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Temporal analysis of relative distances 
(TARDIS) is a robust, parameter-free 
alternative to single-particle tracking

Koen J. A. Martens    1,2,3 , Bartosz Turkowyd1,2, Johannes Hohlbein    3,4 & 
Ulrike Endesfelder    1,2

In single-particle tracking, individual particles are localized and tracked 
over time to probe their diffusion and molecular interactions. Temporal 
crossing of trajectories, blinking particles, and false-positive localizations 
present computational challenges that have remained difficult to overcome. 
Here we introduce a robust, parameter-free alternative to single-particle 
tracking: temporal analysis of relative distances (TARDIS). In TARDIS, 
an all-to-all distance analysis between localizations is performed with 
increasing temporal shifts. These pairwise distances represent either 
intraparticle distances originating from the same particle, or interparticle 
distances originating from unrelated particles, and are fitted analytically 
to obtain quantitative measures on particle dynamics. We showcase that 
TARDIS outperforms tracking algorithms, benchmarked on simulated and 
experimental data of varying complexity. We further show that TARDIS 
performs accurately in complex conditions characterized by high particle 
density, strong emitter blinking or false-positive localizations, and is in fact 
limited by the capabilities of localization algorithms. TARDIS’ robustness 
enables fivefold shorter measurements without loss of information.

Single-particle tracking (SPT) is a powerful technique in which individual 
particles are followed through time to infer information about a conju-
gated particle of interest, or about the environment in which the particles 
are embedded1–5. By attaching a contrast agent, such as a fluorescent, 
scattering or reflecting probe, to a particle of interest, SPT can be used 
to assess molecular dynamics in vitro or in vivo. Applications of SPT 
include, but are not limited to, photo-activatable localization micros-
copy6 (sptPALM) via photo-activatable organic fluorophore or fluores-
cent protein conjugation, or interferometric scattering microscopy via 
for example gold nanoparticle conjugation7,8. These methods enable SPT 
with <40 nm spatial accuracy and >100 Hz temporal resolution. However, 
cellular SPT is limited to using sptPALM with fluorescent proteins, which 
limits the trajectory length to around three to ten time points6,9. Alter-
natively, proteins of interest can be tagged with, for example, HaloTag 

or SnapTag-moieties10,11 and subsequently labeled with suitable organic 
fluorophores. This approach increases trajectory length compared to 
fluorescent proteins, but nonspecifically bound fluorophores can pro-
vide spurious localizations and thus wrong trajectory data.

Analysis of sptPALM is generally divided in two steps: (1) detec-
tion of individual particles and localization with subpixel accuracy, 
and (2) temporal linking of these localizations to trajectories. Detec-
tion and super-resolved localization (step 1) has seen big improve-
ments in the recent decade following breakthroughs in computational 
image analysis12–15, machine learning16–18 and microscopy hardware 
design19–22. Accurate localization of static particles at high densities and 
low signal-to-noise ratio (SNR) has become feasible, and performance 
of localization algorithms as well as the required computational hard-
ware will probably increase further.
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Results
The TARDIS algorithm
Our proposed TARDIS method is a parameter-free algorithm that only 
requires spatiotemporal information of particle localizations (Fig. 1a). 
TARDIS connects all localizations on frame N to all localizations on 
frame N + τ, where the temporal shift τ is gradually increased (Fig. 1a,b). 
TARDIS then collects the JDs, visualized here as a histogram. At small 
values of τ (that is, τ smaller or equal to the observed trajectory length 
of a particle), the linkages between localizations fall in two distinct 
categories: (1) linkages in which both localizations belong to the same 
particle (blue lines in Fig. 1b; intraparticle links) or (2) linkages in which 
the localizations do not belong to the same particle (red lines in Fig. 1b;  
interparticle links). Importantly, at large values of τ, that is, τ larger 
than the maximum trajectory length in the dataset, only interparticle 
links (red) will be obtained (Fig. 1b, right). The underlying interparticle 
links distribution is insensitive to time, that is, it does not vary over 
values of τ, but does depend on the spatial distribution of localiza-
tions within each individual experiment. We have derived this spatial 
distribution for exemplary model scenarios (Supplementary Note 2). 
The intraparticle links contained in the data obtained at small τ (Fig. 1b,  
bottom) can be extracted. Either the interparticle links distribution 
found at large τ (red curve) can be subtracted (called ‘TARDIS-JD’ 
from here on), or, ideally, it can be fitted with a combination of the 
interparticle links distribution along with an analytical distribution 
describing the intraparticle links (blue curves). This combined fitting 
routine is less sensitive to noise and provides more accurate fitting 
results compared to TARDIS-JD. Starting parameters for the full TARDIS 
routine can be estimated by first performing TARDIS-JD (‘estimation 
fit’). Alternatively, TARDIS-JD extraction can be used independently to 
obtain JDDs for datasets that contain dynamics that have not yet been 
analytically described, such as complex multistate dynamics and/or 
directed motion, or obtained from unknown underlying dynamics. An 
in-depth description of the TARDIS software implementation is given 
in Supplementary Note 1.

Any analytical distribution that describes JDs over multiple τ 
values can generally be used in TARDIS. TARDIS includes analytical 
fitting of single and multiple populations of Brownian motion, dif-
fusion under flow, confined diffusion, fast state-switching behavior 
(anaDDA27), and allows for user-defined analytical distributions (Sup-
plementary Note 3). We employ a single-population, freely diffusive fit 
in Fig. 1. Additionally, the rate at which the intraparticle links fraction 
decreases as a function of τ can be used as a measure for bleaching 
kinetics (Supplementary Notes 2 and 4). Further, the value of τ at which 
only interparticle linkages are present can be estimated without a priori 
information via a one-sided Wilcoxon statistical test (which deduces 
the value of τ at which the JDDs do no longer change as a function of τ; 
Supplementary Note 5), which makes TARDIS an analysis method for 
particle dynamics that does not require any a priori parameters. Finally, 
TARDIS can provide the user with statistical estimates about particle 
parameters, such as mean JD, blinking probability and average trajec-
tory length (Supplementary Note 6) The TARDIS software is available 
as open-source MATLAB code and as a stand-alone GUI program39.

