  100.00  93.55  14.29  0.00  0.00  6.45  73.52  139.56 

28/ 
12/ 
2021  

95.35  100.00  93.55  14.29  0.00  0.00  6.45  72.95  140.15 

12/ 
01/ 
2022  

95.34  100.00  93.55  14.29  0.00  0.00  6.45  80.65  132.65 

23/ 
03/ 
2022  

100.00  100.00  100.00  0.00  0.00  0.00  0.00  75.96  137.12 

02/ 
04/ 
2022  

100.00  100.00  100.00  0.00  0.00  0.00  0.00  82.41  130.67 

Mean 
PCA +
ML  

97.21  100.00  96.13  8.57  0.00  0.00  3.87  77.10  136.03  

Fig. 6. Scatterplot of in situ effective Leaf Area Index (LAIe) as a function of 
NDVI (n = 51). The mean (solid line) and 95 % confidence intervals (grey area) 
are estimated by the most parsimonious linear model. 

Table 6 
Mean, Standard deviation (SD), and Maximum (Max) LAIe values estimated for 
Lac Bay (Bonaire) using the linear regression model developed in this study with 
NDVI as explanatory variable.  

Date Season Mean LAIe SD LAIe Max LAIe 

19/09/2021 Dry  3.37  0.55  4.17 
28/12/2021 Wet  3.79  0.56  4.48 
12/01/2022 Wet  3.85  0.59  4.49 
23/03/2022 Dry  3.39  0.56  4.15 
02/04/2022 Dry  3.45  0.58  4.25  
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backwaters of Lac Bay (Erdmann and Scheffers, 2006). The main cause 
for this local mangrove die-off was suggested to be endogenous sediment 
production and terrestrial erosion-induced sedimentation, which 

gradually turned the backwaters of Lac Bay into hypersaline anaerobic 
flats with high water residence times, unfavourable for mangrove 
growth and survival (Wösten, 2013, Debrot et al., 2019). However, over 
the same period, Erdmann and Scheffers (2006)) also reported seaward 
expansion of the mangrove forest, covering an area of 81 ha at the 
expense of the lagoon. This ongoing process leads to a reduction in the 
surface area of marine habitat within the bay, and expansion of hyper
saline tidal flat area in the back of the bay at the expense of mangrove 
forest, and is considered to pose a significant risk to the baýs long-term 
biodiversity and ecosystem functionality (Debrot et al., 2019). 

The distribution map of R. mangle and A. germinans in Lac Bay 
showed a clear zonal distribution (Fig. 5a), which is in accordance with 
De Freitas et al. (2005) and Davaasuren and Meesters (2012). R. mangle 
grows in frequently or permanently flooded areas near the seaward 
margins of the mangrove forest, while A. germinans grows at higher 
elevation areas with low water content, as found in the northern back
waters of Lac Bay. The ability to discriminate between both species using 
Sentinel-2 probably comes from the spectral behaviour of mangrove 
leaves. This fact is mainly determined by the presence of pigments such 
as chlorophyll, which causes a reflectance peak at 560 nm and two 
minima at 443–490 nm and 665 nm corresponding to chlorophyll ab
sorption. A. germinans leaves have higher chlorophyll concentrations 
(Chl a + Chl b) compared to those of R. mangle (Zhang et al., 2012), 

Fig. 7. Maps of estimated LAIe for Lac Bay (Bonaire) based on NDVI for satellite images recorded on (a) 19/09/2021 (dry season) and (b) 12/01/2022 (wet season), 
and (c) differences in LAIe between these two images. Symbology of the three maps is in quartile mode to enhance visualisation. 

Fig. 8. Scatterplot of in situ effective Leaf Area Index (LAIe) as a function of 
modelled SL2P LAI data. The mean (solid line) and 95 % confidence intervals 
(grey area) are estimated by the linear model, while the dashed line reflects an 
y = x relationship. Bias Diagnostic Error (BDE) and the Root-Mean-Square Error 
(RMSE) are also included. 

Table 7 
Mean, Standard Deviation (SD) and Maximum (Max) values of LAIe for Lac Bay 
(Bonaire) based on the SL2P model.  

Date Season Mean SL2P LAIe SD SL2P LAIe Max SL2P LAIe 

19/09/2021 Dry  2.24  1.02  4.80 
28/12/2021 Wet  2.79  1.13  5.28 
12/01/2022 Wet  2.84  1.13  5.55 
23/03/2022 Dry  2.23  1.04  4.70 
02/04/2022 Dry  2.36  1.09  4.99  
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Fig. 9. NPP values (g Cm-2 d-1) of Lac Bay on 19/09/2021 (end of the dry season). The symbology of the map is in quartile mode to enhance visualisation.  

