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Abstract
A safety-critical system is a system in which the software malfunctioning could result in death, injury, or damage to the

environment. Addressing safety concerns early on at the architecture design level is critical to guide the subsequent life

cycle activities to ensure that the eventual system is reliable. A fundamental approach to address safety at the design level

is the adoption of architectural tactics. It is crucial for safety-critical systems to correctly implement the constraints as

defined by the selected safety tactics. Given the limitations of traditional safety measures, particularly in conducting

thorough analyses of safety tactics at the architectural design level, our motivation is to close this gap by integrating safety

tactics and fault-based mutation testing. This article proposes a systematic approach for assessing the adequacy of test

suites of safety-critical systems based on these architectural safety tactics. Our proposed approach involves the integration

of safety tactics and fault-based mutation testing to comprehensively assess the adequacy of test suites in safety-critical

systems. At the core of our methodology is the adoption of architectural safety tactics, addressing potential issues at the

design level. We leverage fault-based testing, utilizing a dedicated metamodel and domain-specific language (DSL) to

model safety views and their relation to the code. We use a case study to evaluate the effectiveness of our approach using

fault-injection techniques. Our study shows that this systematic approach is feasible and effective for test suite assessment

of safety-critical systems.

Keywords Software safety � Safety-critical systems � Fault-based testing � Domain-specific language � Test suite
assessment � Safety tactics

1 Introduction

Currently, an increasing number of safety-critical systems

are controlled by software and rely on the correct operation

of the software. Aircraft flight control, nuclear systems,

medical devices are well-known examples of safety-critical

systems. In this context, a safety-critical system is a system

in which software malfunctioning could result in death,

injury, or damage to the environment. The software can be

considered as safe, which may not lead to a dangerous or

life-threatening event for the system. In the literature sev-

eral studies have discussed the methods, techniques, pro-

cesses, tools, and models to make the software safe [1–3].

System safety engineering applies engineering and

management principles, criteria, and techniques to opti-

mize all aspects of safety within the constraints of opera-

tional effectiveness, time, and cost throughout all phases of

the system life cycle [4, 5]. Software safety can be
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addressed at different levels in the software development

life cycle. Addressing safety concerns early on at the

software architecture design level is crucial because quality

characteristics such as safety cannot be included after the

software implementation. An essential approach to address

safety at the design level is the adoption of architectural

tactics [6]. A tactic is a design decision for realizing quality

goals at the architectural level. A safety tactic can be

introduced for realizing safety. Wu and Kelly propose, for

example, a set of tactics for software safety [7]. Based on

the point at which faults are addressed for ensuring safety,

we can categorize safety tactics as fault avoidance, fault

detection, and fault tolerance safety tactics [8]. Safety-

critical systems usually use a combination of these tactics

to address the required safety concerns.

Once a safety-critical system is designed, it is crucial to

analyze it for safety requirements before starting the

implementation, installation, and operation phases. It is

critical to ensure that the potential faults can be identified

and cost-effective solutions are provided to avoid or

recover from the failures. One of the most critical issues is

investigating the effectiveness of the applied safety tactics

to safety-critical systems. Several scenario-based software

architecture analysis approaches [9–11] exist in the litera-

ture to analyze the architecture’s quality. Unfortunately,

these approaches are general purpose and do not directly

consider safety concerns, thus fail to provide an in-depth

analysis of the safety tactics.

In this article, we adopt a fault-based testing approach to

analyze the effectiveness of the test suite of safety-critical

systems using safety tactics. The novelties of this study are

pointed out as follows: (1) building a systematic fault-

based testing approach for assessing test suite adequacy

based on architectural tactics and (2) developing Domain

Specific Language (DSL) and tool for the proposed fault-

based testing approach. An essential aspect of fault-based

testing is mutation analysis which involves modifying a

program under test to create mutants of the program. To

apply fault-based testing for assessing the test suite, we first

present a metamodel and a domain-specific language that

models several safety views and their relation to the code.

Mutants are generated for the potential hazards and the

corresponding tactics. The approach results in the impact

analysis of a test suite on the applied tactics. The proposed

approach is illustrated using an industrial case study in the

avionics domain. The case study demonstrates an important

part of the aircraft control platform used in the developed

avionics systems. With the case study, our tool allowed us

to automate this process by removing manual steps for

generating the mutations and running test cases. It also

helped us ensure the safety concerns were properly

addressed in the test cases by focusing on the safety tactics.

The remainder of the article is organized as follows. In

Sect. 2, we present the required background information for

understanding the overall approach. Section 3 provides a case

study thatwe use to illustrate our fault-based testing approach.

Section 4 presents the metamodel and domain-specific lan-

guage for software safety tactics. In Sect. 5, we present the

proposed fault-based testing approach. Section 6 presents our

tool that implements the corresponding approach. In Sect. 7,

we illustrate the proposed approach and the tool using the

industrial case study. We present DSL evaluation in Sect. 8.

Section 9 presents the related work. In Sect. 10, we present

treats to validity and Sect. 11 concludes the paper.

2 Preliminaries

2.1 Safety tactics

Several studies [7, 12, 13] proposed architectural tactics or

patterns for supporting safety design. Safety tactics are

organized in [7, 13] based on fault avoidance, fault

detection, and fault containment.

Fault avoidance aims to prevent faults from occurring in

the system. Simplicity and Substitution are fault avoidance

tactics. Fault detection focuses on monitoring the system

and identifying faults when they occur in the system.

Condition Monitoring, Sanity Check, and Comparison are

tactics for fault detection. Fault containment seeks to limit

the impact of the fault and prevent propagation of the fault.

Fault containment includes Redundancy, Repair, Degra-

dation, Voting, Override, and Barrier tactics. In this study,

we refer to and reuse the tactics discussed in the literature

[13]. Table 1 shows the safety tactics along with their

descriptions.

2.2 Fault-based testing

Fault-based testing is one of the testing approaches which

aims to analyze, evaluate, and design test suites by using

fault data. Mutation testing is one of the common forms of

fault-based testing. It aims to design new test cases by

analyzing the quality of the existing test cases. Mutation

testing involves modifying a program under test to create

variants of the program. Variants are created by making

small changes in the program following a pattern. Mutation

operators are the patterns to change the program’s code,

and each variant of the program is called a mutant. A test

suite is applied to both a mutant and the original program

code. If the original code and mutant behave differently,

the test suite can detect the change between the original

and the mutant program. However, if the original code and

mutant behave the same, the test suite is not adequate to

detect the difference, and it needs to be improved.
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Mutation analysis consists of the following three steps

[14]:

1. Mutation operator selection relevant to faults.

2. Mutant generation.

3. Distinguishing mutants by executing the original

program and each generated mutants with the test

cases.

After test cases are executed on mutated programs, the

mutation score is calculated using the number of live

mutants and the number of killed mutants. If the behavior/

output of a mutant differs from the original program, the

mutant is killed. Otherwise, the mutant is alive. The

mutation score is calculated using eq. (1). If a mutant’s

behavior is the same as the original program, the mutant is

equivalent. Mutation score [15] is used to evaluate the

adequacy of the test cases. The mutation score shows the

effectiveness of test cases in terms of their ability to detect

injected faults. A higher mutation score means a higher

quality of test cases.

MutationScore ¼ # of killed mutants� 100

# of total mutants�# of equivalent mutants

ð1Þ

In the context of safety-critical systems, architectural-level

mutation can be achieved by introducing mutations to the

system’s overall design, including changes to safety-criti-

cal components, alterations to communication protocols,

and modifications to the system architecture. The goal is to

assess how effectively the testing approach and test suite

can identify and handle faults in the architectural design

that may impact system safety.

