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Abstract 

A wealth of readily available genomic information set in motion a transition towards the pangenome 

approach which is set to replace the single reference genome, with the pangenome approach being able 

to provide a more complete picture of genetic variation. This higher resolution does come at the cost of 

increased complexity of the data structure of pangenomes, thus new tools like PanVA were needed to 

be able to visualise data of multiple genomes at once. However, with PanVA being a relatively new 

tool, proper integration into the workflow of comparative genomics using PanTools pangenomes was 

lacking. Resulting in non-standardised, unautomated manual curation and alteration of the pangenome 

before visualisation can commence in PanVA, adding yet another stage to the workflow, whilst creating 

more room for human error. To address this, we developed PanToVA, a tool that is able to handle any 

pangenome created with PanTools and preprocess it for visualisation in PanVA. In this paper we show 

PanToVA’s ability to handle genomic data spanning bacteria, fungi and plants. In addition,  PanToVA 

is integrated in PanUtils, a toolbox for automating the construction of pangenomes. With the 

introduction of PanToVA in PanUtils, the complete process from construction to visualisation of 

pangenomes is now brought together and automated. The implementation of PanToVA is made possible 

through collaboration with the developers of PanUtils, PanTools and PanVA. 

1 Introduction 

Ever since the first successful single complete genome was sequenced (Sanger et al., 1977), the 

technique of sequencing has been the basis of comparative genomics, gene discovery and function 

analytics using a single reference genome (Staden, 1982). However, the advances in (cloud) computing, 

data storage and next generation sequencing (NGS) of the mid and late 2000’s made it cheaper and 

easier to produce significantly more sequencing data than was previously possible (Muir et al., 2016). 

As a result of these technological advancements large scale genome projects have been conducted, such 

as the 3.000 rice genomes project (Li et al., 2014). The increase of available sequencing data also 

highlighted the limitations of the standard single reference genome approach. Larger datasets revealed 

inter species variation in the form of presence and absence variations (PAV’s), which cannot be 

explored using a single reference genome (Zhang et al., 2016). Additionally, the single reference 

genome is prone to cause reference bias in alignments, because of the tendency of sequences to map 

more easily to the reference alleles, whereas non reference alleles might be mapped at lower rates or be 

removed completely (Ballouz et al., 2019). Thus, continuing to individually compare each sequence in 

a dataset to a single reference genome is inefficient, costly and results in a significant loss of 

information. 

To combat the issues of the single reference genome the concept of the pangenome was first proposed 

in (Tettelin et al., 2005). This concept describes the totality of all genes present in different strains. The 

term later evolved to mean the collection of DNA sequences present in a species, including a core part 

of the genome which is present in all individuals and a dispensable part of the genome present only in 

some (Marroni et al., 2014; Morgante et al., 2007; Sherman & Salzberg, 2020; Wang et al., 2023). This 

approach provides a more detailed and inclusive representation of variation in and even across species. 

It makes it possible to include sequence variants, phylogeny, phenotyping and (functional) annotations, 

which is valuable in comparative genomics within and across species. These pangenomes of 

multidimensional genomic information do come with a drawback. Analysing, interpretation and 

presentation of a pangenome is not as clear cut as with the single reference genome approach. Over the 

years various computational tools that are able to construct and analyse pangenomes have been 

introduced (Vernikos et al., 2015). However, efficient tools that can construct pangenomes alone are 

not enough to accommodate the complete transition to the pangenome approach (Hudson et al., 2010). 

In order to accomplish a complete transition, proper visualisation and presentation of pangenomes has 

to be achieved, as visualisation is a common method for interactive exploration and interpretation of 
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genomic data (Nusrat et al., 2019). In recent years several tools offering pangenome visualisation have 

been introduced. However, these tools do have their limitations, for example regarding scalability, 

accessibility, widespread applicability and in some cases the ironical reliance on the presence of the 

single reference genome which pangenomes are set to replace (Pedersen et al., 2017).  

As it stands, to produce a sizeable pangenome with proper visualisation from raw data, users would 

need to use one tool for the construction and analysis and a separate tool for the visualisation. This is 

also the case for pangenome browser PanVA. PanVA (Brandt et al., 2022) is a promising new tool for 

visual exploration of pangenomes, designed to work with pangenomes created by PanTools 

(Sheikhizadeh et al., 2016), an established tool that is regularly updated and expanded. In the current 

stage, PanVA is able to visualise the various different data dimensions of pangenomes, handles decently 

sized (several dozens of genomes) pangenomes and is not reliant on the presence of a reference genome. 

However, PanVA requires users to manually curate the PanTools pangenome for entries PanVA can 

work with, as the initial version of PanVA was built on handpicked data. Users also need to make 

alterations and modifications to a preprocessing script that is necessary for pangenomes to be visualised 

in PanVA. Therefore, to make pangenome visualization by PanVA accessible to (unexperienced) users 

and applicable for pangenomes across the tree of life, we need to get rid of this manual preprocessing 

and automate this process in a flexible way.  

To streamline and improve the connection between PanTools pangenome building and PanVA 

visualisation, we present PanToVA. PanToVA replaces the need for manual preprocessing and instead 

offers an efficient, configurable, automated and easy to use alternative able to handle any PanTools 

pangenome for visualisation in PanVA. In addition, PanToVA introduces extra features and filters 

allowing users more freedom to highlight specific data in the visualisation of pangenomes. In this paper 

we explain the design process and the choices made to deliver PanToVA. To demonstrate the wide 

applicability of PanToVA, we applied it to a collection of 8 PanTools pangenomes of bacteria, fungi 

and higher plants. These pangenomes vary in number of data entries, sequence lengths, phenotype and 

metadata. Finally, we discuss the advantages of PanToVA, the encountered limitations during the 

development, improvements made to PanVA and PanTools to be able to integrate PanToVA into the 

workflow, and planned future improvements. 

