

20/01/2024

PanToVA:

automated

preprocessing of

pangenomes for

variant analysis in

PanVA

Bridging the gap between PanTools &

PanVA

Vlugter, Sander
Supervision: dr. S. Smit (WUR), MSc. M. Yang (WUR)
Wageningen University & Research, Bioinformatics Group
Contact: sandervlugter@hotmail.com
Student number: 1160710

1

Abstract

A wealth of readily available genomic information set in motion a transition towards the pangenome

approach which is set to replace the single reference genome, with the pangenome approach being able

to provide a more complete picture of genetic variation. This higher resolution does come at the cost of

increased complexity of the data structure of pangenomes, thus new tools like PanVA were needed to

be able to visualise data of multiple genomes at once. However, with PanVA being a relatively new

tool, proper integration into the workflow of comparative genomics using PanTools pangenomes was

lacking. Resulting in non-standardised, unautomated manual curation and alteration of the pangenome

before visualisation can commence in PanVA, adding yet another stage to the workflow, whilst creating

more room for human error. To address this, we developed PanToVA, a tool that is able to handle any

pangenome created with PanTools and preprocess it for visualisation in PanVA. In this paper we show

PanToVA’s ability to handle genomic data spanning bacteria, fungi and plants. In addition, PanToVA

is integrated in PanUtils, a toolbox for automating the construction of pangenomes. With the

introduction of PanToVA in PanUtils, the complete process from construction to visualisation of

pangenomes is now brought together and automated. The implementation of PanToVA is made possible

through collaboration with the developers of PanUtils, PanTools and PanVA.

1 Introduction

Ever since the first successful single complete genome was sequenced (Sanger et al., 1977), the

technique of sequencing has been the basis of comparative genomics, gene discovery and function

analytics using a single reference genome (Staden, 1982). However, the advances in (cloud) computing,

data storage and next generation sequencing (NGS) of the mid and late 2000’s made it cheaper and

easier to produce significantly more sequencing data than was previously possible (Muir et al., 2016).

As a result of these technological advancements large scale genome projects have been conducted, such

as the 3.000 rice genomes project (Li et al., 2014). The increase of available sequencing data also

highlighted the limitations of the standard single reference genome approach. Larger datasets revealed

inter species variation in the form of presence and absence variations (PAV’s), which cannot be

explored using a single reference genome (Zhang et al., 2016). Additionally, the single reference

genome is prone to cause reference bias in alignments, because of the tendency of sequences to map

more easily to the reference alleles, whereas non reference alleles might be mapped at lower rates or be

removed completely (Ballouz et al., 2019). Thus, continuing to individually compare each sequence in

a dataset to a single reference genome is inefficient, costly and results in a significant loss of

information.

To combat the issues of the single reference genome the concept of the pangenome was first proposed

in (Tettelin et al., 2005). This concept describes the totality of all genes present in different strains. The

term later evolved to mean the collection of DNA sequences present in a species, including a core part

of the genome which is present in all individuals and a dispensable part of the genome present only in

some (Marroni et al., 2014; Morgante et al., 2007; Sherman & Salzberg, 2020; Wang et al., 2023). This

approach provides a more detailed and inclusive representation of variation in and even across species.

It makes it possible to include sequence variants, phylogeny, phenotyping and (functional) annotations,

which is valuable in comparative genomics within and across species. These pangenomes of

multidimensional genomic information do come with a drawback. Analysing, interpretation and

presentation of a pangenome is not as clear cut as with the single reference genome approach. Over the

years various computational tools that are able to construct and analyse pangenomes have been

introduced (Vernikos et al., 2015). However, efficient tools that can construct pangenomes alone are

not enough to accommodate the complete transition to the pangenome approach (Hudson et al., 2010).

In order to accomplish a complete transition, proper visualisation and presentation of pangenomes has

to be achieved, as visualisation is a common method for interactive exploration and interpretation of

2

genomic data (Nusrat et al., 2019). In recent years several tools offering pangenome visualisation have

been introduced. However, these tools do have their limitations, for example regarding scalability,

accessibility, widespread applicability and in some cases the ironical reliance on the presence of the

single reference genome which pangenomes are set to replace (Pedersen et al., 2017).

As it stands, to produce a sizeable pangenome with proper visualisation from raw data, users would

need to use one tool for the construction and analysis and a separate tool for the visualisation. This is

also the case for pangenome browser PanVA. PanVA (Brandt et al., 2022) is a promising new tool for

visual exploration of pangenomes, designed to work with pangenomes created by PanTools

(Sheikhizadeh et al., 2016), an established tool that is regularly updated and expanded. In the current

stage, PanVA is able to visualise the various different data dimensions of pangenomes, handles decently

sized (several dozens of genomes) pangenomes and is not reliant on the presence of a reference genome.

However, PanVA requires users to manually curate the PanTools pangenome for entries PanVA can

work with, as the initial version of PanVA was built on handpicked data. Users also need to make

alterations and modifications to a preprocessing script that is necessary for pangenomes to be visualised

in PanVA. Therefore, to make pangenome visualization by PanVA accessible to (unexperienced) users

and applicable for pangenomes across the tree of life, we need to get rid of this manual preprocessing

and automate this process in a flexible way.

To streamline and improve the connection between PanTools pangenome building and PanVA

visualisation, we present PanToVA. PanToVA replaces the need for manual preprocessing and instead

offers an efficient, configurable, automated and easy to use alternative able to handle any PanTools

pangenome for visualisation in PanVA. In addition, PanToVA introduces extra features and filters

allowing users more freedom to highlight specific data in the visualisation of pangenomes. In this paper

we explain the design process and the choices made to deliver PanToVA. To demonstrate the wide

applicability of PanToVA, we applied it to a collection of 8 PanTools pangenomes of bacteria, fungi

and higher plants. These pangenomes vary in number of data entries, sequence lengths, phenotype and

metadata. Finally, we discuss the advantages of PanToVA, the encountered limitations during the

development, improvements made to PanVA and PanTools to be able to integrate PanToVA into the

workflow, and planned future improvements.

2 Design and Development Approach

The PanToVA project consists of a design and development part as well as an engineering part. These

parts come together to construct software that bridges the gap between PanTools and PanVA. As

PanTools and PanVA were designed by different development teams, the data formats PanVA can

handle are different from the way PanTools outputs the data. Therefore, to construct a proper connection

some unorthodox design choices had to be made in PanToVA to be able to connect PanTools and

PanVA. These choices could be viewed as ill-considered when examining the final workflow of

PanToVA, without the context of the encountered issues. To be able to properly break down the

reasoning for the design choices, this paper is structured following the design choices that led to the

final version of PanToVA. Starting with section 2.1 which outlines the project requirements for the

PanToVA workflow. Section 2.2 introduces the structural components and diversity of PanTools

pangenomes, providing insights in the input data for PanToVA. Section 2.3 asserts the conditions for

the data which PanVA accepts, and illustrates the expected end results of PanToVA.