TARDIS outperforms existing SPT methods
Current state-of-the-art static localization algorithms can localize 
immobile particles with up to ∼5 localizations µm−2 per frame densi-
ties17,18, whereas current tracking algorithms normally operate at «0.1 
localizations µm−2 per frame2,23, indicating a big gap in accessible densi-
ties. Further factors complicating tracking algorithms are the blinking 
of (fluorescent) particles and the presence of localizations not belong-
ing to trajectories. These can either arise from experimental properties 
(for example, photo-physics and autofluorescence), but also from 
faulty localization, especially when combining blurry, mobile point 
spread functions with multiparticle fitting (Discussion). To investigate 
the performance of TARDIS in these complex spt(PALM) conditions, 

The second analysis step (tracking), however, is impeded by high 
computational complexity, especially when considering global infor-
mation and taking possible state-changing, blinking and bleaching 
behavior into account23–25. Currently, most sptPALM experiments are 
designed to reduce this computational complexity by using a very low 
density of nonblinking particles (that is, <0.1 µm−2) over long data acqui-
sition times2,23. Even with these considerations, tracking algorithms 
require a priori parameters, such as the likelihood of state-changing 
or bleaching, maximum search radius and expected blinking behavior; 
still, the obtained trajectory information could unknowingly con-
tain imperfect linkages. The resulting trajectories can additionally be 
deteriorated by spurious localizations, which is often unavoidable in 
live-cell imaging26.

The trajectories are then quantitatively interpreted by, for exam-
ple, analyzing jump distance ( JD) histograms or mean squared dis-
placement (MSD) curves. Multiple diffusional states can be extracted 
from the summation of individual trajectories: state-transitioning 
populations can be elucidated via for example diffusion distribu-
tion analysis (DDA)9,27,28 or analysis by unsupervised Gibbs sampling 
(SMAUG)29; while nontransitioning populations can be elucidated via 
JD distributions ( JDDs; for example, Spot-On30). Alternatively, indi-
vidual trajectories can be classified in populations via analytical (for 
example, exTrack24 or vbSPT31), statistical32,33 or machine-learning34 
approaches, or quantitatively compared between experimental con-
ditions35. However, not all of these methods fully utilize the informa-
tion within a trajectory—for instance, a JD histogram analysis does 
not require information on the complete trajectory, only whether 
or not two localizations are linked together on consecutive frames. 
Additionally, trajectory interpretation is heavily, but unbeknownst, 
influenced by wrong trajectory information. Taken together, track-
ing algorithms do not take full advantage of recent developments 
in (high-density) particle localization, have high computational 
complexity and can unknowingly introduce linkage errors, and full 
trajectory information is not always utilized to obtain state-of-the-art 
biological knowledge.

In this Article, we propose an area-averaged analysis method 
that does not require a priori assumptions, cannot introduce linkage 
errors and is minimally influenced by localization density, particle 
blinking, and random or structured spurious localizations. Temporal 
analysis of relative distances (TARDIS) performs a global analysis 
on all relative spatiotemporal distances, inspired by methods that 
infer localization precision or structures from relative distances of 
particles36–38, and provides information on the particle dynamics of a 
specific area, rather than on the single-trajectory level. TARDIS does 
not use any tracking algorithm and thus circumvents required inherit 
assumptions and experimental considerations. We show that TARDIS 
provides accurate quantitative measures and outperforms existing 
tracking algorithms in obtaining accurate JDDs in complex SPT condi-
tions, such as high-density localization, heavily noise-deteriorated 
situations, blinking particles and undergoing intricate, non-Brownian, 
diffusive motion. TARDIS can accurately deduce unknown JDDs, 
analytically described single and double Brownian-motion popula-
tions in pure diffusion conditions, in confined diffusion or under 
flow; state-switching populations in pure diffusion conditions and 
in confined diffusion; and can be expanded to other analytically 
described conditions.

Our method to analyze tracking data will open the way for new 
experimental avenues by allowing higher particle densities, a wider 
pool of possible probes and lower impact of spurious background 
localizations. We focus on fluorescence sptPALM data throughout 
this manuscript, but note that TARDIS is method-agnostic and can 
be applied to all SPT data. We provide TARDIS as a ready-to-use soft-
ware (Supplementary Software), both as a stand-alone graphical user 
interface (GUI) and as a MATLAB function for incorporation in analysis 
routines39 (Supplementary Note 1).
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we simulated (Methods) datasets of particles with increasing particle 
density, particle blinking and spurious localization density, which all 
effectively increase the amount of interparticle linkages relative to 
intraparticle linkages, hereafter called ‘complexity’ (Fig. 1c, left, and 
Supplementary Note 7).

The simulated datasets were analyzed (Fig. 1c, also see Extended 
Data Fig. 1) with TARDIS (blue, cyan) and compared to the JD ground 
truth (GT: gray histogram), as well as to analysis with a range of tracking 
algorithms with a varying degree of inherit assumptions and a priori 
information.

First, we compared TARDIS to blind tracking algorithms (that is, 
tracking algorithms that do not rely on a priori information; Fig. 1c, mid-
dle column). The minimally informed nearest-neighbor tracking analy-
sis (dark green) is robust at low complexity, but generates incorrect 
linkages at higher complexity. The linear assignment problem tracker 
embedded in TrackMate40,41 (light green) performs a spatiotemporal 
global optimization protocol, and is especially optimized for Brownian 
motion. TrackMate provides similar results as nearest-neighbor track-
ing. Finally, PMMS42 (piecewise-stationary motion model and iterative 
smoothing) is an algorithm that expands on uTrack40 by fusing past 
and future information of individual potential trajectories optimized 
for heterogeneous motion, which excels at high-density tracking in 

the tracking challenge23. PMMS was optimized by manually changing 
parameters that do not describe diffusive behavior of the particles, 
but rather affect its computational complexity (dark brown, default 
settings; light brown, manually optimized settings). This manual opti-
mization improves PMMS’ results and outperforms the other tracking 
methods in these datasets, but does not fully describe the GT at medium 
or high complexity.

The comparison of TARDIS to a priori informed tracking algo-
rithms (Fig. 1c, right column), showcases using TARDIS to provide pri-
ors on tracking parameters to assist these complex tracking algorithms 
(Supplementary Note 6). swift is a global Bayesian tracking method 
(Endesfelder et al., manuscript in preparation, beta-testing repository 
http://bit.ly/swifttracking, magenta), which relies on providing a priori 
estimations for the parameters and then determines the most prob-
able solution. The multiple-hypothesis tracking25 (MHT) algorithm, 
implemented in the Icy software43, combines physics-inspired target 
particle existence models with realistic motion models in cellular 
environments.

