

Honeydew management to promote biological control

Current Opinion in Insect Science

Fernández de Bobadilla, Maite; Ramírez, Natalia M.; Calvo-Agudo, Miguel; Dicke, Marcel; Tena, Alejandro

https://doi.org/10.1016/j.cois.2023.101151

This publication is made publicly available in the institutional repository of Wageningen University and Research, under the terms of article 25fa of the Dutch Copyright Act, also known as the Amendment Taverne.

Article 25fa states that the author of a short scientific work funded either wholly or partially by Dutch public funds is entitled to make that work publicly available for no consideration following a reasonable period of time after the work was first published, provided that clear reference is made to the source of the first publication of the work.

This publication is distributed using the principles as determined in the Association of Universities in the Netherlands (VSNU) 'Article 25fa implementation' project. According to these principles research outputs of researchers employed by Dutch Universities that comply with the legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in institutional repositories. Research outputs are distributed six months after their first online publication in the original published version and with proper attribution to the source of the original publication.

You are permitted to download and use the publication for personal purposes. All rights remain with the author(s) and / or copyright owner(s) of this work. Any use of the publication or parts of it other than authorised under article 25fa of the Dutch Copyright act is prohibited. Wageningen University & Research and the author(s) of this publication shall not be held responsible or liable for any damages resulting from your (re)use of this publication.

For questions regarding the public availability of this publication please contact openaccess.library@wur.nl

ScienceDirect

Honeydew management to promote biological control[☆]

Check for updates

Maite Fernández de Bobadilla^{1,*}, Natalia M Ramírez^{2,#}, Miguel Calvo-Agudo^{3,\$}, Marcel Dicke^{2,†} and Alejandro Tena^{1,‡}

Honeydew is the excretion of plant-feeding hemipterans and it is one of the most abundant source of carbohydrates for parasitoids and predators in agroecosystems. Being so abundant, honeydew mediates direct and indirect interactions that affect biological control. We describe these interactions and identify honeydew-management strategies to reduce pest pressure. First, the presence of nondamaging honeydew producers in cover crops and hedges increases the efficacy of parasitoids and predators. Second, breaking the mutualism between ants and honeydew-producing pests with alternative sugar sources promotes biological control of these pests. Third, we propose to explore honeydew volatiles to attract biological control agents and repel pests, as well as to induce plant defenses. Finally, we urge reducing the use of systemic pesticides that contaminate honeydew and negatively affect biological control agents that feed on it. Overall, we propose that honeydew management is integrated in pest management programs to contribute to sustainable agriculture.

Addresses

¹ Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315 km 10,7, Moncada, 46113 Valencia, Spain

² Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, the Netherlands

³ Agrobío S.L., Ctra, Nacional 340, Km 419, El Viso, La Mojonera, 04745 Almería, Spain

Corresponding author: de Bobadilla, Maite F

(fernandezdebobadilla_mar@gva.es)
*OPCID_ID: 0000_0002_2542_4511

*ORCID ID: 0000-0002-3542-4511

ORCID ID: 0009-0002-5251-0478

\$ ORCID ID: 0000-0002-2209-0196 † ORCID ID: 0000-0001-8565-8896

[‡] ORCID ID: 0000-0002-5001-4334

Current Opinion in Insect Science 2024, 61:101151

This review comes from a themed issue on Parasites/Parasitoids/ Biological control

Edited by Pablo Urbaneja-Bernat, Alejandro Tena and Cesar Rodriguez-Saona

For complete overview about the section, refer "Parasites/ Parasitoids/Biological control (2024)"

Available online 12 December 2023

https://doi.org/10.1016/j.cois.2023.101151

2214-5745/© 2023 Elsevier Inc. All rights reserved.

Introduction

Honeydew is the excretion product of many planthemipterans and some lepidopterans. Historically, honeydew has been viewed only as a problem in agriculture because it is the growth medium of sooty molds that reduce the photosynthetic capacity of the plant and cause aesthetic damage to the fruits. However, this excretion product is also one of the most abundant and accessible source of carbohydrates for parasitoids and predators in many agroecosystems and, thus, it mediates many interactions that affect biological control [1,2]. This perspective paper highlights how honeydew-mediated interactions can be managed to enhance biological control of arthropod pests in agriculture. For that, we i) describe the main groups of honeydew producers and honeydew feeders; ii) explain the interactions mediated directly or indirectly by honeydew; and iii) propose strategies to promote pest suppression by managing honeydew in agroecosystems.

