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linked to a significant number of autochthonous cases in 
several European countries (Pavio et al. 2015).

HEV (Paslahepevirus balayani) includes variants 
detected in humans, pigs, wild boar, deer, mongoose, rab-
bits, camels and other animals, with 8 genotypes recognized 
until today (HEV-1 - HEV-8), whereby HEV-3, HEV-4 
and HEV-7 with zoonotic transmission (Smith et al. 2020). 
Genotypes HEV-3 and HEV-4 are transmitted via contact 
with infected animals, especially pigs, or mainly by con-
sumption of contaminated pork meat products (Velavan et 
al. 2021). These two genotypes have been detected in Sus 
scrofa domesticus (domestic pigs) and Sus scrofa scrofa 
(wild boars), as well as in humans (Berto et al. 2012; de 
la Villalba et al. 2013; Santos-Silva et al. 2023). Despite 
numerous studies on HEV-3 and HEV-4, particularly in 
high-income countries where transmission of these two 
genotypes via the fecal-oral route and infections acquired 

Introduction

Hepatitis E virus (HEV) is a small nonenveloped single-
stranded positive sense RNA virus that belongs to the 
Hepeviridae family, subfamily Orthohepevirinae, genus 
Paslahepevirus. species balayani (Purdy et al. 2022). In 
both developing and industrialized countries, HEV is the 
main cause of acute hepatitis, reported to infect around 
20  million individuals and resulting in 3.3  million symp-
tomatic cases and 44,000 fatalities annually worldwide 
(WHO 2022). Hepatitis E was identified as a zoonotic ill-
ness in the late 1990s and pigs were discovered to be the 
primary natural host of HEV genotypes 3 and 4 (Dalton et 
al. 2008). The intake of undercooked pork meat was soon 
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Abstract
Virus monitoring in small mammals is central to the design of epidemiological control strategies for rodent-borne zoonotic 
viruses. Synanthropic small mammals are versatile and may be potential carriers of several microbial agents. In the present 
work, a total of 330 fecal samples of small mammals were collected at two sites in the North of Portugal and screened 
for zoonotic hepatitis E virus (HEV, species Paslahepevirus balayani). Synanthropic small mammal samples (n = 40) were 
collected in a city park of Porto and belonged to the species Algerian mouse (Mus spretus) (n = 26) and to the greater 
white-toothed shrew (Crocidura russula) (n = 14). Furthermore, additional samples were collected in the Northeast region 
of Portugal and included Algerian mouse (n = 48), greater white-toothed shrew (n = 47), wood mouse (Apodemus sylvati-
cus) (n = 43), southwestern water vole (Arvicola sapidus) (n = 52), Cabrera’s vole (Microtus cabrerae) (n = 49) and Lusita-
nian pine vole (Microtus lusitanicus) (n = 51). A nested RT-PCR targeting a part of open reading frame (ORF) 2 region 
of the HEV genome was used followed by sequencing and phylogenetic analysis. HEV RNA was detected in one fecal 
sample (0.3%; 95% confidence interval, CI: 0.01–1.68) from a synanthropic Algerian mouse that was genotyped as HEV-
3, subgenotype 3e. This is the first study reporting the detection of HEV-3 in a synanthropic rodent, the Algerian mouse. 
The identified HEV isolate is probably the outcome of either a spill-over infection from domestic pigs or wild boars, or 
the result of passive viral transit through the intestinal tract. This finding reinforces the importance in the surveillance of 
novel potential hosts for HEV with a particular emphasis on synanthropic animals.
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through environmental contamination with animal feces is 
still mostly unknown, other potential transmission routes 
are being investigated, such as milk (King et al. 2018; Tre-
agus et al. 2021; Santos-Silva et al. 2022).

