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Abstract

Most deleterious variants are recessive and segregate at relatively low frequency. There-

fore, high sample sizes are required to identify these variants. In this study we report a

large-scale sequence based genome-wide association study (GWAS) in pigs, with a total of

120,000 Large White and 80,000 Synthetic breed animals imputed to sequence using a ref-

erence population of approximately 1,100 whole genome sequenced pigs. We imputed over

20 million variants with high accuracies (R2>0.9) even for low frequency variants (1–5%

minor allele frequency). This sequence-based analysis revealed a total of 14 additive and 9

non-additive significant quantitative trait loci (QTLs) for growth rate and backfat thickness.

With the non-additive (recessive) model, we identified a deleterious missense SNP in the

CDHR2 gene reducing growth rate and backfat in homozygous Large White animals. For

the Synthetic breed, we revealed a QTL on chromosome 15 with a frameshift variant in the

OBSL1 gene. This QTL has a major impact on both growth rate and backfat, resembling

human 3M-syndrome 2 which is related to the same gene. With the additive model, we con-

firmed known QTLs on chromosomes 1 and 5 for both breeds, including variants in the

MC4R and CCND2 genes. On chromosome 1, we disentangled a complex QTL region with

multiple variants affecting both traits, harboring 4 independent QTLs in the span of 5 Mb.

Together we present a large scale sequence-based association study that provides a key

resource to scan for novel variants at high resolution for breeding and to further reduce the

frequency of deleterious alleles at an early stage in the breeding program.

Author summary

In this study we investigated the effect of over 20 million genetic variants on the growth

rate and backfat thickness of approximately 140,000 pigs across two commercial breeds,

with specific focus on recessive harmful variation. We identified 14 regions with a signifi-

cant additive effect and 9 regions with a significant recessive effect on these traits. By look-

ing at recessive effects we identified several rare deleterious variants with high impacts on
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animal fitness. These include a deletion on chromosome 15 in the OBSL1 gene, which

leads to a growth reduction of 100 grams a day on average. Interestingly, loss-of-function

mutations in OBSL1 are associated with short stature in humans. Looking at additive

effects with this high-resolution dataset allowed us to gain more insight into the locus

around the MC4R gene on chromosome 1. Here we found a small complex region con-

taining several independent variants affecting both growth rate and backfat. With this

study we have shown that by using several gene models and a large dataset, we can identify

novel genetic variants at high resolution (<0.01 frequency) with significant impact on ani-

mal fitness and production. These results can help us in further eradicating deleterious

genetic variants from pig populations.

Introduction

In livestock, genomic selection has accelerated genetic gain due to its major impact on increas-

ing the accuracy of breeding value estimation at a young age and reducing the generation

interval [1]. Genomic selection, while boosting desirable trait improvement, can inadvertently

exacerbate the frequency of deleterious alleles. By favoring individuals with superior trait-asso-

ciated genetic markers, carriers of rare recessive deleterious alleles can be unknowingly propa-

gated in breeding populations, potentially leading to the expression of harmful phenotypes in

subsequent generations and compromising overall genetic health [2]. Balancing accelerated

genetic gain with the need to mitigate the accumulation of deleterious alleles becomes a critical

consideration in sustainable breeding strategies.

Deleterious recessive alleles can remain hidden because the harmful effects are only present

in a homozygous state, and their impact may not be fully captured by traditional additive

genetic models [2]. Especially for low frequency alleles, a large study population is crucial for

identifying deleterious recessive alleles because the number of homozygous animals for the

minor allele is small. In addition, imputing to sequence is essential for identifying deleterious

alleles as it extends the scope of genetic analysis beyond genotyped variants, enabling the dis-

covery of rare and non-genotyped variants associated with deleterious effects [3]. Imputation

is a method that allows for predicting the genotypes of organisms at a higher density, based on

a reference population of which this higher density data is already available [4]. In commercial

pig populations, imputation with good accuracies is possible because there is a limited set of

haplotypes segregating [5]. By performing imputation, we accurately predict the large majority

of genetic variation within populations as long as a sufficiently large reference population is

available. With whole genome sequencing (WGS) becoming more accessible and affordable, it

is now possible to obtain reference populations allowing for performing imputation up to

whole genome sequence level with high accuracies. Imputation to sequence is not only useful

to fine map QTL regions, but also to identify novel deleterious alleles affecting the fitness of

animals by focusing on non-additive effects. This can be done by performing genome-wide

association studies (GWAS) using different models [6]. Previous studies have identified non-

additive (recessive) effects, mainly by focusing on depletion of homozygotes [7,8]. This

method allows for identifying recessive variants with lethal effects, but not recessive variants

decreasing fitness without leading to death.