3 Case study

This section describes a case study to illustrate our

approach in subsequent sections. The case study is taken

from an open-source software called Openpilot [16]

implemented using Python and C??. Based on this study

[17], it is one of the most popular open-source software in

the safety-critical system domain. Openpilot is open-source

driver assistance system developed by Comma.ai. It has

Automated Lane Centering, Forward Collision Warning

and Lane Departure Warning functionalities supporting a

variety of car makes and models. It also has Driver Mon-

itoring capability to alert distracted and asleep drivers.

Openpilot consists of different components to communi-

cate with the car and sensors, decide on the state of gas,

brake, and steering, and process the sensor data to provide

a safer driving experience for the drivers. Their high-level

component diagram is given in [18]. In this study, we focus

on Driver Monitoring capability which evaluates the data

coming from sensors and generates alerts for drivers for a

safer driving experience.

Table 1 List of safety tactics

Safety tactic Category Description

Simplicity Fault avoidance Keep the system as simple as possible to avoid faults.

Substitution Fault avoidance Use more reliable components which are well-proven in safety domain to avoid

faults.

Sanity check Fault detection Check whether a system state or value remains in a valid range defined in system

specification.

Condition monitoring Fault detection Check whether a system value remains in a valid range compared to a more reliable

reference value. Reference value is computed at run-time and it is based on system

input values and is not pre-known value from the system specification.

Comparison Fault detection Compare the outputs of redundant systems to detect faults.

Diverse redundancy Fault containment Develop redundant components using different implementations based on the same

system specification.

Replication Redundancy Fault containment Develop redundant system using the same implementation.

Repair Fault containment Bring a failed system back to its normal and healthy state and restore it.

Degradation Fault containment Brings a system with an error into a state with reduced functionality in which the

system still maintains the core safety functions.

Voting Fault containment Mask the failure through choosing a correct result from redundant systems.

Override Fault containment Choose the output of redundant subsystems by preferring one subsystem or one

output state over another.

Barrier Fault containment Protect a subsystem from influences or influencing other subsystems.
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In Fig. 1, we presented the high-level component dia-

gram of Openpilot that we focused on this study. The

overall component diagram for the Openpilot can be found

in [18]. AlertManager is a module to process and manage

the alerts. Events is a base module which defines events and

alerts in Openpilot environment. Controlsd is a main

module to combine wide range of inputs from sensors and

car state and produces car-specific Controller Area Net-

work (CAN) messages. CAN is a communication protocol.

Electrical units and devices in the car communicate

through CAN messages. Controlsd communicates with

AlertManager to publish proper alerts to the user based on

the inputs it receives.

For the case study, we select displaying an alert to the

user when an unusual event occurs. As explained in [19],

to ensure the safety of the driver, hazards and safety

requirements should be identified and addressed accord-

ingly. Hazard is a potentially dangerous situation that can

result in or contribute to an accident [5]. For the case study,

the hazard is displaying an incorrect alert or no alert to the

user. The possible causes of this hazard are a loss of/error

in the car sensors, a loss of/error in communication with

the car sensors, an error in the display device, and an

incorrect evaluation of the data coming from sensors. The

possible consequence of this hazard is identified as a car

accident. The severity of the hazard is catastrophic since

the possible consequence of the hazard is a car crash.

Based on this hazard, we define the safety requirements in

Table 2.

Openpilot uses several safety tactics in their imple-

mentation to meet the defined safety requirements. In order

to implemented SR5, they use Sanity Check tactic by

checking the event type to decided whether it is an alert or

not. If it is not an alert, they do not show it to the user. To

implement SR6, they use Condition Monitoring and Sanity

Check tactics to monitors the alerts’ state and to decide

which alert has a high priority to be shown to the user.

Table 3 summarizes the rest of the applied tactics for the

case study, along with the safety requirements.

4 DSL for safety

This section presents the metamodel and domain-specific

language (DSL) for software safety to represent safety-

related concepts. After a thorough domain analysis, our

earlier work [8] derived a metamodel to express safety

design concepts. In this work, we enhanced the earlier

metamodel to support our fault-based testing approach. We

updated the previous metamodel by adding Architecture To

Code Relation part to show concepts and relations used in

the fault-based testing approach to generate mutations and

running test cases. We present the updated metamodel in

Fig. 2.

The first part (Safety-Critical) of the metamodel

includes the concepts present in the architecture design.

Three types of architectural elements are distinguished as

Monitoring Element, Safety-Critical Element, and Non-

Safety Critical Element. Monitoring Element monitors one

or more Safety-Critical Elements by checking their status.

If there is a problem in a Safety-Critical Element, the

Monitoring Element can react by stopping/starting/restart-

ing/initializing the related Safety-Critical Element. Safety-

Critical Element presents the element which includes

safety-critical operations. A Safety-Critical Element can

consist of one or more Safety-Critical Elements. We rep-

resented this relation in the figure using is element of. A

Safety-Critical Element has States, including Safe State. If

a fault is detected, which can lead to a hazard in the system

and there is a safe state, the system can take itself to the

safe state to prevent the hazard. In this regard, we have

defined Safe State for defining safe states for Safety-Criti-

cal Elements. A Monitoring Element or Safety-Critical

Element applies Safety Tactics in order to ensure the safety

of the system.

The second part of the metamodel includes the concepts

related to applied safety tactics in the design. We have

identified the well-known safety tactics as fault avoidance,

fault detection, and fault tolerance. Fault avoidance tactic

aims to prevent faults from occurring in the system. When

a fault occurs, the fault is detected by applying fault

detection tactics. Fault tolerance is the ability of the system

to continue correctly and maintain a safe operational con-

dition when a fault occurs. Therefore, applied Safety Tactic

can be Fault Avoidance Tactic, Fault Detection Tactic, or

Fault Tolerance Tactic to deal with faults.

The third part of the metamodel includes the concepts

which are related to hazards in the system. A Hazard

describes the presence of a potential risk situation that can

result or contribute to the mishap. A Hazard causes some

Consequences. Safety Requirements are derived from

identified Hazards. For the safety-critical systems, a thor-

ough hazard analysis should be done to discover potential

Fig. 1 High-level architectural diagram of the case study
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hazards and identify their root causes. Fault Tree Analysis

[1] is one of the most well-known and widely used methods

for hazard analysis. It aims to analyze a design for possible

faults that could lead to hazards in the system using Boo-

lean logic. We define FTA Node, Operator, and Fault to

conducting Fault Tree Analysis. FTA Nodes, Faults, and

Operators are the elements of a fault tree. Operator is used

to conduct Boolean logic. Operator can be AND or OR.

One or more FTA Nodes cause a Hazard.

The last part of the metamodel is Architec-

tureToCodeRelations defined in the fault-based testing

process for mutant generation and test case run steps. As

presented in Fig. 2, ArchitectureToCodeRelations consists

of Implementation Relations which can be Module-Class

Relation or Class-Test Case Relation. Module-Class

Relation describes which Safety-Critical Elements defined

in Safety-Critical View consists of which classes in the

program code. Class-Test Case Relation defines which

classes in the program code should be tested with which

test cases. Based on the safety metamodel presented in

Fig. 2 we provide a domain-specific language (DSL) to

represent the concepts in the safety domain. The EBNF

grammar [20] of this DSL is presented in 12.. In the code

snipped below, we present an example definition of a

hazard using our DSL. It illustrates the hazards ‘‘displaying

an incorrect alert or no alert to the user’’ and ‘‘violating

maintaining a safe distance’’ from the case study that we

explained in Sect. 3.

Table 2 Safety requirements for the selected hazards

Safety

requirement

Explanation

SR1 Events should be evaluated at least from two different components.

SR2 If only one of the components produces an event, the incoming event should be evaluated and a warning should be generated.

SR3 If both components cannot produce an event, the error should be generated.

SR4 The two events should be compared and if they are not same, always the event coming from the selected source should be

displayed along with a warning.

SR5 If an event is not an alert, do not show it as an alert.

SR6 If there are multiple alerts that occurring at the same time, show the most recent and high prioritized event as a current alert.

