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Insingle-particle tracking, individual particles are localized and tracked
over time to probe their diffusion and molecular interactions. Temporal

crossing of trajectories, blinking particles, and false-positive localizations
present computational challenges that have remained difficult to overcome.
Here we introduce arobust, parameter-free alternative to single-particle
tracking: temporal analysis of relative distances (TARDIS). In TARDIS,

an all-to-all distance analysis between localizations is performed with
increasing temporal shifts. These pairwise distances represent either
intraparticle distances originating from the same particle, or interparticle
distances originating from unrelated particles, and are fitted analytically
to obtain quantitative measures on particle dynamics. We showcase that
TARDIS outperforms tracking algorithms, benchmarked on simulated and
experimental data of varying complexity. We further show that TARDIS
performs accurately in complex conditions characterized by high particle
density, strong emitter blinking or false-positive localizations, and is in fact
limited by the capabilities of localization algorithms. TARDIS robustness
enables fivefold shorter measurements without loss of information.

Single-particle tracking (SPT) is apowerfultechniqueinwhichindividual
particles are followed through time to infer information about a conju-
gated particle of interest, or about the environmentin which the particles
are embedded'. By attaching a contrast agent, such as a fluorescent,
scattering or reflecting probe, to a particle of interest, SPT can be used
to assess molecular dynamics in vitro or in vivo. Applications of SPT
include, but are not limited to, photo-activatable localization micros-
copy® (sptPALM) via photo-activatable organic fluorophore or fluores-
cent protein conjugation, or interferometric scattering microscopy via
forexample gold nanoparticle conjugation’®, These methods enable SPT
with <40 nmspatial accuracy and >100 Hz temporal resolution. However,
cellular SPTis limited to using sptPALM with fluorescent proteins, which
limits the trajectory length to around three to ten time points®’. Alter-
natively, proteins of interest can be tagged with, for example, HaloTag

orSnapTag-moieties'>" and subsequently labeled with suitable organic
fluorophores. This approach increases trajectory length compared to
fluorescent proteins, but nonspecifically bound fluorophores can pro-
vide spurious localizations and thus wrong trajectory data.

Analysis of sptPALM is generally divided in two steps: (1) detec-
tion of individual particles and localization with subpixel accuracy,
and (2) temporal linking of these localizations to trajectories. Detec-
tion and super-resolved localization (step 1) has seen big improve-
mentsintherecent decade following breakthroughsin computational
image analysis®*, machine learning'®'® and microscopy hardware
design® % Accurate localization of static particles at high densities and
low signal-to-noise ratio (SNR) has become feasible, and performance
oflocalization algorithms as well as the required computational hard-
ware will probably increase further.
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Thesecond analysis step (tracking), however, isimpeded by high
computational complexity, especially when considering global infor-
mation and taking possible state-changing, blinking and bleaching
behavior into account® %, Currently, most sptPALM experiments are
designed toreduce thiscomputational complexity by using a very low
density of nonblinking particles (thatis, <0.1 pm™) over long dataacqui-
sition times®?. Even with these considerations, tracking algorithms
require a priori parameters, such as the likelihood of state-changing
orbleaching, maximum search radius and expected blinking behavior;
still, the obtained trajectory information could unknowingly con-
tainimperfect linkages. The resulting trajectories can additionally be
deteriorated by spurious localizations, which is often unavoidable in
live-cell imaging®.

Thetrajectories are then quantitatively interpreted by, for exam-
ple, analyzing jump distance (JD) histograms or mean squared dis-
placement (MSD) curves. Multiple diffusional states can be extracted
from the summation of individual trajectories: state-transitioning
populations can be elucidated via for example diffusion distribu-
tion analysis (DDA)**?® or analysis by unsupervised Gibbs sampling
(SMAUG)”; while nontransitioning populations can be elucidated via
JD distributions (JDDs; for example, Spot-On*°). Alternatively, indi-
vidual trajectories canbe classified in populations via analytical (for
example, exTrack? or vbSPT*), statistical®***> or machine-learning*
approaches, or quantitatively compared between experimental con-
ditions*. However, not all of these methods fully utilize the informa-
tion within a trajectory—for instance, aJD histogram analysis does
not require information on the complete trajectory, only whether
or not two localizations are linked together on consecutive frames.
Additionally, trajectory interpretation is heavily, but unbeknownst,
influenced by wrong trajectory information. Taken together, track-
ing algorithms do not take full advantage of recent developments
in (high-density) particle localization, have high computational
complexity and can unknowingly introduce linkage errors, and full
trajectory information is not always utilized to obtain state-of-the-art
biological knowledge.

In this Article, we propose an area-averaged analysis method
that does not require a prioriassumptions, cannot introduce linkage
errors and is minimally influenced by localization density, particle
blinking, and random or structured spurious localizations. Temporal
analysis of relative distances (TARDIS) performs a global analysis
on all relative spatiotemporal distances, inspired by methods that
infer localization precision or structures from relative distances of
particles®**, and provides information on the particle dynamics of a
specific area, rather than on the single-trajectory level. TARDIS does
notuse any tracking algorithm and thus circumvents required inherit
assumptions and experimental considerations. We show that TARDIS
provides accurate quantitative measures and outperforms existing
tracking algorithmsin obtaining accurateJDDs in complex SPT condi-
tions, such as high-density localization, heavily noise-deteriorated
situations, blinking particles and undergoing intricate, non-Brownian,
diffusive motion. TARDIS can accurately deduce unknown JDDs,
analytically described single and double Brownian-motion popula-
tions in pure diffusion conditions, in confined diffusion or under
flow; state-switching populations in pure diffusion conditions and
in confined diffusion; and can be expanded to other analytically
described conditions.

Our method to analyze tracking data will open the way for new
experimental avenues by allowing higher particle densities, a wider
pool of possible probes and lower impact of spurious background
localizations. We focus on fluorescence sptPALM data throughout
this manuscript, but note that TARDIS is method-agnostic and can
be applied to all SPT data. We provide TARDIS as a ready-to-use soft-
ware (Supplementary Software), both as a stand-alone graphical user
interface (GUI) and as aMATLAB function for incorporationin analysis
routines® (Supplementary Note 1).