By performing GWAS, we can test the association between SNPs and phenotypic records of

traits of interest, which allows us to identify quantitative trait loci (QTLs). Several models can

be used for GWAS, with the additive model being most commonly used [9]. An additive

GWAS model assumes that the effects of different alleles on the trait are cumulative and can be
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estimated linearly based on the number of alleles present. However, this model can fail to pick

up non-additive genetic variation, such as recessive and dominance effects. Recessive effects

are especially of interest when trying to identify deleterious variants [2]. To identify SNPs with

recessive effects, we can use a non-additive model. Recently several novel deleterious (coding)

variants were identified in cattle using a non-additive GWAS on imputed sequence of

>100,000 individuals [10].

In this study, we performed imputation to sequence of 120,000 pigs of a Large White sow

breed and 80,000 pigs of a Synthetic boar breed. We performed GWAS on this imputed

sequence data using both an additive and a non-additive (recessive) model for the production

traits growth rate (GR) and backfat (BF). Using the non-additive model, we identified novel

low frequency deleterious alleles affecting our traits of interest including loss-of-function

mutations that can be purged from the population.

Results

Imputation to sequence

The dataset consists of 120,147 Large White and 81,250 Synthetic animals genotyped on

medium density SNP panels (25K/50K). These animals were first imputed to 660K density

with a reference population of 3500 animals. Subsequently, the imputed 660K genotypes were

imputed to whole genome sequence level, with a reference population of 1069 animals

(S1 Fig). We filtered the results to only include variants with an allele count of at least 100.

This gave us a total of 28,190,307 variants for Large White and 24,124,813 variants for Syn-

thetic. The majority of these variants were SNPs (Table 1). For SNPs with MAFs above 1–2%

we were able to obtain very good imputation accuracies (R2 > 0.9), and even for half of the

SNPs below 1% frequency we obtained accuracies of R2 > 0.5 (Fig 1).

Additive and non-additive sequence-based GWAS on growth rate and

backfat

We performed both an additive and non-additive (recessive) GWAS on growth rate and back-

fat thickness in the Large White (Fig 2A and 2B) and Synthetic breed (Fig 2C and 2D) using

the imputed sequence data. For Large White, we used 67K phenotypes for growth rate and

72K for backfat. For the Synthetic breed, we used 74K phenotypes for both traits. From the

results we observe a large number of QTLs, with distinct QTLs for additive and non-additive

effects. Across traits and breeds, we find a total of 14 additive and 9 non-additive QTLs, using

a significance threshold of p-value < 1E-10 (Fig 3). For each QTL, we examined the top SNPs

and their associated effects on genes using Ensembl VEP [11], SIFT scores [12] and pCADD

scores [13], and we assessed the impact these QTLs have on the phenotypes (Fig 4 and

S1 Table). We managed to identify potential causal variants for some of these effects.

Table 1. Number of variants imputed to sequence split by variant type and MAF.

Large White Synthetic

SNPs Indels SNPs Indels

Total 22,840,678 5,349,629 19,398,280 4,726,533

< 1% MAF 4,329,777 600,075 4,496,085 641,335

< 5% MAF 8,109,989 1,472,040 7,510,302 1,400,929

MAF, minor allele frequency; SNP, single nucleotide polymorphism; Indel, insertion / deletion.

https://doi.org/10.1371/journal.pgen.1011034.t001
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Fig 1. Imputation accuracies (R2) of all SNPs grouped by Minor Allele Frequency (MAF).

https://doi.org/10.1371/journal.pgen.1011034.g001

Fig 2. Additive (red) and recessive (blue) Manhattan plots for growth rate (GR) and backfat (BF). For peaks with a p-value

significance below 1E-10 (green line) the genomic location is shown. QTLs only supported by a single significant SNP are neglected.