2 Design and Development Approach 

The PanToVA project consists of a design and development part as well as an engineering part. These 

parts come together to construct software that bridges the gap between PanTools and PanVA. As 

PanTools and PanVA were designed by different development teams, the data formats PanVA can 

handle are different from the way PanTools outputs the data. Therefore, to construct a proper connection 

some unorthodox design choices had to be made in PanToVA to be able to connect PanTools and 

PanVA. These choices could be viewed as ill-considered when examining the final workflow of 

PanToVA, without the context of the encountered issues. To be able to properly break down the 

reasoning for the design choices, this paper is structured following the design choices that led to the 

final version of PanToVA. Starting with section 2.1 which outlines the project requirements for the 

PanToVA workflow. Section 2.2 introduces the structural components and diversity of PanTools 

pangenomes, providing insights in the input data for PanToVA. Section 2.3 asserts the conditions for 

the data which PanVA accepts, and illustrates the expected end results of PanToVA. 

2.1 PanToVA Requirements 
To ensure the usefulness of PanToVA, it is essential to align its functionalities with the needs of the 

target user base. Therefore, several meetings were conducted throughout the duration of the project with 

both members of the in-house users and developers of PanTools and PanVA to identify and update these 

requirements. These sessions combined with the project proposal formed the basis for the project 

requirements.  
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The main requirement for PanToVA is to be widely applicable. Meaning it is essential for PanToVA 

to perform the preprocessing work for any pangenome built by PanTools of any organism. This also 

requires the input data prerequisites of PanVA to be addressed, because the sessions showed that only 

a limited number of pangenomes that PanTools built met the original criteria for the input data as set 

by PanVA. Pangenomes built by PanTools can contain a variety of additional useful data, which PanVA 

was not able to work with. 

The variation in data present in pangenomes not only required modifications to PanVA but it also 

illustrates the need for PanToVA to be configurable. The original framework of the preprocessing left 

no room for customisation or varying pangenomes. So, PanToVA will allow users to customize, add, 

remove and highlight data entries to match their needs for visualisation in PanVA. As an added benefit, 

these customisation options greatly reduce run time and increase the efficiency of the preprocessing, as 

it will only run for the selected options and data points. 

Improving efficiency is another requirement of PanToVA. As studies are increasingly adding more data 

to their pangenomes, and with the processing run time being correlated with pangenome size and 

available data,  the swiftness of PanToVA is vital. However, speed must not come at the cost of 

efficiency. Thus, the design for PanToVA was made to balance run time and computational power 

usage. As a side objective for the efficiency improvements, the aim is for PanToVA to also be able to 

run properly on low-end desktops and laptops. In addition, improvements were set to be made to 

PanTools output formats and the PanVA code where needed, in order to improve the efficiency of the 

process as a whole. 

Finally, the ultimate goal of PanToVA is to alleviate the burdensome task of manual data curation that 

is required for users of PanTools and PanVA. Therefore, paramount importance is placed on the 

automation of the preprocessing, user-friendliness, and accessibility of support. To achieve this, 

developmental versions were utilized in user test sessions throughout the project, which provided 

helpful insights to further improve the design of PanToVA. Additionally, based loosely on the 

MoSCoW method (Clegg & Barker, 1994) for prioritization, these valuable insights led to the inclusion 

of several additional features in the final version of PanToVA. 

2.2 PanTools pangenomes 
To get a better grasp of the complexity and diversity of data in PanTools pangenomes it is key to 

understand the data structure and the elements present. The data of pangenomes is often compressed 

and typically stored in a graph-based structure. PanTools builds a compressed De Bruijn graph, as 

conceptually shown in Figure 1.A, which is too complex for visual exploration of the data. When 

bringing down the resolution of the graph we can illustrate a more simplified version of the data 

structure of a PanTools pangenome in Figure 1.B. This view highlights the different datatypes and how 

all information is connected together.  
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Figure 1. The PanTools v3 pangenome data structure. 

 

Although the underlying data infrastructure of the pangenomes is identical, this does not mean the 

content of all pangenomes is the same. 

These differences start with the design of and study for which pangenomes are constructed, as this 

heavily influences what data is present in a pangenome. For example, some pangenomes are constructed 

of a limited number of closely related species or strains in a specific habitat to gain insights in a specific 

population. Whereas others are built on a tremendous collection of genomes spanning multiple 

populations, habitats and or large evolutionary distance to gain insight in evolutionary relations. The 

organism(s) of interest affect the annotations in the pangenome, for example, eukaryotic and 

prokaryotic have differences and different standards in the annotations of genomes, which results in 

further differentiated data between pangenomes.  

Continuing, the type of sequences of the genomes that are included in the construction also have an 

effect, as PanTools can construct a pangenome built of combinations of (multiple) reference genomes, 

genomes and resequenced accessions. However, PanTools handles data related to resequenced 

accessions differently compared to genomes. This causes more variance in the data structures of 

pangenomes.   

The metadata part of pangenomes is optional to include with PanTools. Therefore, this information is 

not always available in pangenomes. Metadata also is a non standardised type of data, meaning that it 

can contain all sorts of added information. For example, it could include information such as coordinates 

of where the specimen was collected, date, time, the humidity and who took the sample, each as a 

separate category of the metadata. This also means that each category can have different datatypes, such 

as but not limited to numeric, scale, score, Boolean, degrees, coordinates, as well as descriptive text. In 

addition, PanTools accepts non-complete metadata entries, meaning it does not require every genome 

in the dataset to have metadata or even the same metadata categories to be included in the pangenome.  

As part of the structure of a PanTools pangenome phenotype data can be added to the metadata block. 

Phenotype data, like metadata, adds extra information to the pangenome, however there are distinctions. 

Here we make use of the definitions as described by (National Human Genome Research Institute, 

2020), which states that metadata are “data that provide additional information intended to make 

scientific data interpretable and reusable (e.g., date, independent sample and variable construction and 

description, methodology, data provenance, data transformations, any intermediate or descriptive 
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observational variables).”. Whereas phenotype data are “data are the observable characteristics or traits 

of an organism or a cell line (i.e., the physical manifestation of a genotype).”. Similar to the metadata, 

the phenotype data can be incomplete and are non standard. 