Results

The TARDIS algorithm

Our proposed TARDIS method is aparameter-free algorithm that only
requires spatiotemporal information of particle localizations (Fig. 1a).
TARDIS connects all localizations on frame N to all localizations on
frame N + , where the temporal shift ris gradually increased (Fig. 1a,b).
TARDIS then collects the JDs, visualized here as a histogram. At small
values of 7 (thatis, smaller or equal to the observed trajectory length
of a particle), the linkages between localizations fall in two distinct
categories: (1) linkagesin whichbothlocalizations belong to the same
particle (bluelinesinFig.1b; intraparticle links) or (2) linkages inwhich
thelocalizations do notbelongto the same particle (red lines in Fig. 1b;
interparticle links). Importantly, at large values of 7, that is, T larger
than the maximum trajectory length in the dataset, only interparticle
links (red) willbe obtained (Fig. 1b, right). The underlying interparticle
links distribution is insensitive to time, that is, it does not vary over
values of 7, but does depend on the spatial distribution of localiza-
tions within each individual experiment. We have derived this spatial
distribution for exemplary model scenarios (Supplementary Note 2).
Theintraparticle links contained in the data obtained at small 7 (Fig. 1b,
bottom) can be extracted. Either the interparticle links distribution
found at large 7 (red curve) can be subtracted (called ‘TARDIS-JD’
from here on), or, ideally, it can be fitted with a combination of the
interparticle links distribution along with an analytical distribution
describing the intraparticle links (blue curves). This combined fitting
routine is less sensitive to noise and provides more accurate fitting
results compared to TARDIS-JD. Starting parameters for the full TARDIS
routine can be estimated by first performing TARDIS-JD (‘estimation
fit’). Alternatively, TARDIS-JD extraction can be used independently to
obtain JDDs for datasets that contain dynamics that have not yet been
analytically described, such as complex multistate dynamics and/or
directed motion, or obtained from unknown underlying dynamics. An
in-depth description of the TARDIS software implementation s given
inSupplementary Note 1.

Any analytical distribution that describes JDs over multiple T
values can generally be used in TARDIS. TARDIS includes analytical
fitting of single and multiple populations of Brownian motion, dif-
fusion under flow, confined diffusion, fast state-switching behavior
(anaDDA?), and allows for user-defined analytical distributions (Sup-
plementary Note 3). We employ a single-population, freely diffusive fit
inFig. 1. Additionally, the rate at which the intraparticle links fraction
decreases as a function of 7 can be used as a measure for bleaching
kinetics (Supplementary Notes2and 4). Further, the value of rat which
onlyinterparticle linkages are present can be estimated without a priori
information via a one-sided Wilcoxon statistical test (which deduces
thevalue of rat which theJDDs do no longer change as afunction of 7;
Supplementary Note 5), which makes TARDIS an analysis method for
particle dynamics that does notrequire any a priori parameters. Finally,
TARDIS can provide the user with statistical estimates about particle
parameters, such as mean]D, blinking probability and average trajec-
tory length (Supplementary Note 6) The TARDIS software is available
as open-source MATLAB code and as a stand-alone GUI program®.

TARDIS outperforms existing SPT methods

Current state-of-the-art static localization algorithms can localize
immobile particles with up to ~5 localizations pm™ per frame densi-
ties'”'®, whereas current tracking algorithms normally operate at «0.1
localizations um2per frame**, indicating abig gap inaccessible densi-
ties. Further factors complicating tracking algorithms are the blinking
of (fluorescent) particles and the presence of localizations not belong-
ingtotrajectories. These caneither arise from experimental properties
(for example, photo-physics and autofluorescence), but also from
faulty localization, especially when combining blurry, mobile point
spread functions with multiparticle fitting (Discussion). To investigate
the performance of TARDIS in these complex spt(PALM) conditions,
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Fig.1| Overview of the TARDIS algorithm and comparison to tracking
algorithms. a, To exemplify the TARDIS algorithm, two diffusing particles are
simulated, starting on frame 1and frame 2, respectively. The spatiotemporal
positions of the localizations are recorded. TARDIS compares the positions
onall frames with a set time shift 7, hereillustrated for r=1,2 and 3 frames.

b, Alllocalizations at time t are compared to all localizations at multiple times
t+rover the complete temporal range, illustrated for r=1, 2 and 3 frames.

At rsmaller than the longest trajectory (thatis, 7 < 3 frames in this example),
the distribution that can be determined from the relative distances contains
information fromboth intra- and interparticle links (blue and red lines,
respectively). Using a temporal shift that is larger than the longest trajectory
(thatis, 7> 3 framesin this simulated example), only interparticle links are
presentin the distribution (red lines). This interparticle links distribution is
used in conjunction with an analytical distribution (a single population fit is

shown here) to fit the distributions obtained from temporally analyzed relative
distances. Distributions in b are created via a simulation 0of 25,000 particles.

fr., frame. c, Comparison of TARDIS with SPT algorithms. Three simulated
(20,000 trajectories) datasets (10 ms frame time) with increasing complexity
(byincreasing localization density, particle blinking and spurious localization
density) are analyzed with TARDIS (left; T = 1 frame shown here) and compared to
(middle) the blind tracking algorithms uTrack-inspired PMMS***? (dark brown:
default parameters; light brown: user-optimized parameters based on the known
GT), TrackMate***! (light green) and nearest neighbor analysis (dark green), and
(right) to the prior-informed methods swift (Endesfelder et al., manuscriptin
preparation) (magenta) and MHT? (purple; MHT at the most complex dataset
did not run to completion). These prior-informed methods are optimized via
TARDIS output, specifically mean D, bleaching lifetime, spurious localizations
and trajectory density.

we simulated (Methods) datasets of particles with increasing particle
density, particle blinking and spurious localization density, which all
effectively increase the amount of interparticle linkages relative to
intraparticle linkages, hereafter called ‘complexity’ (Fig. 1c, left, and
Supplementary Note 7).