A) Large White growth rate B) Large White backfat C) Synthetic growth rate D) Synthetic backfat. *The 121MB and 10MB peaks have

top SNPs with p-values of 6,91E-154 and 1,63E-135 respectively.

https://doi.org/10.1371/journal.pgen.1011034.g002
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Non-additive GWAS identifies loss-of-function variants associated with

poor performance in homozygous individuals

Non-additive effect on chromosome 2 shows decrease in growth rate and backfat in

Large White. We found a very significant non-additive QTL on chromosome 2 for both

growth rate and backfat. The QTL is located around 79Mb with MAFs of 10%. The SNPs in

this QTL show a negative impact on growth and backfat in homozygous individuals, and a

negligible effect in heterozygous individuals. Homozygous animals grow on average 20 grams

a day less (0.24 SDs) and have 0.7mm less backfat (0.47 SDs). The top SNP for growth is

located at 79,261,674bp and the top SNP for backfat is located at 79,236,726bp. Both SNPs are

also present very significantly in the other traits’ GWAS. The QTLs consist mostly of intron

variants of ADAMTS2 (A Disintegrin-Like and Metalloproteinase with Thrombospondin

Type 1 Motif 2). Interestingly, the QTL comprises a deleterious missense SNP (pCADD: 22.6,

SIFT: 0) in the CDHR2 (Cadherin-Related Family Member 2) gene at 81,336,954bp, known to

affect body size in knockout mice [14].

Stop gain SNP in ANKRD55 affects backfat levels in both Large White and Synthetic

breeds. For backfat we find a very significant non-additive QTL on chromosome 16 that seg-

regates in both breeds. The SNPs in the QTL have a MAF of around 10% in Large White and

19% in the Synthetic breed. The top SNP for the Synthetic breed and also a very significant

SNP in the Large White GWAS is a stop gain SNP in the ANKRD55 (ankyrin repeat domain

55) gene, located at 35,245,909bp. Homozygous animals show increased backfat levels, whereas

heterozygous animals show some decrease in backfat. Homozygous animals have 0.29mm

(0.17 SDs) more backfat in the Large White breed and 0.18mm (0.13 SDs) more backfat in the

Synthetic breed. Heterozygous animals show 0.11mm less backfat in both breeds.

Missense SNP in MPIG6B decreases growth rate in the Synthetic breed. In the Syn-

thetic breed, we observe a non-additive QTL on chromosome 7. Homozygous animals show a

Fig 3. Number of significant GWAS QTLs overlapping between breeds and traits.

https://doi.org/10.1371/journal.pgen.1011034.g003
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decrease in growth of 30 grams a day (0.2 SDs). The fourth most significant SNP in this QTL is

a deleterious missense SNP (pCADD: 24.4, SIFT: 0.01) inMPIG6B (Megakaryocyte And Plate-

let Inhibitory Receptor G6b). The SNP is located at 23,835,601bp with a MAF of 28%.

Frameshift variant in OBSL1 strongly affects growth rate and backfat in the Synthetic

breed. In the Synthetic breed, we identified a very significant QTL for both growth rate and

backfat on chromosome 15. The top SNP is the same for both traits (121,500,039bp) and has a

Fig 4. Phenotypic effect sizes of top SNPs from the significant QTLs. QTLs with phenotypic effects< 0.1 standard

deviations are excluded. Square size indicates significance (bigger square is lower p-value, ranging from 1E-10 to 1E-50+).

https://doi.org/10.1371/journal.pgen.1011034.g004

Fig 5. Genomic overview of the OBSL1 frameshift variant. A) OBSL1 gene model adapted from Ensembl 110

showing the genes three transcripts with exons (boxes) and introns (lines) The exon where the frameshift is located

(exon 5) is highlighted in blue. B) DNA sequence alignment showing the 5bp deletion causing a frameshift in affected

animals. C) Protein alignment showing the frameshift inducing a premature stop-codon on exon 6.