Pangenomes are essentially a collection of genomes, and these genomes have relations that could span 

short and/or large evolutionary distances. PanTools can analyse and include information in pangenomes 

for the exploration of these relations through phylogenetics. To do this PanTools has 6 methods to 

create phylogenetic trees, each with settings that can be finetuned by the user. For any given pangenome 

none or several different phylogenetic trees can be included.  

However diverse, all pangenomes are built on the concept of homology groups. To better understand 

homology groups we first focus on the individual genomes in the pangenome. Genomes contain genes 

which annotate the genome and encodes for mRNA. This mRNA has CDS (coding sequence) which 

encodes for proteins. All proteins found in the pangenome are compared based on their sequence 

similarity, forming groups of proteins called the homology groups. The individual protein sequences in 

a homology group remain connected to the genome to which they originate, which means any 

information that is connected to the genome is also connected. Hence, information such as metadata 

and phenotype data is available for the homology groups. As a result, traits such as phenotype specific 

attributes can be linked to specific proteins or perhaps to specific mutations. As these connections can 

be of great importance, PanTools has the option to include this information in the homology groups of 

the pangenomes.  

Lastly, most PanTools functionalities that are executed when constructing a pangenome offer a selection 

of methodologies each with adjustable settings that can impact the data structures and connections. This 

once again illustrates the versatility and wide applicability of the pangenome approach. At the same 

time, this illustrates the diversity, complexity and interconnectivity of the data structures in pangenomes 

which complicates visualisation. 

2.3 PanVA input 
With the complexity, diversity and quantity of data offered by PanTools pangenomes, PanVA’s design 

focuses on the visualisation of pangenomes based on the homology group level, allowing exploration 

of all genomes at once on gene level. The initial concept version of PanVA was developed based on the 

data, and more importantly the data structures, of 2 pangenomes. The first visualisations done by PanVA 

were completed using data that was manually retrieved from these pangenomes. To accomplish 

visualisation, the data from the PanTools pangenome were retrieved and transformed into several files 

to better fit the design of PanVA’s visualisation approach. This as the output from PanTools was ill-

suited for the web-based design of PanVA.  

Additionally, with the first concept version some assumptions were made on data availability across 

pangenomes. This resulted in the implementation of features that were entirely dependent on the 

presence of data in a specific format, otherwise PanVA would not be able to visualise the dataset in its 

entirety. Throughout the PanToVA project, PanVA was updated several times to be able to account for 

these issues in order to handle the diversity present in PanTools pangenomes. This resulted in looser 

requirements as to what data is required and what data is perceived as optional. To accommodate these 

changes, the PanToVA code went through several iterations, partial rewrites, and additional 

preprocessing steps were required. 

The final version of what is required and optional for visualisation of pangenomes in PanVA is 

illustrated in Figure 2 and does not match with what PanTools produces. The preprocessing done by 

PanToVA results in these core files. The methodology of transforming the data structure and content of 

these files are explained in the individual sections of the PanToVA workflow. Detailed examples of 

these files are available on the PanVA github page (Code & Data availability). 
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Figure 2. PanVA expected pangenome data structure for visualisation. 

 

3.0 PanToVA stages of the workflow 

Before preprocessing can begin, the pangenome needs to be constructed by PanTools. Changes were 

made throughout the project as to what PanVA requires and what is optional. This in turn affects which 

PanTools functionalities need to be executed when constructing a pangenome with the goal of 

visualisation, in addition to optional functionalities. Thus, aside from the standard functionalities used 

when creating a pangenome with PanTools, Figure 3 highlights which PanTools functions are 

specifically required to be executed for visualisation in PanVA and which can optionally be executed 

to add more data to the visualisation in PanVA. In the paragraph following, we explains the choices 

made, encountered issues and inner workings of individual stages of the workflow, ending the chapter 

with the combined workflow.  

 

 

Figure 3. The Required and optional PanTools functions used to create a pangenome that can be processed by PanToVA for 

visualisation in PanVA. 

 

3.1 Configuration file 
After the pangenome is constructed the preprocessing begins the run by reading in the configuration 

file of PanToVA. This configuration file contains all the instructions PanToVA needs to start 

preprocessing a pangenome. Other methods of providing configurations to the program, such as parsing 

arguments on the command line and/or interactively were briefly considered. Yet the interactive method 

would be counterproductive given the focus on automation. Whereas providing all instructions in one 

command line argument would work, it would be prone to errors, because the number of (optional) 

arguments is sizeable which clutters the screen. The benefit of using a configuration file is the ability 

to retrace information regarding the run well after the preprocessing was initially done. 

Within the configuration file, users are presented with several settings and options. Some settings are 

required, but do not affect the visualisation in PanVA itself. These settings consist of where the 
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pangenome is located, which group setting to use for the visualisation which corresponds to file 

locations in the pangenome and lastly the output directory. Others are optional and do not affect PanVA 

visualisation. These settings can improve the run time of PanToVA and provide additional information 

on the run when set to true. As one of the objectives is to improve the run time, PanToVA uses 

parallelisation allowing to spread the workload over multiple cpu cores when available. Therefore, a 

limit can be set for the maximum number of cores that can be used at the same time. This setting was 

added to improve run time for high end machines and allows low end machines to set a lower limit to 

prevent freezes and crashes. When the number of cores is not defined PanToVA checks the number of 

cores that are available at the start of the run and subtracts 2. If there are no free cores directly available, 

no maximum limit is set and PanToVA uses the cores when they become available.  

Other settings do have an effect on the visualisation in PanVA when defined. These settings provide 

the user with some additional configuration options as well as data filters. The following sections will 

provide further details on these settings as these are optional and only come into effect in the specific 

stages of the workflow. Example configuration files are included with PanToVA as well as a reusable 

template version of the configuration file. 

3.2 Data filters 
The first module that is activated is the data filter. The data filter stage ultimately determines which 

homology groups will be visualised by PanVA. There are two filter types: one contains optional filters 

the users can adjust themselves, the other filters are required and cannot be modified by the users. The 

optional filters the user can interact with are set in the configuration file. Users are presented with a 

variety of data filters designed to give users the freedom to only visualise data of interest. One of the 

settings allows for the selection of only specific homology groups instead of all homology groups in 

the pangenome.  