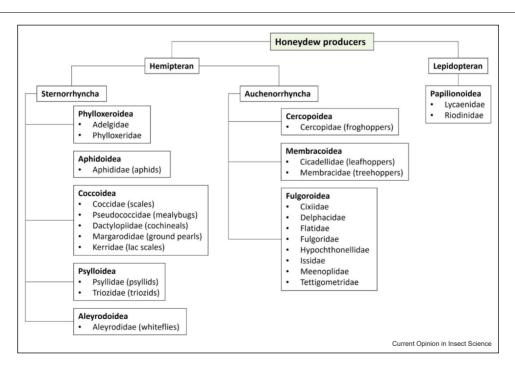
Honeydew producers

The biggest group of honeydew producers are hemipterans of the suborder Sternorrhyncha (Figure 1). This group is one of the most diverse insect orders and comprises ca. 18 700 species, including many difficult-to-manage pests such as aphids, whiteflies, psyllids, mealybugs, and soft scales [3]. In general, honeydew excreted by these hemipterans is rich in carbohydrates because they feed on phloem sap [4]. On the

^{*} Given the role as Guest Editor, Alejandro Tena had no involvement in the peer review of the article and has no access to information regarding its peer-review. Full responsibility for the editorial process of this article was delegated to Cesar Rodriguez-Saona.

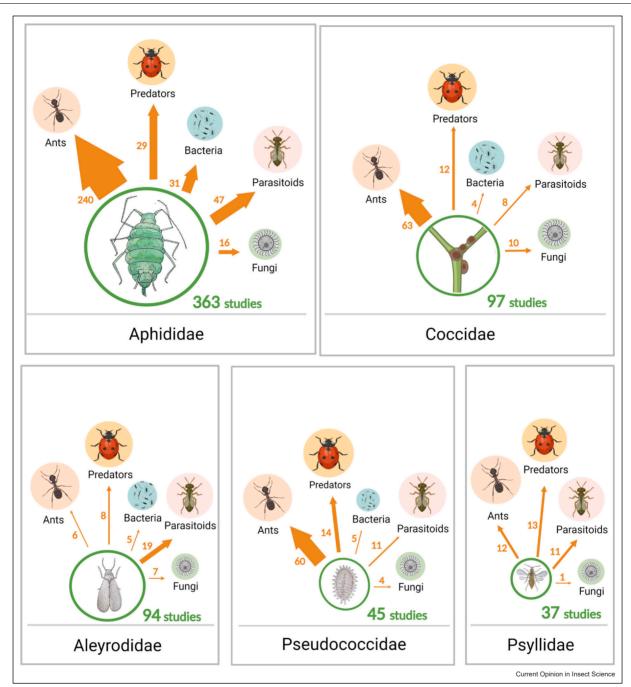
other hand, hemipterans belonging to the suborder Auchenorrhyncha are xylem sap feeders and excrete honeydew with low-carbohydrate concentration. This latter group includes important pest species such as froghoppers, leafhoppers, and treehoppers. Finally, larvae from the lepidopteran families Lycaenidae and Riodinidae excrete honeydew that is low in carbohydrates, but may contain substantial quantities of amino acids [4]. In this review, we will focus on hemipterans of the suborder Sternorrhyncha because they are very abundant and excrete carbohydraterich honevdew.

Honeydew as a food source for arthropods in agroecosystems


Honeydew composition, and thus its nutritional value as food source for biological control agents, is highly variable. It depends on host-plant species, plant physiology, honeydewproducing species and its developmental stage and age, duration and rate of infestation, mutualism between honeydew producers and ants, presence of bacterial symbionts, and presence of plant secondary metabolites [5–7]. In general, more than 80% of honeydew dry matter contains sugars [5]. Some of those sugars are synthesized by the plant, such as fructose, glucose, sucrose, or maltose, whereas others are synthesized by the honeydew producer, such as trehalose, erlose, melezitose, raffinose, stachyose, mannitol, or sorbitol [1,6,8]. In addition to carbohydrates, honeydew can contain

amino acids, micronutrients, sterols, plant secondary metabolites, and microorganisms [7,9]. While some of these reduce the nutritional value of honeydew (e.g. plant secondary metabolites), others increase it (e.g. antioxidant proteins) [9,10].