https://doi.org/10.1371/journal.pgen.1011034.g005
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MAF of 5%. Homozygous animals show very poor growth and highly elevated levels of backfat,

growing on average around 100 grams a day less (-1.08 SDs) and showing an increase in back-

fat of 2.2mm (2.24 SDs) compared to non-homozygotes. We identified the most likely causal

mutation to be a frameshift variant located at 121,576,506bp, in high LD with the top SNP

from the GWAS (R2 = 0.95). The frameshift is caused by a 5bp deletion in the 5th exon of the

OBSL1 (Obscurin Like Cytoskeletal Adaptor 1) gene (Fig 5 [15]). This induces a premature

stop-codon in the 6th exon. To validate the presence of the 5bp deletion we genotyped 31 pigs

from three litters where the sow was carrier of the deletion (using a dye-labeled primer). We

confirmed the presence of the deletion and confirmed 15 carriers using this test (S2 Table).

Additive GWAS identifies known, novel, and complex QTLs with varying

effects on performance

Additive model shows expected QTLs on chromosomes 1 and 5 in Large White and Syn-

thetic breed. In the additive GWAS results we find two QTLs that we consistently observe

when performing GWAS on these traits. One is located on chromosome 1 where we find a

missense SNP in the MC4R (melanocortin 4 receptor) gene located at 160,773,437bp

(rs81219178). This missense SNP has been described before, animals with the major allele (G)

show less backfat while animals with the minor allele (A) show faster growth [16], hence the

QTL showing up for both traits. On chromosome 5, we find a QTL especially significant for

backfat. The top SNP of this QTL is an intron variant of the CCND2 (cyclin D2) gene affecting

gene expression, located at 66,103,958bp (rs80985094). The G allele for this SNP has been

reported to increase backfat [16].

Low frequency additive QTL on chromosome 2 strongly affects backfat in Large

White. At the start of chromosome 2 we find a very significant novel QTL for backfat, with

SNPs located from 17Kb to 2.3Mb. These SNPs have very low frequencies with MAFs

between 0.4%-0.5%. Despite the low frequency, the SNPs in the QTL have high imputation

accuracies (R2>0.9). Heterozygous animals on average have an increased backfat thickness

of around 0.7mm (0.43 SDs). Due to the very low frequency of these variants, our dataset

only includes 3 homozygous animals, of which 2 show an increase in backfat of over 2.3mm

(1.36 SDs). The QTL is located in a region encompassing different genes including NAD-
SYN1 (NAD synthetase 1), INS (Insulin) and IGF2 (Insulin like growth factor II). Both INS
and IGF2 play a role in glucose regulation and affect lipid metabolism, making them interest-

ing candidate genes for the phenotypic effects we observe in this QTL. Another significant

SNP present in the QTL is a missense SNP in ANO9, (anoctamin 9) located at 245,676bp

with a pCADD score of 21.78.

Small complex region on chromosome 1 contains several independent variants affecting

growth rate and backfat. On chromosome 1 we find a very complex region located from

approximately 150-165Mb (Fig 6). This region is present for both traits and both breeds, but

most effects and highest significances are observed for growth rate in Large White. In the Syn-

thetic breed we find only a single significant SNP for backfat (Fig 6D), which is also present in

the other breed and trait.

In this region we find 5 independent QTLs within this span of 15Mb, of which 3 within a

3Mb span. Within some of the QTLs, we find SNPs with different and opposing effects. The

majority of the top SNPs of the different QTLs and effects are not in linkage disequilibrium

(LD) (Table 2), indicating that these are mostly independently segregating haplotypes.

The QTLs at 150 and 154Mb in Large White both consist of only intergenic variants with

allele frequencies ranging from 30–35%. One of the positive effects we observe in the 3Mb

span from 159-162Mb is due to a missense SNP in theMC4R gene. This effect is represented
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by the top SNP at 160Mb in Fig 5, which is in high LD with theMC4R missense SNP. The SNP

in the QTL at 160Mb for backfat, as well as the QTLs for both traits at 160Mb in Synthetic, also

show LD with the MC4Rmissense SNP.

The top SNP for growth rate in Large White for this whole region is located at

159,788,889bp with a MAF of 10% and a negative effect on growth. This SNP and the variants

that are in LD are all intergenic variants, located near the CDH20 (cadherin 20) gene. We also

find significant intron variants of CDH20, however, some of these SNPs have a frequency of

23% and a positive effect on growth, while others have a frequency of 3% and a negative effect

on growth. The top SNP of 23% MAF is located at 159,869,511bp and the top SNP of 3% MAF

is located at 159,821,786bp. The same locus around the CDH20 gene shows up in the Synthetic

breed.