Table 8 
Mean NPP values (g C m− 2 d-1), standard deviation (SD), minimum (Min NPP), and maximum (Max NPP) values estimated for Lac Bay for three satellite images 
collected in the dry season, as well as the predicted lower 95% confidence limit (lcl) and upper 95% confidence limit (ucl) based on equation 6 and 7.  

Date Mean NPP (satellite image) SD (satellite image) Min / Max NPP (satellite image) Predicted lcl Predicted ucl 

19/09/2021  8.73  1.42 0/ 10.80  7.17  9.30 
23/03/2022  8.78  1.46 0/ 10.76  7.17  9.30 
02/04/2022  8.94  1.51 0/ 11.02  7.38  9.57  

Table 9 
Overview of remote sensing derived extent of mangrove forest (ha) reported for different dates and mangrove species in Lac Bay, Bonaire. ML = Maximum Likelihood, 
RF = Random forest.  

Study Satellite Image year Method Total extent (ha) R. mangle (ha) A. germinans (ha) Mixed areas (ha) 

This study Sentinel-2 2021, 2022 ML  222.26 136.03 77.10 – 
Senger et al., 2021 Sentinel-2 2018, 2019 RF  247.00 – – – 
Davaasuren and Meesters, 2012 Worldview-2 2010 ML  293.60 121.10 58.10 123.40  
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while R. mangle leaves contain higher concentrations of carotenoids and 
pigments called anthocyanins, which give them a reddish colour. Leaf 
structure is also different in both species, R. mangle leaves are large and 
elongated compared to A. germinans leaves that are relatively small and 
more oval. These species-specific leaf characteristics may explain the 
observed species-specific reflectance signatures in the visible and 
infrared regions (see Fig. 5b). Zhang et al. (2014) also reported that 
A. germinans leaves tend to have higher reflectance in the visible range, 
while R. mangle leaves have higher reflectance in the near-infrared 
range. As such, the use of species-specific spectral reflectance signa
tures seems to be a very promising tool to differentiate between 
A. germinans and R. mangle populations (Zhang et al., 2012; Zhang et al., 
2014). However, research incorporating radiometric field measure
ments in Lac Bay is still needed to validate this method. 

Given the rapid changes that can occur in the distribution and 
composition of small mangrove forests, as observed in Lac Bay, there is a 
clear need for consistent and structural long-term monitoring of the 
extent and species composition of the small mangrove forests to timely 
identify and address possible causes of these changes. Results presented 
in this study convincingly show that freely available Sentinel-2 images 
can be used to provide accurate maps of the extent and structure of small 
mangrove forests. As such, the cost-effective mangrove monitoring 
method developed in this study seems very suitable for long-term 
monitoring of the mangrove forest of Lac Bay, Bonaire, and other 
mangrove forests on small island states with similar species composition 
(i.e., in the Caribbean) where human and financial resources are limited. 
The methodology proposed in this study was specifically applied in a 
semi-arid region, where the presence of vegetation, apart from man
groves, is relatively low. In locations where diverse vegetation types 
coexist, the interpretable mangrove mapping approach (IMMA) could be 
useful to mitigate the interference of non-mangrove vegetation, 
enhancing the accuracy of mangrove mapping in these cases (Zhao et al., 
2023a). 

Recent advancements in classification techniques, such as the 
incorporation of explainable machine learning (XAI), are widely 
recognized as pivotal for the effective deployment of artificial intelli
gence (AI) models (Arrieta et al., 2020). Future work incorporating XAI 
could help enhance the predictive accuracy of classification results, 
ensuring a decision-making process that is understandable and inter
pretable (Arrieta et al., 2020). Recognizing interpretability as an 
essential design factor can further improve the implementability of AI 
models, contributing to impartial decision-making and ensuring that 
only meaningful variables influence the model’s output (Arrieta et al., 
2020). Dual-temporal Sentinel-2 images combining Sentinel-2 and 
Sentinel-1 data could also give new insights incorporating physical 
properties to the classification analysis, such as roughness and dielec
tricity (Zhao et al., 2023b). Further exploration of XAI approaches, 
which approximate complex models by self-interpretable models, would 
be key in the future for improving mangrove canopy identification and 
mapping using satellite data. However, it is important to note that 
implementing these advanced techniques requires a certain level of 
skills and expertise, which may be lacking in small island states. 
Acquiring and applying these capabilities demands specialised knowl
edge that can represent a potential challenge for the effective utilization 
of such technologies in regions with limited resources. Thus, addressing 
this gap in skills and expertise is crucial for ensuring the successful 
implementation of advanced AI models in smaller, less-resourced areas. 