Subsequently the homology groups can be filtered based on minimal alignment length. The default 

setting for this is set to a length of 50 nucleotides. This threshold value is commonly used as the smallest 

measure when comparing (MSA) multiple sequence alignment tools (Nuin et al., 2006). Additionally, 

it was deemed unlikely that homology groups with an alignment length shorter than 50 nucleotides 

would be biologically or phylogenetically relevant, as PanTools makes use of MAFFT (Katoh & 

Standley, 2016) for the MSA, which does not consider the evolutionary relationships of the compared 

sequences (Ranwez & Chantret, 2020). 

Users are also able to filter on the minimal number of members in homology groups. Here the number 

of members corresponds to the number of aligned sequences of the MSA assigned to a specific 

homology group. The default setting for this is 2, as it is impossible to have a multiple sequence 

alignment with less than 2 members. It is important to note that homology groups with less than 2 

members do exist and are termed ‘single copy unique’, meaning that the sequence only occurs once in 

only one genome. These groups are interesting and informative, however PanVA is a tool for the visual 

variant analysis. If there are no variants found, they cannot be visualised in PanVA.  

The other interactive filter option is the minimal number unique of members in homology groups. In 

contrast to the minimal number of members, here the number of members refers to individual genomes. 

This was incorporated, because homology groups can be found of which multiple or in some cases all 

sequences originate from one single genome. In other words: a genome might have a unique gene in 

relation to the pangenome with multiple (incomplete) copies of this gene, which makes MSA possible. 

These homology groups are classified ‘non-single copy unique’. The default setting for this filter is set 

to 1, meaning homology groups with sequences derived from one or more genomes pass the filter. 

The filters the user cannot access or interact with have to do with checking the completeness of the data 

in the selected homology groups. This means that any homology groups which do not have the correct 

files they are removed from the selection. The number of groups removed in this manner is reported 
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back to the user in the log file at the end of the run and on the command line during the preprocessing. 

Additionally, homology groups are removed from the selection that do not have a trimmed multiple 

sequence alignment as this is a requirement set by PanVA. Lastly, any homology groups that do not 

have any variants in the alignment are also removed as this is another requirement determined by 

PanVA. 

By filtering by the homology groups each sequence retains a connection with the genome they come 

from. This becomes important in the later stages of the workflow as PanTools provides metadata 

information in different ways depending on whether the sequences are derived from a reference genome, 

resequenced accessions or an unannotated genome. 

Finally, the filter module constructs a log file of the run, which keeps track of which filter settings were 

used, how many groups were removed during which filter step and clocks the run time. This was done 

to improve reproducibility of the preprocessing, provide users a way to gauge the effects of the filter 

settings and to find, track and document any issues that may be encountered. 

3.3 Pangenome metadata  
The next module in the workflow is the metadata module, this module will only activate if the 

pangenome has metadata and the end user wants to include this in the visualisation. In a PanTools 

pangenome the metadata is stored in a single file called “phenotype_overview.txt”. In which for every 

genome their metadata and phenotype data is stored combined with an assigned genome number. 

However, if metadata is to be included PanVA expects this to be presented as a separate file 

“metadata.csv” for each homology group in the pangenome. 

To create these files users must mark “pheno_info” as “TRUE” in the configuration file of PanToVA. 

This initiates PanToVA to retrieve the metadata and phenotype data from the pangenome file 

“phenotype_overview.txt”. The first hurdle encountered was due to the format of 

“phenotype_overview.txt”, as it was designed to be readable by humans. Therefore, the module has to 

parse the file in its entirety to retrieve the information of interest as this could be spread throughout the 

file. Second, PanVA expects individual “metadata.csv” files for each homology group. Thus, the 

information retrieved from “phenotype_overview.txt” parsing is stored in memory to be linked to the 

individual homology groups. Next, for all sequences in each homology group the fasta header is 

compared with the metadata information in memory, as this header contains the genome number linking 

the sequence and the genome. Following this, for each homology group a “metadata.csv” is constructed 

containing only the metadata and phenotype data of the genomes of which sequences are present in this 

homology group.  

However, this is not the only method to add metadata information for visualisation. As mentioned, 

PanTools is able to add resequenced accessions to the pangenome, however by definition these are not 

complete genomes. Therefore, PanTools does not assign a genome number to any of these accessions, 

which makes it impossible to add any available metadata on these accessions in the same manner as for 

complete genomes by genome number. To accommodate users to incorporate metadata for these 

sequences if available, the configuration file option “reseq_meta” can be given a path to the metadata 

in .csv format as per the examples on the PanVA github page (Code & Data availability). 

If either or both methods of providing metadata are used, the data of “phenotype_overview.txt” and the 

“reseq_meta” files are temporarily stored in memory as a single data entity “df_phenos” for use in the 

next stage of the workflow. This is done as it is computationally less straining to keep this relatively 

small amount of data in memory for the next stage compared to opening, reading and closing the 

individual files that were just created for each homology group. 
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3.4 MSA settings & metadata visualisation options 
Continuing to the next module of “MSA/metadata visuals”, not every pangenome will have metadata 

available for visualisation, which affects the preprocessing workflow. Moreover, the settings used when 

building the pangenome also affects the resolution in which metadata can be visualised. To manage 

these influences, three different modes of operation are set up in this module.  

In mode of operation 1, the module activates if the metadata module has not been activated and thus no 

metadata is available. The module will then only create the files “alignments.csv”, “variable.csv” & 

“sequences.csv” for each homology group as required in PanVA. With “variables.csv” indicating which 

positions in the alignment are variable and if these positions are considered informative. The indication 

of informative is derived from the pangenome and is depended on which thresholds are used in 

PanTools when building the pangenome. Any position that is variable, or variable and informative, are 

also flagged as such in the “alignments.csv” file.  

The second mode of operation activates if the setting of “pheno_info” is set to “True” and “pheno_var” 

is set to “all”. This mode is only available when the pangenome was constructed using the latest version 

of PanTools, using the function “msa” to include phenotype variants. This functionality applies 

phenotype and metadata information to individual nucleotides of the sequence on their position during 

the MSA. This nucleotide level of annotation consists of three categories defined by PanTools (Jonkheer 

et al., 2022); “phenotype exclusive”, “phenotype specific” and “phenotype shared”, as shown in Figure 

4. 

