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Background

« Most of the time in developing computer vision applications are
spent in annotating images

 Annotation of redundant images that have already been used for
training a deep learning model does not significantly improve the
performance of a model

- Active learning can be proposed as an approach to find images in
which a model is still uncertain with; therefore, improving
performance

« Active learning for agricultural data is still not frequently applied

Objective

- Investigate the added value of active learning for training a
semantic segmentation model for agricultural application

Research question:

« Can active learning reduce annotation effort on non-diverse and
unbalanced agricultural datasets?
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Figure 1. FCHarDNet with dropout (DO) layer
« Uncertainty was calculated using Bayesian Active Learning by
Disagreement (BALD) and PowerBALD
 BALD (y;w|x,D) = H(y|x,D) — E|H(y|x, w, D)]
. Focuses on epistemic uncertainty rather than aleatoric
uncertainty
. H(y|x,D) = Marginal Entropy triggers images with large
fractions of pixels with similar probability over all classes
. E|H(y|x,w,D)] = Conditional Uncertainty, penalizes images
with inherent nose (i.e. aleatoric uncertainty)
 PowerBALD -> sample images with probability p, with p, = Sui‘zgim

Experiments

« Agricultural image data are often not that diverse unlike well-known
datasets like CityScapes. In this work, active learning was tested on
two datasets:

 CityScapes (for proof of principle)
* Non-public Corn-Weed dataset

Dataset Validation # classes Majority class

Cityscapes 2975 500 19 44.1% (road)

Corn-Weed 1190 (Field A) 3 90.9% (soil)
331 (Field B) 117 (Field B)

Table 1. Statistical summary of both datasets
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 The Corn-Weed consist of two fields A & B.
« In our experiment, a model was pre-trained on field A and active
learning had to sample the most uncertain images of field B.
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Figure 2. Sample dataset images: (Left) Field A; (Right) Field B, Red annotations correspond to
corn while purple annotations correspond to weed.

Results

« Active learning worked on diverse datasets like CityScapes
« Both BALD and PowerBALD outperformed random sampling
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Figure 3. Experimental results: (Left) CityScapes; (Right) Corn-Weed dataset. Plots are shown
as function of number of images.

 Corn-Weed dataset:
« Significant difference between PowerBALD and Random (p=0.01) was observed
« BALD and PowerBALD achieved the same mlIoU than random requiring 70 less

images

Discussion
e PowerBALD performed better than BALD

e PowerBALD was able to output the highest uncertainty even with many common
features between images; this was unexpected since only 10 images were
selected

e BALD currently samples average uncertainty

e Large influence of majority class

e Potentially adding an excessive green filter could help in pre-selecting the pixels

to be included in the uncertainty calculation

Conclusions

e PowerBALD performs better than Random sampling on corn-
weed dataset

e Even with 90.9% pixels belonging to the soil class, active learning
for agricultural data shows potential
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