TARDIS shows excellent agreement with the GT throughout the 
tested parameter space, also when only extracting the JDs (TARDIS-JD 
extraction, cyan in Fig. 1c) rather than fitting the population. swift and 
MHT improve when using meaningful a priori information, for example, 
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Fig. 1 | Overview of the TARDIS algorithm and comparison to tracking 
algorithms. a, To exemplify the TARDIS algorithm, two diffusing particles are 
simulated, starting on frame 1 and frame 2, respectively. The spatiotemporal 
positions of the localizations are recorded. TARDIS compares the positions  
on all frames with a set time shift τ, here illustrated for τ = 1, 2 and 3 frames.  
b, All localizations at time t are compared to all localizations at multiple times 
t + τ over the complete temporal range, illustrated for τ = 1, 2 and 3 frames. 
At τ smaller than the longest trajectory (that is, τ < 3 frames in this example), 
the distribution that can be determined from the relative distances contains 
information from both intra- and interparticle links (blue and red lines, 
respectively). Using a temporal shift that is larger than the longest trajectory 
(that is, τ ≥ 3 frames in this simulated example), only interparticle links are 
present in the distribution (red lines). This interparticle links distribution is 
used in conjunction with an analytical distribution (a single population fit is 

shown here) to fit the distributions obtained from temporally analyzed relative 
distances. Distributions in b are created via a simulation of 25,000 particles. 
fr., frame. c, Comparison of TARDIS with SPT algorithms. Three simulated 
(20,000 trajectories) datasets (10 ms frame time) with increasing complexity 
(by increasing localization density, particle blinking and spurious localization 
density) are analyzed with TARDIS (left; τ = 1 frame shown here) and compared to 
(middle) the blind tracking algorithms uTrack-inspired PMMS40,42 (dark brown: 
default parameters; light brown: user-optimized parameters based on the known 
GT), TrackMate40,41 (light green) and nearest neighbor analysis (dark green), and 
(right) to the prior-informed methods swift (Endesfelder et al., manuscript in 
preparation) (magenta) and MHT25 (purple; MHT at the most complex dataset 
did not run to completion). These prior-informed methods are optimized via 
TARDIS output, specifically mean JD, bleaching lifetime, spurious localizations 
and trajectory density.
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TARDIS-generated. Blind tracking algorithms behave adequately at 
low complexity, but show nonexisting high JD at increased complex-
ity, due to incorrect interparticle linkages, which can be attributed 
to inherit ‘greediness’ of these tracking software to link localizations 
together, rather than terminating trajectories. We also observed 
under-estimation of JD via the tracking algorithms at high densities 
and high diffusion coefficients, which is a result from linking localiza-
tions from different particles together (Extended Data Fig. 2).

TARDIS is accurate on highly complex single-particle data
As the TARDIS algorithm performs well under complex scenarios, we 
investigated to what extent TARDIS remains accurate (also see Sup-
plementary Note 8). We investigated (1) well-localized single-particle 
trajectories across a range of diffusion coefficients (with 10 ms frame 
time) and densities (Fig. 2a,d), (2) the influence of spurious noise and 
blinking particles (‘localization inaccuracies’) (Fig. 2b), (3) multiple dif-
fusive populations combined with previously established complexity 
(Fig. 2c) and (4) effects of spatial heterogeneity in particle density or 
diffusivity (Supplementary Note 9).

We tested TARDIS’ accuracy by analyzing simulated single- 
population diffusion with a varying degree of particle density and 
diffusion coefficient (Fig. 2a). The complexity increases throughout 
the tested parameter space, as indicated by the increasing ratio of 
intraparticle and interparticle links. TARDIS can accurately (<5% nor-
malized root mean square error, nRMSE) compute single-population 
diffusion up to ∼50× higher particle densities than commonly used in 
spt(PALM) (5 localizations µm−2 per frame), assuming localization is 
accurate at these high densities, with all tested varying diffusion coef-
ficients (up to 10 µm2 s−1, localized every 10 ms) to further increase com-
plexity (Fig. 2a; for comparison with tracking methods, see Extended 
Data Fig. 2; detailed fitting results are shown in Extended Data Fig. 3).  
We note that the nRMSE of the found diffusion parameter scales quali-
tatively with the complexity, indicative that TARDIS will still be accurate 
at even higher complexity (Supplementary Note 8).

Incorporating inaccurate localizations (that is, false positive (FP) 
or false negative (FN)) in our simulations (Fig. 2b) reveals the insensi-
tivity of TARDIS to both FP (for example, spurious localizations) and 
missing true positives (TP; for example, blinking particles or particle 
moving temporarily out of focus). Diffusion coefficient (Extended Data 
Fig. 3) and bleach time (Extended Data Fig. 4) are accurately retrieved 
up to the condition where 50% of the localizations are removed (that is, 
on average ∼1.5 localizations per particle or ∼1.2 consecutive localiza-
tions per particle) while simultaneously 50% of the dataset consists of 
FP localizations. In fact, an ∼10% nRMSE is still achieved when more than 
99.9% of all information in the relative distance histograms is attributed 
to interparticle linkages (Extended Data Fig. 5).

Additionally, we investigated TARDIS’ limits with respect to trajec-
tory density, total trajectory count, spurious localization density and 
fluorophore blinking, based on TARDIS’ mathematical foundation 
(Methods and Supplementary Notes 2 and 8). Our analysis revealed 
that TARDIS can retrieve a single, 1 µm2 s−1, diffusive population with 
∼3% uncertainty given 10,000 trajectories for anywhere between 0.1 
and 10 trajectories starting each frame, or with <25% error with just 100 
trajectories with 0.1–1 trajectories starting each frame (Supplementary 
Fig. 9a). Our analysis further showed that TARDIS’ accuracy is either 
limited by trajectory density or spurious localization, but not both 
(Supplementary Fig. 9b), and that strongly blinking particles can, in 
certain cases, increase TARDIS’ accuracy compared to nonblinking 
particles (Supplementary Fig. 9c). Finally, we showed that TARDIS’ 
accuracy only improves with using more temporal shift (τ) bins when 
the bleach half-time is sufficiently large (Supplementary Fig. 9d).

Next, we investigated the accuracy of TARDIS in conditions with 
complex datasets, which additionally have two diffusive populations 
rather than one (Fig. 2c). TARDIS accurately fits the relative distance 
histogram with a mixture of interparticle distribution and two diffusive 

populations, whereas the JD histogram obtained via tracking algo-
rithms does not clearly show the separate populations. JD extraction 
in TARDIS (cyan curve in Fig. 2c) does accurately show the JD GT.