 

 

Figure 4. PanTools phenotype specificity chart (Jonkheer et al., 2022). 

 

For instance, a homology group alignment may consist of 35 sequences each from1 a unique genome. 

For these genomes information is available on which population they belong to. 12 genomes are from 

population A, 11 from population B and 12 from population C. If we then find that on position 100 in 

the alignment 10 of the sequences have a Cystine, and all these sequences are part of population A, this 

is considered to be a ‘phenotype exclusive’ element. Meaning Cystine is only found on this position for 

population A but not for every sequence from population A. Whereas, using the same distribution as 

before, had it been that 12 sequences were to have a Cystine on position 100 and these were all part of 

population A, it would be considered a ‘phenotype specific’ element. This leaves the ‘phenotype shared’ 

elements, in which cystine appears on this position for all members of population A, but can also appear 

on this position for all other populations. 

This data is retrieved from the pangenome by PanToVA and applied to “alignments.csv” and 

“variables.csv” files required by PanVA. This is done, because information is added on nucleotide 

position level and PanVA requires this information to be included in the “alignments.csv” file and not 

as a separate file as provided by PanTools. Modifications were needed as the traditional method of 

storing MSA data PanTools provides cannot accommodate this, as can be seen in Figure 5. Before the 
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introduction of this feature, PanVA already expected the sequences in the MSA to be split on position, 

which ends up allowing the addition of the phenotype category labels per position.  

 

 

Figure 5. MSA file structure differences. A) Common approach for storing MSA data. B) PanVA approach to storing MSA 

data, allowing for position based information to be stored alongside the position. 

 

Lastly, the third operating mode activates if “pheno_info” is “True” and “pheno_var” is set to “False”. 

This mode functions in a similar way as the second operational mode except it does not add information 

on individual positions of the MSA in homology groups. This was done because the feature to add this 

level of information to nucleotide positions is part of the latest update of PanTools and it remains 

optional. In addition, several smaller adjustments to the data formats were made to file formats that 

PanTools in between major updates. This resulted in several versions of files being constructed 

depending on which version of PanTools was used before the last major update. Where PanToVA aims 

to be widely applicable, user-friendly, and (re)building large pangenomes costs a considerable amount 

of time, it is beneficial if older pangenomes can also be preprocessed for visualisation. Therefore, this 

mode of operation provides users the option to only use metadata on genome level, makes it possible to 

use pangenomes built using older versions of PanTools and resolves all inconsistencies in the file 

formats of between versions. 

3.5 Homology group characterisation  
PanTools offers users the ability to add a variety of annotations on the sequences to the pangenome, 

from different sources such as GO, InterPro, PFAM, TIGRFAM. This information in combination with 

other metrics such as alignment length, number of variable positions and metadata flags is stored per 

homology group. Additionally, the classification of the homology group is extracted and stored with 

the different classifiers matching the PanTools classifications of; “core & single copy orthologs”, 

“core”, “accessory”, “unique” (the PanTools team, 2023). It is important to note that any homology 

groups with the label “unique” that make it through PanToVA, are unique to one genome but have at 

least two partial copies of a sequence. This is because single sequence unique homology groups cannot 

be aligned to another sequence as no variant exists in the data and thus these homology groups are not 

visualised in PanVA. The classification and metadata information is combined to form in 

“homologies.json”. PanVA uses this file to construct the control panel, and expects this to be formatted 

as a single .JSON file. From this control panel users can explore the pangenome by homology group on 

the metrics available in the metadata and by gene name, function and or classification.  

3.6 Gene Variants & Annotated Genomes 
During construction of the pangenome in PanTools the “msa” function is used. This function by default 

will only use nucleotide sequences of coding sequence (CDS) when used for pangenomes. When 

development of PanToVA started on this module the only method to alter this behaviour was by using 



 
11 

the PanTools option “add_variants” which, next to allowing users to add gene variant sequences to the 

pangenome, also created files containing information on gene annotation. This information consisted 

of intron and exon locations, and for exons what sections were consisting of untranslated regions 

(UTR’s) and coding sequence (CDS) which is particularly useful information for pangenomes of 

eukaryotic organisms, as prokaryotic organisms do not have introns. Initially, PanToVA would make 

use of the “add_variants” behaviour by reformatting the files containing the annotation information in 

a way that PanVA can visualise this information. The “msa” function has since been updated, to allow 

users to alter the “msa” settings to perform the alignment on the entire mRNA sequences. This creates 

the same data on the gene annotations as before thus allowing PanToVA to now also include this data 

without having to use the “add_variants” functions. These annotations however are still only available 

for annotated genomes, or when the “add_variants” option is used with variants from VCF (variant call 

format) files in combination with a reference genome, making this module optional in the preprocessing. 

Users can indicate if the add variants option was used or not by changing “msa_type” to 

“msa_per_group_var” in the configuration file of PanToVA. If left unchanged PanToVA will add 

annotations from annotated genomes in the pangenome if available.  

3.7 Phylogenetic trees 
The last module of PanToVA checks the pangenome database for any phylogenetic trees that the user 

might have created of the pangenome. The phylogenetic trees can be constructed by PanTools using 

different methods, such as core phylogeny using either Maximum likelihood (ML) or Neighbour-

joining (NJ), K-mer joining using NJ, consensus tree, gene distance tree using NJ, Average Nucleotide 

Identity (ANI) for prokaryotic genomes or Multilocus sequence analysis (MLSA). In order to do this, 

PanTools uses functions from other packages and scripts. These dependencies all save the resulting 

trees in slightly different file formats with different extensions, which PanToVA is able to transform 

into formats PanVA accepts. However, these packages save the resulting phylogenetic trees in any 

location and under any name the user defines. To address this issue, several options were considered. 