Main groups of honeydew feeders: arthropods and microorganisms


Even though the nutritional value of honeydew is highly variable, arthropods with different lifestyles feed on honeydew and rely on it as a carbohydrate source [1,2,11] (Figure 2). Among these arthropods, many beneficials need honevdew for survival and reproduction. Parasitoids, predators, and pollinators from different orders such as Hymenoptera (e.g. parasitic wasps, honey bees, solitary bees, and bumble bees), Diptera (e.g. tachinid flies, hoverflies), Coleoptera (coccinellids), Neuroptera (e.g. lacewings and coniopterygids), Lepidoptera (e.g. butterflies), Araneae (e.g. predatory spiders), and Mesostigmata (predatory mites) are some of the beneficial arthropods that use honeydew as a food source. However, honeydew is not only consumed by beneficial arthropods, but also by some pests and hyperparasitoids in the adult stage [8]. Moreover, some ant species have established mutualistic relationships with honeydew producers, feeding on honeydew and protecting the hemipterans from their natural enemies [12]. Besides

Honeydew-producing insects across the class Insecta. Sternorrhyncha feed on phloem sap and excrete honeydew to reduce the osmotic pressure results of a rich-sugar diet. Auchenorrhyncha feed on xylem sap. In the case of the Lepidoptera, larvae of some species in the Lycaenidae and Riodinidae families secrete honeydew through a specialized dorsal nectary gland, known as Newcomer's gland, to provide sugars to mutualistic species.

Figure 2

Interactions between honeydew producers and honeydew feeders. In the five panels, the five main families of honeydew producers are represented in the bottom, connected with arrows with the main groups of honeydew feeders. We selected the main groups of honeydew feeders based on their relevance for biological control. We included for each family, the number of publications that investigated honeydew produced by members of that family, and this number determines the size of the green circle around each honeydew producer. In addition, next to the arrows connecting the honeydew producers and the honeydew feeders, we include the number of studies that reported the honeydew-mediated interaction. The width of the arrows represents the number of studies that reports each interaction. For the literature search, we used Web of Science with the searching criteria specified in the supplemental materials.

arthropods, many fungi and bacteria grow on honeydew [7,13]. From these microorganisms, sooty mold fungi are the best-known in agriculture because they cause aesthetic damage on fruits and vegetables and reduce the photosynthetic capacity of the plant. Many other microorganisms also grow on honeydew, changing its volatile profile, its nutritional value, and, likely, the ecological interactions mediated by honeydew [7].

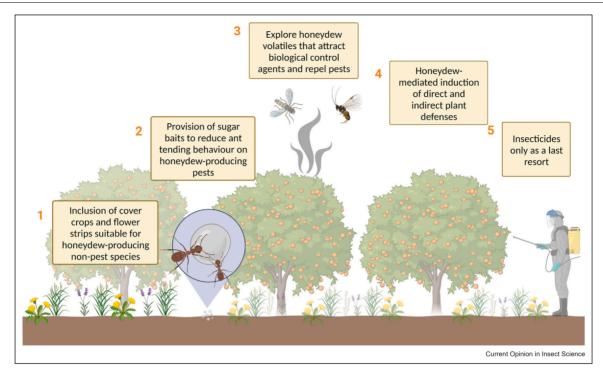
Honeydew mediates interactions in biological control

The high accessibility of honeydew and the numerous organisms that excrete it, feed on it, or use it as a source of infochemicals make honeydew a key driver of interactions between arthropods within and across different trophic levels [14]. As many honeydew producers are considered pests and many honeydew feeders are biological control agents, honeydew-mediated interactions influence the outcome of biological control programs. A well-known example of a direct, positive interaction mediated by honeydew is the mutualism between ants and honeydew producers, where the ants gain food and provide protection to the honeydew producer. In contrast, honeydew mediates direct, negative interactions between honeydew-producing pests and their biological control agents. After feeding on honeydew of their host/ prey, parasitoids and predators increase parasitism or predation rates. Finally, honeydew can also reduce the host/prey searching time of biological control agents as they may use it as infochemical [1,2,15].