4.2. Remote sensing indicators of mangrove forest condition 

In this study, we show that Sentinel-2-derived LAI data can be used to 
map LAIe accurately in the small mangrove forest of Lac Bay, where 
mean LAIe values were estimated to be 3.57 with maximum average 
values of 4.31. The minimum LAIe values in our case were 0, as some 
non-vegetated pixels could be included in the classification (commission 
errors). In any case, our values align with those documented in other 

studies conducted in the Caribbean region. For example, using Landsat 
imagery, Green et al. (1997) found a mean LAI value of 3.96 (range 0.8 – 
7.0) for mangroves growing on the Caicos Bank, Turks, and Caicos 
Islands. These authors have used similar steps for LAI calculation 
(equation 1 of this study), but they do not have apply any correction for 
woody material. Following these assumptions, the values they are 
reporting correspond to PAIe instead of LAIe. Sherman et al. (2003) re
ported a mean LAI value of 4.4 (range 2.9 – 5.6) for a mangrove forest in 
the Dominican Republic. In this case LAI values were derived from 
allometric relationships. 

Our results showed a strong positive relationship between LAIe and 
NDVI (R2 = 0.75). As such, the modelled equation for this relationship 
could potentially be used to derive LAIe for small mangrove forests with 
similar species composition (i.e., on other small island in the Caribbean) 
when NDVI data are available. In other regions of the world where the 
composition of mangrove species is different, the relationship might not 
be as strong, for instance due to the species-specific character of the 
extinction coefficient k (Guo et al., 2021). Therefore, if resources allow, 
it is preferred to adjust the modelled equation based on local species- 
specific estimates of LAIe following the approach presented in this 
study and, if possible, determine the extinction coefficient of the specific 
species using a terrestrial laser scanning technique (see Zheng and 
Moskal, 2012). Even though some studies have considered vegetation 
indices that incorporate red-edge bands to derive LAI (e.g., Delegido 
et al., 2011), specific works carried out in mangrove forests have re
ported the best results when NIR bands were used (Guo et al., 2021). 
Additionally, the extensive and historical application of the NDVI fa
cilitates a higher level of comparability with other studies. Using this 
empirically derived LAIe algorithm, we were able to detect seasonal 
differences in LAIe, with significantly lower LAIe values in the dry season 
compared to the wet season. During the wet season, mangrove forests 
experience increased rainfall, which results in reduced salinity levels 
and increased access to freshwater, both favourable for photosynthesis 
and tree growth, and eventually may have resulted in relatively high 
LAIe values compared to the dry season (Jaramillo et al., 2018). More
over, the wet season is typically associated with higher nutrient avail
ability for mangrove trees due to rainfall-induced run-off of terrestrial 
sediments and organic matter into the coastal areas where the trees grow 
(Rahaman et al., 2013). 

The performance of the generic algorithm S2LP underestimated our 
in situ obtained LAIe values for the mangrove forest in Lac Bay, as was 
reflected by the positive value for BSE (BSE = 0.41). So far, little 
research has been done to validate S2LP estimates for LAI in mangrove 
canopies, except for a study by Binh et al. (2022) in Vietnam. These 
authors reported a positive relationship between in situ LAI and SL2P 
estimates (R2 = 0.45) and an underestimation of LAI values by the model 
(RMSE = 2.19) without clarifying if their in situ values correspond to LAI 
or LAIe. Although the LAIe estimations provided by SL2P in our study 
were slightly better (e.g., R2 = 0.67, RMSE = 1.09), the error values are 
still too high to consider the results acceptable. On the other hand, other 
studies have reported that SL2P LAI retrievals can show poor perfor
mance over heterogeneous canopies such as forests and at relatively 
high LAI values (i.e., LAI > 3) (Brown et al., 2021). Collection of in situ 
LAI data at multiple locations and in various types of mangrove forests 
(i.e., mangrove fringe forests, over washed mangrove islands, riverine 
mangrove forests, basin mangrove forests, dwarf mangrove forests) is 
needed to validate global SL2P-based LAI algorithms and to refine them, 
if necessary. These will help to better represent LAI for different types of 
mangrove forests and locations (Gilmore and Snedaker, 1993), 
providing more accurate estimations. 

Furthermore, the application of a lux meter for LAI measurements in 
mangrove forests remains underexplored and requires some further 
work for enhancing the reliability of these data. For example, by a 
comparative analysis of simultaneous measurements from a lux meter 
and a Photosynthetic Active Radiation (PAR) meter. 