For example, one option was to restrict the freedom by defining a directory in which the trees should 

be stored. However, this would not work for pangenomes that already exist, and for new pangenomes 

this would require users to be aware of the restriction before constructing a pangenome. Another option 

was to remove the option of naming the phylogenetic trees completely, yet often when building 

phylogenetic trees various settings are tweaked and adjusted to come to the right tree. This results in 

multiple versions of the trees, thus removing the naming option completely would make distinguishing 

these unnecessarily difficult. Therefore, considering PanToVA checks if all required files are present at 

the start of the run, it now also checks if any phylogenetic tree files are present, based on file extension. 

If any are found during the checks, the file locations are stored for this module where the file formats 

are adjusted to match the files accepted by PanVA. After which the preprocessing by PanToVA is 

complete and the user is presented with all files for use in PanVA. 

3.8 The combined workflow 
The modules described above come together to form the total workflow of PanToVA as can be seen in 

Figure 6. This workflow produces the input files for visualisation in PanVA for any PanTools 

pangenome. When using the command line standalone version of PanToVA, users need to update the 

template configuration file to match their pangenome and criteria. Subsequently, the user activates the 

conda environment included with PanToVA, after which the following command is used to start the 

preprocessing; 

python3 path/to/pan_to_va.py path/to/config.ini 
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Figure 6. The complete PanToVA workflow. 

 

4. Application 

In this section, we describe how all modules work together depending on what data and settings are 

used. For this we used a selection of pangenomes of various origins, containing bacterial, fungal and 

plant pangenomes. For the bacterial pangenomes we used a Pectobacterium pangenome of 454 genomes 

(Pecto_454) with numerous species and strains with metadata but without phenotype specific elements, 

a smaller Pectobacterium pangenome consisting of 197 genomes (Pecto_197) but including both 

metadata and phenotype specific elements. The fungal pangenomes are represented by a Yeast 

pangenome consisting of 10 Saccharomyces cerevisiae strains. As well as two Fusarium asiaticum 

pangenomes of 60 and 245 genomes respectively. The plant pangenomes are represented by an 

Arabidopsis thaliana pangenome consisting of 25 genomes, and 15% of the homology groups of a 

Lactuca pangenome (Lettuce_15%) constructed with reference genomes of 3 species (Lactuca sativa, 

Lactuca saligna and Lactuca virosa) combined with 440 resequenced accessions and lastly a 

pangenome consisting of 20 Solanum genomes (Tomato_20) which includes the species; Solanum 

lycopersicum, Solanum habrochaites, Solanum penelli and Solanum pimpinellifolium. 

The pangenomes are constructed in such a manner to demonstrate the diversity of pangenomes. This is 

done by including and excluding available data. Table 1 shows the differences in pangenome size and 

included data. The individual preprocessing steps the aforementioned pangenomes go through is shown 

in Supplementary Figure 1.  
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Table 1. 8 Different pangenomes, illustrating the diversity in included data. 

 

 

4.1 Implementation & Integration 
PanToVA is created for Python v3.11.0 and makes use of existing Python (v3.11.0 compatible) 

packages, tools and scripts. The dependencies for PanToVA are included when installed in the form of 

a conda (“Anaconda Software Distribution”, 2020) environment. 

PanToVA is required to work together with PanTools. Therefore, the next step was integration of the 

preprocessing into the whole workflow of PanTools and PanVA. In order to integrate PanToVA with 

PanTools, the entire codebase of PanToVA is now part of the public version of PanUtils (see: Code & 

Data availability). PanUtils is a utility package for PanTools and allows users to automate the building 

of the pangenome. Now with the inclusion of PanToVA a user can automate the construction of the 

pangenome and the preprocessing for visualisation in PanVA, further improving user-friendliness by 

keeping all tools together as one. 

PanVA requires a configuration file for the frontend of the application for every instance. This 

configuration file requires a substantial amount of time to prepare. In addition, due to the .json format 

any mistake in the structure of the file will cause it to break the instance. Therefore, as an additional 

feature a separate script was created that constructs a boilerplate version of the configuration file for 

any preprocessed pangenome. This boilerplate provides everything that is required by PanVA to work, 

yet allows users to adjust values for things such as headers, titles, column width and others, without 

having to touch the data structure itself. 

4.2 Run time and optimisation 
Building a sizeable pangenome takes a significant amount of time due to collecting data and running 

PanTools, but once constructed, PanToVA’s multiprocessing approach only requires minutes for high 

end computer systems to a few hours for lower end specifications in relation with the pangenome size. 

PanToVA’s run time is dependent on several factors, such as the number of assigned cpu cores, the size 

of the pangenome, number of included homology groups, the metadata that is included, phylogenetic 

trees, and if any gene variant annotations are available. Demonstrating PanToVA’s ability to handle 

pangenomes of various orders of magnitude independent of organism, the selection of preconstructed 

pangenomes were preprocessed by PanToVA and timed, as shown in Table 2.  
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Table 2. PanToVA preprocessing run times per pangenome. 

 

 

With the preprocessing of the pangenomes completed, the next step was launching the individual 

PanVA instances. During this step some issues were discovered with PanVA when larger pangenomes 

are used, specifically large homology groups with a large number of members and a long alignment 

length. When a PanVA instance is created and a homology group is selected for visualisation the first 

time, a linkage matrix is automatically calculated by PanVA to form the dendrogram for similarity. The 

original implementation made use of the Levenshtein (Berger et al., 2021) method for calculation of 

similarity. This was functional in instances that consisted of small homology groups, short alignment 

lengths with few members. However, for larger homology groups, combination of lots of members and 

long alignments, this was insufficient. For locally hosted PanVA instances the longer calculation time 

would be bothersome but not necessarily an issue if it would take slightly longer. However, when a 

PanVA instance is hosted on a dedicated server the calculation time would result in a time out from the 

server.  

Several fixes were tested, such as increasing the time it takes for a server time out to occur. In order to 

test this method, one such large homology group of 443 members and an alignment length of 35947 

bases was selected, this took more than 70 minutes to complete the dendrogram calculation with the old 

implementation, when ran locally to avoid server time outs. Thus, not only would this not fix the issue 

as waiting 70 minutes to view a single homology group is unacceptable, it would also pose a major 

security risk if hosted on a dedicated server with an adjusted server time out time to allow for this wait 

time. 