The simulated datasets were analyzed (Fig. 1c, also see Extended
Data Fig. 1) with TARDIS (blue, cyan) and compared to the JD ground
truth (GT: gray histogram), as well as to analysis with arange of tracking
algorithms with a varying degree of inherit assumptions and a priori
information.

First, we compared TARDIS to blind tracking algorithms (that is,
trackingalgorithms that do not rely onaprioriinformation; Fig. 1c, mid-
dle column). The minimally informed nearest-neighbor tracking analy-
sis (dark green) is robust at low complexity, but generates incorrect
linkages at higher complexity. The linear assignment problem tracker
embedded in TrackMate*>* (light green) performs a spatiotemporal
global optimization protocol, and s especially optimized for Brownian
motion. TrackMate provides similar results as nearest-neighbor track-
ing. Finally, PMMS* (piecewise-stationary motion model and iterative
smoothing) is an algorithm that expands on uTrack*® by fusing past
and future information of individual potential trajectories optimized
for heterogeneous motion, which excels at high-density tracking in

the tracking challenge”. PMMS was optimized by manually changing
parameters that do not describe diffusive behavior of the particles,
but rather affect its computational complexity (dark brown, default
settings; light brown, manually optimized settings). This manual opti-
mizationimproves PMMS’ results and outperforms the other tracking
methodsinthese datasets, but does not fully describe the GT at medium
or high complexity.

The comparison of TARDIS to a priori informed tracking algo-
rithms (Fig. 1c, right column), showcases using TARDIS to provide pri-
orsontracking parametersto assist these complex tracking algorithms
(Supplementary Note 6). swift is a global Bayesian tracking method
(Endesfelder et al., manuscriptin preparation, beta-testing repository
http://bit.ly/swifttracking, magenta), which relies on providing a priori
estimations for the parameters and then determines the most prob-
able solution. The multiple-hypothesis tracking” (MHT) algorithm,
implemented in the Icy software*?, combines physics-inspired target
particle existence models with realistic motion models in cellular
environments.

TARDIS shows excellent agreement with the GT throughout the
tested parameter space, also when only extracting the JDs (TARDIS-JD
extraction, cyanin Fig.1c) rather than fitting the population. swift and
MHT improve when using meaningful a prioriinformation, for example,
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TARDIS-generated. Blind tracking algorithms behave adequately at
low complexity, but show nonexisting high JD at increased complex-
ity, due to incorrect interparticle linkages, which can be attributed
to inherit ‘greediness’ of these tracking software to link localizations
together, rather than terminating trajectories. We also observed
under-estimation of JD via the tracking algorithms at high densities
and high diffusion coefficients, whichis aresult from linking localiza-
tions from different particles together (Extended Data Fig. 2).

TARDIS is accurate on highly complex single-particle data

As the TARDIS algorithm performs well under complex scenarios, we
investigated to what extent TARDIS remains accurate (also see Sup-
plementary Note 8). We investigated (1) well-localized single-particle
trajectories across a range of diffusion coefficients (with 10 ms frame
time) and densities (Fig. 2a,d), (2) the influence of spurious noise and
blinking particles (‘localizationinaccuracies’) (Fig. 2b), (3) multiple dif-
fusive populations combined with previously established complexity
(Fig. 2¢) and (4) effects of spatial heterogeneity in particle density or
diffusivity (Supplementary Note 9).

We tested TARDIS accuracy by analyzing simulated single-
population diffusion with a varying degree of particle density and
diffusion coefficient (Fig. 2a). The complexity increases throughout
the tested parameter space, as indicated by the increasing ratio of
intraparticle and interparticle links. TARDIS can accurately (<5% nor-
malized root mean square error, nRMSE) compute single-population
diffusion up to ~50x higher particle densities than commonly used in
spt(PALM) (5 localizations pm™ per frame), assuming localization is
accurate at these high densities, withall tested varying diffusion coef-
ficients (up to10 um?*s™, localized every 10 ms) to further increase com-
plexity (Fig. 2a; for comparison with tracking methods, see Extended
Data Fig. 2; detailed fitting results are shown in Extended Data Fig. 3).
We note that the nRMSE of the found diffusion parameter scales quali-
tatively withthe complexity, indicative that TARDIS will stillbe accurate
ateven higher complexity (Supplementary Note 8).

Incorporatinginaccurate localizations (thatis, false positive (FP)
or false negative (FN)) in our simulations (Fig. 2b) reveals the insensi-
tivity of TARDIS to both FP (for example, spurious localizations) and
missing true positives (TP; for example, blinking particles or particle
moving temporarily out of focus). Diffusion coefficient (Extended Data
Fig.3) and bleach time (Extended Data Fig. 4) are accurately retrieved
up tothe condition where 50% of the localizations are removed (that is,
onaverage ~1.5localizations per particle or ~1.2 consecutive localiza-
tions per particle) while simultaneously 50% of the dataset consists of
FPlocalizations. Infact,an ~10% nRMSE is stillachieved when more than
99.9% of allinformation in the relative distance histograms is attributed
tointerparticle linkages (Extended Data Fig. 5).

Additionally, we investigated TARDIS' limits withrespect to trajec-
tory density, total trajectory count, spurious localization density and
fluorophore blinking, based on TARDIS mathematical foundation
(Methods and Supplementary Notes 2 and 8). Our analysis revealed
that TARDIS can retrieve a single, 1 pm?*s™, diffusive population with
~3% uncertainty given 10,000 trajectories for anywhere between 0.1
and10trajectories starting each frame, or with <25% error with just 100
trajectories with 0.1-1trajectories starting each frame (Supplementary
Fig. 9a). Our analysis further showed that TARDIS  accuracy is either
limited by trajectory density or spurious localization, but not both
(Supplementary Fig. 9b), and that strongly blinking particles can, in
certain cases, increase TARDIS accuracy compared to nonblinking
particles (Supplementary Fig. 9¢). Finally, we showed that TARDIS’
accuracy only improves with using more temporal shift (r) bins when
the bleach half-time s sufficiently large (Supplementary Fig. 9d).