The net primary production (NPP), derived from satellite-derived 
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LAI values, is also a key indicator of ecosystem productivity and can be 
used directly to assess the function of carbon sequestration or the service 
of climate regulation (Trégarot et al., 2021). In fact, LAI is an indicator 
of the amount of photosynthesis that occurs in the canopy, which is 
moderated by the amount of leaf material in which it can occur. 
Therefore, a higher LAI generally results in a higher NPP. Without 
specific data to develop a physics-based NPP model, we decided to 
evaluate a simple empirical algorithm based on LAI values. Our results 
for Lac Bay showed an average NPP for the dry season of 8.82 ± 1.46 gC 
m− 2 d-1, equivalent to about 118.15 ± 19.56 tCO2 ha− 1 yr− 1. This means 
NPP values from Bonaire are much higher than NPP estimates obtained 
for the mangrove forests of Martinique (37.80 ± 12.85 tCO2 ha− 1 yr− 1) 
using the NPP MODIS product with 500 m of spatial resolution (Trégarot 
et al., 2021). Further work is needed to determine if this difference could 
result from the different spatial resolution in NPP estimations, where 
low spatial resolution seems to result in lower NPP values, or from the 
different methodologies employed in both cases (empirically-derived vs 
physically-based model). The lack of available data on NPP in Lac Bay 
limits the comparison of our results with other studies in this area. 
However, studies published in the Caribbean region reported similar 
values for NPP in mangrove forests. For example, Vega-Rodríguez 
(2008) reported a mean NPP of 12.6 g Cm− 2 d-1 for monospecific sites of 
R. mangle in La Parguera, Puerto Rico. These results suggest that the 
model used to derive NPP could provide reliable values and encourage 
further work to develop more robust models. In the meantime, LAI and 
NPP values can be used to monitor the productivity of the mangrove 
forests in Lac Bay and to assess the service of climate regulation, which 
currently represents 26 260 ± 4 347 tCO2eq yr− 1 for the mangrove 
forests of Lac Bay. 

Finally, in Lac Bay, NDVI, LAIe, and NPP values showed a clear zonal 
distribution with the highest values in the mid-West and East on the 
seaward side of the bay and lowest values in the northern landward part 
of the bay, indicating a degraded condition of the mangrove forest 
compared to its pioneer front. However, the ecological condition of an 
ecosystem can only be interpreted in light of a reference system being 
either the same ecosystem at another point in time or an ecosystem in a 
similar geomorphic setting but considered pristine (i.e., with low pres
sures on the system to none). As such, we cannot derive further inference 
from the results of our study in terms of ecological condition, but our 
results provide the baseline for future assessments in Bonaire. Further
more, as discussed above, the use of a NPP indicator in particular, not 
only allows to estimate the condition of the forest but also provides a 
direct estimation of the service of climate regulation through the func
tion of carbon sequestration. In the frame of ecosystem services valua
tion, considering the ecological condition is essential to account for the 
loss in the quantity and/or quality of a service, as the extent of the 
mangrove alone does not necessarily reflect this loss (Trégarot et al., 
2021). The use of remote sensing imaging thus allows to have both 
parameters (extent and condition) and, in some cases the production 
function underlying the service at large spatial and long temporal scales. 
Moreover, this information is provided more cost-effectively compared 
to the number of traditional field campaigns necessary to achieve the 
same results in order to support mangrove management and 
conservation. 

5. Conclusions 

This study shows that Sentinel-2 satellites are effective tools for 
mapping mangrove forests on small tropical islands, providing valuable 
information for the management of these fragile ecosystems. We used 
Sentinel-2 data to map the extent of the mangrove forest, species 
composition, and ecological condition through two biophysical vari
ables: LAIe and NPP. Our findings indicate that NDVI can be used to 
accurately map the extent of the small mangrove forest in Lac Bay, if 
satellite images are captured during the dry season and outside of the 
main Sargassum influx months (e.g., September). In terms of 

classification accuracy, the Maximum Likelihood algorithm out
performed NDVI as it was not influenced by seasonal processes. By 
utilising Maximum Likelihood, we estimated the mangrove forest extent 
in Lac Bay to be 222.3 ha, with 136.0 ha classified as R. mangle (red 
mangroves) and 77.1 ha as A. germinans (black mangroves). Further
more, our study highlights the significance of developing local algo
rithms to derive values of biophysical variables such as LAI and NPP and 
supports the effectiveness of NDVI-based algorithms for obtaining LAI 
values. LAIe values were significantly higher in the wet season than the 
dry season, with mean values of 3.82 and 3.40, respectively. Regarding 
NPP, we obtained a mean NPP of 8.82 ± 1.46 gC m− 2 d-1 during the dry 
season, equivalent to approximately 139.88 ± 34.37 tCO2 ha− 1 yr− 1 for 
Lac Bay. 