In rats, the first description of HEV was in 1993 in the 
former Soviet Union, in a region that experienced a viral 
hepatitis outbreak in human in July-October 1989 having 
been pointed out to rodents a certain role in the process of 
the spread of the virus (Karetnyĭ et al. 1993). However, 
molecular detection and characterization of HEV RNA in 
Norway rats (Rattus norvegicus) only occurred in 2010 
(Johne et al. 2010b). Moreover, currently a growing body 
of data shows evidence of the circulation of HEV-3 in small 
mammals, like rats and rabbits (Lack et al. 2012; Ryll et al. 
2017).

Besides the initial reports of HEV-3 in small mammals, 
additional Hepeviridae members have also been found, 
namely Rocahepevirus ratti. Putative genotypes of rat 
Hepatitis E virus (species Rocahepevirus ratti; ratHEV) 
HEV-C3 and HEV-C4 were identified in A. chevrieri and 
E. melanogaster, respectively (Wang et al. 2018), how-
ever, there is a high likelihood of numerous additional 
orthohepeviruses being present in different rodent species 
and geographic locations (Wang et al. 2018). Genotypes of 
Paslahepevirus balayani species xhibit a greater divergence 
than other hepeviruses species (Reuter et al. 2020) and are 
distinctly different from genotypes HEV-C1 and HEV-C2 of 
Rocahepevirus ratti (Wang et al. 2020).

The zoonotic potential of rocahepeviruses is now recog-
nized. Interestingly, ratHEV replication in a human-derived 
cell line was demonstrated (Jirintai et al. 2014; Li et al. 
2015). Notwithstanding, experimental infection in mon-
keys and domestic pigs failed (Purcell et al. 2011; Cossa-
boom et al. 2012), however a recent study successfully 
inoculated ratHEV in Rhesus and Cynomolgus monkeys 
(Yang et al. 2022). Nevertheless, ratHEV infection has been 
linked to chronic hepatitis and acute hepatitis (Sridhar et al. 
2018; Andonov et al. 2019). Additionally, ratHEV human 
infections have also recently been reported in Europe 
(Rivero-Juarez et al. 2022; Rodriguez et al. 2023), and IgG 
anti-ratHEV-reactive IgG antibodies have been detected 
in forestry workers in Germany and Japan (Dremsek et al. 
2012; Li et al. 2013; de Cock et al. 2022).

Small mammals include animals of the order Eulipo-
typhla (formerly known as Insectivora) and the order Roden-
tia. They have extremely versatile habits, inhabiting various 
locations with the ability to settle between wild and urban 
environments (Bencatel et al. 2017). The full spectrum of 
small mammals, including synanthropic animals that have 
adapted to human environments, representing additional 
HEV reservoirs and playing a role in the epidemiology of 
zoonotic HEV is still far from being clarified. Synanthropic 

animals thrive in close proximity to human populations and 
may frequently come into contact with humans and their 
habitats, thereby increasing the potential for zoonotic trans-
mission. Detecting spill-over infections in small mammals 
is valuable as it helps map the occurrence of HEV strains 
in different regions. Understanding the crucial role of syn-
anthropic animals in the epidemiology of HEV is essential 
for developing effective prevention and control strategies, 
as they can serve as additional reservoirs and vectors for the 
virus. Consequently, comprehensive research that encom-
passes both wildlife and synanthropic animals is necessary 
to gain a complete understanding of the complex dynamics 
of HEV transmission.

In Portugal, HEV infection in humans has been widely 
reported (Berto et al. 2012; Mesquita et al. 2016; Moraes 
et al. 2022) and HEV RNA has been detected in domes-
tic pigs and in wild mammals, such as wild boar and red 
deer (Moraes et al. 2022; Santos-Silva et al. 2023), however 
no studies have been ever carried out in small mammals. 
Hence the aim of this study was to perform a screening and 
to provide genetic characterization of HEV detected in syn-
anthropic and wild small mammals from Portugal.