SR7 If an alert is not active, even if it is the most recent and high prioritized one do not show it as a current alert.

Table 3 Applied safety tactics to case study

Safety

req.

Safety tactic and category Tactic description

SR1 Replication redundancy (fault

containment)

The events are evaluated by two different Alert Managers where both has the same logic to

evaluate events.

SR 2 Condition monitoring (fault detection)

voting (fault containment)

The health of both Alert Managers should be periodically monitored to see whether they

are healthy or not. If one of them is failing, the event from the other manager will be

displayed.

SR3 Condition monitoring (fault detection)

repair (fault containment)

The health of both Alert Managers should be periodically monitored to see whether they

are healthy or not. If there is a failure on any of the managers, they will be put in repair

mode. If both of them are failing, an error will be generated and no alert will be shown.

SR 4 Comparison (fault detection) override

(fault containment)

If the events produced by each Alert Manager are not same, always show the event coming

from Alert Manager 1 and display a warning.

SR5 Sanity check (fault detection) The given event is checked if it is meets the criteria for representing an alert in the

Openpilot environment.

SR6 Sanity check (fault detection) comparison

(fault detection)

All the existing alerts’ states are monitored and validated against the pre-defined criteria to

decide which alert is going to be shown to the user.

SR7 Sanity check (fault containment) Monitor the alert’s state and if it is not active do not show it to the user.
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HazardView Openpilot_HazardView{
Elements {

hazard displayingAnIncorrectAlertToUser;

safetyRequirement doNotDisplayNonAlertEvents;
safetyRequirement showHighPriAndMostRecentAlert;
safetyRequirement doNotShowExpiredAlerts;

consequence carAccident;
}
Relations {

doNotDisplayNonAlertEvents ,
showHighPriAndMostRecentAlert ,
doNotShowExpiredAlerts derivedFrom displayingAnIncorrectAlertToUser;

displayingAnIncorrectAlertToUser causedBy incorrectAlert;
}

}

5 Fault-based testing approach

In the previous sections, we describe the metamodel and

the corresponding DSL for modeling safety-critical archi-

tectural concerns and the relation to the implementation.

Following up on this, Fig. 3 shows the process of our fault-

based testing approach.

Our fault-based testing (FBT) approach leverages the

DSL, and we use mutation testing to evaluate the test

suite’s quality. Within our approach, we enhanced the

classical method for mutation testing with

• providing a guideline for how to select and decide on

mutation operators for applied safety tactics

• automating the mutation generation (for implementa-

tion-level mutations), and test case execution

• defining a scope for the testing process by only focusing

the safety requirements and the safety tactics

The approach consists of several steps: identifying safety

requirements and safety tactics, building a safety model

and mutation model, generating mutants, running the test

suite on the generated mutants, and evaluating the results.

To build a safety model and mutation model, we first need

to define the safety concerns in the system. For this, we

start our process by identifying safety requirements and

safety tactics. In the following, we explain our proposed

approach in detail.

Fig. 2 Metamodel for safety DSL
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While the time and effort required for each step can vary

based on the complexity of the safety-critical system and

the specific project requirements, we can provide a general

estimation based on our experience. Conducting hazard

analysis may take approximately 8 h, involving a team

effort of 2 engineers for 4 person-hours each. The process

of deriving safety requirements might require around 6 h

and a team effort of 1 safety engineer and 1 domain expert,

each contributing 3 person-hours. Manual creation of

safety models could take approximately 4 h, with a team

effort of 2 engineers contributing 2 person-hours each.

Fig. 3 Process of proposed fault-based testing approach
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5.1 Identifying safety requirements

The first step of our proposed approach is identifying the

safety requirements of the system. Safety requirements are

defined based on the hazards and risks in the system [21].

Hazard analysis is performed to identify the hazards in the

system by building a list of all hazards, their causes, con-

sequences, and severity. Hazard severity levels are defined

as catastrophic, critical, marginal, or negligible in [21].

Hazard identification activity is performed with domain

experts (avionics engineers and pilots), system engineers,

and safety engineers. The risks in the system are defined by

the estimation of the probability of occurrence of each

hazard. In [21], occurrence definitions are classified as

frequent, probable, occasional, remote, or improbable.

Based on the hazard severity and hazard occurrence class

identification, risks should be assessed and categorized as

high, serious, medium, or low. After the risk definition, a

risk assessment should be conducted using fault tree

analysis, event tree analysis, simulation, etc. Safety

requirements can be derived using identified hazards and

risks. In the following subsections, we use ‘‘maintaining a

safe distance with the leading car’’ as an example safety

requirement. For this requirement, a hazard would be

‘‘failing to maintain a safe distance on autopilot mode for

autonomous driving cars’’.

5.2 Identifying safety tactics

As a second step, safety tactics should be defined to satisfy

identified safety requirements. In Table 1, we provided the

list of well-known safety tactics that can address safety

concerns. Safety tactic(s) should be determined to avoid

failures and hazards for each identified safety requirement.

Table 1 can be leveraged as a guideline to determine safety

tactics for the hazards defined in the identifying safety

requirements step. Based on the example we defined Sec-

tion in 5.1, below are the example safety tactics that can be

defined to avoid this hazard using Table 1:

• Sanity Check: Check the distance with the leading car

and ensure that it stays within the defined threshold

distance.

• Diverse redundancy: Calculate the distance with the

leading car from at least two different software

components to reduce the risk of miscalculation.

5.3 Building safety model

The next step is creating a safety model using the safety

DSL. We use the safety model to generate mutants and run

test cases. Hazard view, safety tactic view, and safety-

critical view should be defined in order to construct a safety

model.

5.3.1 Hazard view

The hazard view should include the safety requirements

and the hazards derived from the safety requirements in the

first step of our FBT approach. In addition to hazards, the

model should contain failures and faults that the identified

hazards can cause. The code snippet below shows a simple

hazard view for the example hazard we have defined in the

previous subsections.

HazardView HazardViewExample{
Elements {

hazard failingToMaintainSafeDistance;
safetyRequirement maintainSafeDistance;
consequence carAccident;

fault lossOfCarSensor;
fault errorInCarSensor;
// more faults ...

faultTree incorrectDistanceCalculation(
// fault tree definition

);
}

Relations {
maintainSafeDistance derivedFrom failingToMaintainSafeDistance;
failingToMaintainSafeDistance causedBy incorrectDistanceCalculation;

}
}
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5.3.2 Safety tactic view

The safety tactic view consists of the safety tactics iden-

tified in the second step of our FBT approach. The safety

tactic view should contain the information on ‘‘Sanity

Check’’ and ‘‘Diverse Redundancy’’ tactics we defined in

Sect. 5.2. The code snippet below shows a simple safety

tactic view for the example scenario we have defined.

5.3.3 Safety-critical view

The safety-critical view describes the architectural com-

ponents of the system from a safety perspective. The code

snippet below shows a simple safety-critical view for the

example scenario we have defined. In this example, since

in the system we apply diverse redundancy tactic, we have

two distinct components to calculate the distance between

the leading car. This view also includes other safety-criti-

cal, non-safety-critical and other elements in the system.

5.3.4 Implementation relations view

For the mutant generation and test case execution steps,

architecture to code relations should also be defined. The

code snippet below shows a simple architecture to code

relationships view for the example scenario we have

defined. In this example, with module-class relations, we

indicate that the ‘‘distanceCalculatorComponent1’’

includes ‘‘Distance’’ and ‘‘CalculatorComponentA’’

implementation classes/files. And with class-test case

relations, we indicate that the tests for ‘‘Distance’’ class/file

lives in test suite ‘‘distanceTests’’ where the tests for

‘‘CalculatorComponentA’’ lives in test suites ‘‘calcula-

torTests’’ and ‘‘componentATests’’.

