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Abstract
Flow forecasts derived with hydrological models are used more frequently to decide if water has to be retained or
discharged based on expected flow conditions. Former studies show that data assimilation using discharge or surface
water level can be successful and can improve forecast skill. However, updating the soil moisture state has proven
to be more difficult due to limited available data and large spatial and temporal variability. Therefore, this study
aimed to use already widely available groundwater level observations to update storage deficit and groundwater
states. For the analysis WALRUS is combined with OpenDA (an open source tool for data assimilation) embedded
in Delft-FEWS (an operational data management platform used by the water authority). This configuration is used
to assimilate discharge and groundwater level observations, and derived storage deficit, in WALRUS for the Hupsel
Brook catchment. The results show that using groundwater in addition to discharge for data assimilation does not
increase forecast skill substantially. However, this can be related to the initial high skill for discharge assimilation
which limits further improvement. Assimilation with only groundwater observations does show a lower but more
constant skill over lead time. However, as the analysis period was relatively short (1 year), future research is needed
to assess and quantify skill increase using data of other lowland catchments.
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1 | Introduction

1.1 General introduction

Climate change is expected to affect global hydrological
conditions. For Western Europe, summer precipitation
is expected to decrease while the intensity of events will
increase (Christensen and Christensen, 2004). Hydrolog-
ical droughts will become more apparent due to increas-
ing evaporation and longer periods without precipitation.
This is expected to decrease river flow and water quality
and will affect water availability for agriculture, nature,
industry and drinking water production (van Vliet et al.,
2013). During winter an increase of precipitation by
3.5−7% per degree warming is expected due to higher
air temperatures (van den Hurk et al., 2007). This will
increase river discharge and the risk of flooding (Dankers
and Feyen, 2008). Floods often lead to property dam-
age and loss of agricultural yield. Together with cli-
mate change induced sea level rise and land subsidence,
lowland areas are becoming more vulnerable to flooding
(van den Hurk et al., 2007).

The impacts of extreme hydrological events such as
floods and droughts can be estimated by using hydro-
logical models. Flow forecasts made with these mod-
els can be used to decide if water has to be retained
or discharged based on expected flow conditions. How-
ever, prediction uncertainty becomes larger with longer
forecasts because of errors in the initial conditions, ob-
servations, simulation and forcing. Data assimilation
can reduce these discrepancies between observations and
model outputs by frequently updating the model state(s)
with new observations (Liu et al., 2012). Figure 1.1
shows the process of state updating by comparing the
observed state value with the value of the calculated
model state. The updated value is determined by cer-
tainty of the model state and the observed value. After
the state update, a forecast can be made using input
data for the model. When a new observation becomes
available, the model state can be corrected again before
starting the next prediction.

1.2 Applications of data assimilation

Different methods exist for updating the model states
and addressing uncertainty in observations and model
outputs.The Ensemble Kalman Filter (EnKF) is most of-
ten used in hydrology (Valk, 2019; Rakovec et al., 2012).

Figure 1.1: Schematic diagram that shows the princi-
ple of state updating. When observations become avail-
able (black point), the model state (white point) is cor-
rected and an updated value is calculated (gray point).
Adapted from Aubert et al. (2003).

This filter is an improved version of the Kalman Filter
which uses a probability density function for the obser-
vation and corresponding model state using the mean
and standard deviation (Kalman, 1960). This method is
computationally expensive for models with a larger num-
ber of parameters. Therefore, the Ensemble Kalman Fil-
ter uses Monte-Carlo sampling to create a smaller set of
ensembles of which the mean and standard deviation can
be used as uncertainty estimate (Reichle, 2008). This fil-
ter is more robust in operational mode than the Particle
Filter due to the lower sensitivity to model uncertainty
and model misspecification (Weerts and Serafy, 2006).
In addition, it is already implemented in the OpenDA
software that can be used for data assimilation (Weerts
and van Osnabrugge, 2020). For a more detailed de-
scription and derivation of the Ensemble Kalman Filter
see Weerts and Serafy (2006).

Two state variables that are often used for data
assimilation to improve flow forecasting are the surface
water level or related discharge and soil moisture con-
tent (Rakovec et al., 2012). The potential of discharge
and surface water level assimilation is shown by former
studies. Rakovec et al. (2012) successfully applied data
assimilation using discharge in the Ourthe catchment.
Weerts and Serafy (2006) studied the effect of using
different filters with discharge assimilation. Valk (2019)
and Sun et al. (2020) both showed that assimilation of
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surface water level for the Regge catchment can be suc-
cessful and that surface water state updating improved
forecasting skill substantially by providing accurate fore-
casts up to five days. McMillan et al. (2013) used dis-
charge assimilation in seven catchments in New Zealand
using an operational flow forecasting system. The fore-
casts with assimilation showed significantly higher skill
compared to simulations without assimilation.