2.1 PanToVA Requirements
To ensure the usefulness of PanToVA, it is essential to align its functionalities with the needs of the

target user base. Therefore, several meetings were conducted throughout the duration of the project with

both members of the in-house users and developers of PanTools and PanVA to identify and update these

requirements. These sessions combined with the project proposal formed the basis for the project

requirements.

3

The main requirement for PanToVA is to be widely applicable. Meaning it is essential for PanToVA

to perform the preprocessing work for any pangenome built by PanTools of any organism. This also

requires the input data prerequisites of PanVA to be addressed, because the sessions showed that only

a limited number of pangenomes that PanTools built met the original criteria for the input data as set

by PanVA. Pangenomes built by PanTools can contain a variety of additional useful data, which PanVA

was not able to work with.

The variation in data present in pangenomes not only required modifications to PanVA but it also

illustrates the need for PanToVA to be configurable. The original framework of the preprocessing left

no room for customisation or varying pangenomes. So, PanToVA will allow users to customize, add,

remove and highlight data entries to match their needs for visualisation in PanVA. As an added benefit,

these customisation options greatly reduce run time and increase the efficiency of the preprocessing, as

it will only run for the selected options and data points.

Improving efficiency is another requirement of PanToVA. As studies are increasingly adding more data

to their pangenomes, and with the processing run time being correlated with pangenome size and

available data, the swiftness of PanToVA is vital. However, speed must not come at the cost of

efficiency. Thus, the design for PanToVA was made to balance run time and computational power

usage. As a side objective for the efficiency improvements, the aim is for PanToVA to also be able to

run properly on low-end desktops and laptops. In addition, improvements were set to be made to

PanTools output formats and the PanVA code where needed, in order to improve the efficiency of the

process as a whole.

Finally, the ultimate goal of PanToVA is to alleviate the burdensome task of manual data curation that

is required for users of PanTools and PanVA. Therefore, paramount importance is placed on the

automation of the preprocessing, user-friendliness, and accessibility of support. To achieve this,

developmental versions were utilized in user test sessions throughout the project, which provided

helpful insights to further improve the design of PanToVA. Additionally, based loosely on the

MoSCoW method (Clegg & Barker, 1994) for prioritization, these valuable insights led to the inclusion

of several additional features in the final version of PanToVA.

2.2 PanTools pangenomes
To get a better grasp of the complexity and diversity of data in PanTools pangenomes it is key to

understand the data structure and the elements present. The data of pangenomes is often compressed

and typically stored in a graph-based structure. PanTools builds a compressed De Bruijn graph, as

conceptually shown in Figure 1.A, which is too complex for visual exploration of the data. When

bringing down the resolution of the graph we can illustrate a more simplified version of the data

structure of a PanTools pangenome in Figure 1.B. This view highlights the different datatypes and how

all information is connected together.

4

Figure 1. The PanTools v3 pangenome data structure.

Although the underlying data infrastructure of the pangenomes is identical, this does not mean the

content of all pangenomes is the same.

These differences start with the design of and study for which pangenomes are constructed, as this

heavily influences what data is present in a pangenome. For example, some pangenomes are constructed

of a limited number of closely related species or strains in a specific habitat to gain insights in a specific

population. Whereas others are built on a tremendous collection of genomes spanning multiple

populations, habitats and or large evolutionary distance to gain insight in evolutionary relations. The

organism(s) of interest affect the annotations in the pangenome, for example, eukaryotic and

prokaryotic have differences and different standards in the annotations of genomes, which results in

further differentiated data between pangenomes.

Continuing, the type of sequences of the genomes that are included in the construction also have an

effect, as PanTools can construct a pangenome built of combinations of (multiple) reference genomes,

genomes and resequenced accessions. However, PanTools handles data related to resequenced

accessions differently compared to genomes. This causes more variance in the data structures of

pangenomes.

The metadata part of pangenomes is optional to include with PanTools. Therefore, this information is

not always available in pangenomes. Metadata also is a non standardised type of data, meaning that it

can contain all sorts of added information. For example, it could include information such as coordinates

of where the specimen was collected, date, time, the humidity and who took the sample, each as a

separate category of the metadata. This also means that each category can have different datatypes, such

as but not limited to numeric, scale, score, Boolean, degrees, coordinates, as well as descriptive text. In

addition, PanTools accepts non-complete metadata entries, meaning it does not require every genome

in the dataset to have metadata or even the same metadata categories to be included in the pangenome.

As part of the structure of a PanTools pangenome phenotype data can be added to the metadata block.

Phenotype data, like metadata, adds extra information to the pangenome, however there are distinctions.

Here we make use of the definitions as described by (National Human Genome Research Institute,

2020), which states that metadata are “data that provide additional information intended to make

scientific data interpretable and reusable (e.g., date, independent sample and variable construction and

description, methodology, data provenance, data transformations, any intermediate or descriptive

5

observational variables).”. Whereas phenotype data are “data are the observable characteristics or traits

of an organism or a cell line (i.e., the physical manifestation of a genotype).”. Similar to the metadata,

the phenotype data can be incomplete and are non standard.

Pangenomes are essentially a collection of genomes, and these genomes have relations that could span

short and/or large evolutionary distances. PanTools can analyse and include information in pangenomes

for the exploration of these relations through phylogenetics. To do this PanTools has 6 methods to

create phylogenetic trees, each with settings that can be finetuned by the user. For any given pangenome

none or several different phylogenetic trees can be included.

However diverse, all pangenomes are built on the concept of homology groups. To better understand

homology groups we first focus on the individual genomes in the pangenome. Genomes contain genes

which annotate the genome and encodes for mRNA. This mRNA has CDS (coding sequence) which

encodes for proteins. All proteins found in the pangenome are compared based on their sequence

similarity, forming groups of proteins called the homology groups. The individual protein sequences in

a homology group remain connected to the genome to which they originate, which means any

information that is connected to the genome is also connected. Hence, information such as metadata

and phenotype data is available for the homology groups. As a result, traits such as phenotype specific

attributes can be linked to specific proteins or perhaps to specific mutations. As these connections can

be of great importance, PanTools has the option to include this information in the homology groups of

the pangenomes.

Lastly, most PanTools functionalities that are executed when constructing a pangenome offer a selection

of methodologies each with adjustable settings that can impact the data structures and connections. This

once again illustrates the versatility and wide applicability of the pangenome approach. At the same

time, this illustrates the diversity, complexity and interconnectivity of the data structures in pangenomes

which complicates visualisation.

2.3 PanVA input
With the complexity, diversity and quantity of data offered by PanTools pangenomes, PanVA’s design

focuses on the visualisation of pangenomes based on the homology group level, allowing exploration

of all genomes at once on gene level. The initial concept version of PanVA was developed based on the

data, and more importantly the data structures, of 2 pangenomes. The first visualisations done by PanVA

were completed using data that was manually retrieved from these pangenomes. To accomplish

visualisation, the data from the PanTools pangenome were retrieved and transformed into several files

to better fit the design of PanVA’s visualisation approach. This as the output from PanTools was ill-

suited for the web-based design of PanVA.