Finally, we assessed TARDIS under experimental conditions with 
increased complexity (Fig. 2d and Extended Data Fig. 6). To do so, we 
imaged freely diffusing fluorescent ∼100-nm-diameter beads in water, 
imaged with 200 µs stroboscopic illumination to minimize localization 
artifacts (Methods), while changing the bead density and frame time 
(that is, increasing JD). These datasets were localized and analyzed 
via TARDIS, TARDIS-JD extraction and nearest-neighbor tracking. At 
more complex scenarios, nearest-neighbor tracking and TARDIS-JD 
fail to accurately deduce JDs. Due to the global fitting nature of TARDIS 
(that is, over multiple values of τ), the diffusion coefficient can still be 
accurately extracted (lower panels in Fig. 2d). These results are very 
similar to the ones obtained via simulated trajectories or TARDIS’ 
mathematical description (Supplementary Notes 2 and 8).

Combining these results indicate that TARDIS is largely unaffected 
by regularly encountered particle, sample or computational imperfec-
tions or influences that have a large impact on traditional sptPALM 
analysis accuracy. The scaling of TARDIS’ accuracy with complexity 
clearly indicates that experimental data will be hindered by localization 
artifacts sooner than by inaccurate TARDIS analysis (Supplementary 
Note 8). Additionally, we investigated scenarios that could hypotheti-
cally bias TARDIS and discuss these in Supplementary Note 9. This 
investigation establishes that TARDIS bias is only introduced when the 
interparticle linkage histogram (red in Fig. 1) does contain information 
on intraparticle linkages (that is, TP trajectories). Bias of this kind can 
normally be circumvented by determining the τ at which intraparticle 
linkages are exclusively present via a statistical test (one-sided Wil-
coxon, see Supplementary Note 5). Only if the experimental particle 
bleach time (also taking, for example, movement out of the field of view 
(FoV) or focus into account) is on the same order of magnitude as the 
experimental time, no proper interparticle linkage histogram can be 
created, and TARDIS will be biased.

Importantly, our investigations revealed that TARDIS cannot ‘fail 
silently’, that is, provide data that at glance look accurate, but contain 
errors: TARDIS failures due to wrong localization shows clear errors in 
the residuals of the fit (Supplementary Note 9). A recent computational 
method that performs an analysis similar to our TARDIS-JD extrac-
tion, but with interparticle data obtained from τ = 0 frames, further 
emphasizes the robustness of our approach44 (Extended Data Fig. 10).

TARDIS accurately elucidates intricate diffusive behavior
So far, we have focused on well-described single- or double-population 
Brownian motion. However, in biological conditions, this is normally 
not the case, and the diffusive behavior is more intricate. Therefore, 
we assessed how TARDIS handles diffusional complexity (Fig. 3 and 
Supplementary Note 3).

First, we analyzed simulated datasets provided as part of a compar-
ison of particle tracking methods23 (Fig. 3a and Extended Data Fig. 7).  
Since the underlying biological model changes throughout the data-
sets, we used the TARDIS-JD extraction. To investigate the effect of 
data complexity, we reshuffled the ‘Receptors’ trajectory localizations 
(described as ‘tethered motion, switching, any direction’) to obtain a 
high density of particles (380 particles per frame or ∼0.15 localiza-
tions µm−2). Additionally, we removed localizations according to the 
four SNR levels (SNR of 7, 4, 3 and 1, equivalent to removing 0%, 24%, 
54% and 85% of localizations, assuming perfect localization at SNR of 7,  
and scaling logarithmically) used in the comparison23. While the JD 
histograms show intricate behavior over a range of temporal shifts, 
TARDIS-JD extraction shows good agreement with the GT for the SNR 
of 7, 4 and 3 levels (Fig. 3a). The other simulated datasets from this 
resource were also analyzed in this way (Extended Data Fig. 7), show-
casing that TARDIS-JD extraction can handle challenging datasets with 
intricate diffusive behavior. Additionally, TARDIS is able to analytically 
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Fig. 2 | Performance of TARDIS in complex conditions. a, Visualization of a 
TARDIS fit across a range of particle densities (vertical) and diffusion coefficients 
(horizontal). TARDIS is performed on 20,000 simulated localizations with 
30 nm localization precision; images on the left show representative particle 
density, images on the top show representative JDs (over 20 frames) in cyan. 
These data were fitted via TARDIS with a single-population Brownian motion fit. 
The simulations and TARDIS fits were repeated ten times, and the normalized 
root mean square error (nRMSE; normalized to diffusion coefficient) from these 
iterations is reported in the top right of every subplot. Detailed information  
and comparison with tracking algorithms can be found in Extended Data Figs. 2  
and 3. b, Error of the TARDIS fit of a single diffusive population (bleaching 
half-time of three frames) at different particle densities and different levels of 
localization inaccuracy. Simulations of particle trajectories with a diffusion 
coefficient at 1 µm2 s−1 at densities of 0.1 and 0.5 localizations µm−2 per frame were 
degraded by randomly removing TP localizations from the trajectories and/or 

adding unstructured FP localizations randomly throughout the FoV in various 
contributions. Reported values are calculated from ten repetitions of every 
condition. Detailed information can be found in Extended Data Figs. 3 and 4.  
c, Fitting two populations in TARDIS scales similarly with complexity. Trajectories 
were simulated and analyzed with identical parameters as specified in Fig. 1b, 
except half the trajectories were given a 0.5 µm2 s−1 diffusion coefficient, and 
the other half a 5 µm2 s−1 diffusion coefficient—and analysis with TARDIS was 
performed with two populations. The information is also presented on a linear 
x axis in Extended Data Fig. 1. d, Experimental single-particle mobility assessed 
by TARDIS compared to TARDIS-JD and nearest-neighbor tracking in a range of 
complexities by increasing the fluorophore concentration and increasing the 
frame time while keeping excitation time constant. To fully prevent multiparticle 
artifacts (Supplementary Note 9), the localization list belonging to the highest 
density is created via the localizations of the lowest density. Throughout this 
parameter space, the same total experiment time was used (250 s).
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extract diffusion coefficients under conditions of flow or confined 
diffusion (Supplementary Note 3), and we note that TARDIS can be 
expanded with any analytical description of JDDs, analogous to our 
implementation of these two examples.