We looked at gene expression in this region in liver, muscle, spleen and lung. We found

several SNPs between 159 and 161Mb to significantly affect the expression of the PYGL (glyco-

gen phosphorylase L) gene, located at 180Mb on the same chromosome 1, an allosteric enzyme

that catalyzes the rate-limiting step in glycogen catabolism [17].

Fig 6. Manhattan plots of region on chromosome 1 showing several QTLs for growth rate (GR) and backfat (BF).

https://doi.org/10.1371/journal.pgen.1011034.g006

Table 2. LD within the QTL rich 15MB region on chromosome 1 in Large White.

LD (R2) / SNP 150364747 150364747

150364747 1 154978577

154978577 0.216699 1 159788889

159788889 0.207151 0.0420421 1 159821786

159821786 0.0492199 0.00678435 0.280964 1 159869511

159869511 0.104494 0.495845 0.0342459 0.00947161 1 160883673

160883673 0.166053 0.696078 0.0550575 0.0154966 0.48608 1 162020747

162020747 0.194158 0.0348452 0.726328 0.237485 0.0274089 0.0538396 1 162062651

162062651 0.0639927 0.00931752 0.202506 0.677308 0.0112798 0.0187777 0.339906 1 164838503

164838503 0.0195427 0.157152 0.0581801 0.00639335 0.0786844 0.219678 0.042347 0.00143272 1 164909824

164909824 0.0425097 0.00175518 0.147268 0.00425724 0.000552646 0.00572898 0.131389 0.0052275 0.146082 1

LD, Linkage Disequilibrium; Cell shading; orange: R2 = 0.40–0.60, yellow: R2 = 0.60–0.70, green: R2 > 0.70

https://doi.org/10.1371/journal.pgen.1011034.t002
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Discussion

In this study, we performed sequence based GWAS on a large scale with both an additive and

non-additive model, allowing us to identify novel and low frequency deleterious variants. By

using a non-additive (recessive) model, we identified completely novel QTLs compared to the

additive model, which are in most cases extremely significant due to their deleterious nature.

As these recessive deleterious variants tend to be present with low allele frequencies, it is essen-

tial to have large datasets when attempting to identify them through GWAS. Especially when

using WGS data, this leads to very computationally intense analyses. We experienced mainly

the high number of phenotypes to be a bottleneck for memory usage, as the genome can be

split up in segments to run parallel analysis. The computational limitations are naturally very

dependent on the type of software used and the available computing infrastructure. In our situ-

ation, we found a number of around 75,000 phenotypes to be the maximum. This number is

sufficient when mainly focusing on SNPs with MAFs above 1%, which was the case in this

study due to imputation accuracies. If in the future we would be able to accurately impute even

lower frequency SNPs with high accuracy, new methods would be needed to include a larger

number of phenotypes for GWAS.

We observed a total of 23 QTLs across the two traits and breeds, of which most will require

further research to proof the causal variants and the biological mechanism. However, for some

of the QTLs we identified potential causal variants causing a loss of function and therefore

expected to impair gene function. We found some of these variants to cause very poor perfor-

mance and therefore proving very interesting candidates for selection.

One of these variants is located on chromosome 2, where we observed a QTL in the non-

additive GWAS, leading to a reduction in both growth rate and backfat. The most significant

SNPs in this QTL are mainly intron variants of ADAMTS2. We do not observe any deleterious

variants in this gene specifically. Inactivation of ADAMTS2 has been associated with Ehlers-

Danlos syndrome, a disorder affecting collagen formation and function [18]. Affected individ-

uals suffer from hypermobile joints and flexible, fragile skin [19]. There are several mutations

known in several genes that can lead to development of this disorder. Though not a very com-

mon symptom, short stature has been observed in some patients with Ehlers-Danlos syndrome

[20]. The syndrome has been observed in domestic animals including sheep and cattle, but not

yet in pigs. Affected animals also display the loose and fragile skin phenotype [21]. If the

decreased growth we observe in pigs homozygous for this region were to be caused by a similar

syndrome, we would expect to observe similar phenotypes. This would require further obser-

vation of homozygous animals. For now, since we do not observe deleterious variants in

ADAMTS2 and are not aware of additional symptoms indicating Ehler-Danlos syndrome in

these animals, we do not consider this disorder to likely be the cause of the reduced growth.

