
Active learning for efficient annotation in crop-weed 

semantic segmentation

Background

• Most of the time in developing computer vision applications are

spent in annotating images

• Annotation of redundant images that have already been used for

training a deep learning model does not significantly improve the

performance of a model

• Active learning can be proposed as an approach to find images in

which a model is still uncertain with; therefore, improving

performance

• Active learning for agricultural data is still not frequently applied

Objective

• Investigate the added value of active learning for training a

semantic segmentation model for agricultural application

Research question:

• Can active learning reduce annotation effort on non-diverse and

unbalanced agricultural datasets?
Results

• Active learning worked on diverse datasets like CityScapes

• Both BALD and PowerBALD outperformed random sampling

Material and methods

Conclusions

• PowerBALD performs better than Random sampling on corn-

weed dataset 

• Even with 90.9% pixels belonging to the soil class, active learning 

for agricultural data shows potential

• Agricultural image data are often not that diverse unlike well-known 

datasets like CityScapes. In this work, active learning was tested on 

two datasets:

• CityScapes (for proof of principle)

• Non-public Corn-Weed dataset
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• In this work, uncertainty 

was determined using 

Monte-Carlo dropout

• FCHardNet was used 

with an additional 

dropout (DO) layer

• Uncertainty was calculated using Bayesian Active Learning by 

Disagreement (BALD) and PowerBALD

• 𝐵𝐴𝐿𝐷 𝑦;𝜔 𝑥, 𝐷 = 𝐻 𝑦 𝑥, 𝐷 − Ε 𝐻 𝑦 𝑥,𝜔, 𝐷

• Focuses on epistemic uncertainty rather than aleatoric 

uncertainty

• 𝐻 𝑦 𝑥, 𝐷 = 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 triggers images with large 

fractions of pixels with similar probability over all classes

• Ε 𝐻 𝑦 𝑥, 𝜔, 𝐷 = 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦, penalizes images 

with inherent nose (i.e. aleatoric uncertainty)

• PowerBALD -> sample images with probability p, with 𝑝𝑥 =
𝐵𝐴𝐿𝐷𝑥

𝑠𝑢𝑚 𝐵𝐴𝐿𝐷

Experiments

• The Corn-Weed consist of two fields A & B. 

• In our experiment, a model was pre-trained on field A and active 

learning had to sample the most uncertain images of field B.

• Corn-Weed dataset:

• Significant difference between PowerBALD and Random (p=0.01) was observed

• BALD and PowerBALD achieved the same mIoU than random requiring 70 less

images

This research was done in collaboration between Wageningen Research and 

ExxactRobotics supported by the Dutch PPS-Handsfree production

Figure 1. FCHarDNet with dropout (DO) layer

Figure 2. Sample dataset images: (Left) Field A; (Right) Field B, Red annotations correspond to 

corn while purple annotations correspond to weed.
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Dataset Train Validation # classes Majority class

Cityscapes 2975 500 19 44.1% (road)

Corn-Weed 1190 (Field A) 3 90.9% (soil)

331 (Field B) 117 (Field B)

Table 1. Statistical summary of both datasets

CityScapes Corn-Weed

Figure 3. Experimental results: (Left) CityScapes; (Right) Corn-Weed dataset. Plots are shown 

as function of number of images. 

Discussion

• PowerBALD performed better than BALD

• PowerBALD was able to output the highest uncertainty even with many common 

features between images; this was unexpected since only 10 images were 

selected

• BALD currently samples average uncertainty

• Large influence of majority class

• Potentially adding an excessive green filter could help in pre-selecting the pixels 

to be included in the uncertainty calculation