Next, we investigated the accuracy of TARDIS in conditions with
complex datasets, which additionally have two diffusive populations
rather than one (Fig. 2c). TARDIS accurately fits the relative distance
histogram with a mixture of interparticle distribution and two diffusive

populations, whereas the JD histogram obtained via tracking algo-
rithms does not clearly show the separate populations.JD extraction
in TARDIS (cyan curve in Fig. 2c) does accurately show the JD GT.

Finally, we assessed TARDIS under experimental conditions with
increased complexity (Fig. 2d and Extended Data Fig. 6). To do so, we
imaged freely diffusing fluorescent ~100-nm-diameter beads in water,
imaged with 200 psstroboscopicillumination to minimize localization
artifacts (Methods), while changing the bead density and frame time
(that is, increasing JD). These datasets were localized and analyzed
via TARDIS, TARDIS-JD extraction and nearest-neighbor tracking. At
more complex scenarios, nearest-neighbor tracking and TARDIS-JD
failtoaccurately deduce)Ds. Due to the global fitting nature of TARDIS
(thatis, over multiple values of 7), the diffusion coefficient can still be
accurately extracted (lower panels in Fig. 2d). These results are very
similar to the ones obtained via simulated trajectories or TARDIS’
mathematical description (Supplementary Notes 2 and 8).

Combiningthese resultsindicate that TARDIS is largely unaffected
byregularly encountered particle, sample or computational imperfec-
tions or influences that have a large impact on traditional sptPALM
analysis accuracy. The scaling of TARDIS’ accuracy with complexity
clearlyindicates that experimental data will be hindered by localization
artifacts sooner than by inaccurate TARDIS analysis (Supplementary
Note 8). Additionally, we investigated scenarios that could hypotheti-
cally bias TARDIS and discuss these in Supplementary Note 9. This
investigation establishes that TARDIS biasis only introduced when the
interparticle linkage histogram (red in Fig. 1) does contain information
onintraparticle linkages (thatis, TP trajectories). Bias of this kind can
normally be circumvented by determining the rat whichintraparticle
linkages are exclusively present via a statistical test (one-sided Wil-
coxon, see Supplementary Note 5). Only if the experimental particle
bleachtime (also taking, for example, movement out of the field of view
(FoV) or focus into account) is on the same order of magnitude as the
experimental time, no proper interparticle linkage histogram can be
created, and TARDIS will be biased.

Importantly, our investigations revealed that TARDIS cannot ‘fail
silently’, that s, provide data that at glance look accurate, but contain
errors: TARDIS failures due to wronglocalization shows clear errorsin
the residuals of the fit (Supplementary Note 9). Arecent computational
method that performs an analysis similar to our TARDIS-JD extrac-
tion, but with interparticle data obtained from 7= 0 frames, further
emphasizes the robustness of our approach** (Extended Data Fig. 10).

TARDIS accurately elucidates intricate diffusive behavior
Sofar,we have focused on well-described single- or double-population
Brownian motion. However, in biological conditions, this is normally
not the case, and the diffusive behavior is more intricate. Therefore,
we assessed how TARDIS handles diffusional complexity (Fig. 3 and
Supplementary Note 3).

First, we analyzed simulated datasets provided as part of acompar-
ison of particle tracking methods™ (Fig. 3a and Extended Data Fig. 7).
Since the underlying biological model changes throughout the data-
sets, we used the TARDIS-JD extraction. To investigate the effect of
data complexity, we reshuffled the ‘Receptors’ trajectory localizations
(described as ‘tethered motion, switching, any direction’) to obtain a
high density of particles (380 particles per frame or ~0.15 localiza-
tions pm). Additionally, we removed localizations according to the
four SNR levels (SNR of 7, 4, 3 and 1, equivalent to removing 0%, 24%,
54% and 85% of localizations, assuming perfectlocalizationat SNR of 7,
and scaling logarithmically) used in the comparison®. While the JD
histograms show intricate behavior over a range of temporal shifts,
TARDIS-JD extraction shows good agreement with the GT for the SNR
of 7, 4 and 3 levels (Fig. 3a). The other simulated datasets from this
resource were also analyzed in this way (Extended Data Fig. 7), show-
casing that TARDIS-JD extraction can handle challenging datasets with
intricate diffusive behavior. Additionally, TARDIS is able to analytically
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Fig.2|Performance of TARDIS in complex conditions. a, Visualization of a
TARDIS fit across a range of particle densities (vertical) and diffusion coefficients
(horizontal). TARDIS is performed on 20,000 simulated localizations with

30 nmlocalization precision; images on the left show representative particle
density, images on the top show representative ] Ds (over 20 frames) in cyan.
These data were fitted via TARDIS with a single-population Brownian motion fit.
The simulations and TARDIS fits were repeated ten times, and the normalized
root mean square error (nRMSE; normalized to diffusion coefficient) from these
iterationsis reported in the top right of every subplot. Detailed information

and comparison with tracking algorithms can be found in Extended Data Figs. 2
and 3. b, Error of the TARDIS fit of a single diffusive population (bleaching
half-time of three frames) at different particle densities and different levels of
localization inaccuracy. Simulations of particle trajectories with a diffusion
coefficientat1 um?s™ at densities of 0.1and 0.5 localizations pm™ per frame were
degraded by randomly removing TP localizations from the trajectories and/or

adding unstructured FP localizations randomly throughout the FoV in various
contributions. Reported values are calculated from ten repetitions of every
condition. Detailed information can be found in Extended Data Figs. 3 and 4.