In addition to direct interactions, honeydew mediates indirect interactions between arthropods. In these interactions, the impact of one species on another is mediated by the consumption of honeydew by a third species. These interactions are more complex than direct interactions and less frequently studied. For example, honeydew increases the fitness and performance of biological control agents of herbivore pests that do not excrete honeydew, such as beetles or armored scales [16,17]. Volatiles released by microorganisms growing on honeydew can also affect indirect interactions between insects in contrasting ways. While microorganism-produced volatiles can improve the ant-tending service to honeydew producers and thus indirectly benefit ants and honeydew producers, these volatiles can also attract biological control agents of honeydew producers [7,18]. Remarkably, because honeydew is known to be consumed by organisms from the second to the fourth trophic level, multitrophic interactions may occur when multiple insects feed on honeydew [8,19].

How to manage honeydew-mediated interactions to improve biological control

As honeydew mediates interactions between biological control agents and pests, understanding how these interactions affect pest management is crucial. Here, we propose several ways in which honeydew-mediated interactions can be exploited to improve pest management in agriculture while reducing the application of pesticides (Figure 3).


Promote the presence of nondamaging honeydewproducing species to increase the attraction and fitness of parasitoids and predators

The inclusion of flower strips is a common sustainable agricultural practice to meet the carbohydrate requirements of biological control agents [20–24] (Figure 3.1). Many efforts are being made to design a proper flower combination to ensure season-long nectar provision for biological control [20]. Nonetheless, as weather conditions are becoming less predictable and more extreme, there is often low or no nectar availability [25]. In addition to flower strips, we propose designing cover plants suitable for honeydew-producing nonpest species. Plants infested with honeydew-producing nonpest species can provide extra carbohydrate sources for biological control agents that are independent of the flowering time [26]. Remarkably, many of these honeydew producers are preyed upon or parasitized by generalist arthropod species, opening opportunities for boosting conservation biological control [27]. Although it is more controversial and more difficult to implement, natural infestation with some honeydew-producing species may benefit biological control of key pest species. Some crops, especially evergreen fruit trees, can tolerate low infestation levels of nondamaging honeydew-producing species. These hemipterans can excrete high-quality honeydew for biological control agents that can boost their density and control key pest species [6,28]. These conservation biological control strategies have not yet been investigated to our knowledge. Finally, it is worth mentioning that some honeydew drops may end up on the soil surface and may alter the communities of soil microorganisms and biological control agents.

Break ant protection of honeydew-producing species

Many invasive and difficult-to-manage hemipterans have established mutualistic interactions with ants [29,30]. Breaking this mutualism can improve biological control of honeydew-producing pests. This can be done by providing ants with sugar baits to reduce their tending behavior on honeydew-producing pests [31] (Figure 3.2). Many exciting advances have been reached in several crops such as pumpkin [32], apple [33], grapevine [34], and citrus [35]. However, long-term studies investigating the effects of this strategy on pest pressure and economic studies are still needed because it can be a laborintensive practice. Additionally, whether the presence of flowering plants and/or honeydew producers in cover crops and hedges can be also used to break this mutualism remains to be investigated.

Figure 3

How to manage honeydew-mediated interactions to improve biological control.

Using honeydew volatiles to attract biological control agents and to repel pests

Honeydew volatiles may provide information to other herbivores that a plant is already colonized, reducing herbivore pressure. However, it may also attract biological control agents [36-43]. Identifying which part of the volatile blend attracts biological control agents and repels pests is the first step to develop artificial infochemical blends to promote pest suppression in our crops (Figure 3.3). Here, it is important to highlight that honeydew is a microorganism-rich resource and biological control agents can use microorganism-produced volatiles to locate their hosts [7], as also occurs with nectar [44]. Production of microorganism-related volatiles or of the microorganisms that produce the volatiles may facilitate the identification and incorporation of honeydew-microbial volatiles in pest management programs [45]. We expect many exciting discoveries in the field of honeydew-microorganism-mediated interactions to promote pest management as the recent study by Liu et al. [46].

Honevdew-mediated induction of direct and indirect plant defenses

Some studies have reported that honeydew induces direct and indirect plant defense responses [47–49]. For example, planthopper honeydew and bacteria present in the honeydew strongly elicit the accumulation of secondary metabolites in the leaves, and the release of volatile infochemicals that attract biological control agents [48]. Moreover, honeydew excreted by aphids and whiteflies induces salicylic acid and suppresses jasmonic acid [47,50]. Finally, potential elicitors of plant defense have been identified in honeydew [51,52]. Altogether, these studies show the potential of honeydew as a plant defense activator. Although many advances have been made in the field of plant defense priming during the last decade [53,54], the potential of honeydew to prime plant defense has not yet been investigated. Unravelling honeydew components that induce plant defense may help us with using them to vaccinate crop plants and make them more resistant to herbivore attack (Figure 3.4).