Next, we explored the use of TARDIS to reduce imaging time in 
sptPALM, which is beneficial to minimize the effects of temporally 
changing physiology, either biological or for example due to phototox-
icity. RNA polymerase (RNAP) in Escherichia coli has dynamic diffusive 
behavior that does not satisfy a known analytical model45,46. Rifampicin 
is a transcription inhibitor that decreases the promoter search and 
transcription kinetics, effectively increasing the diffusivity of RNAP45,46. 
Therefore, we used TARDIS-JD extraction and qualitatively assess the 
obtained JD histograms (Fig. 3b). By increasing the primed conver-
sion efficiency (that is, increasing 488 nm laser power) in repetitions 
of the experiment47,48, we were able to reach the same total number of 
localizations per cell area (80 localizations per 1 µm2 cell area) much 
faster, decreasing the total experiment time step-wise ∼2–3-fold and 
∼3–5-fold (both compared to the top panel). Addition of rifampicin 
is characterized by a shift toward higher RNAP JDs, which is clearly 
observed after TARDIS-JD extraction (Fig. 3b). Even though the change 
in JD is only ∼30 nm, this small difference is consequently extracted 
via both low- and high-throughput sptPALM-TARDIS (Fig. 3b, bottom), 
which is not the case when assessing this data via nearest-neighbor 
tracking (Extended Data Fig. 8). A further decrease of imaging time is 
hindered not by TARDIS, but rather by difficulties in the localization 
procedure, for example, fitting overlapping, blurry point-spread func-
tions (PSFs) (Discussion).

Finally, we investigated a scenario in which state-switching spt-
PALM in prokaryotic cells is simulated. First, we note that confinement 

in cells strongly influences the obtained diffusion coefficient, which can 
be corrected with TARDIS (Supplementary Note 3). In our simulations, 
the trajectories show transient binding with specific kinetics that can 
be extracted with DDA approaches9,27,28, after a translation from JD to 
apparent diffusion coefficient. The simulated data is deteriorated by 
spurious localizations on the cell membrane (structured noise), and 
additionally randomly throughout the FoV (unstructured noise) (Fig. 3c 
and Extended Data Fig. 9). The GT simulation parameters are recovered 
via TARDIS with small (<5%) error with respect to using analytical DDA 
on the GT trajectories throughout the tested deterioration, even in the 
extreme case in which the ratio of TP:spurious localizations:membrane 
localizations is 1:2:2 (that is, only 20% of localizations are GT trajectory 
information).

These experiments showcase that TARDIS enables measurements 
in experimental conditions that are currently largely inaccessible via 
tracking-based analysis, removing the current stringent metrics such as 
low-density, long-duration experiments and nonblinking particles (also 
see Supplementary Note 8). TARDIS opens up the opportunity to obtain 
high-statistical diffusion information in shorter time, which in turn 
decreases the inherently present temporal averaging in single-particle 
experiments.

Discussion
SPT analysis is limited by both computational complexity and strin-
gent experimental requirements. Reconstructing truthful particle 
trajectories from a dataset with spatiotemporally close trajectories is 
challenging without accurate a priori information, and is even further 
complicated by the blinking and/or fast bleaching of particles. TARDIS 
solves all these issues by analyzing all-to-all particle distances over 
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Fig. 3 | TARDIS enables high-complexity single-particle mobility experiments 
of intricate diffusive behavior. a, The ‘Receptors’ tracking data from Chenouard 
et al.23 (localization density set at 0.15 localizations µm−2 per frame) has been 
deteriorated by removing localizations to simulate lower signal-to-noise 
conditions similar to Chenouard et al.23 (rows) and analyzed via TARDIS-JD 
extraction, and compared to the GT data. The complex diffusive behavior of 
these particles cannot be well described analytically, as the JD histograms over 
time shifts (columns) show. The following TARDIS settings were used: τ bins of 
one to three frames; maximum JD of 10 µAU (micro-arbitrary units as introduced 
by Chenouard et al.23). Other simulated datasets from this resource can be found 
in Extended Data Fig. 7. b, JD analysis of RNA polymerase in E. coli with (red) and 
without (black) rifampicin. By increasing the photo-conversion rate, the total 

time required to obtain 80 localizations µm−2 (within cells) is decreased by a factor 
of ∼2.5 (second panel), then by a factor ∼4 (third panel). Insets on the right show 
exemplary frames of these movies. The bottom panel combines the JD histograms 
of the top three panels. Lines indicate average of two biological replicates; shaded 
area indicates the standard deviation. Scale bar, 1 µm. c, Fitting of a simulated 
state-changing population in bacterial cells (kon, koff = 20 s−1, Dfree = 2 µm2 s−1, 
three frame bleaching half-time, with trajectory length capped at eight frames). 
Inaccuracies from GT are introduced as spurious localizations (columns, red 
localizations) and membrane-bound localizations (rows, blue localizations). 
Reported values are median ± quartile determined from ten repetitions. 
Detailed information about the TARDIS fits can be found in Extended Data Fig. 9. 
Simulation datasets consist of 10,000 ‘TP’ trajectories at 10 ms frame time.
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multiple temporal shifts. TARDIS accurately resolves single, double and 
state-changing populations in challenging conditions, outperforming 
existing SPT algorithms. Finally, we show that traditional sptPALM 
experiments can be performed up to 5× faster without loss of infor-
mation with current localization methods. Faster data acquisition is 
especially useful in biological conditions where a short event needs to 
be investigated, such as recovery from DNA damage, or protein organi-
zation during, for example, phage infection or cell division. TARDIS is 
provided as an easy-to-use software tool via a GUI or implementable 
script-wise39 (Supplementary Software).

TARDIS is robust with respect to all causes that increase SPT com-
plexity: (1) high density of trajectories, (2) blinking particles or short 
trajectories, (3) unstructured spurious localizations and (4) structured 
spurious localizations. We thoroughly investigate TARDIS’ limits in 
this respect via its mathematical foundation (Supplementary Notes 2  
and 8). Furthermore, TARDIS is agnostic to the type of particle move-
ment (that is, non-Brownian motion), requires a low number of trajec-
tories to obtain satisfactory fit outcomes (Supplementary Note 8) and 
can use any analytical description of JDDs (Supplementary Note 3).  
We believe that the high robustness of TARDIS is especially useful in 
sptPALM where the dynamics and localization are coupled, and a high 
local density influences the perceived dynamics.

TARDIS provides area-averaged information about particle 
dynamics rather than trajectory-specific information. This can be 
performed for the whole FoV as showcased so far, but can also be 
performed in a sub-FoV manner to spatially assess the distribution of 
multiple or mixed populations with ∼250 nm resolution or lower (Sup-
plementary Note 10). TARDIS can be used on its own, or alternatively, 
the output of TARDIS can be used as accurate a priori information in 
tracking software, especially Bayesian SPT software (for example, 
swift, MHT25 or others49,50). Via this combination (Figs. 1c and 2c),  
accurate tracking is ensured while full trajectory information is 
extracted. Quantitative parameter extraction on particle mobility 
via TARDIS requires analytical descriptions of JDDs, and thus TARDIS is 
limited by the existence of these models. Additionally, it conceptually 
hinders the incorporation of an individual trajectory’s past and future 
information within the fitting models. TARDIS as presented here only 
assesses two-dimensional localization data, but it can be expanded 
to investigate three-dimensional data or perform separate analytical 
fitting routines on separate spatial dimensions.