Additionally, with the first concept version some assumptions were made on data availability across

pangenomes. This resulted in the implementation of features that were entirely dependent on the

presence of data in a specific format, otherwise PanVA would not be able to visualise the dataset in its

entirety. Throughout the PanToVA project, PanVA was updated several times to be able to account for

these issues in order to handle the diversity present in PanTools pangenomes. This resulted in looser

requirements as to what data is required and what data is perceived as optional. To accommodate these

changes, the PanToVA code went through several iterations, partial rewrites, and additional

preprocessing steps were required.

The final version of what is required and optional for visualisation of pangenomes in PanVA is

illustrated in Figure 2 and does not match with what PanTools produces. The preprocessing done by

PanToVA results in these core files. The methodology of transforming the data structure and content of

these files are explained in the individual sections of the PanToVA workflow. Detailed examples of

these files are available on the PanVA github page (Code & Data availability).

6

Figure 2. PanVA expected pangenome data structure for visualisation.

3.0 PanToVA stages of the workflow

Before preprocessing can begin, the pangenome needs to be constructed by PanTools. Changes were

made throughout the project as to what PanVA requires and what is optional. This in turn affects which

PanTools functionalities need to be executed when constructing a pangenome with the goal of

visualisation, in addition to optional functionalities. Thus, aside from the standard functionalities used

when creating a pangenome with PanTools, Figure 3 highlights which PanTools functions are

specifically required to be executed for visualisation in PanVA and which can optionally be executed

to add more data to the visualisation in PanVA. In the paragraph following, we explains the choices

made, encountered issues and inner workings of individual stages of the workflow, ending the chapter

with the combined workflow.

Figure 3. The Required and optional PanTools functions used to create a pangenome that can be processed by PanToVA for

visualisation in PanVA.

3.1 Configuration file
After the pangenome is constructed the preprocessing begins the run by reading in the configuration

file of PanToVA. This configuration file contains all the instructions PanToVA needs to start

preprocessing a pangenome. Other methods of providing configurations to the program, such as parsing

arguments on the command line and/or interactively were briefly considered. Yet the interactive method

would be counterproductive given the focus on automation. Whereas providing all instructions in one

command line argument would work, it would be prone to errors, because the number of (optional)

arguments is sizeable which clutters the screen. The benefit of using a configuration file is the ability

to retrace information regarding the run well after the preprocessing was initially done.

Within the configuration file, users are presented with several settings and options. Some settings are

required, but do not affect the visualisation in PanVA itself. These settings consist of where the

7

pangenome is located, which group setting to use for the visualisation which corresponds to file

locations in the pangenome and lastly the output directory. Others are optional and do not affect PanVA

visualisation. These settings can improve the run time of PanToVA and provide additional information

on the run when set to true. As one of the objectives is to improve the run time, PanToVA uses

parallelisation allowing to spread the workload over multiple cpu cores when available. Therefore, a

limit can be set for the maximum number of cores that can be used at the same time. This setting was

added to improve run time for high end machines and allows low end machines to set a lower limit to

prevent freezes and crashes. When the number of cores is not defined PanToVA checks the number of

cores that are available at the start of the run and subtracts 2. If there are no free cores directly available,

no maximum limit is set and PanToVA uses the cores when they become available.

Other settings do have an effect on the visualisation in PanVA when defined. These settings provide

the user with some additional configuration options as well as data filters. The following sections will

provide further details on these settings as these are optional and only come into effect in the specific

stages of the workflow. Example configuration files are included with PanToVA as well as a reusable

template version of the configuration file.

3.2 Data filters
The first module that is activated is the data filter. The data filter stage ultimately determines which

homology groups will be visualised by PanVA. There are two filter types: one contains optional filters

the users can adjust themselves, the other filters are required and cannot be modified by the users. The

optional filters the user can interact with are set in the configuration file. Users are presented with a

variety of data filters designed to give users the freedom to only visualise data of interest. One of the

settings allows for the selection of only specific homology groups instead of all homology groups in

the pangenome.

Subsequently the homology groups can be filtered based on minimal alignment length. The default

setting for this is set to a length of 50 nucleotides. This threshold value is commonly used as the smallest

measure when comparing (MSA) multiple sequence alignment tools (Nuin et al., 2006). Additionally,

it was deemed unlikely that homology groups with an alignment length shorter than 50 nucleotides

would be biologically or phylogenetically relevant, as PanTools makes use of MAFFT (Katoh &

Standley, 2016) for the MSA, which does not consider the evolutionary relationships of the compared

sequences (Ranwez & Chantret, 2020).

Users are also able to filter on the minimal number of members in homology groups. Here the number

of members corresponds to the number of aligned sequences of the MSA assigned to a specific

homology group. The default setting for this is 2, as it is impossible to have a multiple sequence

alignment with less than 2 members. It is important to note that homology groups with less than 2

members do exist and are termed ‘single copy unique’, meaning that the sequence only occurs once in

only one genome. These groups are interesting and informative, however PanVA is a tool for the visual

variant analysis. If there are no variants found, they cannot be visualised in PanVA.

The other interactive filter option is the minimal number unique of members in homology groups. In

contrast to the minimal number of members, here the number of members refers to individual genomes.

This was incorporated, because homology groups can be found of which multiple or in some cases all

sequences originate from one single genome. In other words: a genome might have a unique gene in

relation to the pangenome with multiple (incomplete) copies of this gene, which makes MSA possible.

These homology groups are classified ‘non-single copy unique’. The default setting for this filter is set

to 1, meaning homology groups with sequences derived from one or more genomes pass the filter.

The filters the user cannot access or interact with have to do with checking the completeness of the data

in the selected homology groups. This means that any homology groups which do not have the correct

files they are removed from the selection. The number of groups removed in this manner is reported

8

back to the user in the log file at the end of the run and on the command line during the preprocessing.

Additionally, homology groups are removed from the selection that do not have a trimmed multiple

sequence alignment as this is a requirement set by PanVA. Lastly, any homology groups that do not

have any variants in the alignment are also removed as this is another requirement determined by

PanVA.

By filtering by the homology groups each sequence retains a connection with the genome they come

from. This becomes important in the later stages of the workflow as PanTools provides metadata

information in different ways depending on whether the sequences are derived from a reference genome,

resequenced accessions or an unannotated genome.

Finally, the filter module constructs a log file of the run, which keeps track of which filter settings were

used, how many groups were removed during which filter step and clocks the run time. This was done

to improve reproducibility of the preprocessing, provide users a way to gauge the effects of the filter

settings and to find, track and document any issues that may be encountered.

3.3 Pangenome metadata
The next module in the workflow is the metadata module, this module will only activate if the

pangenome has metadata and the end user wants to include this in the visualisation. In a PanTools

pangenome the metadata is stored in a single file called “phenotype_overview.txt”. In which for every

genome their metadata and phenotype data is stored combined with an assigned genome number.

However, if metadata is to be included PanVA expects this to be presented as a separate file

“metadata.csv” for each homology group in the pangenome.

To create these files users must mark “pheno_info” as “TRUE” in the configuration file of PanToVA.