Overcoming the risks of honeydew

In conclusion, honeydew may be used to promote pest management and biological control of pests. Nonetheless, there are some potential risks that should be considered when managing honeydew in agroecosystems. First, limiting sooty mold growth on the crop is crucial, as it may hamper the photosynthetic capacity of the plant and cause aesthetic damage to fruits. To reduce this risk, we should promote only hemipterans that do not reach pest status on the crop and promote the presence of sooty mold feeders (e.g. Tydeidae mites) [55]. Second, some pests (e.g. fruit flies, root flies) and hyperparasitoids feed on honeydew as adults [8,56]. In these cases, we would suggest evaluating the risks

and benefits of providing honeydew. Third, a large amount of honeydew may hamper the movement of biological control agents [57]. To prevent that natural enemies are trapped in honeydew, the infestation levels of honeydew producers should not reach a certain threshold. Finally, recent studies show that systemic insecticides are transferred to honeydew excreted by hemipterans that feed on plants treated with these insecticides. This honeydew is then toxic to natural enemies of herbivores [58–60]. Therefore, we strongly suggest using insecticides only as a last option within a pest management program (Figure 3.5).

Conclusions

Overall, with this perspective paper, we highlight that the mere presence of honeydew in agriculture should not be viewed only as a problem, but as an opportunity to improve pest management. For this aim, it is first necessary to understand the direct and indirect interactions mediated by this potential promoter of biological control. We hope that the suggestions in this paper motivate the execution of further studies in this research field to contribute to a more sustainable agriculture.

Data Availability

No data were used for the research described in the ar-

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was partially supported by the projects: EUR2020-112293 funded by MCIN/AEI/10.13039/501100011033 and the European Union "NextGenerationEU"/PRTR, NECOTDIM (INNEST/2021/305) funded by "Agència Valenciana de la Innovació" of the "Generalitat Valenciana", and the project IVIA-GVA 52202 funded by Instituto Valenciano de Investigaciones Agrarias (this project is susceptible of being cofinanced by the European Union through the ERDF Program 2021-2027 Comunitat Valenciana). M. Fernández de Bobadilla received a postdoctoral fellowship from the MCIU (Juan de la Cierva programme). Figures 2 and 3 were created with BioRender.com.

Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.cois.2023.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest.

- 1. Wäckers FL, van Riin PCJ, Heimpel GE: Honevdew as a food source for natural enemies: making the best of a bad meal? Biol Control 2008 45:176-184
- 2. Tena A, Wäckers FL, Heimpel GE, Urbaneja A, Pekas A: Parasitoid nutritional ecology in a community context: the importance of honeydew and implications for biological control. Curr Opin Insect Sci 2016, 14:100-104.
- Drohojowska J, Szwedo J, Żyła D, Huang DY, Müller P: Fossils reshape the Sternorrhyncha evolutionary tree (Insecta, Hemiptera). Sci Rep 2020, 10:11390.
- Lundgren JG: Relationships of Natural Enemies and Non-Prev Foods. Springer Science & Business Media; 2009.
- Ewart WH, Metcalf RL: Preliminary studies of sugars and amino acids in the honeydews of five species of coccids feeding on citrus in California. Ann Entomol Soc Am 1956, 49:441-447
- Tena A, Pekas A, Wäckers FL, Urbaneja A: Energy reserves of parasitoids depend on honeydew from non-hosts. Ecol Entomol 2013. **38**:278-289.
- Leroy PD, Sabri A, Heuskin S, Thonart P, Lognay G, Verheggen FJ, Francis F, Brostaux Y, Felton GW, Haubruge E: Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat Commun 2011, 2:348.

First report of an aphid-associated bacterium driving prey location and ovipositional preference for its natural enemy. The study shows that this bacterium plays a key role in tritrophic interactions because it is the direct source of volatiles used to locate prey.