Another significant SNP in this QTL, though not as significant as the top SNPs, is a missense

SNP in CDHR2 with a very strong deleterious effect. Previous research has studied the func-

tion of CDHR2 by knocking out the gene in mice. Knock-out animals showed a decrease in

body weight, likely due to absence of CDHR2 leading to shorter microvilli and a lower packing

density in the intestine [14]. Based on these findings we expect this missense SNP could be the

causal variant leading to the observed decrease in growth and backfat.

Another recessive causal loss of function variant we managed to identify is located on chro-

mosome 15, affecting the OBSL1 gene. This variant causes the strongest phenotypic effect we

observed in all GWAS results. Homozygous animals show a strong reduction in growth rate

and increase in backfat thickness. We identified a frameshift variant in OBSL1 to be the causal

mutation. Cytoskeletal adaptors play an important role in ensuring structural integrity of cells

by linking the internal cytoskeleton to the cells membrane [22]. Defects in OBSL1 have been
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found to lead to 3M-syndrome 2 in humans. Several cases have been studied and all mutations

in OBSL1 causing the syndrome were null mutations within the first 6 exons of the gene, there-

fore affecting all transcripts [23]. The variant we identified is located on exon 5 and causes a

frameshift, therefore likely also leading to the gene being fully defective. The most common

symptom of 3M-syndrome is short stature due to growth restriction, often accompanied by

dysmorphic features and skeletal abnormalities [24]. Similar symptoms have been observed in

sheep with a defect in OBSL1, though unlike in humans, sheep homozygous for the defect are

stillborn [25]. 3M-syndrome has not yet been described in pigs before. We expect the identi-

fied frameshift variant to cause a similar syndrome in pigs, explaining the severe reduction in

growth we observe in homozygous animals. We attempted to obtain homozygous individuals,

but there were no current ongoing carrier by carrier matings expected to produce homozygous

offspring.

On chromosome 7 we found a deleterious missense SNP in theMPIG6B gene in the Syn-

thetic breed, which hasn’t been directly associated with variations in growth/body size. How-

ever, this gene is essential for blood platelet production and function.

Previous research has shown that knock-out of the gene in mice leads to a reduced number

of blood platelets and the occurrence of enlarged platelets. Additionally, these animals showed

increased production of metalloproteinase, leading to increased shedding of cell-surface recep-

tors [26]. We speculate that the missense SNP we identified might lead to similar issues in the

blood of homozygous animals, expressing through overall lower performance including

decreased growth.

Deleterious recessive variants are often observed segregating in a single breed [2]. There-

fore, crossbred offspring are generally not affected by these variants, which has been hypothe-

sized to contribute to heterosis [27]. We did identify one recessive stop-gain SNP present in

both lines, in the ANKRD55 gene. The presence of this SNP can now be monitored and cross-

bred mating resulting in potential homozygous offspring can be avoided. Variants with large

effects found only in a single line can be monitored and prevented from segregating further

within the line.

We also found some interesting novel QTLs in our additive GWAS for which we have not

yet managed to pin down specific causal variants, but we identified genes that are likely

involved. At the start of chromosome 2, we found a highly significant QTL with a frequency of

only 0.5%, leading to strongly increased backfat. In this QTL, both the INS and IGF2 genes are

present. IGF2 produces a protein important in growth regulation and is also involved in glu-

cose metabolism [28], and INS plays a role in carbohydrate and lipid metabolism by regulating

glucose uptake [29]. A QTL in IGF2 has been previously identified to affect fat deposition in

pigs [30]. Therefore, we expect IGF2 to most likely be the causal gene, but we have not yet

found a specific variant linked to it. Finding the causal variant is especially hard due to the

extremely low frequency of the QTL.