Overall, this study provides a cost-effective method for monitoring 
the extent, composition, and ecological condition of the small mangrove 
forest in Lac Bay, Bonaire. This method also has the potential to be 
extrapolated to other small islands with comparable mangrove forest 
compositions. Its implementation is particularly relevant for SIDS where 
data scarcity is common due to limited human capacity and financial 
resources, enabling informed decision-making for the management and 
protection of their valuable mangrove ecosystems. 
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Ewan Trégarot: Writing – review & editing, Writing – original draft, 
Funding acquisition, Data curation, Conceptualization. Cindy C. 
Cornet: Writing – review & editing, Funding acquisition. Tim McCar
thy: Writing – review & editing, Funding acquisition. Matthijs van der 
Geest: Writing – review & editing, Writing – original draft, Funding 
acquisition, Formal analysis, Data curation, Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This work was supported by the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 869710 
“Marine Coastal Ecosystems Biodiversity and Services in a Changing 
World” (MaCoBioS) to all authors and by the Netherlands Ministry of 
Agriculture, Nature and Food Quality under research project BO-43- 
117-007 to M. van der Geest. The authors wish to thank Femke van der 
Drift for helping with the collection of the 2022 field data. We further 
thank Sabine Engel from Mangrove Maniacs and STINAPA rangers and 
additional staff, for their advice, cooperation, and assistance during our 
field campaigns. We would also like to thank the two anonymous re
viewers for their valuable comments that improved the overall quality of 
the paper. 

References 

Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., 
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Trégarot, E., Caillaud, A., Cornet, C.C., Taureau, F., Catry, T., Cragg, S.M., Failler, P., 
2021. Mangrove ecological services at the forefront of coastal change in the French 
overseas territories. Science of the Total Environment 763, 143004. 

Vaiphasa, C., Ongsomwang, S., Vaiphasa, T., Skidmore, A.K., 2005. Tropical mangrove 
species discrimination using hyperspectral data: a laboratory study. Estuar. Coast. 
Shelf Sci. 65, 371–379. https://doi.org/10.1016/j.ecss.2005.06.014. 

van Moorsel, G.W.N.M., Meijer, A.J.M., 1993. Base-Line Ecological Study van het Lae op 
Bonaire. Bureau waardenburg BV, Holland, p. 120. 

Vega-Rodríguez, M., 2008. Estimating primary productivity of red mangroves in 
southwestern Puerto Rico from remote sensing and field measurements. Master of 
Science in Marine Science, University of Puerto Rico, Mayaguez Campus.  

Verhoef, W., 1984. Light scattering by leaf layers with application to canopy reflectance 
modeling: the SAIL model. Remote Sens Environ. 16, 125–141. https://doi.org/ 
10.1016/0034-4257(84)90057-9. 

Verhoef, W., 1985. Earth observation modeling based on layer scattering matrices. 
Remote Sens Environ. 17, 165–178. 

Waiyasusri, K., 2021. Monitoring the Land Cover Changes in Mangrove Areas and 
Urbanization using Normalized Difference Vegetation Index and Normalized 
Difference Built-up Index in Krabi Estuary Wetland, Krabi Province, Thailand. Appl. 
Ecol. Environ. Res. 43(3), 1–16. 10.35762/AER.2021.43.3.1. 

Wang, L., Dong, T., Zhang, G., Niu, Z., 2013. LAI retrieval using PROSAIL model and 
optimal angle combination of multi-angular data wheat. IEEE J. Sel. Top. Appl. Earth 
Obs. Remote Sens. 6, 1730–1736. https://doi.org/10.1109/JSTARS.2013.2261474. 

Wang, L., Jia, M., Ying, D., Tian, J., 2019. A review of remote sensing for mangrove 
forests: 1956–2018. Remote Sens. Environ. 231, 111223 https://doi.org/10.1016/j. 
rse.2019.111223. 

Weis, M., Baret, F., Jay, S., 2020. S2ToolBox Level 2 products LAI, FAPAR, FCOVER 
Version 2.0 EMMAH-CAPTE, INRAe Avignon, France https://hal.inrae.fr/hal- 
03584016/document Last accessed 28/11/2022. 

Winarso G., Purwanto A. D., 2014. Evaluation of Mangrove Damage Level Based on 
Landsat 8 Image. International Journal of Remote Sensing and Earth Sciences 11(2), 
105-116. 10.30536/j.ijreses.2014.v11.a2608. 
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