- Neerbos FAC, Boer JG, Salis L, Tollenaar W, Kos M, Vet LEM, Harvey JA: Honeydew composition and its effect on life-history parameters of hyperparasitoids. Ecol Entomol 2020. 45:278-289.
- Züst T. Agrawal AA: Plant chemical defense indirectly mediates aphid performance via interactions with tending ants. Ecology 2017. 98:601-607.
- 10. Urbaneja-Bernat P, González-Cabrera J, Hernández-Suárez E, Tena A: Honeydew of HLB vector, Trioza erytreae, increases longevity, egg load and parasitism of its main parasitoid Tamarixia dryi. Biol Control 2023, 179:105169.
- 11. Kishinevsky M., Cohen N., Chiel E.: Sugar feeding of parasitoids in an agroecosystem: effects of community composition, habitat and vegetation. 2017, doi:(10.1111/icad.12259).
- 12. Hölldobler B, Wilson EO: The Ants. Harvard University Press; 1990.
- 13. Dhami MK, Weir BS, Taylor MW, Beggs JR: Diverse honeydewconsuming fungal communities associated with scale insects. PLoS One 2013, 8:e70316.
- 14. Dicke M, Sabelis MW: Infochemical terminology: based on costbenefit analysis rather than origin of compounds? Funct Ecol 1988. **2**:131.
- 15. Shimron O, Hefetz A, Gerling D: Arrestment responses of Eretmocerus species and Encarsia deserti (Hymenoptera: Aphelinidae) to Bemisia tabaci honeydew. J Insect Behav 1992,
- 16. Evans EW, England S: Indirect interactions in biological control of insects: pests and natural enemies in alfalfa. Ecol Appl 1996, **6**:920-930.
- 17. Tena A, Hoddle CD, Hoddle MS: Competition between honeydew producers in an ant - hemipteran interaction may enhance biological control of an invasive pest. Bull Entomol Res 2013, **103**:714-723.
- 18. Fischer CY, Lognay GC, Detrain C, Heil M, Grigorescu A, Sabri A, Thonart P: Bacteria may enhance species association in an ant aphid mutualistic relationship. Chemoecology 2015,
- 19. Faria CA, Wäckers FL, Turlings TCJ: The nutritional value of aphid honeydew for non-aphid parasitoids. Basic Appl Ecol 2008, 9:286-297
- 20. Mockford A, Westbury DB, Ashbrook K, Urbaneja A, Tena A: Structural heterogeneity of wildflower strips enhances fructose feeding in parasitoids. Agric Ecosyst Environ 2022, 339:108139.

- 21. Bianchi FJJA, Wäckers FL: Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biol Control 2008, 46:400-408.
- 22. Alcalá Herrera R, Fernández Sierra ML, Ruano F: The suitability of native flowers as pollen sources for Chrysoperla lucasina (Neuroptera: Chrysopidae). PLoS One 2020, 15:1-16.
- 23. Gurr GM, Wratten SD, Landis DA, You M: Habitat management to suppress pest populations: progress and prospects. Annu Rev Entomol 2017, 62:91-109.
- 24. Mockford A, Urbaneja A, Ashbrook K, Westbury DB: Developing perennial wildflower strips for use in Mediterranean orchard systems. Ecol Evol 2023, 13:1-19.
- 25. Costaz TPM, de Jong PW, van Loon JJA, Dicke M: It is about time: effects of thermal fluctuations resulting from climate change on trophic interactions with a focus on host-parasitoid interactions. Evol Ecol 2023, 37:601-625, https://doi.org/10.1007/ s10682-023-10240-w
- 26. Irvin NA, Hoddle MS: The effects of floral nectar, extrafloral nectar and hemipteran honeydew on the fitness of Tamarixia radiata (Hymenoptera: Eulophidae), a parasitoid of Diaphorina citri. Biol Control 2021, 163:104753.
- 27. Zaviezo T, Muñoz AE: Conservation biological control of arthropod pests using native plants. Curr Opin Insect Sci 2023,
- 28. Tena A, Llácer E, Urbaneja A: Biological control of a nonhoneydew producer mediated by a distinct hierarchy of honeydew quality. Biol Control 2013, 67:117-122.
- Anjos DV, Tena A, Viana-Junior AB, Carvalho RL, Torezan-Silingardi H, Del-Claro K, Perfecto I: **The effects of ants on pest** control: a meta-analysis. Proc R Soc B Biol Sci 2022,
- 30. Plata A, Gómez-Martínez M, Beitia F, Tena A: Native ants facilitate the invasion by Delottococcus aberiae in Mediterranean citrus. J Pest Sci (2004) 2023, https://doi.org/10.1007/s10340-023
- 31. Wäckers FL, Alberola JS, Garcia-Marí F, Pekas A: Attract and distract: manipulation of a food-mediated protective mutualism enhances natural pest control. Agric Ecosyst Environ 2017, **246**:168-174.
- 32. Carabalí-Banguero DJ, Wyckhuys KAG, Montoya-Lerma J, Kondo T, Lundgren JG: Do additional sugar sources affect the degree of attendance of Dysmicoccus brevipes by the fire ant Solenopsis geminata? Entomol Exp Appl 2013, 148:65-73.
- 33. Nagy C, Cross JV, Markó V: Sugar feeding of the common black ant, Lasius niger (L.), as a possible indirect method for reducing aphid populations on apple by disturbing ant-aphid mutualism. Biol Control 2013, **65**:24-36