SafetyCriticalView SafetyCriticalViewExample{
Elements {

safetyCritical distanceCalculatorComponent1{
criticalityLevel = B;
implementedSafetyRequirements = maintainSafeDistance;
implementedTactics = redundantDistanceCalculator;

};

safetyCritical distanceCalculatorComponent2{
criticalityLevel = B;
implementedSafetyRequirements = maintainSafeDistance;
implementedTactics = redundantDistanceCalculator;

};

// other elements
}
Relations {

// elements relations

}
}

SafetyTacticView SafetyTacticsViewExample{
faultContainment redundantDistanceCalculator {

type = "DiverseRedundancy"
containedFaults = // faults

};

faultDetection safeDistanceCheck {
type = "SanityCheck"
detectedFaults = // faults

};
}
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5.4 Mutant generation

In order to generate mutants, we need to know what part of

the system needs to be changed and how its behavior is

going to be changed. With safety models, we already define

what part of the system needs to be changed by focusing on

safety tactics and the safety-critical components in the

system. We introduce a mutation model for each safety

tactic to define the behavioral change. Each mutation

model describes the possible ways of changing the

behavior of the applied safety tactic. Using these models,

the mutation generation can be achieved. Each row in

Table 4, explains a mutation model for well-known safety

tactics listed in Table 1. Each mutation model is defined

based on the tactic properties column. If the safety tactic is

addressed on the implementation (code) level, the mutation

is also applied on implementation-level. Where if the

safety tactic is addressed on the component level, the

mutation is applied at architectural-level. Table 4 also

includes common mutation operators related to each

implementation-level mutation model. If we take the

example safety tactics we defined in Sect. 5.2, Sanity

Check tactic requires having a range check on a system

state or value to check their validity. The mutation model

for this tactic would be on the implementation-level where

we mutate the tactic implementation by adding or remov-

ing the arithmetic, relational and conditional operators. If

we consider Diverse Redundancy tactic, it requires having

redundant components which they have different imple-

mentations. The mutation model for this tactic would be on

the architectural-level where we add redundant compo-

nents to have each component have the same implemen-

tation. Table 4 can be used as a guideline to build mutation

models for each safety tactic defined for the given safety-

critical system. The relations between safety tactics,

mutation models and mutation operators in Table 4 are

addressed in our tool which is presented in Sect. 6.

There are several tools in the literature to generate

implementation-level mutants. MutPy is [22] is one of the

mutation testing tool for Python 3.3? for generating

implementation-level mutants automatically. We use Mut-

Py’s guideline while selecting the proper mutation opera-

tors for the safety tactics that we applied to our case study.

We have a code generation process where it provides an

automated way for creating implementation-level muta-

tions. The code generation process uses the mapping

between safety tactic and MutPy mutation operator pre-

sented in Table 4. For the code generation process, we have

leveraged the code generator provided by Xtext framework

[23]. Xtend [24] is part of the Xtext framework, and it is

used for model-to-model or model-to-text transformation.

We used Xtend to generate a code from our safety model

(model-to-text transformation). The code generator is part

of the tool we developed which is presented in Sect. 6. For

the code generation process, we need the parts of the

program code are going to be mutated and what type of

mutation is going to be applied. The code generation pro-

cess extract this information from the safety model of the

system. Below are the steps for generating implementation-

level mutations within our tool.

1. Find applied safety tactic(s) for each safety require-

ment using the hazard and safety tactic view. Create a

mapping between safety requirement and associated

safety tactics.

2. Find safety-critical modules for each safety tactic using

the safety-critical view and create a mapping between

them.

3. Find implementation files/classes for each safety-

critical modules from implementation relations view

and create mapping between them.

4. Find test suites for each implementation file/class from

implementation relations view and create mapping

between them.

ImplementationRelations {
ModuleClassRelations {

distanceCalculatorComponent1 composesOf = {Distance , CalculatorComponentA };
distanceCalculatorComponent2 composesOf = {Distance , CalculatorComponentB };

};

ClassTestCaseRelations {
Distance testWith = {distanceTests };
CalculatorComponentA testWith = {calculatorTests , componentATests };
CalculatorComponentB testWith = {calculatorTests , componentBTests };

};
}
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Table 4 Mutation model for safety tactics

Safety tactic Tactic properties Mutation model

Simplicity N/A N/A

Substitution - Using more reliable components - Architectural-level mutation: Replace the components with

faulty components

Sanity check - Checking the system state or value to see if it remains within

a valid range determined in the system specification

- Implementation-level mutation: Mutate the implementation of

checking logic by replacing, adding or removing the

arithmetic, relational and logical operators Mutation

operators: Arithmetic operators (?, -, *, =, ==, ,̂ %, unary ?

and unary -), Logical operators ( &&, ||, !), Relational

operators (\, � ,[, � , ! ¼, ¼¼)

Condition

monitoring

- Checking the system state or value to see if it remains within

a valid range calculated at run time - Having a component

for monitoring

- Mutate the implementation of checking logic by replacing,

adding or removing the arithmetic, relational and logical

operators Mutation operators: Arithmetic operators (?, -, *, =,
==, ,̂ %, unary ? and unary -), Logical operators ( &&, ||, !),

Relational operators (\, � ,[, � , ! ¼, ¼¼) - Architectural-

level mutation: Replace the monitoring component with the

faulty one

Comparison - Comparing the values from redundant components - Implementation-level mutation: Mutate the implementation of

comparison logic by replacing, adding, removing the

relational and logical operators Mutation operators: Logical

operators ( &&, ||, !), Relational operators (\, � ,[, � , ! ¼,

¼¼)

Diverse

redundancy

- Having different implementations for redundant components

or subsystems

- Architectural-level mutation: Replace the redundant

component(s) with a component which has a same

implementation of the primary component.

Replication

redundancy

- Having same implementation for redundant components or

subsystems

- Architectural-level mutation: Replace the redundant

component(s) with a component which has different

implementation from the primary component.

Repair - Having a component for repairing the failed components - Architectural-level mutation: Replace the implementation of a

repairing component with a component that has missing

functionalities or a faulty one

Degradation - Having a component that brings the system in a state with

reduced functionalities but has the core safety functions

- Architectural-level mutation: Replace the implementation of a

degradation component with a component that has missing

functionalities or the faulty one

Voting - Having a component that chooses the majority of the output

values as output

- Implementation-level mutation: Replace the implementation

of the voting component as to select output value randomly.

There is no mutation operators suggested for this, this requires

a domain knowledge of the system to mutate the program

code.

Override - Having a component that chooses the output of redundant

components by preferring one output over another

- Implementation-level mutation: Replace the overriding logic

by selecting the output value from one of the components

other than the preferred one. There is no mutation operators

suggested for this, this requires a domain knowledge of the

system to mutate the program code.

Barrier - Having a barrier component for protecting a component from

influences or influencing other components

- Architectural-level mutation: Replace the barrier component

with one that allows the components to have an effect on each

other.
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Pseudo code for mutant generation:

The code generation process uses the mapping between

safety tactics and mutation models defined to decide on the

mutation behavior. The mutation model tells us what type of

mutations are going to be applied. If the mutation is at archi-

tectural-level, the mutation generation needs to be performed

manually. On the other hand, for the implementation-level

mutations, our tool generates a code snippet with themutation

operators defined in Table 4 so that mutants can be generated.

In order to get the parts of code to be mutated for imple-

mentation-level mutations, our tool extracts the module-class

relations and test classes-class relations from Architecture To

Code Relations for the safety-critical elements we have

obtained. These relations help us to get the implementation

details such as module, the class, and the test class. This

information indicates the parts of the code are going to be

mutated. For each safety tactic in the system, Python code is

generated using the extracted information. The generated

code is skeleton code which has the required code to generate

mutants and run test cases by executing related methods from

MutPy. We provide the mutation operators to the skeleton

code and run the complete code with the original program

code. Each selected mutation operator is switched with the

operator in the original code by MutPy, and mutants are

generated. Architectural-level mutation requires adding,

removing, or modifying a component. Since it requires

implementation-specific knowledge, it can be achieved by

updating the componentmanually, or this process can be fully

or partially automated depending on the case.