One of the most difficult to analyze results is the small complex region on chromosome 1

with several significant effects on growth rate and backfat. The regions with different effects

overlapping with each other makes it very challenging to identify causal variants for these

QTLs. We did find several SNPs for both breeds that have a significant effect on the expression

of PYGL. PYGL functions to create an enzyme that breaks down glycogen into glucose in the

liver [31]. Glycogen levels influence fat metabolism [32], explaining how changes in expression

of this gene could lead to reduced or increased growth rate and backfat thickness. In Large

White, the SNPs affecting PYGL expression are associated with a positive effect on growth,

whereas in Synthetic they are associated with a negative effect on growth. This likely indicates

that it’s not the same causal variant affecting PYGL expression in both breeds. Further in-

depth investigation of this region will be needed to disentangle all separate variants and effects
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in this QTL. This region highlights the benefit of using a high-resolution data set, as previous

analysis often considered this QTL to be caused only by theMC4R missense variant, whereas

we can show that several other variants and genes are involved.

The CDH20 gene present in the chromosome 1 locus has been previously associated with

fat deposition [33]. Additionally, this study reports the KIAA1549 gene, which we also

observed in the QTL on chromosome 18 affecting backfat thickness. Another recent study has

associated the ANO9 gene (chromosome 2) with increased backfat thickness [34]. We identi-

fied an additive missense SNP in this gene associated with very high backfat thickness, how-

ever we consider IGF2 and INS to be more likely candidate genes to cause this effect.

In conclusion, by performing a large-scale sequence based GWAS using a non-additive model

we identified several rare, recessive, and deleterious variants with high impact on pig performance

and production. Additionally, the high-resolution capacity of this data set enabled us to detect

multiple independent QTL effects in the well-knownMC4R region. These results provide a valu-

able resource for breeding and for further reduction of the frequency of deleterious alleles.

Methods

Ethics statement

Samples collected for DNA extraction were only used for routine diagnostic purpose of the

breeding programs, and not specifically for the purpose of this project. Therefore, approval of

an ethics committee was not mandatory. Sample collection and data recording were conducted

strictly according to the Dutch law on animal protection and welfare (Gezondheids- en wel-

zijnswet voor dieren).

Genotyping & sequencing

All animals imputed to sequence were initially genotyped on either (Illumina) Geneseek cus-

tom 50K or 25K SNP chips, with 50,689 SNPs and 26,894 SNPs respectively (Lincoln, NE,

USA). The chromosomal positions were determined based on the Sscrofa11.1 reference assem-

bly [35]. SNPs located on autosomal chromosomes were kept for further analysis. Next, the

SNPs were filtered using the following requirements: Each marker had a MAF greater than

0.01, and a call rate greater than 0.85, and each animal a call rate greater than 0.7. SNPs with a

p-value below 1E-5 for the Hardy-Weinberg equilibrium exact test were also discarded. All

pre-processing steps were performed using Plink v1.90b3.30 [36]. The reference population

for imputation to 660K was genotyped on the Axiom porcine 660K SNP array from Affyme-

trix. Quality control was as described above for the 50K genotyping.

DNA sequencing of the reference population was performed on the Illumina Hiseq. The

average read length was 150bp, the average coverage was 14.6X and the average mapping qual-

ity was 37. The reads were aligned to Sus Scrofa 11.1 [35] using BWA-MEM v0.7.17 [37]. Vari-

ant calling was performed with Freebayes v1.3.1 with settings—min-base-quality 20,—min-

mapping-quality 30,—min-alternate-fraction 0.2,—haplotype-length 0 and—min-alternate-

count 3 [38]. Variants with a quality score below 20 were discarded. Variants were annotated

using the Ensembl variant effect predictor (VEP, release 103) [11].

Imputation

For imputation from 50K to 660K density we used Fimpute v3.0 [39]. The reference popula-

tion consisted of 3500 animals of different breeds.

The first step in imputing to sequence is phasing of the haplotypes. For the phasing we used

Beagle 5.4, with a window of 20, overlap of 5, Ne of 100 and 16 threads [40].
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We then ran the conform-gt tool to get consistent allele coding between the reference and

target VCF files. For the actual imputation we used Beagle 5.4, with a window of 3, Ne of 100

and 20 threads [4]. For Large White, one round of imputation to sequence was performed for

40,000 animals, and another round for 80,000 animals. We then merged the resulting VCF

files of both imputation runs into one file for each chromosome using bcftools merge [41], giv-

ing us sequence data on a total of 117,244 animals after some were lost in the phasing steps.