Soil moisture has been applied previously with vary-
ing results. Aubert et al. (2003) used probed soil mois-
ture data for improving flow forecasting for the Seine
river and showed that this improves forecasting during
normal flow conditions and flood events. In addition,
Montzka et al. (2011) applied soil moisture assimilation
with remotely sensed data and this proved to be suc-
cessful. According to Komma et al. (2008) soil moisture
is highly dependent on soil type and using streamflow
assimilation for predicting soil moisture can be more ef-
fective than remote sensing. Chen et al. (2011) states
that the increase of forecasting performance using soil
moisture observations depends on model structure and
the degree of coupling between the shallow and deeper
soil moisture layers. Lee et al. (2011) used soil moisture
assimilation in the Eldon basin, a 795 km2 headwater
catchment located in an agricultural area of the US.
During this study soil moisture assimilation did not in-
crease forecasting performance for the Eldon river signifi-
cantly. McMillan et al. (2013) concluded that prediction
performance would most likely increase when soil mois-
ture content is not used for assimilation. Although soil
moisture can be used effectively for state updating, the
needed data is often not available at the needed update
frequency. In addition, soil moisture data could yield
large spatial variability under dry conditions due to de-
coupling of shallow and deeper soil moisture layers.

1.3 Groundwater and data assimilation

Groundwater is important for flow forecasting because
it influences runoff by regulating the storage capacity in
the soil (Brauer et al., 2011). Despite the importance of
groundwater levels for closely linked groundwater and
surface water systems, studies of both discharge and
groundwater assimilation are scarce (He et al., 2019).
Zhang et al. (2016) showed with a MIKE-SHE model
of the Ahlergaarde catchment that groundwater assim-
ilation significantly improves forecasting performance.
Compared to soil moisture, groundwater level has a
lower, but still significant, spatial variability on catch-

ment scale and is expected to resemble the regional wa-
ter storage more closely (Rakovec et al., 2012). Ground-
water levels are already measured in the Netherlands for
modelling and monitoring purposes. Despite the large
availability, these data are currently not used for flow
forecasting.

The implementation of groundwater assimilation in
the Netherlands is previously explored by Valk (2019)
and Ogilvie (2016). Valk (2019) used WALRUS, a
rainfall-runoff model specifically designed for lowland
catchments, in combination with Delft-FEWS, a mod-
elling framework for flow forecasting, in the Regge catch-
ment. The results of this study show that there is high
correlation between observed and modelled groundwater
levels for the Regge catchment. This shows opportunity
for applying groundwater assimilation using this model
configuration. Soil moisture deficit, quickflow reservoir
level and surface water level were also identified as most
important state variables for data assimilation in WAL-
RUS. Ogilvie (2016) showed that the relation between
groundwater observations and modelled soil moisture
deficit can be used for state updating in WALRUS and
recommends to use a filter that takes model uncertainty
into account.

Using groundwater assimilation for improving flow
forecasting shows potential. However, it is not applied
in the Netherlands despite the abundance of available
groundwater data. Water authorities, such as Water
Authority Rijn en IJssel, explore the potential of data
assimilation for flow forecasting. However, a common
methodology and potential of groundwater assimilation
are unknown. Therefore, this study aims to identify the
effects of using different observation locations, update
intervals and preprocessing methods on forecasting skill.
For this study the Hupsel Brook catchment in the man-
agement area of Water Authority Rijn en IJssel is used.

1.4 Research questions

This study aims to identify the methodology and poten-
tial of groundwater assimilation for flow forecasting in
lowland catchments using WALRUS in combination with
Delft-FEWS and OpenDA. The main research question
is: How does groundwater assimilation affect fore-
cast skill with a rainfall-runoff model? To find an
answer to this research question, the following sub ques-
tions will be answered:

• What is the relation between groundwater level,
precipitation and surface water level?
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• How do groundwater observations have to be pre-
processed for state updating?

• How does groundwater assimilation affect model
performance with lead time?

• What is the relation between forecast skill and used
observations for assimilation?