Considering the example scenario we provided in pre-

vious sections, the mutation model for the SanityCheck

tactic is on the implementation level and it requires

replacing, adding or removing the arithmetic, relational and

logical operators in the program code.

5.5 Running test cases on the mutants
and mutation score evaluation

When we have the mutants generated, as a next step, the

test cases are run on the mutants to assess the quality of the

test suite. Our study focuses on evaluating the quality of

the existing test suite. From this perspective, we use the test

suite implemented during the system development. Our

approach does not include a process for generating test

cases. For implementation-level mutations, this step is also

automated. Test cases are run by executing the generated

code. For the architectural-level mutations, we run the test

cases manually. Test suite evaluation is performed on the

implementation level.

Based on the results of the test case execution step, we

calculate the mutation score and evaluate it. If there is an

alive mutant (not killed by any test cases), we add new test

cases to handle the alive mutants. This process is repeated

until all the mutants are killed.

6 Tool

In this section, we present the tool that we developed (i.e.,

Safety DSL) [25] in the Eclipse environment to define

safety models using safety DSL and the Python script to

apply a fault-based testing process.

We defined the grammar of safety DSL usingXtext [23], a

language development framework provided as an Eclipse

plug-in. After defining our DSL in Xtext, we wrote our code

generator using Xtend provided in Xtext framework for the

safety DSL. Xtext and the corresponding code generator

create the parser and runnable language artifacts. From these

artifacts, Xtext generates a full-featured Eclipse text editor.

Figure 4 shows the snapshot of the Eclipse text editor for our

case study. As explained in the previous section, for the

mutant generation and test case execution steps, an existing

open-source Python project MutPy is used. MutPy provides

mutation operators for the mutant generation. Additionally,

it enables to execution of predefined test cases on mutated

program code. The Python script is generated during the code

generation process to mutate the program code and execute

test cases leveraging MutPy.

7 Case study evaluation

This section explains the application of our fault-based

testing approach and presents the results by using an

industrial case study described above. We applied the
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process shown in Fig. 3. In the following, we explain the

application of each step.

7.1 Build Safety Model

As described in Sect. 3, we selected displaying an alert to

user when an unusual event occurs hazard and identified

safety requirements as shown in Table 2. Later, we defined

the corresponding safety tactics and presented them in

Table 3. In order to address the safety tactics we defined,

we leveraged the part of Openpilot open-source software

explained in Sect. 3 and built a case study. Figure 5 shows

the overall high-level architecture diagram of our case

study. We added another AlertManager (AlertManager2) to

address Replication Redundancy defined in 3 for SR1.

Table 5 presents the links to the Openpilot module asso-

ciated with the component shown in Fig. 5.

These are the first two steps of the proposed fault-based

testing approach. As a next step, we built the safety model.

For defining the safety-critical view, firstly, we identified

our architectural elements. AlertManager1 and AlertMan-

ager2 shown in Fig. 5 are responsible for processing alerts.

Each AlertManager receives the alert data from Controls.

Controls read the alert data from car sensors using CAN

protocol. If a warning or should be generated, AlertMan-

agers notifies the Controls through commands relation. If a

fault occurs in AlertManager1 and AlertManager2, they

report the fault to Controls through reportsFault relation.

For condition monitoring, voting, and recovery tactics, we

added AlertManagerMonitor. AlertManagerMonitor moni-

tors AlertManager1 and AlertManager2 components. It

detects the failure when one of these managers fails and

recovers from failures by stopping/starting/initializing the

failed modules.

We built a safety model by using safety DSL explained

in Section 4 according to the case description. We defined

hazard view, safety tactic view, and safety-critical view.

Fig. 4 Tool for safety DSL

Fig. 5 High-level architectural diagram of the case study
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For the sake of simplicity, we present a small part of the

code snippet from the safety-critical view below. Hazard

view and safety-tactic view are created similarly using the

safety DSL.

Additionally, we defined implementation relations for

the mutant generation and test case run steps. Module-

Class Relations shows which safety-critical module con-

sists of which implementation classes, Class-Test Case

Relations shows which implementation class should be

tested with which test case classes. We present the archi-

tecture to code relations in the code snippet below.

Architecture to code relations provides a mapping between

the module defined in the architectural model and the class

implemented in Java. Also, they map the implementation

SafetyCriticalView Openpilot_Safety_Critical{
Elements {

monitor alertManagerMonitor {
implementedTactics = healthCheckForAlertManager , recoverAlertManager

};

safetyCritical alertManager1{
criticalityLevel = B;
implementedSafetyRequirements = showHighPriAndMostRecentAlert ,

evaluateEventsWithTwoComponents;
implementedTactics = checkAlertStates , compareAlertsTimeAndPriority ,

alertManagerReplica;
};

safetyCritical alertManager2{
criticalityLevel = B;
implementedSafetyRequirements = showHighPriAndMostRecentAlert ,

evaluateEventsWithTwoComponents;
implementedTactics = checkAlertStates , compareAlertsTimeAndPriority ,

alertManagerReplica;
};
safetyCritical controlsd{

criticalityLevel = B;
implementedSafetyRequirements = doNotShowExpiredAlerts ,

oneEventCannotBeProduced , bothEventsCannotBeProduced , twoEventsAreDifferent
;

implementedTactics = checkIfAlertIsActive , alertManagerSelectAlert ,
compareAlerts , alertManagerVoting;

};
safetyCritical events{

criticalityLevel = B;
implementedSafetyRequirements = doNotDisplayNonAlertEvents;
implementedTactics = eventTypeCheck;

};
}
Relations {

alertManagerMonitor monitors alertManager1 , alertManager2;
alertManagerMonitor stops alertManager1 , alertManager2;
alertManagerMonitor starts alertManager1 , alertManager2;
alertManagerMonitor inits alertManager1 , alertManager2;

controlsd reads alertManager1 , alertManager2;
controlsd commands alertManager1 , alertManager2;
alertManager1 reportsFault controlsd;
alertManager2 reportsFault controlsd;

}
}

Table 5 High-level architectural component along with Openpilot

module

Component Openpilot Mmodule - Github Link

Events events.py

Alert Manager1 alertmanager1.py

Alert Manager2 alertmanager2.py

Alert Manager monitor alertmanagermonitor.py

Controls controlsd.py
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classes and test classes. For example, the code snippet

shows that alertManager1 has the implementation in

alertManager.py in module-class relations. In the next

section, class-test case relations show that the test cases for

alertManager.py is implemented in test_alerts.py,

test_state_machine.py, test_alertmanager.py. The com-

plete safety model for our case study can be found in [25].

7.2 Identify and create mutants

In this step, we identified mutants based on the safety

tactics that we implemented in our case study. Based on the

mutation model we introduced in Table 4, we determined

the mutants and presented them in Table 6. Table 4

explains the action item required to taken for each safety

tactic. For example, for SR1, we have Replication

Redundancy as a safety tactic in which we have

AlertManager1 and AlertManager2 components as an

application of this tactic. Based on the guideline we have in

4 we defined specific mutation models for each safety tactic

we defined for the safety requirements.

We used the safety model and the selected mutation

operators as inputs to our tool to create skeleton code for

generating mutants for method-level mutation generation.

The skeleton code includes the required Python code for

mutant generation and execution of test cases. A sample

code snippet is shown in below:

This code snippet includes the mutant generation code

for the Sanity Check tactic for the module Controls. The

mutation operators that we have in the above code snippet

are AOD (Arithmetic Operator Deletion), AOR (Arith-

metic Operator Replacement), COI (Conditional Operator

Insertion), COD (Conditional Operator Deletion), ROR

(Relational Operator Replacement). LOR (Logical Opera-

tor Replacement), LOD (Logical Operator Deletion). COI

and COD are works with conditional operators like &&

(and), k (or), & (bit-wise and), j (bit-wise or), (̂xor), ! (not)

where ROR is related to relational operators \ (greater

than),[ (less than),\= (greater than or equals),[= (less

than or equals), == (equals), != (not equals). All of the

details on these operators can be found in [22].