For Synthetic we performed imputation to sequence on 80,000 animals. We used Plink

v1.90b3.38 [36] to recode the VCF files so that all major alleles were set as reference alleles. To

obtain more information on each SNP we used the bcftools fill-tags plugin [41]. The reference

population consisted of 884 whole genome sequences for the imputation of the first 40,000

Large White animals, and 1069 whole genome sequences for the second imputation of 80,000

animals as well as the Synthetic animals. This reference population contained animals of the

Large White, Synthetic, Landrace, Duroc and Pietrain breeds.

Imputation accuracies were evaluated based on the R2 values given by Beagle for each vari-

ant, which indicated the squared correlation between the true number of non-major alleles on

a haplotype and the posterior imputed allele probability [4].

Genome-Wide Association Studies (GWAS)

We performed single-SNP GWAS on the imputed sequence data using GCTA v1.93.2 [42]

with the following linear model:

y∗k ¼ mþ Xbˆþ uk þ ek

where y*k is the pre-corrected phenotype of the k animal (pre-corrected for all non-genetic

effects); μ is the average of the pre-corrected phenotype; X is the genotype, coded as 0, 1, or 2

copies of one of the alleles of the k animal for the evaluated SNP; βˆ is the unknown allele sub-

stitution effect of the evaluated SNP; uk is the residual polygenic effect, assuming u *N (0, G

σ2u), which accounted for the (co)variances between animals due to relationships by forma-

tion of a G matrix (genomic numerator relationship matrix build using the imputed geno-

types), σ2u is the additive genetic variance; and ek is the random residual effect which was

assumed to be distributed as *N (0, I σ2e).

To run the non-additive model GWAS, all heterozygote genotypes were set to 0/0 to test

the phenotypes of wildtype (homozygous for major allele) and heterozygous animals against

homozygous (for minor allele) animals.

Gene expression

We had access to a gene expression dataset including expression data from 100 crossbred ani-

mals in four tissues: liver, spleen, lung and muscle [43].

Phenotypes

The phenotypes were pre-corrected for non-genetic effects. For the Large White breed, a sow

line, we used 67,280 growth rate phenotypes and 72,061 phenotypes for backfat thickness from

animals born from 2012 to 2022. For the Synthetic breed, a boar line, we used 74,145 pheno-

types for both traits from animals born from 2017 to 2022.

Validation of causal 5 bp OBSL1 Deletion

PCR was done using 60 ng of genomic DNA, with 0.4 μm of each primer, 1.8 mM MgCl2, and

25 units/ml OneTaq DNA Polymerase (OneTaq 2X Master Mix with Standard Buffer, New
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England Biolabs) in manufacturer’s PCR buffer in a final volume of 12 μl. Initial denaturation

for 1 min at 95˚C was followed by 35 cycles of 95˚C for 30 s, 55˚C for 45 s, 72˚C 90 s, followed

by a 5 min extension 72˚C. PCR primers for OBSL1 are ACGTCCTTGATCCTGTCTGC for-

ward and CTCTCCACCATCATCCAGGG reverse. The forward primer was dye-labeled with

6-FAM to produce a fluorescently labeled PCR product detectable on ABI 3730 DNA

sequencer (Applied Biosystems). Fragment sizes were determined using GeneMapper software

5 from ABI.

Further analysis & figures

To perform linkage disequilibrium (LD) analysis we used Plink v1.90b3.38 with settings—ld-

window-r2 0—ld-window 99999999—ld-window-kb 100000 [36].

To assess how deleterious a variant is we considered the SIFT score as given by the VEP

[11], as well as the Combined Annotation Dependent Depletion (CADD) score [44], adapted

for pigs (pCADD, [13]). Boxplots, heatmaps and manhattanplots were made using the python

packages seaborne [45], heatmapz [46] and QMplot [47] respectively. Additionally, pandas

[48] and matplotlib [49] were used in creating the figures.

Supporting information

S1 Fig. Overview of the imputation and GWAS pipeline.

(TIF)
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(TIF)
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(PDF)
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