¢, Fitting two populations in TARDIS scales similarly with complexity. Trajectories
were simulated and analyzed with identical parameters as specified in Fig. 1b,
except half the trajectories were givena 0.5 um? s diffusion coefficient, and

the other half a5 um?s™ diffusion coefficient—and analysis with TARDIS was
performed with two populations. The information s also presented on alinear
xaxis in Extended Data Fig. 1. d, Experimental single-particle mobility assessed
by TARDIS compared to TARDIS-JD and nearest-neighbor tracking in a range of
complexities by increasing the fluorophore concentration and increasing the
frame time while keeping excitation time constant. To fully prevent multiparticle
artifacts (Supplementary Note 9), the localization list belonging to the highest
density is created via the localizations of the lowest density. Throughout this
parameter space, the same total experiment time was used (250 s).
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Fig. 3| TARDIS enables high-complexity single-particle mobility experiments
of intricate diffusive behavior. a, The ‘Receptors’ tracking data from Chenouard
etal.” (localization density set at 0.15 localizations um™ per frame) has been
deteriorated by removing localizations to simulate lower signal-to-noise
conditions similar to Chenouard et al.” (rows) and analyzed via TARDIS-JD
extraction, and compared to the GT data. The complex diffusive behavior of
these particles cannot be well described analytically, as the JD histograms over
time shifts (columns) show. The following TARDIS settings were used: 7 bins of
one to three frames; maximum JD of 10 pAU (micro-arbitrary units as introduced
by Chenouard et al.”®). Other simulated datasets from this resource can be found
in Extended Data Fig. 7. b, JD analysis of RNA polymerase in £. coli with (red) and
without (black) rifampicin. By increasing the photo-conversion rate, the total

time required to obtain 80 localizations pum™ (within cells) is decreased by a factor
of ~2.5 (second panel), then by a factor ~4 (third panel). Insets on the right show
exemplary frames of these movies. The bottom panel combines the JD histograms
ofthe top three panels. Lines indicate average of two biological replicates; shaded
areaindicates the standard deviation. Scale bar, 1 um. ¢, Fitting of a simulated
state-changing population in bacterial cells (k,p, ko =20 S™, Dyee =2 pm?s™,

three frame bleaching half-time, with trajectory length capped at eight frames).
Inaccuracies from GT are introduced as spurious localizations (columns, red
localizations) and membrane-bound localizations (rows, blue localizations).
Reported values are median + quartile determined from ten repetitions.

Detailed information about the TARDIS fits can be found in Extended Data Fig. 9.
Simulation datasets consist of 10,000 ‘TP’ trajectories at 10 ms frame time.

extract diffusion coefficients under conditions of flow or confined
diffusion (Supplementary Note 3), and we note that TARDIS can be
expanded with any analytical description of JDDs, analogous to our
implementation of these two examples.

Next, we explored the use of TARDIS to reduce imaging time in
sptPALM, which is beneficial to minimize the effects of temporally
changing physiology, either biological or for example due to phototox-
icity. RNA polymerase (RNAP) in Escherichia colihas dynamic diffusive
behavior that does not satisfy aknown analytical model**¢. Rifampicin
is a transcription inhibitor that decreases the promoter search and
transcriptionkinetics, effectively increasing the diffusivity of RNAP**°,
Therefore, we used TARDIS-JD extraction and qualitatively assess the
obtained JD histograms (Fig. 3b). By increasing the primed conver-
sion efficiency (that is, increasing 488 nm laser power) in repetitions
of the experiment**%, we were able to reach the same total number of
localizations per cell area (80 localizations per 1 pm? cell area) much
faster, decreasing the total experiment time step-wise ~2-3-fold and
~3-5-fold (both compared to the top panel). Addition of rifampicin
is characterized by a shift toward higher RNAP JDs, which is clearly
observed after TARDIS-JD extraction (Fig. 3b). Eventhoughthe change
in]JD is only ~30 nm, this small difference is consequently extracted
viabothlow-and high-throughput sptPALM-TARDIS (Fig. 3b, bottom),
which is not the case when assessing this data via nearest-neighbor
tracking (Extended Data Fig. 8). A further decrease of imaging time is
hindered not by TARDIS, but rather by difficulties in the localization
procedure, for example, fitting overlapping, blurry point-spread func-
tions (PSFs) (Discussion).

Finally, we investigated a scenario in which state-switching spt-
PALMin prokaryotic cellsis simulated. First, we note that confinement

incells strongly influences the obtained diffusion coefficient, which can
be corrected with TARDIS (Supplementary Note 3). In our simulations,
the trajectories show transient binding with specific kinetics that can
be extracted with DDA approaches®*%, after a translation from JD to
apparent diffusion coefficient. The simulated data is deteriorated by
spurious localizations on the cell membrane (structured noise), and
additionally randomly throughout the FoV (unstructured noise) (Fig. 3¢
and Extended DataFig.9). The GT simulation parameters are recovered
via TARDIS with small (<5%) error with respect to using analytical DDA
onthe GT trajectories throughout the tested deterioration, evenin the
extreme caseinwhich theratio of TP:spuriouslocalizations:membrane
localizationsis1:2:2 (thatis, only 20% of localizations are GT trajectory
information).

These experiments showcase that TARDIS enables measurements
in experimental conditions that are currently largely inaccessible via
tracking-based analysis, removing the current stringent metrics suchas
low-density, long-duration experiments and nonblinking particles (also
see Supplementary Note 8). TARDIS opens up the opportunity to obtain
high-statistical diffusion information in shorter time, which in turn
decreasestheinherently present temporal averagingin single-particle
experiments.

Discussion

SPT analysis is limited by both computational complexity and strin-
gent experimental requirements. Reconstructing truthful particle
trajectories from a dataset with spatiotemporally close trajectoriesis
challenging withoutaccurate a prioriinformation, andis even further
complicated by the blinking and/or fast bleaching of particles. TARDIS
solves all these issues by analyzing all-to-all particle distances over
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multiple temporal shifts. TARDIS accurately resolves single, double and
state-changing populationsin challenging conditions, outperforming
existing SPT algorithms. Finally, we show that traditional sptPALM
experiments can be performed up to 5x faster without loss of infor-
mation with current localization methods. Faster data acquisition is
especially usefulin biological conditions where ashort event needs to
beinvestigated, such as recovery from DNA damage, or protein organi-
zationduring, for example, phage infection or cell division. TARDIS is
provided as an easy-to-use software tool via a GUI or implementable
script-wise® (Supplementary Software).