For component-level mutation generation, we manually

modified the code parts in the implementation of the case

study to reflect mutations.

7.3 Run test cases

The next step is executing test cases on mutant codes. Test

case generation is performed by generated code for

method-level mutants. As shown in Implementation Rela-

tions, controlsd.py should be tested with test_state_ma-

chine test class. Based on the generated code, test cases are

mut.py -t controlsd.py -u selfdrive/controls/tests/test_state_machine.py
-o AOD AOR COD COI ROR LOR LOD --report-html Report-controlsd

ImplementationRelations {
ModuleClassRelations {

alertManagerMonitor composesOf = { selfdrive.controls.lib.alertmanagermonitor };
alertManager1 composesOf = { selfdrive.controls.lib.alertmanager };
alertManager2 composesOf = { selfdrive.controls.lib.alertmanager2 };
events composesOf = {selfdrive.controls.lib.events };
controlsd composesOf = { selfdrive.controls.controlsd };

};

ClassTestCaseRelations {
selfdrive.controls.lib.alertmanagermonitor testWith = { selfdrive.controls.lib.

tests.test_alertmanagermonitor };
selfdrive.controls.lib.alertmanager testWith = { selfdrive.controls.tests.

test_alerts , selfdrive.controls.tests.test_state_machine , selfdrive.controls.
lib.tests.test_alertmanager };

selfdrive.controls.lib.alertmanager2 testWith = { selfdrive.controls.tests.
test_alerts , selfdrive.controls.tests.test_state_machine , selfdrive.controls.
lib.tests.test_alertmanager };

selfdrive.controls.lib.events testWith = { selfdrive.controls.lib.tests.
test_alertmanager };

selfdrive.controls.controlsd testWith = { selfdrive.controls.tests.
test_state_machine };

};
}
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executed on mutants for each test class, and the results are

then collected to generate a report.

7.4 Results

The last step is the generation of the report. When the test

cases are executed in Sect. 7.3, results are collected, and

the code part is called to generate a report. The report

includes the classes under test, test case classes, mutation

operators, test results (fail/pass), related faults, and related

safety tactics. Tables 7, 8, 9, 10, 11, 12, and 13 show the

results for our case study along with the mutation score.

They also include details of mutant generation (the total

number of lines of the mutated code, mutation model, the

total number of generated mutants, the total number of

alive mutants, and the total number of killed mutants).

While calculating the mutation score, equivalent mutants

should be determined. If a mutant semantically behaves

precisely like the original program, the mutant is equiva-

lent. We manually checked the generated mutants to see if

they behave like the original code to detect equivalent

mutants. This process can be improved by using the

existing approaches proposed in several studies, such as

[26–28]. Since the original program passes all of the test

cases and the killed mutant is a mutant that failed on at

least one of the test cases, a killed mutant cannot be an

equivalent mutant. In this regard, we only checked the live

mutants to see if any of them is an equivalent mutant. We

included the number of equivalent mutants as another

column in the tables. We calculated the mutation score

using the formula presented in Sect. 5.

Tables 7, 10, 11 and 13 show the results for SR1, SR4,

SR5 and SR7 respectively. For all of these, the mutation

score is 100, no further action is required.

Table 8 presents the mutation results for SR2. For

Condition Monitoring and Voting tactic, there are 10

mutants generated and 8 of them killed. When we revisited

the test cases for the Condition Monitoring tactic, we

observed that some cases were not considered for this

tactic. The test cases were missing some of the edge cases

for checking the state of each AlertManager. We added

three more test cases to cover all of the cases. With the

complete test suite, all of the mutants were killed, and we

obtained a mutation score of 100.

Table 9 presents the mutation results for SR3. For

Condition Monitoring and Repair tactic, there are 11

Table 7 Mutation Results for SR1

Lines of

mutatedcode

Total

testcases

Mutation

model

Total

generatedmutants

Equivalentmutants Alivemutants Killedmutants Mutation

score(%)

Alert

Manager1

37 3 Replication

redundancy

4 0 0 4 100

Alert

Manager2

37 3 Replication

redundancy

4 0 0 4 100

Table 6 Identifying Mutant Model for Case Study

Safetyrequirement Safety tactic Mutation model

SR1 Replication

redundancy

Component level: Replace the implementation of alert managers such that they have different

implementations.

SR2 Condition

monitoring voting

Method level: Use mutation tool to generate mutations of corresponding code part for

AlertManagerMonitor Component level: Create the mutations of the AlertManagerMonitor as to

have faulty voting behavior

SR3 Condition

monitoring repair

Method level: Use mutation tool to generate mutations of corresponding code part for

AlertManagerMonitor Component level: Create the mutations of the AlertManagerMonitor as to

have faulty repair behavior

SR4 Condition

monitoring

override

Method level: Use mutation tool to generate mutations of corresponding code part for Controls

Component level: Create the mutations of the Controls as to have faulty override behavior

SR5 Sanity check Method level: Use mutation tool to generate mutations of corresponding code part for Events

SR6 Sanity check

comparison

Method level: Use mutation tool to generate mutations of corresponding code part for Alert

Managers

SR7 Sanity check Method level: Use mutation tool to generate mutations of corresponding code part for Controls
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mutants generated and 5 of them killed. When we revisited

the test cases for the Condition Monitoring tactic, we

observed that some cases were not considered for this

tactic. The test cases were missing some of the edge cases

for checking the state of each AlertManager. We added two

more test cases to cover all of the cases. With the complete

Table 8 Mutation results for SR2

Lines of

mutated code

Total test

cases

Mutation model Total generated

mutants

Equivalent

mutants

Alive

mutants

Killed

mutants

Mutation

score (%)

Alert Manager

Monitor

12 5 Condition monitoring

and voting

10 0 2 8 80

Table 9 Mutation Results for SR3

Lines of

mutated code

Total test

cases

Mutation model Total Generated

mutants

Equivalent

mutants

Alive

mutants

Killed

mutants

Mutation

score (%)

Alert Manager

Monitor

19 4 Condition Monitoring

and Repair

11 2 6 5 55.55

Table 10 Mutation Results for SR4

Lines of

mutated code

Total test

cases

Mutation model Total generated

mutants

Equivalent

mutants

Alive

mutants

Killed

mutants

Mutation

score (%)

Controls 247 8 Condition monitoring

and override

158 0 0 158 100

Table 11 Mutation results for SR5

Lines of mutated

code

Total test

cases

Mutation

model

Total generated

mutants

Equivalent

mutants

Alive

mutants

Killed

mutants

Mutation score

(%)

Events 13 5 Sanity check 45 0 0 45 100

Table 12 Mutation Results for SR6

Lines of

mutated code

Total test

cases

Mutation model Total generated

mutants

Equivalent

mutants

Alive

mutants

Killed

mutants

Mutation

score (%)

Alert

Manager1

37 5 Sanity check

comparison

21 1 14 6 30

Alert

Manager2

37 5 Sanity check

comparison

21 1 14 6 30

Table 13 Mutation results for SR7

Lines of Mutated

Code

Total test

cases

Mutation

model

Total generated

mutants

Equivalent

mutants

Alive

mutants

Killed

mutants

Mutation score

(%)

Controls 342 8 Sanity check 258 0 0 258 100
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test suite, all of the mutants were killed, and we obtained a

mutation score of 100.