First study that shows that supplementary sugar-feeding of ants is a successful method for supporting biological control of aphids through enhancing the effectiveness of their natural enemies.

- Beltrà A, Navarro-Campos C, Calabuig A, Estopà L, Wäckers FL, Pekas A, Soto A: **Association between ants (Hymenoptera:** Formicidae) and the vine mealybug (Hemiptera: Pseudococcidae) in table-grape vineyards in Eastern Spain. Pest Manag Sci 2017, **73**:2473-2480.
- 35. Pérez-Rodríguez J, Pekas A, Tena A, Wäckers FL: Sugar provisioning for ants enhances biological control of mealybugs in citrus. Biol Control 2021, 157:104573.
- Watanabe H, Yano E, Higashida K, Hasegawa S, Takabayashi J, Ozawa R: An attractant of the aphidophagous gall midge Aphidoletes aphidimyza from honeydew of Aphis gossypii. J Chem Ecol 2016, 42:149-155.
- Leroy PD, Almohamad R, Attia S, Capella Q, Verheggen FJ, Haubruge E, Francis F: Aphid honeydew: an arrestant and a contact kairomone for Episyrphus balteatus (Diptera: Syrphidae) larvae and adults. Eur J Entomol 2014, 111:237-242.
- Leroy PD, Heuskin S, Sabri A, Verheggen FJ, Farmakidis J, Lognay G, Thonart P, Wathelet JP, Brostaux Y, Haubruge E: Honeydew volatile emission acts as a kairomonal message for the Asian

- lady beetle Harmonia axyridis (Coleoptera: Coccinellidae). Insect Sci 2012, 19:498-506.
- 39. Bouchard Y, Cloutier C: Honeydew as a source of host-searching kairomones for the aphid parasitoid Aphidius nigripe (Hymenoptera: Aphidiidae). Can J Zool 1984, 62:1513-1520.
- 40. Budenberg WJ: Honeydew as a contact kairomone for aphid parasitoids. Entomol Exp Appl 1990, 55:139-148.
- 41. Fand BB, Amala U, Yadav DS, Rathi G, Mhaske SH, Upadhyay A, Ahammed Shabeer TP, Kumbhar DR: Bacterial volatiles from mealybug honeydew exhibit kairomonal activity toward solitary endoparasitoid Anagyrus dactylopii. J Pest Sci (2004) 2020, **93**:195-206.
- 42. Peñalver-Cruz A, Satour P, Jaloux B, Lavandero B: Honeydew is a food source and a contact kairomone for Aphelinus mali. Insects 2023, 14:1-11.
- 43. Brown RL, El-Sayed AM, Unelius CR, Beggs JR, Suckling DM: Invasive Vespula wasps utilize kairomones to exploit honeydew produced by sooty scale insects, ultracoelostoma. J Chem Ecol 2015. 41:1018-1027.
- 44. Cusumano A, Bella P, Peri E, Rostás M, Guarino S, Lievens B, Colazza S: Nectar-inhabiting bacteria affect olfactory responses of an insect parasitoid by altering nectar odors. Microb Ecol 2022, 86:364-376, https://doi.org/10.1007

This study shows that nectar-inhabiting bacteria play an important role in the interactions between flowering plants and foraging parasitoids. The results are relevant from an applied perspective as flowering resources are largely used in agriculture to promote conservation biological control of insect pests.