TARDIS isrobust withrespect to all causes thatincrease SPT com-
plexity: (1) high density of trajectories, (2) blinking particles or short
trajectories, (3) unstructured spurious localizations and (4) structured
spurious localizations. We thoroughly investigate TARDIS’ limits in
this respect viaits mathematical foundation (Supplementary Notes 2
and 8). Furthermore, TARDIS is agnostic to the type of particle move-
ment (thatis, non-Brownian motion), requires alow number of trajec-
toriesto obtainsatisfactory fit outcomes (Supplementary Note 8) and
can use any analytical description of JDDs (Supplementary Note 3).
We believe that the high robustness of TARDIS is especially useful in
sptPALM where the dynamics and localization are coupled, and a high
local density influences the perceived dynamics.

TARDIS provides area-averaged information about particle
dynamics rather than trajectory-specific information. This can be
performed for the whole FoV as showcased so far, but can also be
performedinasub-FoV manner to spatially assess the distribution of
multiple or mixed populations with ~250 nmresolution or lower (Sup-
plementary Note10). TARDIS can be used onits own, or alternatively,
the output of TARDIS can be used as accurate a prioriinformationin
tracking software, especially Bayesian SPT software (for example,
swift, MHT® or others***°). Via this combination (Figs. 1c and 2c),
accurate tracking is ensured while full trajectory information is
extracted. Quantitative parameter extraction on particle mobility
via TARDIS requires analytical descriptions of JDDs, and thus TARDIS is
limited by the existence of these models. Additionally, it conceptually
hinderstheincorporation of anindividual trajectory’s past and future
information within the fitting models. TARDIS as presented here only
assesses two-dimensional localization data, but it can be expanded
toinvestigate three-dimensional data or perform separate analytical
fitting routines on separate spatial dimensions.

We show that with the introduction of TARDIS, and especially
combined with swift or MHT, the new limitation for high-throughput
sptPALM analysis is high-density localization of mobile particles.
Current localization implementations specifically designed for
high-density datasets focus on immobile particles, which intro-
duces two artifacts when using on datasets of mobile particles: (1)
motion-blurredlocalizations are often interpreted as multiple static
particles, and (2) information on multiple framesisincluded, which
collapses localizations of close-by particles on consecutive frames
to the same location, rather than accurately deducing a small JD.
Artifact 1 can be remedied via stroboscopic illumination®, but this
cannot always be implemented due to hardware limitations and
light dose considerations on live cell health. Artifact 2 shows the
clear need for high-density localization algorithms optimized for
mobile particles. Throughout this manuscript, we show that TARDIS
isunaffected by densities of about an order of magnitude higher than
can currently be accurately extracted from current state-of-the-art
localization algorithms that can handle densities up to 5 localiza-
tions pm(refs.17,18).

In conclusion, TARDIS is a software platform that negates all tra-
ditionally avoided circumstancesin spt(PALM), such as high-density
or strongly blinking particles. TARDIS therefore opens up the
possibility of performing data analysis on mobile particles with
paradigm-shifting conditions and enables the exploration of novel
experimental designs.
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Methods
Mathematical foundation of TARDIS
Fundamentally, TARDIS is a model-free analysis method that does
notrequire a prioriinformation on the intraparticle and interparticle
distributions. However, for given scenarios, one can derive analyti-
cal descriptions of the distributions. To benchmark performance of
TARDIS, we here describe the following scenario: a spatially random
population with a single diffusive state is imaged in a square FoV. We
here describe the distributions and contributions of the intra- and
interparticle distributions (also see Supplementary Note 2).

The intraparticle probability density function (pdf) is governed
byiz
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Inwhich]JDis the jump distance (in m), dimis the dimensionality
of the system, D the diffusion coefficient (in m s), o the localization
uncertainty (in m), At the frame time (in s), A¢; the illumination time
(ins; assuming that theillumination pulse is an equidistant single-pulse
sequence in each frame) and 7 the temporal shift (in frames). We per-
formed our benchmarking for dim of 2.

Theinterparticle probability density functioninatwo-dimensional
square FoVis governed by*
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Inwhich d?is the squared distance between two random pointsin
al-by-1arbitrary unit (AU) FoV.

The number of intraparticle distances found for temporal shift T
(inframes) on every framefis governed by
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In which Ay, is the bleaching half-time of a particle (in frames),
Adark@nd Ay, the dark-state ('off") and bright-state (‘on’) half-times of
the particle (inframes), and p,oniocaiizea the chance that alocalization is
not computationally recognized as such.

The number of interparticle distances found for temporal shift
(in frames) on every framefis governed by
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Inwhich Ae.cn is the bleaching half-time of a particle (in frames),
dyr,jthe number of trajectories starting each frame, Ay, and Ay, gy, the
dark-state ('off’) and bright-state (‘on’) half-times of the particle (in
frames), d;,urious the number of spurious localizations per frame, and
Pronlocalized the chance that alocalization is not recognized as such.

The full TARDIS distribution over all temporal shifts r can be
derived from these equations, by calculating the ratio of intra- to

interparticle distances via equations (3) and (4), and plotting the prob-
ability density functions set out in equations (1) and (2) according to this
ratio. Afull overview of the derivations for this foundationis provided
inSupplementary Note 2.