This initiates PanToVA to retrieve the metadata and phenotype data from the pangenome file

“phenotype_overview.txt”. The first hurdle encountered was due to the format of

“phenotype_overview.txt”, as it was designed to be readable by humans. Therefore, the module has to

parse the file in its entirety to retrieve the information of interest as this could be spread throughout the

file. Second, PanVA expects individual “metadata.csv” files for each homology group. Thus, the

information retrieved from “phenotype_overview.txt” parsing is stored in memory to be linked to the

individual homology groups. Next, for all sequences in each homology group the fasta header is

compared with the metadata information in memory, as this header contains the genome number linking

the sequence and the genome. Following this, for each homology group a “metadata.csv” is constructed

containing only the metadata and phenotype data of the genomes of which sequences are present in this

homology group.

However, this is not the only method to add metadata information for visualisation. As mentioned,

PanTools is able to add resequenced accessions to the pangenome, however by definition these are not

complete genomes. Therefore, PanTools does not assign a genome number to any of these accessions,

which makes it impossible to add any available metadata on these accessions in the same manner as for

complete genomes by genome number. To accommodate users to incorporate metadata for these

sequences if available, the configuration file option “reseq_meta” can be given a path to the metadata

in .csv format as per the examples on the PanVA github page (Code & Data availability).

If either or both methods of providing metadata are used, the data of “phenotype_overview.txt” and the

“reseq_meta” files are temporarily stored in memory as a single data entity “df_phenos” for use in the

next stage of the workflow. This is done as it is computationally less straining to keep this relatively

small amount of data in memory for the next stage compared to opening, reading and closing the

individual files that were just created for each homology group.

9

3.4 MSA settings & metadata visualisation options
Continuing to the next module of “MSA/metadata visuals”, not every pangenome will have metadata

available for visualisation, which affects the preprocessing workflow. Moreover, the settings used when

building the pangenome also affects the resolution in which metadata can be visualised. To manage

these influences, three different modes of operation are set up in this module.

In mode of operation 1, the module activates if the metadata module has not been activated and thus no

metadata is available. The module will then only create the files “alignments.csv”, “variable.csv” &

“sequences.csv” for each homology group as required in PanVA. With “variables.csv” indicating which

positions in the alignment are variable and if these positions are considered informative. The indication

of informative is derived from the pangenome and is depended on which thresholds are used in

PanTools when building the pangenome. Any position that is variable, or variable and informative, are

also flagged as such in the “alignments.csv” file.

The second mode of operation activates if the setting of “pheno_info” is set to “True” and “pheno_var”

is set to “all”. This mode is only available when the pangenome was constructed using the latest version

of PanTools, using the function “msa” to include phenotype variants. This functionality applies

phenotype and metadata information to individual nucleotides of the sequence on their position during

the MSA. This nucleotide level of annotation consists of three categories defined by PanTools (Jonkheer

et al., 2022); “phenotype exclusive”, “phenotype specific” and “phenotype shared”, as shown in Figure

4.

Figure 4. PanTools phenotype specificity chart (Jonkheer et al., 2022).

For instance, a homology group alignment may consist of 35 sequences each from1 a unique genome.

For these genomes information is available on which population they belong to. 12 genomes are from

population A, 11 from population B and 12 from population C. If we then find that on position 100 in

the alignment 10 of the sequences have a Cystine, and all these sequences are part of population A, this

is considered to be a ‘phenotype exclusive’ element. Meaning Cystine is only found on this position for

population A but not for every sequence from population A. Whereas, using the same distribution as

before, had it been that 12 sequences were to have a Cystine on position 100 and these were all part of

population A, it would be considered a ‘phenotype specific’ element. This leaves the ‘phenotype shared’

elements, in which cystine appears on this position for all members of population A, but can also appear

on this position for all other populations.

This data is retrieved from the pangenome by PanToVA and applied to “alignments.csv” and

“variables.csv” files required by PanVA. This is done, because information is added on nucleotide

position level and PanVA requires this information to be included in the “alignments.csv” file and not

as a separate file as provided by PanTools. Modifications were needed as the traditional method of

storing MSA data PanTools provides cannot accommodate this, as can be seen in Figure 5. Before the

10

introduction of this feature, PanVA already expected the sequences in the MSA to be split on position,

which ends up allowing the addition of the phenotype category labels per position.

Figure 5. MSA file structure differences. A) Common approach for storing MSA data. B) PanVA approach to storing MSA

data, allowing for position based information to be stored alongside the position.

Lastly, the third operating mode activates if “pheno_info” is “True” and “pheno_var” is set to “False”.

This mode functions in a similar way as the second operational mode except it does not add information

on individual positions of the MSA in homology groups. This was done because the feature to add this

level of information to nucleotide positions is part of the latest update of PanTools and it remains

optional. In addition, several smaller adjustments to the data formats were made to file formats that

PanTools in between major updates. This resulted in several versions of files being constructed

depending on which version of PanTools was used before the last major update. Where PanToVA aims

to be widely applicable, user-friendly, and (re)building large pangenomes costs a considerable amount

of time, it is beneficial if older pangenomes can also be preprocessed for visualisation. Therefore, this

mode of operation provides users the option to only use metadata on genome level, makes it possible to

use pangenomes built using older versions of PanTools and resolves all inconsistencies in the file

formats of between versions.

3.5 Homology group characterisation
PanTools offers users the ability to add a variety of annotations on the sequences to the pangenome,

from different sources such as GO, InterPro, PFAM, TIGRFAM. This information in combination with

other metrics such as alignment length, number of variable positions and metadata flags is stored per

homology group. Additionally, the classification of the homology group is extracted and stored with

the different classifiers matching the PanTools classifications of; “core & single copy orthologs”,

“core”, “accessory”, “unique” (the PanTools team, 2023). It is important to note that any homology

groups with the label “unique” that make it through PanToVA, are unique to one genome but have at

least two partial copies of a sequence. This is because single sequence unique homology groups cannot

be aligned to another sequence as no variant exists in the data and thus these homology groups are not

visualised in PanVA. The classification and metadata information is combined to form in

“homologies.json”. PanVA uses this file to construct the control panel, and expects this to be formatted

as a single .JSON file. From this control panel users can explore the pangenome by homology group on

the metrics available in the metadata and by gene name, function and or classification.

3.6 Gene Variants & Annotated Genomes
During construction of the pangenome in PanTools the “msa” function is used. This function by default

will only use nucleotide sequences of coding sequence (CDS) when used for pangenomes. When

development of PanToVA started on this module the only method to alter this behaviour was by using

11

the PanTools option “add_variants” which, next to allowing users to add gene variant sequences to the

pangenome, also created files containing information on gene annotation. This information consisted

of intron and exon locations, and for exons what sections were consisting of untranslated regions

(UTR’s) and coding sequence (CDS) which is particularly useful information for pangenomes of

eukaryotic organisms, as prokaryotic organisms do not have introns. Initially, PanToVA would make

use of the “add_variants” behaviour by reformatting the files containing the annotation information in

a way that PanVA can visualise this information. The “msa” function has since been updated, to allow

users to alter the “msa” settings to perform the alignment on the entire mRNA sequences. This creates

the same data on the gene annotations as before thus allowing PanToVA to now also include this data

without having to use the “add_variants” functions. These annotations however are still only available

for annotated genomes, or when the “add_variants” option is used with variants from VCF (variant call

format) files in combination with a reference genome, making this module optional in the preprocessing.