Thus, we settled to find a more optimized method to calculate the linkage matrix. For this we compared 

the performance of the Levenshtein (Berger et al., 2021) method to the RapidFuzz (Bachmann, 2021) 

version implementation of hamming distance. From the available preprocessed pangenomes at the time, 

homology groups that were considered to be large homology groups were selected, in addition to 

homology groups of varying sizes. This was done to ensure that if differences between calculation 

methods existed, any correlation in run time, outcome, size or length would not be missed. As these 

methods both produce matrices that are used in PanVA to create the similarity matrices, the exact values 

of the elements in the matrices are less important than the overall differences in values across the matrix. 

Therefore, it is more important to check the largest and smallest differences in values. The results of 

this test are shown in Table 3, indicating that calculation times are different specifically when it comes 

to the larger homology groups.  
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The values produced by the various methods are not significantly dissimilar. In addition, the PanVA 

(Brandt et al., 2022) paper already referred to the hamming distance method, yet the code was using the 

Levenshtein method. Therefore, the RapidFuzz (Bachmann, 2021) implementation of hamming 

distance was implemented in PanVA. 

Table 3. Linkage matrix calculation comparison. Compares the time it takes for the Hamming and Levenshtein method to 
generate the linkage matrix, comparing the resulting matrix on the largest and smallest differences between elements in the 

matrices. 

 

 

4.3 Resulting PanVA instance 
Each of the aforementioned pangenomes made it through the preprocessing without issues. For the last 

test to ensure PanToVA was working as intended, for each of the different pangenomes a PanVA 

instance was made, with the exception of the complete Pecto_454 pangenome due to time limitations. 

The Figure 7 shows a schematic still of the Yeast_10 pangenome PanVA instance, highlighting the 

different elements of the PanVA instance and which input files are used for what sections in the 

instance. PanVA is an interactive tool for visual exploration of pangenomes, so its features are best 

experienced by interacting with the tool itself. Therefore, a selection of the PanVA instances created 

for this project are available to the public (Code & Data availability).  
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Figure 7. Schematic PanVA instance of Yeast_10 homology group 978118. Highlighting which features of PanVA are affected 
by the files created by PanToVA to visualise pangenomes. Filled and dashed lines indicate which files store the data to produce 

what segment. Dotted lines represent how and where users of PanVA can interact with the data during visualisation. 

 

5. Discussion 

PanToVA requirements were set to be efficient, user-friendly, configurable, applicable for all PanTools 

pangenomes and automated whilst taking into consideration the needs and preferences of the assumed 

user base. Even with PanToVA meeting the and in cases exceeding the requirements, there were still 

some limitations as to what could be achieved, as some challenges arose throughout the project. 

One such challenge were the frequent and irregularly scheduled updates to both PanTools and PanVA. 

As PanToVA is to facilitate the preprocessing of data between these tools, the updates resulted in several 

rewrites and adjustments to the PanToVA codebase. This, in combination with the changing 

requirements for PanToVA and the limited duration of the project, resulted in some level of redundancy 

built into the design of PanToVA. Initially this was viewed as a flaw, however, one such redundancy 

became an important asset of PanToVA. Considering reconstruction of pangenomes for every minor 

update of PanTools was not feasible within the project time schedule, this redundancy was created in 

order to catch any minor differences in file formats that can be present depending on which 

(developmental) version of PanTools was used to build the pangenome. Because of this redundancy, 

PanToVA is now backwards compatible with pangenomes created using older versions of PanTools, 

which allows users to use already existing pangenomes. 

Another challenge arose, as during the PanToVA project the functionalities of PanVA were expanded, 

which enabled it to visualise more data than originally planned. As a result, the project schedule for 

PanToVA was adjusted to accommodate these changes. This resulted in an overall more robust and able 

PanToVA, yet due to the shifting priorities there was less time for the phylogenetic tree module to be 

optimised.  

The phylogenetic tree module will search for any files in the pangenome that might be a phylogenetic 

tree file, as neither file extension, file name and subdirectory storage location is standardised in 

PanTools. Several methods to improve the phylogenetic tree module have been discussed. The first 

option being standardising the storage location of these phylogenetic trees in the pangenome by 

PanTools, because this would make searching pangenome as done by PanToVA obsolete. This would 
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reduce run time of PanToVA even further, especially for larger pangenomes as less files need to be 

searched. Another option would be to let users specify which phylogenetic tree(s) they want to add for 

visualisation in the configuration file. However, we feel this would not be as efficient or as user friendly 

seeing as it is a common practice when constructing phylogenetic trees to make several versions using 

different methods. Therefore, we argue having users enter several filenames and locations in order to 

include all phylogenetic trees would negatively impact user friendliness. These options are merely 

suggestions and have been passed on to the development team of PanTools and PanVA with advice on 

how to implement either option in PanToVA as well.  

Throughout the project several small improvements, for cases such as standardising naming convention, 

file extensions or in file data structures, in collaboration with the developers of both PanTools and 

PanVA, proved to be successful and resulted in a more efficient workflow. Thanks to this collaboration, 

it also became apparent that some of the choices made for PanVA that were beneficial for visualisation,  

placed unnecessary restrictions on the available data, thus limiting PanToVA. For example, PanToVA 

currently removes any homology group that has no variants. As by design PanVA is a visual variant 

analysis tool for pangenomes on a homology group level, and therefore it won’t allow the users to 

include any homology groups that have no variation. Which means removing a sometimes sizable 

number of homology groups that contain highly conserved genes. This is less important when it comes 

to known genes that are present in each of the genomes of the pangenome, yet when it comes to highly 

conserved genes that are only found in a specific set of genomes within the pangenome this might not 

be so trivial. Therefore, recommendations have been made to the PanVA developers to allow for 

visualisation of non-variant homology groups. 