Simulation of single and dual diffusive species
Aredundant number of trajectories with an underlying specified dif-
fusion coefficient and 30 nm localization precision (ignoring effects
from motion blur) were simulated in a two-dimensional plane. The
trajectories had alength determined via a three-frame half-life, witha
frame time of 10 ms, on a FoV of 10 x 10 pm. To simulate blinking par-
ticles (where indicated), localizations were randomly removed from
these trajectories. Thislocalization list was then limited to the number
oflocalizations that corresponds to 10,000 unfiltered trajectories. The
trajectories were given arandom starting frame, where the number of
frames was varied to create a certain localization density. Then, spuri-
ouslocalizations were added, the amounts of which were based on the
specified values and the number of localizations in the trajectories.
These spurious localizations were randomly spread throughout the
FoV and frames. For testing TARDIS with two diffusive populations, the
same procedure was used, but all trajectories were randomly sampled
from one of two populations with corresponding diffusion coefficients.
TARDIS was run on these datasets with the following settings (see
Supplementary Note 1 for a full explanation of these parameters):
maximumJD of 5 pm, maximum temporal shift (7) of 3 frames, 10 frames
longest trajectory length (determined via the Wilcoxon test), integra-
tion of 50 frames used for higher background subtraction accuracy,
30 nmlocalization precision, diffusion coefficient start value random
between 0.1and 10 pum?s™, using an estimation fit.

Simulation of state-switching species

For all specified conditions in the state-switching species (spurious
and membrane localizations in 1:0, 1:0.5 and 1:1 ratio with respect
to true localizations), ten repetitions of a simulation similar to ones
described previously with the software encompassed in anaDDA”*"*
were created with the following settings: 40 (bacterial) cells (simulated
as cylinders with length random between 2 um and 3 pm and radius
random between 0.45 pm and 0.55 pm, capped by two half-spheres
with a radius identical to the cylinder radius; the cells were rotated
andtranslated randomly throughout a 25 x 25 pm FoV) were populated
with 300-500 particles in 2,000 frames (10 ms frame time). Trajec-
tory lengths were pulled randomly from a decay with half-life of three
frames (limited at eight frames). Localizations that were outside the
FoV were discarded. Every particle was simulated with k,, =50 s or
20s™, kx=30s"or20s™, and D;,.. =2 pm?s™, and localizations were
subject to a30 nm localization error. Simulation was performed with
the software encompassed in anaDDA?, in which a1-1078s steptime
and a precision factor of 50000 was used. Starting frames for trajec-
tories were randomly assigned. Spurious localizations were added
where needed on the basis of the number of true localizations, and
positioned randomly throughout the FoV. Membrane localizations
were added where needed on the basis of the number of true localiza-
tions, and positioned in a two-dimensional, 100-nm-diameter slice at
the simulated cell outlines.

All datasets were analyzed with TARDIS using the following set-
tings (see Supplementary Note 1for afull explanation of these param-
eters): anaDDA fit model with 0.5 pumradius, 3 pmlength, 10 ms frame
time and 30 nm localization precision. Maximum JD calculated was
2.5 pum (that is, average cell length), maximum A¢ was 5 frames, 87
frames for longest trajectory length (determined via the Wilcoxon test)
using the integration of 50 frames for higher background subtraction
accuracy. anaDDA starting parameters were randomly chosen from
10-80s7,10-80 s and 1-4 pm?s™, and an estimation fit (that is, a fit
on remaining JDs after subtraction of interparticle fraction; Supple-
mentary Note 1) was performed.
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sptPALM microscopy

All microscopy was performed on home-build microscopes as
described in detail elsewhere** that allows for imaging of Dendra2
proteins via primed conversion*:. Briefly, live-cell experiments were
performed on the following system: 561 nm (OBIS, Coherent), 488 nm
(Sapphire LP, Coherent) and 730 nm (OBIS, Coherent) were combined
and controlled viaan acousto-optical tuneable filter (except the 730 nm
laser) (AOTF; TF525-250-6-3-GH18, Gooch and Housego). The lasers
were directed toward the back port of a Nikon Ti Eclipse microscopy
body, and focused on the back-focal plane of a CFI Apo TIRF 100x
objective (numerical aperture (NA) 1.49, Nikon) in HiLo mode via an
ET DAPI/FITC/cy3 dichroic), and emission light passed through a
ZT405/488/561rpc rejection filter and ET610/75 bandpass (all AHF
Analysentechnik). The emission light was focused on an iXON Ultra
888 EMCCD camera (Andor) with an effective pixel size of 128 nm. The
image acquisition was controlled by micromanager®.

Bead experiments were performed on asimilar microscopesetup:a
638 nmlaser line (Novanta) was controlled viaa TriggerScope 4 (Advanced
Research Consulting) connected to PycroManager*®, and directed toward
theback portof the Nikon Tibody viaalaser-coupled fiber (150 pm core
diameter, Thorlabs). The laser light was directed via areflective collima-
tor and via a ZT405/488/561/642rpc and ZET405/488/561/642m-TRF
dichroic/rejection filter combination (Chroma) to the back-focal plane
ofa60x Apochromat TIRF 1.49 NA objective (Nikon) in HiLo mode. Emis-
sion light was passed through a 655-nm-longpass filter (655 LP ET, AHF
Analysentechnik) and collected ona Prime BSISCMOS camera (Teledyne
Photometrics; 107 nm effective pixel size).