Users can indicate if the add variants option was used or not by changing “msa_type” to

“msa_per_group_var” in the configuration file of PanToVA. If left unchanged PanToVA will add

annotations from annotated genomes in the pangenome if available.

3.7 Phylogenetic trees
The last module of PanToVA checks the pangenome database for any phylogenetic trees that the user

might have created of the pangenome. The phylogenetic trees can be constructed by PanTools using

different methods, such as core phylogeny using either Maximum likelihood (ML) or Neighbour-

joining (NJ), K-mer joining using NJ, consensus tree, gene distance tree using NJ, Average Nucleotide

Identity (ANI) for prokaryotic genomes or Multilocus sequence analysis (MLSA). In order to do this,

PanTools uses functions from other packages and scripts. These dependencies all save the resulting

trees in slightly different file formats with different extensions, which PanToVA is able to transform

into formats PanVA accepts. However, these packages save the resulting phylogenetic trees in any

location and under any name the user defines. To address this issue, several options were considered.

For example, one option was to restrict the freedom by defining a directory in which the trees should

be stored. However, this would not work for pangenomes that already exist, and for new pangenomes

this would require users to be aware of the restriction before constructing a pangenome. Another option

was to remove the option of naming the phylogenetic trees completely, yet often when building

phylogenetic trees various settings are tweaked and adjusted to come to the right tree. This results in

multiple versions of the trees, thus removing the naming option completely would make distinguishing

these unnecessarily difficult. Therefore, considering PanToVA checks if all required files are present at

the start of the run, it now also checks if any phylogenetic tree files are present, based on file extension.

If any are found during the checks, the file locations are stored for this module where the file formats

are adjusted to match the files accepted by PanVA. After which the preprocessing by PanToVA is

complete and the user is presented with all files for use in PanVA.

3.8 The combined workflow
The modules described above come together to form the total workflow of PanToVA as can be seen in

Figure 6. This workflow produces the input files for visualisation in PanVA for any PanTools

pangenome. When using the command line standalone version of PanToVA, users need to update the

template configuration file to match their pangenome and criteria. Subsequently, the user activates the

conda environment included with PanToVA, after which the following command is used to start the

preprocessing;

python3 path/to/pan_to_va.py path/to/config.ini

12

Figure 6. The complete PanToVA workflow.

4. Application

In this section, we describe how all modules work together depending on what data and settings are

used. For this we used a selection of pangenomes of various origins, containing bacterial, fungal and

plant pangenomes. For the bacterial pangenomes we used a Pectobacterium pangenome of 454 genomes

(Pecto_454) with numerous species and strains with metadata but without phenotype specific elements,

a smaller Pectobacterium pangenome consisting of 197 genomes (Pecto_197) but including both

metadata and phenotype specific elements. The fungal pangenomes are represented by a Yeast

pangenome consisting of 10 Saccharomyces cerevisiae strains. As well as two Fusarium asiaticum

pangenomes of 60 and 245 genomes respectively. The plant pangenomes are represented by an

Arabidopsis thaliana pangenome consisting of 25 genomes, and 15% of the homology groups of a

Lactuca pangenome (Lettuce_15%) constructed with reference genomes of 3 species (Lactuca sativa,

Lactuca saligna and Lactuca virosa) combined with 440 resequenced accessions and lastly a

pangenome consisting of 20 Solanum genomes (Tomato_20) which includes the species; Solanum

lycopersicum, Solanum habrochaites, Solanum penelli and Solanum pimpinellifolium.

The pangenomes are constructed in such a manner to demonstrate the diversity of pangenomes. This is

done by including and excluding available data. Table 1 shows the differences in pangenome size and

included data. The individual preprocessing steps the aforementioned pangenomes go through is shown

in Supplementary Figure 1.

13

Table 1. 8 Different pangenomes, illustrating the diversity in included data.

4.1 Implementation & Integration
PanToVA is created for Python v3.11.0 and makes use of existing Python (v3.11.0 compatible)

packages, tools and scripts. The dependencies for PanToVA are included when installed in the form of

a conda (“Anaconda Software Distribution”, 2020) environment.

PanToVA is required to work together with PanTools. Therefore, the next step was integration of the

preprocessing into the whole workflow of PanTools and PanVA. In order to integrate PanToVA with

PanTools, the entire codebase of PanToVA is now part of the public version of PanUtils (see: Code &

Data availability). PanUtils is a utility package for PanTools and allows users to automate the building

of the pangenome. Now with the inclusion of PanToVA a user can automate the construction of the

pangenome and the preprocessing for visualisation in PanVA, further improving user-friendliness by

keeping all tools together as one.

PanVA requires a configuration file for the frontend of the application for every instance. This

configuration file requires a substantial amount of time to prepare. In addition, due to the .json format

any mistake in the structure of the file will cause it to break the instance. Therefore, as an additional

feature a separate script was created that constructs a boilerplate version of the configuration file for

any preprocessed pangenome. This boilerplate provides everything that is required by PanVA to work,

yet allows users to adjust values for things such as headers, titles, column width and others, without

having to touch the data structure itself.

4.2 Run time and optimisation
Building a sizeable pangenome takes a significant amount of time due to collecting data and running

PanTools, but once constructed, PanToVA’s multiprocessing approach only requires minutes for high

end computer systems to a few hours for lower end specifications in relation with the pangenome size.

PanToVA’s run time is dependent on several factors, such as the number of assigned cpu cores, the size

of the pangenome, number of included homology groups, the metadata that is included, phylogenetic

trees, and if any gene variant annotations are available. Demonstrating PanToVA’s ability to handle

pangenomes of various orders of magnitude independent of organism, the selection of preconstructed

pangenomes were preprocessed by PanToVA and timed, as shown in Table 2.

14

Table 2. PanToVA preprocessing run times per pangenome.

With the preprocessing of the pangenomes completed, the next step was launching the individual

PanVA instances. During this step some issues were discovered with PanVA when larger pangenomes

are used, specifically large homology groups with a large number of members and a long alignment

length. When a PanVA instance is created and a homology group is selected for visualisation the first

time, a linkage matrix is automatically calculated by PanVA to form the dendrogram for similarity. The

original implementation made use of the Levenshtein (Berger et al., 2021) method for calculation of

similarity. This was functional in instances that consisted of small homology groups, short alignment

lengths with few members. However, for larger homology groups, combination of lots of members and

long alignments, this was insufficient. For locally hosted PanVA instances the longer calculation time

would be bothersome but not necessarily an issue if it would take slightly longer. However, when a

PanVA instance is hosted on a dedicated server the calculation time would result in a time out from the

server.