We show that with the introduction of TARDIS, and especially 
combined with swift or MHT, the new limitation for high-throughput 
sptPALM analysis is high-density localization of mobile particles. 
Current localization implementations specifically designed for 
high-density datasets focus on immobile particles, which intro-
duces two artifacts when using on datasets of mobile particles: (1) 
motion-blurred localizations are often interpreted as multiple static 
particles, and (2) information on multiple frames is included, which 
collapses localizations of close-by particles on consecutive frames 
to the same location, rather than accurately deducing a small JD. 
Artifact 1 can be remedied via stroboscopic illumination51, but this 
cannot always be implemented due to hardware limitations and 
light dose considerations on live cell health. Artifact 2 shows the 
clear need for high-density localization algorithms optimized for 
mobile particles. Throughout this manuscript, we show that TARDIS 
is unaffected by densities of about an order of magnitude higher than 
can currently be accurately extracted from current state-of-the-art 
localization algorithms that can handle densities up to 5 localiza-
tions µm−2(refs. 17,18).

In conclusion, TARDIS is a software platform that negates all tra-
ditionally avoided circumstances in spt(PALM), such as high-density 
or strongly blinking particles. TARDIS therefore opens up the 
possibility of performing data analysis on mobile particles with 
paradigm-shifting conditions and enables the exploration of novel 
experimental designs.
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Methods
Mathematical foundation of TARDIS
Fundamentally, TARDIS is a model-free analysis method that does 
not require a priori information on the intraparticle and interparticle 
distributions. However, for given scenarios, one can derive analyti-
cal descriptions of the distributions. To benchmark performance of 
TARDIS, we here describe the following scenario: a spatially random 
population with a single diffusive state is imaged in a square FoV. We 
here describe the distributions and contributions of the intra- and 
interparticle distributions (also see Supplementary Note 2).

The intraparticle probability density function (pdf) is governed 
by52

pdf ( JD) = JD × e
−JD2

2×dim×(D+ σ2
Δt×τ )×Δt×τ−2×(

1
6 ×

Δtil
Δt )(D+ σ2

Δt×τ )×Δt×τ
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Δt×τ
) × dt × τ − 2 × ( 1

6
× st

Δt
) (D + σ2

Δt×τ
) × dt × τ

(1)

In which JD is the jump distance (in m), dim is the dimensionality 
of the system, D the diffusion coefficient (in m s−2), σ the localization 
uncertainty (in m), Δt the frame time (in s), Δtil the illumination time 
(in s; assuming that the illumination pulse is an equidistant single-pulse 
sequence in each frame) and τ the temporal shift (in frames). We per-
formed our benchmarking for dim of 2.

The interparticle probability density function in a two-dimensional 
square FoV is governed by53

g (s) =
⎧
⎨
⎩

2d (−4 ×√d 2 + π + d 2) 0 < d 2 ≤ 1

2d (−2 + 4 × sin−1 ( 1
√d 2

) + 4 ×√d 2 − 1 − π − d 2) 1 < d 2 ≤ √2
(2)

In which d2 is the squared distance between two random points in 
a 1-by-1 arbitrary unit (AU) FoV.

The number of intraparticle distances found for temporal shift τ 
(in frames) on every frame f is governed by
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In which λbleach is the bleaching half-time of a particle (in frames), 
λdark and λbright the dark-state ('off') and bright-state ('on') half-times of 
the particle (in frames), and pnonlocalized the chance that a localization is 
not computationally recognized as such.

The number of interparticle distances found for temporal shift τ 
(in frames) on every frame f is governed by
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In which λbleach is the bleaching half-time of a particle (in frames), 
dtraj the number of trajectories starting each frame, λdark and λbright the 
dark-state ('off') and bright-state ('on') half-times of the particle (in 
frames),dspurious the number of spurious localizations per frame, and 
pnonlocalized the chance that a localization is not recognized as such.

The full TARDIS distribution over all temporal shifts τ can be 
derived from these equations, by calculating the ratio of intra- to 

interparticle distances via equations (3) and (4), and plotting the prob-
ability density functions set out in equations (1) and (2) according to this 
ratio. A full overview of the derivations for this foundation is provided 
in Supplementary Note 2.

Simulation of single and dual diffusive species
A redundant number of trajectories with an underlying specified dif-
fusion coefficient and 30 nm localization precision (ignoring effects 
from motion blur) were simulated in a two-dimensional plane. The 
trajectories had a length determined via a three-frame half-life, with a 
frame time of 10 ms, on a FoV of 10 × 10 µm. To simulate blinking par-
ticles (where indicated), localizations were randomly removed from 
these trajectories. This localization list was then limited to the number 
of localizations that corresponds to 10,000 unfiltered trajectories. The 
trajectories were given a random starting frame, where the number of 
frames was varied to create a certain localization density. Then, spuri-
ous localizations were added, the amounts of which were based on the 
specified values and the number of localizations in the trajectories. 
These spurious localizations were randomly spread throughout the 
FoV and frames. For testing TARDIS with two diffusive populations, the 
same procedure was used, but all trajectories were randomly sampled 
from one of two populations with corresponding diffusion coefficients.

TARDIS was run on these datasets with the following settings (see 
Supplementary Note 1 for a full explanation of these parameters): 
maximum JD of 5 µm, maximum temporal shift (τ) of 3 frames, 10 frames 
longest trajectory length (determined via the Wilcoxon test), integra-
tion of 50 frames used for higher background subtraction accuracy, 
30 nm localization precision, diffusion coefficient start value random 
between 0.1 and 10 µm2 s−1, using an estimation fit.

Simulation of state-switching species
For all specified conditions in the state-switching species (spurious 
and membrane localizations in 1:0, 1:0.5 and 1:1 ratio with respect 
to true localizations), ten repetitions of a simulation similar to ones 
described previously with the software encompassed in anaDDA9,27,28 
were created with the following settings: 40 (bacterial) cells (simulated 
as cylinders with length random between 2 µm and 3 µm and radius 
random between 0.45 µm and 0.55 µm, capped by two half-spheres 
with a radius identical to the cylinder radius; the cells were rotated 
and translated randomly throughout a 25 × 25 µm FoV) were populated 
with 300–500 particles in 2,000 frames (10 ms frame time). Trajec-
tory lengths were pulled randomly from a decay with half-life of three 
frames (limited at eight frames). Localizations that were outside the 
FoV were discarded. Every particle was simulated with kon = 50 s−1 or 
20 s−1, koff = 30 s−1 or 20 s−1, and Dfree = 2 µm2 s−1, and localizations were 
subject to a 30 nm localization error. Simulation was performed with 
the software encompassed in anaDDA27, in which a 1 ∙ 10−8 s steptime 
and a precision factor of 50000 was used. Starting frames for trajec-
tories were randomly assigned. Spurious localizations were added 
where needed on the basis of the number of true localizations, and 
positioned randomly throughout the FoV. Membrane localizations 
were added where needed on the basis of the number of true localiza-
tions, and positioned in a two-dimensional, 100-nm-diameter slice at 
the simulated cell outlines.