Materials and methods

Sampling and collection

A total of 330 fecal samples from synanthropic and wild 
small mammals were collected. Samples from synanthropic 
animals, represented by the wild species Algerian mouse 
(Mus spretus) (n = 26) and by the greater white-toothed 
shrew (Crocidura russula) (n = 14), were collected in the 
spring of 2014 from a public city park in Porto, Portugal 
(Fig.  1). The wild small mammal fecal samples (n = 290) 
were collected during ecological studies (Barão et al. 2022; 
Lux et al. 2023) from six different species in the spring of 
2020 in the Northeast region of Portugal (Trás-os-Montes). 
Wild small mammal droppings were collected from 24 
different sampling units, representing six different habitat 
types and were from one insectivore (greater white-toothed 
shrew, Crocidura russula, n = 47) and from five species of 
rodents, including two species of the family Muridae (wood 
mouse, Apodemus sylvaticus, n = 43; Algerian mouse, Mus 
spretus, n = 48) and three species of the family Cricetidae 
(southwestern water vole, Arvicola sapidus, n = 52; Cabre-
ra’s vole, Microtus cabrerae, n = 49; Lusitanian pine vole, 
Microtus lusitanicus, n = 51).

Wild small mammal species of the samples were pre-
viously determined by molecular analysis of a short 12 S 
rRNA gene fragment to genetically identify the host spe-
cies (Barão et al. 2022). Fresh samples were immediately 
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transported to the laboratory and kept frozen at -20 °C until 
further analysis.

Sample preparation and RNA extraction

Individual fecal suspensions (10% in phosphate-buffered 
saline, pH 7.2) and 0.2 g sterile silicone microbeads (Pre-
cellys Lysing kits, Bertin Technologies SAS, Montigny-le-
Bretonneux, France) were prepared. Fecal samples were 
shredded with plastic pestles, vortexed for 5 min using the 
cell disruptor Disruption Genie (Scientific industries, Inc., 
Bohemia, NY, USA) and centrifugated at 8,000 × g for 
5 min according to previously described methods (Mesquita 
et al. 2010). Nucleic acid extraction was carried out from 
140 µL of clarified supernatants using the automatic nucleic 
acid extraction machine QIAcube® (Qiagen, Hilden, Ger-
many) and QIAamp® viral RNA mini kit (Qiagen, Hilden, 
Germany). The RNA was eluted in 50 µL of RNase-free 
ultrapure water and kept at -80 °C until further use.

Amplification of HEV RNA

All RNA extracts were tested for HEV RNA by a pangeno-
typic nested RT-PCR assay that targets the open reading 
frame (ORF) 2 region that encodes the viral capsid protein 
of the HEV genome (exclusively for HEV genotypes of spe-
cies Paslahepevirus balayani, amplifying a 467 nucleotides 
(nt)-long genome fragment in the second round spanning 
between nt 5930–6334 (Frías et al. 2021).

RNA extracts were also tested by a broad-spectrum 
nested RT-PCR assay targeting the RNA-dependent RNA-
polymerase (RdRp) gene of the ORF1 region of the HEV 
genome (nt 331–334 ) spanning nt 4285–4616 (numbering 

according to genotype 3 strain Meng accession number 
AF082843), that was developed for detection of novel hep-
eviruses (Johne et al. 2010b). For the first round, Qiagen 
One-Step™ RT-PCR kit (Qiagen®, Hilden, Germany) was 
used for both assays and for the second round, 5 µL of the 
first-round products were used as templates with GoTaq® 
(Promega™, WI, U.S.A.), all according to the manufac-
turer’s instructions. The WHO PEI 6329/10 subgenotype 
3a standard (accession number AB630970, provided by 
the Paul Ehrlich-Institute, Langen, Germany) was used as 
a positive control and RNase-free water as negative con-
trol. Amplification reactions, with the corresponding posi-
tive and negative controls (nuclease – free water), were 
conducted in Bio-Rad T100TM Thermal Cycler. The con-
ditions for first rounds were an initial reverse transcription 
(RT) step for 15  min at 45ºC followed by 3  min at 95ºC 
(enzyme activation, denaturation of template DNA). For 
the pangenotypic nested RT-PCR assay the thermal profile 
includes 40 cycles of 95 ºC for 15 s, 52 ºC for 15 s, and 72 
ºC for 2 s, with a final elongation at 72 ºC for 10 min. For the 
broad-spectrum nested RT-PCR assay the same conditions 
were followed except the annealing temperature was set as 
50 ºC. Both second rounds followed the same conditions, 
excluding the RT step.