Several fixes were tested, such as increasing the time it takes for a server time out to occur. In order to

test this method, one such large homology group of 443 members and an alignment length of 35947

bases was selected, this took more than 70 minutes to complete the dendrogram calculation with the old

implementation, when ran locally to avoid server time outs. Thus, not only would this not fix the issue

as waiting 70 minutes to view a single homology group is unacceptable, it would also pose a major

security risk if hosted on a dedicated server with an adjusted server time out time to allow for this wait

time.

Thus, we settled to find a more optimized method to calculate the linkage matrix. For this we compared

the performance of the Levenshtein (Berger et al., 2021) method to the RapidFuzz (Bachmann, 2021)

version implementation of hamming distance. From the available preprocessed pangenomes at the time,

homology groups that were considered to be large homology groups were selected, in addition to

homology groups of varying sizes. This was done to ensure that if differences between calculation

methods existed, any correlation in run time, outcome, size or length would not be missed. As these

methods both produce matrices that are used in PanVA to create the similarity matrices, the exact values

of the elements in the matrices are less important than the overall differences in values across the matrix.

Therefore, it is more important to check the largest and smallest differences in values. The results of

this test are shown in Table 3, indicating that calculation times are different specifically when it comes

to the larger homology groups.

15

The values produced by the various methods are not significantly dissimilar. In addition, the PanVA

(Brandt et al., 2022) paper already referred to the hamming distance method, yet the code was using the

Levenshtein method. Therefore, the RapidFuzz (Bachmann, 2021) implementation of hamming

distance was implemented in PanVA.

Table 3. Linkage matrix calculation comparison. Compares the time it takes for the Hamming and Levenshtein method to
generate the linkage matrix, comparing the resulting matrix on the largest and smallest differences between elements in the

matrices.

4.3 Resulting PanVA instance
Each of the aforementioned pangenomes made it through the preprocessing without issues. For the last

test to ensure PanToVA was working as intended, for each of the different pangenomes a PanVA

instance was made, with the exception of the complete Pecto_454 pangenome due to time limitations.

The Figure 7 shows a schematic still of the Yeast_10 pangenome PanVA instance, highlighting the

different elements of the PanVA instance and which input files are used for what sections in the

instance. PanVA is an interactive tool for visual exploration of pangenomes, so its features are best

experienced by interacting with the tool itself. Therefore, a selection of the PanVA instances created

for this project are available to the public (Code & Data availability).

16

Figure 7. Schematic PanVA instance of Yeast_10 homology group 978118. Highlighting which features of PanVA are affected
by the files created by PanToVA to visualise pangenomes. Filled and dashed lines indicate which files store the data to produce

what segment. Dotted lines represent how and where users of PanVA can interact with the data during visualisation.

5. Discussion

PanToVA requirements were set to be efficient, user-friendly, configurable, applicable for all PanTools

pangenomes and automated whilst taking into consideration the needs and preferences of the assumed

user base. Even with PanToVA meeting the and in cases exceeding the requirements, there were still

some limitations as to what could be achieved, as some challenges arose throughout the project.

One such challenge were the frequent and irregularly scheduled updates to both PanTools and PanVA.

As PanToVA is to facilitate the preprocessing of data between these tools, the updates resulted in several

rewrites and adjustments to the PanToVA codebase. This, in combination with the changing

requirements for PanToVA and the limited duration of the project, resulted in some level of redundancy

built into the design of PanToVA. Initially this was viewed as a flaw, however, one such redundancy

became an important asset of PanToVA. Considering reconstruction of pangenomes for every minor

update of PanTools was not feasible within the project time schedule, this redundancy was created in

order to catch any minor differences in file formats that can be present depending on which

(developmental) version of PanTools was used to build the pangenome. Because of this redundancy,

PanToVA is now backwards compatible with pangenomes created using older versions of PanTools,

which allows users to use already existing pangenomes.

Another challenge arose, as during the PanToVA project the functionalities of PanVA were expanded,

which enabled it to visualise more data than originally planned. As a result, the project schedule for

PanToVA was adjusted to accommodate these changes. This resulted in an overall more robust and able

PanToVA, yet due to the shifting priorities there was less time for the phylogenetic tree module to be

optimised.

The phylogenetic tree module will search for any files in the pangenome that might be a phylogenetic

tree file, as neither file extension, file name and subdirectory storage location is standardised in

PanTools. Several methods to improve the phylogenetic tree module have been discussed. The first

option being standardising the storage location of these phylogenetic trees in the pangenome by

PanTools, because this would make searching pangenome as done by PanToVA obsolete. This would

17

reduce run time of PanToVA even further, especially for larger pangenomes as less files need to be

searched. Another option would be to let users specify which phylogenetic tree(s) they want to add for

visualisation in the configuration file. However, we feel this would not be as efficient or as user friendly

seeing as it is a common practice when constructing phylogenetic trees to make several versions using

different methods. Therefore, we argue having users enter several filenames and locations in order to

include all phylogenetic trees would negatively impact user friendliness. These options are merely

suggestions and have been passed on to the development team of PanTools and PanVA with advice on

how to implement either option in PanToVA as well.

Throughout the project several small improvements, for cases such as standardising naming convention,

file extensions or in file data structures, in collaboration with the developers of both PanTools and

PanVA, proved to be successful and resulted in a more efficient workflow. Thanks to this collaboration,

it also became apparent that some of the choices made for PanVA that were beneficial for visualisation,

placed unnecessary restrictions on the available data, thus limiting PanToVA. For example, PanToVA

currently removes any homology group that has no variants. As by design PanVA is a visual variant

analysis tool for pangenomes on a homology group level, and therefore it won’t allow the users to

include any homology groups that have no variation. Which means removing a sometimes sizable

number of homology groups that contain highly conserved genes. This is less important when it comes

to known genes that are present in each of the genomes of the pangenome, yet when it comes to highly

conserved genes that are only found in a specific set of genomes within the pangenome this might not

be so trivial. Therefore, recommendations have been made to the PanVA developers to allow for

visualisation of non-variant homology groups.

A similar limitation is due to PanToVA’s requirement for trimmed multiple sequence alignments of the

homology groups. This requirement was known from the start of the project as PanVA was only able

to work for trimmed alignments. However, during the later stages of the project it became apparent that

some pangenomes, especially for pangenomes with limited number of genomes but of higher plants,

PanTools was not always able to provide trimmed alignments. This can be due to the protein sequences

starting and ending on the same position or the resulting trimmed alignment being to small. Thus, the

request was made to alter the preprocessing to allow for untrimmed alignments, however, when work

started on this request it was discovered that PanVA itself was unable to work with untrimmed

alignments. While inspecting the PanVA codebase to resolve this issue, we found that part of the

problem was due to PanVA expecting to find the label “nuc_trimmed_seq” in several locations. It would

have taken too long to alter this in both PanVA and PanToVA in the remaining time of the PanToVA

project without guaranteeing it would completely resolve the issue. Thus, the suggestion was made to

change this during a follow up project after PanVA is updated and able to handle these untrimmed

alignments.