All datasets were analyzed with TARDIS using the following set-
tings (see Supplementary Note 1 for a full explanation of these param-
eters): anaDDA fit model with 0.5 µm radius, 3 µm length, 10 ms frame 
time and 30 nm localization precision. Maximum JD calculated was 
2.5 µm (that is, average cell length), maximum Δt was 5 frames, 87 
frames for longest trajectory length (determined via the Wilcoxon test) 
using the integration of 50 frames for higher background subtraction 
accuracy. anaDDA starting parameters were randomly chosen from 
10–80 s−1, 10–80 s−1 and 1–4 µm2 s−1, and an estimation fit (that is, a fit 
on remaining JDs after subtraction of interparticle fraction; Supple-
mentary Note 1) was performed.
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sptPALM microscopy
All microscopy was performed on home-build microscopes as 
described in detail elsewhere54 that allows for imaging of Dendra2 
proteins via primed conversion48. Briefly, live-cell experiments were 
performed on the following system: 561 nm (OBIS, Coherent), 488 nm 
(Sapphire LP, Coherent) and 730 nm (OBIS, Coherent) were combined 
and controlled via an acousto-optical tuneable filter (except the 730 nm 
laser) (AOTF; TF525-250-6-3-GH18, Gooch and Housego). The lasers 
were directed toward the back port of a Nikon Ti Eclipse microscopy 
body, and focused on the back-focal plane of a CFI Apo TIRF 100× 
objective (numerical aperture (NA) 1.49, Nikon) in HiLo mode via an 
ET DAPI/FITC/cy3 dichroic), and emission light passed through a 
ZT405/488/561rpc rejection filter and ET610/75 bandpass (all AHF 
Analysentechnik). The emission light was focused on an iXON Ultra 
888 EMCCD camera (Andor) with an effective pixel size of 128 nm. The 
image acquisition was controlled by micromanager55.

Bead experiments were performed on a similar microscope setup: a 
638 nm laser line (Novanta) was controlled via a TriggerScope 4 (Advanced 
Research Consulting) connected to PycroManager56, and directed toward 
the back port of the Nikon Ti body via a laser-coupled fiber (150 µm core 
diameter, Thorlabs). The laser light was directed via a reflective collima-
tor and via a ZT405/488/561/642rpc and ZET405/488/561/642m-TRF 
dichroic/rejection filter combination (Chroma) to the back-focal plane 
of a 60× Apochromat TIRF 1.49 NA objective (Nikon) in HiLo mode. Emis-
sion light was passed through a 655-nm-longpass filter (655 LP ET, AHF 
Analysentechnik) and collected on a Prime BSI sCMOS camera (Teledyne 
Photometrics; 107 nm effective pixel size).

For the experiments on diffusive beads, carboxylate-modified 
FluoroSpheres (715/755 nm excitation/emission peaks, 97 nm diameter 
according to manufacturer) (Invitrogen, Thermo Fisher), were diluted 
2,500 times or 10,000 times in purified water. After 5 min sonication, 
these solutions were placed in an Ibidi eight-chamber-well slide (Ibidi), 
and imaging was performed in a temperature-controlled (20 ± 0.5 °C) 
room with the optical settings described above. All image analysis was 
performed in FIJI57, and single-molecule localization was performed 
via ThunderSTORM58,59.

For the live-cell experiments, E. coli MG1655 strain with a 
rpoC-Dendra2 strain at the endogenous genetic locus (E. coli MG1655 
rpoC::Dendra2(CamR))47 was inoculated into fresh Luria-Bertani (LB) 
medium and incubated overnight at 37 °C while shaking (180 RPM). On 
the day of the experiment, cells were reinoculated into fresh EZ Rich 
Defined Media (EZRDM, Teknova) and incubated at 37 °C while shak-
ing (180 RPM) for 1 h. Next, the culture was split into two subcultures, 
and to one of them, rifampicin was added to a final concentration of 
300 µg ml−1. Both cultures were incubated at similar conditions for 
1 h and centrifuged for 2 min 3,000g afterward. The supernatant was 
discarded, cell pellets were washed with fresh EZRDM and centrifuged 
again with similar parameters and the supernatant was discarded. Cell 
pellets were resuspended in the residual supernatant and 2 µl of cell 
suspension was placed on 1% EZRDM–agarose pads (see below) for 
imaging. All image analysis was performed in FIJI57, and single-molecule 
localization was performed via ThunderSTORM58,59.

Low-melting agarose (Merck-Sigma Aldrich) was suspended in 
fresh EZRDM to a final concentration of 1% and incubated for 12 min at 
70 °C until the solution was clear, then the agarose solution was stored 
at 42 °C for further use. To prepare agarose pads, 100 µl of agarose 
solution was placed on an indented microscope slide and covered with 
a coverslip (#1.5, Marienfield), which was prior cleaned overnight with 
1 M KOH (Carl Roth) solution, and incubated for 2 h at room tempera-
ture. Then, the coverslip was discarded, and the cell suspension was 
loaded on the solid agarose pad and covered with a new, clean coverslip.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data underlying this study is available at ref. 60. Source data are 
provided with this paper.