If samples were positive for any of the above molecular 
approaches, HEV RNA quantification was also attempted 
using a broad-spectrum real-time RT-PCR (RT-qPCR) assay 
targeting the open reading frame ORF3 region with primers/
probe (TaqMan) as previously described (Jothikumar et al. 
2006). The RT-qPCR was performed using iTaq Universal 
Probes One-Step Kit (Bio-Rad Laboratories, USA) at a final 
total of 20 µL reaction mixture volume in a CFX Connect 
Real-Time thermocycling System (Bio-Rad Laboratories, 

Fig. 1  (A) Map of Portugal. Red and green squares highlight the sam-
pling site of synanthropic and wild small mammals, respectively. (B) 
Location of the 24 sampling units centered in olive grove patches. 
Common names of small mammal species are as follows: wood mouse 

(Apodemus sylvaticus), southwestern water vole (Arvicola sapidus), 
greater white-toothed shrew (Crocidura russula), Cabrera’s vole 
(Microtus cabrerae), Lusitanian pine vole (Microtus lusitanicus) and 
Algerian mouse (Mus spretus)
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USA). The thermal cycling regimen for the RT-qPCR reac-
tion included initial reverse transcription (RT) at 50 °C for 
10 min, followed by a simultaneous step for reverse tran-
scriptase inactivation and the initial denaturation of cDNA 
at 95 °C for 3 min. Subsequently, 45 cycles of amplification 
were carried out, involving denaturation at 95 °C for 15 s 
and annealing/extension at 55 °C for 15 s.

Sequencing and phylogenetic analysis

RT-PCR products were separated by electrophoresis at 
100 V for 40 min on a 1.5 % agarose gel stained with Xpert 
Green Safe DNA gel dye (GriSP®) and documented using 
the ChemiDoc XRS system with ImageLab software (Bio-
Rad, Hercules, CA, USA). Bands of the expected size were 
excised and treated enzymatically to remove unincorpo-
rated primers and nt using Illustra™ ExoProStar™ (Sigma 
Aldrich® Darmstadt, Germany). Amplicons were further 
sequenced in both directions with the dideoxy-chain ter-
mination method using the BigDye Terminator v1.1 Cycle 
Sequencing kit (PE Applied Biosystems, Foster City, CA, 
USA). Sequence editing and multiple alignments were 
performed with the BioEdit software package, version 2.1 
(Ibis Biosciences, Carlsbad, CA, USA). Aligned sequences 
were compared to sequences found in the NCBI (GenBank) 
nucleotide database, retrieved on 1 February 2023 (http://
blast.ncbi.nlm.nih.gov/Blast). Phylogenetic analysis was 
performed using MEGA version X software (Kumar et al. 
2018). The maximum-likelihood (ML) approach was used 
to infer this analysis (Tamura 1992; Kumar et al. 2018), 
and Tamura-Nei model was used to estimate the maximum 
likelihood (ML) bootstrap values using 1000 replicates. The 
Tamura-Nei model was determined by MEGA version X 
(Kumar et al. 2018) as the best replacement. Further typing 
was performed with the HEVnet genotyping tool (Mulder et 
al. 2019) to identify genotypes/subgenotypes of HEV.