Table 12 presents the mutation results for SR6. For

Sanity Check and Repair tactic, there are 11 mutants

generated and 5 of them killed. When we revisited the test

cases for Repair tactic, we observed that some cases are not

considered for this tactic. The test cases were missing some

of the edge cases for checking the state of each

AlertManager. In first iteration, we added two more test

cases to cover all of the cases. With the first iteration, we

were able to kill 5 more mutants in which the mutation

score is 55%. In the second iteration we added two more

test cases and we were able to obtain the mutation score as

100%.

7.5 Evaluation

In this section, we present the evaluation of our fault-based

testing approach. We generated mutations for the imple-

mentation of the case study using the proposed approach

and aim to achieve a 100% mutation score to locate the

weaknesses in the test suite and have effective tests for

safety concerns. For some of the safety requirements, the

mutation score was already 100%. For these kinds of

requirements, the implemented test suite is able to cover all

the edge cases. However, for example, SR6 requires mul-

tiple safety tactics to be implemented, and these tactics

have lots of edge cases to check. We revisited the test cases

and observed that the test suite was missing some test

cases.

In our evaluation, we specifically focused on the rele-

vance of the mutation-based testing approach to safety

requirements, with a dedicated examination of the Open-

pilot case study. The iterative nature of our approach

ensured a thorough consideration of safety concerns within

the test cases. Automation, facilitated by our tool in

mutation generation and test case execution, streamlined

this process. Our fault-based testing approach, when

applied to the Openpilot case study, successfully generated

mutations, providing specific insights into the effectiveness

of the implemented test suite.

With the help of our approach, engineers or developers

build system models by focusing on safety concerns. They

use these models as an input to mutation testing and

evaluate the adequacy of the test suite based on the safety

concerns explicitly defined in the models. If the mutation

score is not 100, they revisit and reiterate the test suite to

add missing or edge test cases to achieve a mutation score

of 100. Our tool automates the process by removing

manual steps for generating the mutations and running test

cases. It also helps to ensure that safety concerns are

properly addressed in the test cases by focusing on safety

tactics.

8 DSL evaluation

In this section, we present the evaluation of our DSL from

the end users’ perspective. Since our DSL is relatively new,

we do not have adequate trained users to conduct formal

interviews with questionnaires to evaluate our DSL. In this

regard, we have looked at the existing studies in the liter-

ature to provide an approach for assessing DSLs from

various perspectives. [29–32] propose different approaches

to evaluate novel DSLs. For our DSL, we used Framework

for Qualitative Assessment of DSLs (FQAD) [30], which is

based on the ISO/IEC 25010:2011 standard. FQAD

describes a set of quality properties for assessing a DSL,

including Functional suitability, Usability, Reliability,

Maintainability, Productivity, Extensibility, Compatibility,

Expressiveness, Reusability, and Integrability. In the fol-

lowing, we present the evaluation of our DSL considering

each quality characteristic.

8.1 Functional suitability

Functional suitability indicates to what degree the DSL is

fully developed. This means that all necessary functional-

ities exist in the DSL, and the DSL does not have func-

tionality not given in the represented domain. We used our

DSL to define multiple case studies, and we have been able

to describe all the problem-specific functionalities needed

to express safety. From this point, we can conclude that our

DSL meets this criterion.

8.2 Usability

Usability refers to the degree to which specified users can

use DSL to accomplish specified goals. To analyze this

property, we have asked engineers experienced in the

safety domain to assess the overall usability of our DSL.

We conducted usability assessments with a diverse group

of 10 experienced engineers including individuals with

backgrounds in software engineering and safety analysis.

Each engineer dedicated an average of 12 h to thoroughly

evaluate the overall usability of our DSL. Their feedback

highlighted the effectiveness of the DSL. They expressed

that differentiating between safety-critical and non-safety-

critical components in the system helped them identify

where to focus on the safety requirements. They also

indicated that expressing and seeing the direct relation

between safety-critical components and safety tactics
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helped address safety concerns in the system. Overall, they

mentioned that the DSL is easy to learn and use.

8.3 Reliability

Reliability of a DSL is defined as the property of a lan-

guage that helps to produce reliable programs. We devel-

oped our DSL using the Xtext framework in the Eclipse

environment. The Xtext framework provides full infras-

tructure including parser, linker, type checker, compiler

and editing support for Eclipse. The Eclipse editor provides

all the requirements for handling code errors.

8.4 Maintainability

Maintainability shows to what degree the DSL is easy to

maintain. Our DSL consists of four main parts, which are

defined by applying the separation of concerns principle.

This helps to achieve modularity in the DSL. For main-

tainability, it is also vital to address understandability. In

our DSL, we directly model the concepts as defined in the

safety domain. Therefore, the grammar is easy to under-

stand. Maintenance also covers modifiability. Since our

DSL design is modular, it can be easily modified, or new

concepts can be added.

8.5 Productivity

Productivity refers to the degree to which a DSL promotes

programming productivity. Our DSL helps to increase pro-

ductivity because it enhances the design and testing process

of safety-critical systems. It helps developers and engineers

to identify safety-critical concerns by explicitly defining

them at the early stages of the design. Also, it supports the

testing stage by helping test engineers to assess the quality of

the test suites focusing on the safety concerns.

8.6 Extensibility

Extensibility defines the degree to which a DSL has general

mechanisms for users to add new features. Our DSL can

easily be extended because of its modularity. Our DSL

consists of four different parts that each provides different

a viewpoint to the safety domain. In this regard, our DSL

can be easily extended by adding new concepts. Also, the

Xtext framework and the Eclipse helps users to add new

features to DSL easily.

8.7 Compatibility

Compatibility of a DSL shows at what degree a DSL is

compatible with the domain and the development process.

We defined our DSL to enhance the testing process of

safety-critical systems. It is designed to help test engineers

to assess the test suites’ quality by focusing on safety

concerns. It fits the systems engineering lifecycle in terms

of requirement analysis, design, development, and testing.

8.8 Expressiveness

Expressiveness defines the relation between the program

and what the programmer has in their mind. For this cri-

terion, it is imperative to have a one-to-one mapping

between the concepts and their representation in the DSL.

We developed our DSL based on a thorough domain

analysis whereby we have modeled each concept in the

corresponding metamodel of the language. We can affirm a

one-to-one correspondence between the concepts, and their

representation in the DSL and there are no duplicated

concepts. We also considered the abstraction level of the

concepts in the DSL to ensure that they are not too generic

or too specific but expressive enough to represent the safety

domain.

8.9 Reusability

Reusability of a DSL refers to the degree to which DSL can

be used in any other language. The definitions in our DSL

can be used in any other language since the DSL directly

models the concepts as defined in the safety domain.

8.10 Integrability

Integrability defines the degree to which the DSL is com-

patible with integration with other languages. We devel-

oped the DSL using the Xtext framework in Eclipse

environment. The Eclipse platform allows developers to

extend Eclipse applications like Eclipse IDE with addi-

tional functionalities via Eclipse plug-ins. In this respect,

our DSL can be integrated with other languages using the

Eclipse IDE.

9 Related work

Several studies have proposed domain-specific languages

(DSL) for addressing safety. In [33], the authors define a

DSL to present Petri-nets and a tool MeeNET to debug

safety-critical systems. Their focus is on having a DSL to

formally define behavior of the system using Petri-nets and

verify the system behaviour. Nandi et al. [34] propose a

DSL for the correct deployment of RV solutions in the

scope of cyber-physical systems. Kaleeswaran et al. [35]

define a DSL for Hazard and Operability Analysis
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(HAZOP) study. HAZOP study is a systematic way to

identify potential hazards in the system. The HAZOP-DSL

helps users to build links between HAZOP study and the

system model for consistency and traceability. With the

DSL support, the changes in the system model can be

detected, and the user is enforced to make necessary

changes in the HAZOP. Their study enables users to detect

issues in the safety analysis at early design levels. [36]

defines a DSL for defining the safety requirements and

automatically verifying their consistency using formal

methods. They propose a domain-specific language

SafeNL to enable users to define safety requirements for-

mally. They convert the SafeNL documents into formal

constraints (Clock Constraint Specification Language) and

verify their consistency with existing tools. Queiroz et al.