For the experiments on diffusive beads, carboxylate-modified
FluoroSpheres (715/755 nm excitation/emission peaks, 97 nm diameter
according to manufacturer) (Invitrogen, Thermo Fisher), were diluted
2,500 times or 10,000 times in purified water. After 5 min sonication,
these solutions were placed in an Ibidi eight-chamber-well slide (Ibidi),
andimaging was performed inatemperature-controlled (20 + 0.5 °C)
roomwiththe optical settings described above. Allimage analysis was
performed in FJI¥, and single-molecule localization was performed
via ThunderSTORM®**,

For the live-cell experiments, E. coli MG1655 strain with a
rpoC-Dendra2 strain at the endogenous genetic locus (E. coli MG1655
rpoC::Dendra2(CamR))* was inoculated into fresh Luria-Bertani (LB)
medium and incubated overnight at 37 °C while shaking (180 RPM). On
the day of the experiment, cells were reinoculated into fresh EZ Rich
Defined Media (EZRDM, Teknova) and incubated at 37 °C while shak-
ing (180 RPM) for 1 h. Next, the culture was splitinto two subcultures,
and to one of them, rifampicin was added to a final concentration of
300 pg ml™. Both cultures were incubated at similar conditions for
1hand centrifuged for 2 min 3,000g afterward. The supernatant was
discarded, cell pellets were washed with fresh EZRDM and centrifuged
again with similar parameters and the supernatant was discarded. Cell
pellets were resuspended in the residual supernatant and 2 pl of cell
suspension was placed on 1% EZRDM-agarose pads (see below) for
imaging. Allimage analysis was performed in FIJI¥’, and single-molecule
localization was performed via ThunderSTORM*’,

Low-melting agarose (Merck-Sigma Aldrich) was suspended in
fresh EZRDM to a final concentration of 1% and incubated for 12 min at
70 °Cuntil the solution was clear, then the agarose solution was stored
at 42 °C for further use. To prepare agarose pads, 100 pl of agarose
solution was placed on anindented microscopesslide and covered with
acoverslip (#1.5, Marienfield), which was prior cleaned overnight with
1MKOH (Carl Roth) solution, and incubated for 2 h at room tempera-
ture. Then, the coverslip was discarded, and the cell suspension was
loaded onthe solid agarose pad and covered with a new, clean coverslip.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data underlying this study is available at ref. 60. Source data are
provided with this paper.

Code availability
The custom TARDIS software used in this manuscript is provided as
supplementary data and can be accessed at ref. 39.
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Extended DataFig. 1| Performance of TARDIS and spt tracking methods for
asingle diffusive population and two diffusive populations at increasing
complexity, visualised on a linear x-axis. Performance of TARDIS is compared
to the blind tracking algorithms uTrack-inspired PMMS (piecewise-stationary
motion model and iterative smoothing)***?, TrackMate*** and Nearest
neighbour analysis, and to the prior-informed methods swift (Endesfelder et al.,

manuscriptin prep.), and Multiple-Hypothesis Tracking (MHT)* (MHT at the
most complex dataset did not run to completion). This datais also presented
inFigs.1cand 2c. (c) Bhattacharyya distance of the distributions in (a) and (b)
compared to the ground truth (GT) jump distance distribution, calculated as the
negative natural logarithm of the sum of the square root of the product of the
distribution value of amethod and that of the jump distance ground truth.
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Extended DataFig. 2| The full dataset as presented Fig. 2a, analysed via represent the same datasets, but visualised on alogarithmic (a) or linear (b) x-axis.
TARDIS (blue), TARDIS-JD-extraction (light-blue), TrackMate-LAP*** Note the changing jump distance x-axis scaling in (b). The TARDIS fit datais also
(light green) and nearest-neighbour tracking (dark green). (a) and (b) presented in Extended Data Fig. 3a.
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Extended DataFig. 3 | Detailed information on diffusivity and bleach time
obtained from TARDIS fitting. (a) Boxplots showing the obtained diffusion
coefficients of datasets presented in Fig. 2a, and (b) the obtained bleaching times
of datasets presented in Fig. 2a, showing no bias in either over the complexity
range. TARDIS is repeated 10 times on 20.000 simulated localizations for each
condition. (c) Individual fitinformation of data presented in Fig. 2b. For every
condition, TARDIS is repeated 10 times on 20.000 simulated localizations
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withrandom start positions in TARDIS. The obtained diffusion coefficients

are visualised (scatter points represent individual measurements). Note the
changing y-axis at 90% removed true positivesin (c). Abbreviations used: TP:
True Positives, FP: False Positives, fr: frame, locs: localizations. All boxplots show
the median as the central mark, with the 25™ and 75" percentile as lower and
upper edges. Whiskers extend to non-outlier extreme points, and outlier points
are plotted as plusses.
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represent individual measurements). Note the changing y-axis at 90% removed
true positives. TARDIS is repeated 10 times on 20.000 simulated localizations
for each condition. Allboxplots show the median as the central mark, with the
25" and 75" percentile as lower and upper edges. Whiskers extend to non-outlier
extreme points, and outlier points are plotted as plusses. Abbreviations used:
TP: True Positives, FP: False Positives, fr: frame, locs: localizations.
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frame times. The same information as presented in Fig. 2d, but with additional
frame times in between those shown in the main manuscript. The excitation
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chance to move outside the field-of-view with larger jump distances.
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Extended Data Fig. 7| TARDIS-JD extraction from data of Chenouard et

al. Tracking data from Chenouard et al.” has been deteriorated (removing

54% of localizations), analysed via the ‘extract JD’-function of TARDIS, and
compared to the ground-truth (GT) data. Four different conditions are analysed:
MICROTUBULE, RECEPTOR, VESICLE, and VIRUS, corresponding to [constant
velocity], [tethered motion, switching, any direction], [Brownian motion, any
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linear] dynamics, respectively. Densities are indicated in subplot titles, while the
field-of-view is ~50-by-50 pAU in size. In all scenarios, TARDIS accurately extracts
the ground-truth data, and the level of noise is decreasing with decreasing
localization removal. The following TARDIS settings were used: At bins of 1-3;
maximum jump distance of 1e-05 AU; background frames starting at frame-shift
of 35, using in total 50 frames; 300 BG bins starting at 3.5e-06 AU.
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withrandom start positions in TARDIS, and compared to analysing the same
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Extended DataFig. 10 | Accuracy of software by Wolf et al**. The same data
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bias towards too high values (right), which is caused by imperfect inter-particle
distance distribution subtraction. DANAE is repeated 10 times on 20.000
simulated localizations for each condition. Allboxplots show the median as the
central mark, with the 25™ and 75" percentile as lower and upper edges. Whiskers
extend to non-outlier extreme points, and outlier points are plotted as plusses.
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