In addition, the annotation options of PanTools did not come into the release branch of PanTools until

the later stages of the PanToVA project. Therefore, the PanToVA implementation for the annotations

was done in a limited timeframe, and therefore did not receive the same level of tests to ensure optimised

functioning. However, the late introduction of this module does highlight the success of the modular

design, demonstrating modules can be modified, removed and added without interrupting the other

modules.

Reflecting back on the PanToVA project as a whole, we reiterate the importance of proper

communication and checkpoints, especially when collaborating with developers across different

projects. As this project was heavily tied into the PanTools and PanVA projects, changes that occurred

in one of the projects could have an effect on all projects. For example, postponed updates, moved

datasets, and rescheduled deadlines sometimes negatively impacted the PanToVA project. However we

quickly adapted and improved the lines of communication between the parties involved. This resulted

in fewer issues in compatibility of the tools, and increased understanding of the combined codework as

18

a whole which allowed us to suggest and make improvements to PanTools and PanVA outside of the

PanToVA project boundaries. In the future, we recommend taking some time at the start of the project

to define a clear communication strategy with the key collaborators.

As for the choice for Python, other languages could have been used, and specifically java could have

been a good option. Seeing as PanTools is mostly written in java this could have improved integration

in the long run. But as Python is considered to be more readable, versatile and has simpler syntax and

the PanToVA project aims to be widely applicable and simple, using Python is a good option. In

addition, the preprocessing by PanToVA is predominantly parsing, data collection, formatting and

filtering and does not require heavy calculations to be done. Had this been the case arguments could

have been made to use other options such as R or Java.

With PanToVA we streamlined the workflow of pangenome exploration through visualisation.

Retrieving data of interest from the large and complex data structures of pangenomes, constructing files

from the pangenome built with PanTools without the need for manual curation. Providing PanVA the

data which allows it to visualise multiple references together with providing the adequate context of

heterogeneous (meta)data, such as annotations, evolutionary relationships and phenotypes (Brandt et

al., 2022). This further improves the ease in which genetic variation underlying phenotypes can be

explored. PanToVA, together with PanTools and PanVA, brings us one step closer to fully transitioning

from the single reference genome to the pangenome approach, allowing research to look at variation on

a larger scale.

Conclusion

During this project, we have developed a Python workflow that is able to automatically preprocess

PanTools pangenomes for visualisation in PanVA. This workflow works as a standalone tool and is also

included in PanUtils under the “export-to-panva” project. This project sought to create a workflow that

works efficiently for all pangenomes and is both automated and configurable. From the resulting

applications, test runs and the run times we conclude that PanToVA works efficiently for both small

and larger pangenomes. We have also shown that PanToVA is usable for pangenomes of various

organisms and the different contents of the pangenomes. In addition, we have shown the usefulness of

PanToVA as it provides users with insights of what occurs during the preprocessing improving the

reproducibility of any study using PanVA. Following this, the in-house user base was able to work well

with the application solely relying on the instructions of the configuration file, highlighting the ease of

use. The ease of use was further confirmed during workshops with external potential users of the

workflow. From the application itself we can conclude that PanToVA is modular and expandable, as

modules can be activated independently, and additional modules can be added as shown by the

incorporation of the annotation module during the latest stages of the project. In conclusion, PanToVA

has met and exceeded the project requirements and is incorporated in the pangenome variant analysis

workflow. As a final thought, based on the findings and the gained experiences of the project we

recommend a follow up project to polish the details of the PanToVA project in a collaboration project

with the developers of PanTools and PanVA.

Code & Data availability
Parties interested in the possibilities of setting up the presented pangenome variant analysis workflow

at their facilities, please contact S. Smit from the Bioinformatics Group of Wageningen University &

Research.

The codebase of PanToVA is publicly available as part of the PanUtils package at

https://github.com/PanUtils/export-to-panva.

https://github.com/PanUtils/export-to-panva

19

The data used in the creation of the Pectobacterium, Fusarium, Tomato, Lactuca & Solanum

pangenomes and PanVA instances, are available from Wageningen University and Research –

Bioinformatics Group. Restrictions apply to the availability of these datasets, which are under license

for this study. None of the data used for the creation of the pangenomes and the PanVA instances is my

own. Some of the aforementioned datasets might become available at a later date, after embargo period

following publication of papers on the data. Data requests should be addressed to dr. S. Smit, of the

Bioinformatics Group.

The resulting Saccharomyces and Arabidopsis and the small Pectobacterium PanVA instances are

publicly available at www.bioinformatics.nl/panva/yeast10/, www.bioinformatics.nl/panva/ara25/,

www.bioinformatics.nl/panva/pecto197/, using the guest access; “workshop”, “panvatest!”. These

instances are actively used to test new features of PanVA, thus are known to occasionally produce errors

and are subject to change.

PanTools available at (recommended) https://anaconda.org/bioconda/pantools or over at

https://git.wur.nl/bioinformatics/pantools (developers).

PanVA code available at https://github.com/PanBrowse/PanVA.

Figures are made using the free version of Canva; https://www.canva.com/

Acknowledgements

I would like to thank dr. S. Smit (WUR, Bioinformatics Group) and MSc. M. Yang (WUR,

Bioinformatics Group) for their invaluable supervision, support and time during the project.

In addition, we thank A. van den Brandt (WUR, Bioinformatics Group) and Folkert de Vries for their

input and time throughout the project. We also want to thank R. van Esch (WUR, Bioinformatics Group)

and D. van Workum (WUR, Bioinformatics Group) for their help with the integration of PanToVA with

PanTools and PanVA. Additionally, we thank L. Pardeshi (WUR, Bioinformatics Group) for his role

as supervisor in the early stages of the project. Lastly, we thank everyone from the Bioinformatics

Group who helped make this project possible by providing useful insights and a great working

environment.

Bibliography

Anaconda Software Distribution. (2020). In Anaconda Documentation. Anaconda Inc.

https://docs.anaconda.com/

Bachmann, M. (2021). GitHub - maxbachmann/RapidFuzz: Rapid fuzzy string matching in Python

using various string metrics. https://github.com/maxbachmann/RapidFuzz

Ballouz, S., Dobin, A., & Gillis, J. A. (2019). Is it time to change the reference genome? Genome

Biology, 20(1), 1–9. https://doi.org/10.1186/S13059-019-1774-4/FIGURES/3

Berger, B., Waterman, M. S., & William Yu, Y. (2021). Levenshtein Distance, Sequence Comparison

and Biological Database Search HHS Public Access. IEEE Trans Inf Theory, 67(6), 3287–3294.

https://doi.org/10.1109/tit.2020.2996543

Brandt, A. Van Den, Jonkheer, E. M., Workum, D. M. Van, Wetering, H. Van De, Smit, S., & Vilanova,

A. (2022). PanVA : Variant Analysis within Pangenomes. 14(8), 1–14.

Clegg, D., & Barker, R. (1994). CASE method fast-track - a RAD approach. In undefined. Pearson

Education Limited.