- 45. Cellini A, Spinelli F, Donati I, Ryu CM, Kloepper JW: Bacterial volatile compound-based tools for crop management and quality. Trends Plant Sci 2021, 26:968-983.
- 46. Liu J, Xiao D, Liu Y, Zhan Y, Francis F, Liu Y: Chemical cues from honeydew-associated bacteria to enhance parasitism efficacy: from laboratory to field assay. J Pest Sci (2004) 2023, https://doi. 3-01687

First study that shows that chemical cues from honeydew-associated bacteria can be used to improve biological control.

47. Schwartzberg EG, Tumlinson JH: Aphid honeydew alters plant
 defence responses. Funct Ecol 2014, 28:386-394.

This paper demonstrates that honeydew application results in an increased accumulation of SA within plant tissue and finds that levels of SA present within honeydew do not fully account for this increase. This finding demonstrates, for the first time, that aphid honeydew suppresses induced plant defense.

48. Wari D, Kabir MA, Mujiono K, Hojo Y, Shinya T, Tani A, Nakatani H, Galis I: Honeydew-associated microbes elicit defense responses against brown planthopper in rice. J Exp Bot 2019, 70:1683-1696

This study found that brown planthopper honeydew strongly elicits direct and putative indirect defenses in rice, namely accumulation of phytoalexins in the leaves, and release of volatile organic compounds from the leaves that serve to attract natural enemies of herbivores, respectively.

- 49. Wari D, Alamgir KM, Mujiono K, Hojo Y, Tani A, Shinya T, Nakatani H, Galis I: Brown planthopper honeydew-associated symbiotic microbes elicit momilactones in rice. Plant Signal Behav 2019, 14:1655335.
- VanDoorn A, de Vries M, Kant MR, Schuurink RC: Whiteflies glycosylate salicylic acid and secrete the conjugate via their honeydew. J Chem Ecol 2015, 41:52-58.
- 51. Sabri A, Vandermoten S, Leroy PD, Haubruge E, Hance T, Thonart P, De Pauw E, Francis F: Proteomic investigation of aphid honeydew reveals an unexpected diversity of proteins. PLoS One 2013, 8:e74656.

First study demonstrating that aphid honeydew represents a diverse source of proteins. The protein diversity of aphid honeydew originated from several organisms (i.e. the host aphid and its microbiota, including endosymbiotic bacteria and gut flora).

Zhu J, Zhu K, Li L, Li Z, Qin W, Park Y, He Y: Proteomics of the honeydew from the brown planthopper and green rice

- leafhopper reveal they are rich in proteins from insects, rice plant and bacteria. *Insects* 2020, 11:1-16.
- Conrath U, Pieterse CMJ, Mauch-Mani B: Priming in plant-pathogen interactions. Trends Plant Sci 2002, 7:210-216.
- 54. Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CMJ, Pozo MJ, Ton J, van Dam NM, Conrath U: Recognizing plant defense priming. Trends Plant Sci 2016, 21:818-822.
- English-Loeb G, Norton AP, Gadoury DM, Seem RC, Wilcox WF: Control of powdery mildew in wild and cultivated grapes by a tydeid mite. Biol Control 1999, 14:97-103.
- Buitenhuis R, McNeil JN, Boivin G, Brodeur J: The role of honeydew in host searching of aphid hyperparasitoids. J Chem Ecol 2004. 30:273-285.
- Ge Y, Liu P, Zhang L, Snyder WE, Smith M, Shi W: A sticky situation: honeydew of the pear psylla disrupts feeding by its predator *Orius sauteri*. Pest Manag Sci 2019, 76:75-84, https:// doi.org/10.1002/ps.5498

- 58. Calvo-Agudo M, Tooker JF, Dicke M, Tena A: Insecticide-
- contaminated honeydew: risks for beneficial insects. Biol Rev 2022, 97:664-678.

Perspective paper that details how insecticides can contaminate honeydew and sheds light on potential undescribed causes of insect declines in ecosystems where honeydew is an important carbohydrate source for insects, and advocates for this route of exposure to be included in future environmental risk assessments.

59. Calvo-Agudo M, González-Cabrera J, Picó Y, Calatayud-Vernich P,
 Urbaneja A, Dicke M, Tena A: Neonicotinoids in excretion product of phloem-feeding insects kill beneficial insects. Proc Natl Acad Sci USA 2019, 116:16817-16822.

First demonstration that systemic insecticides contaminate honeydew and kill beneficial insects that feed on it.

 Quesada CR, Scharf ME, Sadof CS: Excretion of nonmetabolized insecticides in honeydew of striped pine scale. Chemosphere 2020, 249:126167.