A similar limitation is due to PanToVA’s requirement for trimmed multiple sequence alignments of the 

homology groups. This requirement was known from the start of the project as PanVA was only able 

to work for trimmed alignments. However, during the later stages of the project it became apparent that 

some pangenomes, especially for pangenomes with limited number of genomes but of higher plants, 

PanTools was not always able to provide trimmed alignments. This can be due to the protein sequences 

starting and ending on the same position or the resulting trimmed alignment being to small. Thus, the 

request was made to alter the preprocessing to allow for untrimmed alignments, however, when work 

started on this request it was discovered that PanVA itself was unable to work with untrimmed 

alignments. While inspecting the PanVA codebase to resolve this issue, we found that part of the 

problem was due to PanVA expecting to find the label “nuc_trimmed_seq” in several locations. It would 

have taken too long to alter this in both PanVA and PanToVA in the remaining time of the PanToVA 

project without guaranteeing it would completely resolve the issue. Thus, the suggestion was made to 

change this during a follow up project after PanVA is updated and able to handle these untrimmed 

alignments.  

In addition, the annotation options of PanTools did not come into the release branch of PanTools until 

the later stages of the PanToVA project. Therefore, the PanToVA implementation for the annotations 

was done in a limited timeframe, and therefore did not receive the same level of tests to ensure optimised 

functioning. However, the late introduction of this module does highlight the success of the modular 

design, demonstrating modules can be modified, removed and added without interrupting the other 

modules. 

Reflecting back on the PanToVA project as a whole, we reiterate the importance of proper 

communication and checkpoints, especially when collaborating with developers across different 

projects. As this project was heavily tied into the PanTools and PanVA projects, changes that occurred 

in one of the projects could have an effect on all projects. For example, postponed updates, moved 

datasets, and rescheduled deadlines sometimes negatively impacted the PanToVA project. However we 

quickly adapted and improved the lines of communication between the parties involved. This resulted 

in fewer issues in compatibility of the tools, and increased understanding of the combined codework as 
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a whole which allowed us to suggest and make improvements to PanTools and PanVA outside of the 

PanToVA project boundaries. In the future, we recommend taking some time at the start of the project 

to define a clear communication strategy with the key collaborators.   

As for the choice for Python, other languages could have been used, and specifically java could have 

been a good option. Seeing as PanTools is mostly written in java this could have improved integration 

in the long run. But as Python is considered to be more readable, versatile and has simpler syntax and 

the PanToVA project aims to be widely applicable and simple, using Python is a good option. In 

addition, the preprocessing by PanToVA is predominantly parsing, data collection, formatting and 

filtering and does not require heavy calculations to be done. Had this been the case arguments could 

have been made to use other options such as R or Java.  

With PanToVA we streamlined the workflow of pangenome exploration through visualisation. 

Retrieving data of interest from the large and complex data structures of pangenomes, constructing files 

from the pangenome built with PanTools without the need for manual curation. Providing PanVA the 

data which allows it to visualise multiple references together with providing the adequate context of 

heterogeneous (meta)data, such as annotations, evolutionary relationships and phenotypes (Brandt et 

al., 2022). This further improves the ease in which genetic variation underlying phenotypes can be 

explored. PanToVA, together with PanTools and PanVA, brings us one step closer to fully transitioning 

from the single reference genome to the pangenome approach, allowing research to look at variation on 

a larger scale. 

Conclusion 

During this project, we have developed a Python workflow that is able to automatically preprocess 

PanTools pangenomes for visualisation in PanVA. This workflow works as a standalone tool and is also 

included in PanUtils under the “export-to-panva” project. This project sought to create a workflow that 

works efficiently for all pangenomes and is both automated and configurable. From the resulting 

applications, test runs and the run times we conclude that PanToVA works efficiently for both small 

and larger pangenomes. We have also shown that PanToVA is usable for pangenomes of various 

organisms and the different contents of the pangenomes. In addition, we have shown the usefulness of 

PanToVA as it provides users with insights of what occurs during the preprocessing improving the 

reproducibility of any study using PanVA. Following this, the in-house user base was able to work well 

with the application solely relying on the instructions of the configuration file, highlighting the ease of 

use. The ease of use was further confirmed during workshops with external potential users of the 

workflow. From the application itself we can conclude that PanToVA is modular and expandable, as 

modules can be activated independently, and additional modules can be added as shown by the 

incorporation of the annotation module during the latest stages of the project. In conclusion, PanToVA 

has met and exceeded the project requirements and is incorporated in the pangenome variant analysis 

workflow. As a final thought, based on the findings and the gained experiences of the project we 

recommend a follow up project to polish the details of the PanToVA project in a collaboration project 

with the developers of PanTools and PanVA. 

Code & Data availability 
Parties interested in the possibilities of setting up the presented pangenome variant analysis workflow 

at their facilities, please contact S. Smit from the Bioinformatics Group of Wageningen University & 

Research. 

The codebase of PanToVA is publicly available as part of the PanUtils package at 

https://github.com/PanUtils/export-to-panva. 

https://github.com/PanUtils/export-to-panva
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The data used in the creation of the Pectobacterium, Fusarium, Tomato, Lactuca & Solanum 

pangenomes and PanVA instances, are available from Wageningen University and Research – 

Bioinformatics Group. Restrictions apply to the availability of these datasets, which are under license 

for this study. None of the data used for the creation of the pangenomes and the PanVA instances is my 

own. Some of the aforementioned datasets might become available at a later date, after embargo period 

following publication of papers on the data. Data requests should be addressed to dr. S. Smit, of the 

Bioinformatics Group. 

The resulting Saccharomyces and Arabidopsis and the small Pectobacterium PanVA instances are 

publicly available at www.bioinformatics.nl/panva/yeast10/, www.bioinformatics.nl/panva/ara25/, 

www.bioinformatics.nl/panva/pecto197/, using the guest access; “workshop”, “panvatest!”. These 

instances are actively used to test new features of PanVA, thus are known to occasionally produce errors 

and are subject to change.  

PanTools available at (recommended) https://anaconda.org/bioconda/pantools or over at 

https://git.wur.nl/bioinformatics/pantools (developers).  

PanVA code available at https://github.com/PanBrowse/PanVA. 

Figures are made using the free version of Canva; https://www.canva.com/  
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Supplementary Figure 1. PanToVA workflow routes per pangenome. 