Hudson, T. J., Anderson, W., Aretz, A., Barker, A. D., Bell, C., Bernabé, R. R., Bhan, M. K., Calvo, F.,

Eerola, I., Gerhard, D. S., Guttmacher, A., Guyer, M., Hemsley, F. M., Jennings, J. L., Kerr, D.,

Klatt, P., Kolar, P., Kusuda, J., Lane, D. P., … Wainwright, B. J. (2010). International network of

http://www.bioinformatics.nl/panva/yeast10/
http://www.bioinformatics.nl/panva/ara25/
http://www.bioinformatics.nl/panva/pecto197/
https://anaconda.org/bioconda/pantools
https://git.wur.nl/bioinformatics/pantools
https://github.com/PanBrowse/PanVA
https://www.canva.com/

20

cancer genome projects. Nature, 464(7291), 993–998. https://doi.org/10.1038/nature08987

Jonkheer, E. M., van Workum, D. J. M., Sheikhizadeh Anari, S., Brankovics, B., de Haan, J. R., Berke,

L., van der Lee, T. A. J., de Ridder, D., & Smit, S. (2022). PanTools v3: functional annotation,

classification and phylogenomics. Bioinformatics, 38(18), 4403–4405.

https://doi.org/10.1093/BIOINFORMATICS/BTAC506

Katoh, K., & Standley, D. M. (2016). A simple method to control over-alignment in the MAFFT multiple

sequence alignment program. https://doi.org/10.1093/bioinformatics/btw108

Li, Z., Fu, B. Y., Gao, Y. M., Wang, W. S., Xu, J. L., Zhang, F., Zhao, X. Q., Zheng, T. Q., Zhou, Y.

L., Zhang, G., Tai, S., Xu, J., Hu, W., Yang, M., Niu, Y., Wang, M., Li, Y., Bian, L., Han, X., …

Leung, H. (2014). The 3,000 rice genomes project. GigaScience, 3(1), 1–6.

https://doi.org/10.1186/2047-217X-3-7/FIGURES/2

Marroni, F., Pinosio, S., & Morgante, M. (2014). Structural variation and genome complexity: Is

dispensable really dispensable? Current Opinion in Plant Biology, 18(1), 31–36.

https://doi.org/10.1016/J.PBI.2014.01.003

Morgante, M., De Paoli, E., & Radovic, S. (2007). Transposable elements and the plant pan-genomes.

Current Opinion in Plant Biology, 10(2), 149–155. https://doi.org/10.1016/J.PBI.2007.02.001

Muir, P., Li, S., Lou, S., Wang, D., Spakowicz, D. J., Salichos, L., Zhang, J., Weinstock, G. M., Isaacs,

F., Rozowsky, J., & Gerstein, M. (2016). The real cost of sequencing: Scaling computation to keep

pace with data generation. Genome Biology, 17(1). https://doi.org/10.1186/S13059-016-0917-0

National Human Genome Research Institute. (2020). NOT-OD-21-013: Final NIH Policy for Data

Management and Sharing. https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html

Nuin, P. A. S., Wang, Z., & Tillier, E. R. M. (2006). The accuracy of several multiple sequence

alignment programs for proteins. BMC Bioinformatics, 7(1), 1–18. https://doi.org/10.1186/1471-

2105-7-471/TABLES/1

Nusrat, S., Harbig, T., & Gehlenborg, N. (2019). Tasks, techniques, and tools for genomic data

visualization. Computer Graphics Forum, 38(3), 781–805. https://doi.org/10.1111/CGF.13727

Pedersen, T. L., Nookaew, I., Wayne Ussery, D., & Månsson, M. (2017). PanViz: Interactive

visualization of the structure of functionally annotated pangenomes. Bioinformatics, 33(7), 1081–

1082. https://doi.org/10.1093/BIOINFORMATICS/BTW761

Ranwez, V., & Chantret, N. N. (2020). Strengths and Limits of Multiple Sequence Alignment and

Filtering Methods. https://hal.inria.fr/PGE.

Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, J. C., Hutchison, C. A.,

Slocombe, P. M., & Smith, M. (1977). Nucleotide sequence of bacteriophage φX174 DNA. Nature

1977 265:5596, 265(5596), 687–695. https://doi.org/10.1038/265687a0

Sheikhizadeh, S., Schranz, M. E., Akdel, M., De Ridder, D., & Smit, S. (2016). PanTools:

representation, storage and exploration of pan-genomic data. Bioinformatics, 32(17), i487–i493.

https://doi.org/10.1093/BIOINFORMATICS/BTW455

Sherman, R. M., & Salzberg, S. L. (2020). Pan-genomics in the human genome era. Nature Reviews

Genetics 2020 21:4, 21(4), 243–254. https://doi.org/10.1038/s41576-020-0210-7

Staden, R. (1982). Automation of the computer handling of gel reading data produced by the shotgun

method of DNA sequencing. Nucleic Acids Research, 10(15), 4731–4751.

https://doi.org/10.1093/NAR/10.15.4731

Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward, N. L., Angiuoli, S. V.,

Crabtree, J., Jones, A. L., Durkin, A. S., DeBoy, R. T., Davidsen, T. M., Mora, M., Scarselli, M.,

Margarit Y Ros, I., Peterson, J. D., Hauser, C. R., Sundaram, J. P., Nelson, W. C., … Fraser, C.

21

M. (2005). Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae:

Implications for the microbial “pan-genome.” Proceedings of the National Academy of Sciences

of the United States of America, 102(39), 13950–13955.

https://doi.org/10.1073/PNAS.0506758102

the PanTools team. (2023). Multiple Sequence Alignments — PanTools 4.2.0 documentation.

https://pantools.readthedocs.io/en/v4.2.0/user_guide/msa.html

Vernikos, G., Medini, D., Riley, D. R., & Tettelin, H. (2015). Ten years of pan-genome analyses.

Current Opinion in Microbiology, 23, 148–154. https://doi.org/10.1016/J.MIB.2014.11.016

Wang, S., Qian, Y.-Q., Zhao, R.-P., Chen, L.-L., & Song, J.-M. (2023). Graph-based pan-genomes:

increased opportunities in plant genomics. Journal of Experimental Botany, 74(1), 24–39.

https://doi.org/10.1093/JXB/ERAC412

Zhang, J., Chen, L. L., Xing, F., Kudrna, D. A., Yao, W., Copetti, D., Mu, T., Li, W., Song, J. M., Xie,

W., Lee, S., Talag, J., Shao, L., An, Y., Zhang, C. L., Ouyang, Y., Sun, S., Jiao, W. B., Lv, F., …

Zhang, Q. (2016). Extensive sequence divergence between the reference genomes of two elite

indica rice varieties Zhenshan 97 and Minghui 63. Proceedings of the National Academy of

Sciences of the United States of America, 113(35), E5163–E5171.

https://doi.org/10.1073/PNAS.1611012113/-

/DCSUPPLEMENTAL/PNAS.1611012113.SD01.XLSX

22

Supplementary

Supplementary Figure 1. PanToVA workflow routes per pangenome.