Results

From the 330 fecal samples tested, one was positive for 
HEV RNA by the pangenotypic nested RT-PCR assay 
that targets the ORF2 (0.3%; 95% confidence interval, 
CI: 0.01–1.68) (Table  1). No sample was positive using 
the broad-spectrum nested ORF1-targeting RT-PCR assay 
and the in-house broad-spectrum RT-qPCR assay target-
ing the ORF3 region. The HEV RNA positive stool sam-
ple originates from a synanthropic Algerian mouse, which 
represented an occurrence of 1.4% (95% CI: 0.03–7.3) for 
this species when considering both synanthropic and wild 
Algerian mouse and 2.5% (95% CI: 0.06–13.16) for the 
total of the synanthropic samples collected. The respective 
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The first molecular identification of a hepevirus (ratHEV, 
species Rocahepevirus ratti) in rodents was in Norway rat 
feces and liver samples in Germany in 2010 (Johne et al. 
2010a, b). Since then ratHEV strains have been detected 
in rats across at least three continents (Asia, America, and 
Europe), indicating that rats are infected with the virus 
throughout a large geographic range (Reuter et al. 2020). In 
addition, ratHEV has been found in a variety of wild rat spe-
cies, including Norway rats (Rattus norvegicus) and Black 
rats (Rattus rattus) in many European countries (Johne et al. 
2010a; Ryll et al. 2017; Simanavicius et al. 2018; Murphy 
et al. 2019), United States of America (Purcell et al. 2011), 
Hong Kong (Sridhar et al. 2021), Indonesia (Mulyanto et al. 
2014; Primadharsini et al. 2018). Furthermore, ratHEV has 
also been detected in synanthropic rats (Porea et al. 2023), 
and in humans (Rivero-Juarez et al. 2022) from Europe. In 
the present study, ratHEV was not detected in any of the 290 
wild small mammal fecal samples that included one insecti-
vore and five rodent species. Further studies assessing urban 
rats/rodents (Rattus sp.) should be conducted in Portugal in 
order to estimate the zoonotic risk of infection, considering 
the findings in neighboring countries, such as France and 
Spain.

generated consensus sequence was identified as HEV sub-
genotype 3e by Blast search. Phylogenetic analysis based 
on the 467 nt-long partial region of the ORF2 confirmed 
clustering with HEV-3 subgenotype e (Fig. 2), being closely 
related to variants of human (MK167982, from United 
Kingdom) and animal (MT840367, wild boar from Italy) 
origin. Furthermore, pairwise nt sequence similarity of the 
positive sample and the positive control was 81.2%. The 
sequence of HEV detected in this study is available in Gen-
Bank database under accession number OK545865. The 
mean pairwise distances analysis between each reference 
HEV sequences, as recommended for HEV subtyping stud-
ies (Smith et al. 2020), and the positive (51 M) sample is 
described in Table 2. No sample was positive for ratHEV 
RNA.

Discussion

The potential role and impact of small mammals as a HEV 
reservoir is still largely unknown. The present study offers 
the first molecular-based proof of the presence and identi-
fication of the zoonotic HEV-3 in a synanthropic Algerian 
mouse in Portugal.

Fig. 2  Phylogenetic analysis of HEV sequence found in a synanthropic 
Algerian mouse from Portugal. HEV-3 found in this study (OK545865) 
and the closest related variants of human (MK167982, from United 
Kingdom) and animal (MT840367, wild boar from Italy) origin and 