[37] propose a DSL for defining scenarios used in simu-

lation testing of autonomous driving systems. Their DSL

includes information about vehicles, pedestrians, paths,

roads which are the main components to compose test

cases for self-driving vehicle testing. Some studies [38, 39]

define a DSL to improve processes in their engineering life

cycle. [39] defines a DSL (Mauve) for specifying the

software architecture of autonomous robots. Using this

DSL, they analyze the real-time correctness of the archi-

tecture by verifying the schedulability of different com-

ponents. They transform Mauve model into Periodic State

Machines and analyze real-time characteristics of the

architectural components. Also, they check the validity of

behavioral properties by converting Mavue model into

Fiarce [40] models and analyze the Fiarce model using

TINA [41]. In [42], the authors propose a domain-specific

modeling language (DSML) to provide a conceptual model

for expressing the information mandated by DO-178C

standard. Iber et al. [43] proposes a DSL to specify tests

from UML Testing Profile (UTP). They model the UTP to

support model-driven development processes such as

generating test code.

All these and other studies in the literature define DSL

to support system development lifecycle. Some focus only

on one step of the lifecycle such as requirement analysis or

design or implementation, where some of them are specific

to one safety-critical domain like railway systems,robotics,

or automotive. To the best of our knowledge, no generic

DSL has been presented which is dedicated to assess the

quality of the test suite. With this study, our primary focus

is evaluating the adequacy of the test suite based on the

applied safety tactics in the software architecture models.

Our DSL allows us to express safety tactics in the safety

models and the system implementation details to generate

mutants and run test cases.

In the literature, several studies proposed a fault-based

testing approach to test safety-critical systems. In [44], the

authors proposes an approach to generate test oracles from

the formal requirements defined in CASDL (Casco Accu-

rate Specification Description Language). In another study

[12], a test case generation approach is defined based on

model mutation for the safety requirements in the system.

Firstly, a fault model is defined by describing mutation

operators and UML models of the system. Then, they

define a process for transforming a UML model to OOAS

(Object-Oriented Action Systems) using fault models.

Subsequently, OOAS models’ mutations are generated and

used for the test case generation process. Another study

[45] applies mutation testing on a nuclear reactor. In this

work, a test case generation approach is defined to test a

nuclear reactor. Mutation testing is applied by mutating the

source code. With this approach, they aim to calculate the

degree of test adequacy of the generated test cases.

Safety concern has not been explicitly addressed using a

dedicated architecture perspective before. However, there

is plenty of work related to safety engineering. In our

earlier work [19, 46], we have provided a safety perspec-

tive that can support the architectural design of safety-

critical systems. It can assist the system and software

architects in designing, analyzing, and communicating the

decisions regarding safety concerns by evaluating safety

issues early on the life cycle before implementing the

system.

In [47, 48], several architectural patterns are proposed

to support software safety design. Gawand et al. [48]

propose a framework for the specification of architectural

patterns to support safety and fault tolerance. They pro-

vide four types of patterns. One of the patterns is Con-

trol-Monitor pattern. They aim to improve fault detection

by using redundancy by using this pattern. Another pat-

tern is the Triple Modular Redundancy pattern which is

used to enhance system’s safety where there is no fail-

safe state. The other pattern is the Reflective State pat-

tern which separates the application into base-level and

meta-level to separate control and safety aspects from the

application logic. The last pattern is Fault Tolerance

Redundancy pattern which improves the fault tolerance

of the system while implementing the redundancy for

safety. Armoush et al. [47] propose a Recovery Block

with Backup Voting pattern which improves the fault

tolerance of the system.

Our earlier work considered the explicit modeling of

viewpoints for quality concerns [49–51]. As a result, each

quality concern, such as adaptability and recoverability,

requires a different decomposition of the architecture.

Architectural elements and relations are defined to specify

the required decomposition for the quality concerns. Earlier

work on local recoverability has shown that this approach

is also broadly applicable. We consider this work com-

plementary to the architectural perspectives approach. Both

alternative approaches seem to have merits.
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10 Threats to validity

In this section, we discuss threats to the validity of our

study using the guideline defined in [52].

10.1 Construct validity

The main goal of our study is to assess the adequacy of the

test suite of safety-critical systems. To achieve this, we

built an approach by leveraging existing fault-based testing

methods. While applying the proposed approach to the case

study, we assumed that the implementation (code) of the

case study is bug-free and the test suite is complete from a

test coverage perspective. Any defects in the case study

implementation and test suite may affect our case study

evaluation results. Additionally, we used lJava [53] to

generate mutants. Any issues in lJava would jeopardize

our study’s construct validity. The other point we bring to

attention is that our case study is implemented in Java. We

did not focus on the requirements of programming lan-

guages for supporting the implementation of safety-critical

concerns since the scope of the paper is on mutant gener-

ation. This also might have an effect on the construct

validity.

10.2 Internal validity

To evaluate our approach, we used a use case from a real

industrial case study. For the given case study, there is no

equivalent mutant detected. Some of the equivalent

mutants could not be generated or found because of the size

of the case study. This might cause a threat to our internal

validity. We plan to perform additional case studies as

future work.

10.3 External validity

Our approach is based on safety concerns, and it provides a

generic approach for safety-critical systems. To illustrate

our work, we applied our approach to a real case from a

safety-critical system in the avionics domain. However, it

can be applied to any safety-critical system from any

domain since the overall approach is generic.

10.4 Reliability

In this work, we provided detailed information about each

step for the proposed approach. The metamodel, DSL, and

tool are publicly available through an open-source plat-

form. Hence, the results obtained within our study are

reproducible.

11 Conclusion

Testing safety-critical systems is essential and for this

purpose, developing an effective test suite is necessary. In

this article, we have thus provided a systematic approach

for assessing test suites of safety-critical systems. For this

purpose, we have adopted a fault-based testing approach

that can be used to analyze the effectiveness of so-called

architecture safety tactics. We have developed the required

metamodel and realized the DSL to model the faults and

tactics and support fault-based testing. We have applied the

approach and the tool for a real industrial case study. The

approach and the tool are helpful to assess a given test suite

and analyze the strength of the safety tactics.

Based on the results from our case study, our main

conclusion is that our approach is feasible and effective for

test suite assessment of safety-critical systems. It supports

the overall architecture design of safety-critical systems

and analysis to realize the requirements for safety-critical

systems. The iterative process facilitated by our approach

ensures that safety concerns are thoroughly addressed in

the test cases, supported by the automation provided by our

tool in mutation generation and test case execution. The

evaluation of our fault-based testing approach revealed the

successful generation of mutations for the case study

implementation. While some safety requirements achieved

a 100% mutation score, highlighting the effectiveness of

the implemented test suite, others, such as SR6, identified

the need for additional test cases. These findings support

the effectiveness of our approach for safety-critical sys-

tems, offering insights for enhancing systems like open-

pilot in the realm of autonomous driving.

With our fault-based testing approach, engineers and

developers build dedicated system models to express safety

concerns, use these models as an input to mutation testing,

and evaluate the effectiveness of the developed test suite

based on the safety concerns addressed in the models. If the

mutation score is not 100, they revisit and reiterate the test

suite to add missing or edge test cases to achieve a muta-

tion score of 100. Since our approach focuses on safety

tactics and fault knowledge, it enables developers to build

complete and robust test suites focusing on safety concerns

while building safety-critical systems.

For future developments, we aim to enhance the

approach further by systematically analyzing different

faults and safety tactics from various domains such as

robotics, nuclear systems, and automotive. Besides, we aim

to automate mutation operation selection with the help of

the safety model. Another improvement area that we plan

is generating test artifacts (test data, test scripts, test oracle)

from the DSL we defined. We also consider adding

debugging and testing support to our DSL as future work.
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