Code availability
The custom TARDIS software used in this manuscript is provided as 
supplementary data and can be accessed at ref. 39.
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Extended Data Fig. 1 | Performance of TARDIS and spt tracking methods for 
a single diffusive population and two diffusive populations at increasing 
complexity, visualised on a linear x-axis. Performance of TARDIS is compared 
to the blind tracking algorithms uTrack-inspired PMMS (piecewise-stationary 
motion model and iterative smoothing)40,42, TrackMate40,41 and Nearest 
neighbour analysis, and to the prior-informed methods swift (Endesfelder et al., 

manuscript in prep.), and Multiple-Hypothesis Tracking (MHT)25 (MHT at the 
most complex dataset did not run to completion). This data is also presented 
in Figs. 1c and 2c. (c) Bhattacharyya distance of the distributions in (a) and (b) 
compared to the ground truth (GT) jump distance distribution, calculated as the 
negative natural logarithm of the sum of the square root of the product of the 
distribution value of a method and that of the jump distance ground truth.
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Extended Data Fig. 2 | The full dataset as presented Fig. 2a, analysed via 
TARDIS (blue), TARDIS-JD-extraction (light-blue), TrackMate-LAP40,41  
(light green) and nearest-neighbour tracking (dark green). (a) and (b) 

represent the same datasets, but visualised on a logarithmic (a) or linear (b) x-axis.  
Note the changing jump distance x-axis scaling in (b). The TARDIS fit data is also 
presented in Extended Data Fig. 3a.
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Extended Data Fig. 3 | Detailed information on diffusivity and bleach time 
obtained from TARDIS fitting. (a) Boxplots showing the obtained diffusion 
coefficients of datasets presented in Fig. 2a, and (b) the obtained bleaching times 
of datasets presented in Fig. 2a, showing no bias in either over the complexity 
range. TARDIS is repeated 10 times on 20.000 simulated localizations for each 
condition. (c) Individual fit information of data presented in Fig. 2b. For every 
condition, TARDIS is repeated 10 times on 20.000 simulated localizations 

with random start positions in TARDIS. The obtained diffusion coefficients 
are visualised (scatter points represent individual measurements). Note the 
changing y-axis at 90% removed true positives in (c). Abbreviations used: TP: 
True Positives, FP: False Positives, fr: frame, locs: localizations. All boxplots show 
the median as the central mark, with the 25th and 75th percentile as lower and 
upper edges. Whiskers extend to non-outlier extreme points, and outlier points 
are plotted as plusses.
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Extended Data Fig. 4 | Detailed information on TARDIS fitting results of 
bleach time of single diffusive population with added noise and blinking 
chance. Fit information of bleach characteristics corresponding to the data 
presented in Fig. 2a,b (main manuscript). For every condition, 10 repetitions 
were analysed with random start positions in TARDIS. (a,b) RMSE of the diffusion 
coefficient (a) and bleach half-time (b) for all conditions presented in Fig. 2a (c) 
The found diffusion coefficient presented in Fig. 2b is visualised (scatter points 

represent individual measurements). Note the changing y-axis at 90% removed 
true positives. TARDIS is repeated 10 times on 20.000 simulated localizations 
for each condition. All boxplots show the median as the central mark, with the 
25th and 75th percentile as lower and upper edges. Whiskers extend to non-outlier 
extreme points, and outlier points are plotted as plusses. Abbreviations used:  
TP: True Positives, FP: False Positives, fr: frame, locs: localizations.
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Extended Data Fig. 5 | Effect of the fraction of inter-particle linkages on 
diffusion coefficient accuracy. Analysis of 95% confidence interval (a, b), and 
fitted diffusion coefficient (c) as a measure of the inter-particle fraction. Dotted 
lines in (a) are added for clarity. The underlying analysed data is the same as 

shown in Fig. 2b. Reasons for increased fraction of inter-particle linkages are 
clarified via marker type (TP removal), marker colour (TP localization density), 
and marker darkness (FP introduction). Note that a and c have non-linear x-axis  
(a and b contain the same information, but with different x-axes).
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Extended Data Fig. 6 | Diffusion analysis of fluorescent beads at varying 
frame times. The same information as presented in Fig. 2d, but with additional 
frame times in between those shown in the main manuscript. The excitation 

time on every frame is kept constant. The small decrease in obtained diffusion 
coefficient as a function of frame time is explained by particles having a higher 
chance to move outside the field-of-view with larger jump distances.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-023-02149-7

Extended Data Fig. 7 | TARDIS-JD extraction from data of Chenouard et 
al. Tracking data from Chenouard et al.23 has been deteriorated (removing 
54% of localizations), analysed via the ‘extract JD’-function of TARDIS, and 
compared to the ground-truth (GT) data. Four different conditions are analysed: 
MICROTUBULE, RECEPTOR, VESICLE, and VIRUS, corresponding to [constant 
velocity], [tethered motion, switching, any direction], [Brownian motion, any 
direction], and [same direction dynamics, switching between Brownian and 

linear] dynamics, respectively. Densities are indicated in subplot titles, while the 
field-of-view is ∼50-by-50 µAU in size. In all scenarios, TARDIS accurately extracts 
the ground-truth data, and the level of noise is decreasing with decreasing 
localization removal. The following TARDIS settings were used: Δt bins of 1–3; 
maximum jump distance of 1e-05 AU; background frames starting at frame-shift 
of 35, using in total 50 frames; 300 BG bins starting at 3.5e-06 AU.
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Extended Data Fig. 8 | E. coli RNA polymerase jump distance analysis after 
nearest-neighbour tracking. Jump distance analysis of RNA polymerase in  
E. coli with (red) and without (black) rifampicin, (the same data presented in 

Fig. 3b), via nearest-neighbour tracking. Notice the changing peak position and 
abundance as a function of localization density. The data is shown in a linear 
X-scale (left) and logarithmic X-scale (right).
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Extended Data Fig. 9 | Detailed information on kinetically state-changing 
particles. Individual fit information of data presented in Fig. 3c, along with 
individual fit information for differing binding/unbinding kinetics (titles 
indicate kon / koff / Diffusion coefficient). For every condition 10.000 ‘true 
positive’ trajectories were simulated, and 10 repetitions of this were analysed 
with random start positions in TARDIS, and compared to analysing the same 

data with anaDDA on the ground-truth trajectory data. TP, Sp and me indicate 
true positive, spurious, and membrane localizations, respectively. All boxplots 
show the median as the central mark, with the 25th and 75th percentile as lower and 
upper edges. Whiskers extend to non-outlier extreme points, and outlier points 
are plotted as plusses.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-023-02149-7

Extended Data Fig. 10 | Accuracy of software by Wolf et al44. The same data 
analysed by TARDIS in Fig. 2b (a) and Extended Data Fig. 3b (b), analysed via the 
DANAE software44, which effectively only performs TARDIS-JD extraction. This 
is then fitted with a diffusive model afterwards. The accuracy, especially at high 
complexity scenarios, is worse compared to TARDIS. Additionally, DANAE shows 

bias towards too high values (right), which is caused by imperfect inter-particle 
distance distribution subtraction. DANAE is repeated 10 times on 20.000 
simulated localizations for each condition. All boxplots show the median as the 
central mark, with the 25th and 75th percentile as lower and upper edges. Whiskers 
extend to non-outlier extreme points, and outlier points are plotted as plusses.

http://www.nature.com/naturemethods
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