their respective accession numbers are highlighted in bold in the tree 
inferred using the MEGA X software and the Interactive Tree of Life 
(iTOL) based on 50 nucleotide HEV sequences as well as 49 strains of 
various genotypes obtained from GenBank.
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benefit from their surroundings and activities and although 
the uncertainty in how HEV behaves in synanthropic and 
wild small mammals, there is some concern that it could 
spread and infect humans and other species. However, as 
previously mentioned, the HEV positive sample found in 
this study could potentially be result of a spill-over infection 
or of passive viral transit through the intestinal tract, which 
is highly unlikely to be transmitted to humans or animals. In 
a study from Italy, rats inhabiting a pig farm were found to 
have HEV-3e (the same subgenotype found in pigs), high-
lighting the possible involvement of rats in the spread of this 
virus (De Sabato et al. 2020) or at least a spill-over effect 
that enables the tracking of this particular virus strain within 
a specific geographic area. Interestingly, in previous studies, 
HEV-3 RNA was detected in intestinal contents, but not in 
the liver of mice from a pig farm house and was considered 
to be a virus that had entered the intestine from ingested 
feces of pigs rather than infection of mice (Grierson et al. 
2019). In addition, studies show the absence of genotype 
HEV-3 in liver tissue samples from wild rats, supporting the 
argument that rats, like mice, are only accidental hosts of 
HEV (Takahashi et al. 2022). Nevertheless, further inves-
tigations may be required before discarding the possibility 

Nevertheless, in this study, HEV-3 subgenotype 3e was 
detected in the fecal sample of a synanthropic Algerian 
mouse, that goes in accordance to results from previous 
studies that also report this human pathogenic genotype 
in small mammals (Lack et al. 2012). However, no accu-
rate assessment of the variety of hepevirus species/geno-
types circulating in wild small mammals in Portugal can be 
made due to the extremely low number of positive samples. 
Furthermore, the positive sample was identified using the 
pangenotypic nested RT-PCR assay that targets the ORF2 
region that encodes the viral capsid protein of the HEV 
genome and specific to the species Paslahepevirus balay-
ani and not with the broad-spectrum nested RT-PCR assay 
targeting the RdRp gene of the ORF1 region of the HEV 
genome and the broad-spectrum RT-qPCR assay targeting 
the ORF3 region. These differences may be attributed to the 
genetic variability of the virus, which may have hindered 
detection with the other sets of primers.

According to the HEVTool (Mulder et al. 2019) and phy-
logenetic analysis, the HEV strain detected in the Algerian 
mouse was associated with strains that cause more severe 
illness in humans (Subissi et al. 2019). Since synanthropic 
small mammals live in close association with people and 

Pair Wise 
Distance 
(%)

Pair 
Wise 
Distance 
(%)

Accession number|HEV genotypes/subgenotypes 51 M Accession number|HEV 
genotypes/subgenotypes

51 M

FJ457024|1 78.27 FJ998008|3i 84.35
MH918640|1 77.10 AY115488|3j 85.28
M73218|1a 79.44 AB369689|3k 83.88
L08816|1b 78.04 JQ953664|3 L 82.94
X98292|1c 78.97 KU513561|3 m 83.88
AY230202|1d 78.74 FJ906895|3ra 81.31
AY204877|1e 78.04 AB369688|4 78.97
JF443721|1f 78.27 MK410048|4 79.67
LC225387|1 g 80.14 AB197673|4a 79.44
KX578717|2a 77.10 DQ279091|4b 77.80
MH809516|2b 79.67 AB074915|4c 78.74
AB290313|3 88.08 AJ272108|4d 77.57
LC260517|3 84.11 AY723745|4e 79.21
MF959764|3 83.64 AB220974|4f 76.17
MF959765|3 83.64 AB108537|4 g 77.34
MK390971|3 81.78 GU119961|4 h 78.27
KP294371|3 83.88 AB369690|4i 79.21
AF082843|3a 83.41 AB573435|5a 80.56
AP003430|3b 85.75 AB856243|6 77.34
FJ705359|3c 82.94 AB602441|6a 77.80
AF296165|3d 82.89 KJ496144|7 81.07
AB248521|3e 90.65 KJ496143|7a 78.27
AB369687|3f 89.25 MH410174|8 75.93
AF455784|3 g 85.51 KX387865|8a 76.64
JQ013794|3 h 82.48

Table 2  The analysis involved 
50 nucleotide sequences and 
focused on the number of base 
substitutions per site between 
sequences, as well as the mean 
pairwise distances between each 
HEV genotype/sugenotype and 
between 51 M. The final dataset 
contained 428 positions in total
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