The next chapter shows the field site and used data
for the analysis. The third chapter describes the method-
ology consisting of: the model descriptions, statistical
methods, model runs and efficiency estimators. The re-
sults are shown in chapter 4. The fifth and sixth chapter
contain the discussion and conclusion with final recom-
mendations. Appendix A contains a list with used ab-
breviations.
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2 | Field site and data

Discharge
Groundwater
Weather

Figure 2.1: Locations of discharge, groundwater and me-
teorological observations used for the analysis

2.1 Catchment description

The Hupsel Brook has a small catchment (6.5 km2) with
a mainly agricultural land use. This is one of the most
well-studied catchments in the Netherlands, so processes
and characteristics are well known. The soil consists
of an impermeable clay layer below a loamy sand layer
which results in single aquifer drainage towards the brook
(Brauer et al., 2018). Together with an average catch-
ment slope of 0.8%, this results in a relatively fast re-
sponse time (Brauer et al., 2011). More detailed infor-
mation about the Hupsel Brook catchment is available
by Brauer et al. (2018).

2.2 Used data

Data between the January 2012 to May 2017 is collected.
Figure 2.1 shows the used measurement locations. For
the observed discharge the flume is used of which the
relation between surface water level and discharge is
known. The precipitation and potential evapotranspi-
ration is measured at KNMI station Hupsel. These data
are available at KNMI (2020). Three piezometers for
the observation of groundwater levels are used: Camp-
ing (Ca), Meteoveld (Mv) and Ten Barge (Tb). The
measurements of used period are conducted by Wa-
geningen University and are freely accessible via the data
portal of Water Authority Rijn en IJssel (Rijn and IJs-
sel, 2020). All variable data, except potential evapo-

Table 2.1: Mean and standard deviation (Sd) of used
variables for 2013 and 2015.

2013 2015
Variable Mean Sd Mean Sd
Q [mm h-1] 0.031 0.047 0.046 0.063
P [mm h-1] 0.081 0.468 0.098 0.553
ET [mm h-1] 0.066 0.115 0.069 0.117
Ca [mm] -1182 365 -1044 446
Mv [mm] -1231 376 -1073 345
Tb [mm] -497 220 -310 257

transpiration, has a temporal resolution of one hour.
The potential evapotranspiration is estimated as daily
sum using daily temperature and radiation data and the
Makkink method. The total daily evaporation disaggre-
gated to hourly evaporation. This is done by dividing
the radiation of each our over the total daily radiation
and multiplying this fraction with the total daily evap-
oration as done by Brauer et al. (2014a). The years
2013 and 2015 are selected for simulations based on the
data gaps, WALRUS model performance and groundwa-
ter level fluctuations over each year (Figure 2.2). For the
groundwater locations few data are missing during spring
for 2013 and 2015 (Appendix B). Data of the observed
discharge, precipitation and evapotranspiration for these
years is complete. The mean and standard deviation for
each observation are given in Table 2.1.
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Figure 2.2: Observed discharge and groundwater levels
with the years that are used for the analysis in bright
colours.
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3 | Methodology

The first section of this chapter gives a description of
the used models and forecasting framework. After this
the observation analysis and the observation model are
discussed. This is followed by the conducted experiments
and used settings of FEWS. Finally the methodology to
determine forecast skill over lead time is explained.

3.1 Models and framework

First the WALRUS model that is used as rainfall-runoff
model to simulate discharge is described. This is fol-
lowed by the description of the DELFT-FEWS modelling
framework used for creating forecasts with WALRUS.
Finally the OpenDA tool is discussed which is used to
perform state updating with hydrological models.

3.1.1 WALRUS

Vadose zone

Groundwater
Surface
water

Quickflow

dG

hS

hQ

dV

dV

aG aS

cD

cW

cV

cG

cQ

cS
fGS

fQS

ETpot

ETV
ETS

QfXG fXS

P

PS

PV

PQ
W

β

Figure 3.1: Schematic diagram with the model compo-
nents and input variables of WALRUS. Adapted from
Brauer et al. (2014a).

The Wageningen Lowland Runoff Simulator (WAL-
RUS) is a rainfall-runoff model specifically designed
for lowland catchments (Brauer et al., 2014a). The
model accounts for four important lowland processes:
groundwater-unsaturated zone coupling, wetness depen-
dent flow routes, groundwater-surface water feedbacks
and seepage and surface water supply. WALRUS is a

water balance model that consists of three reservoirs: a
soil reservoir, a quickflow reservoir and a surface water
reservoir (Figure 3.1).

The soil reservoir consists of the groundwater zone
and vadose zone. The vadose zone extends from the sur-
face down to the groundwater level and is characterized
by soil moisture deficit (dV) which affects the evapotran-
spiration reduction and the wetness index. The fluxes
in and out of this zone are infiltration and exfiltration
as result of precipitation and evapotranspiration. The
groundwater zone is characterized by the groundwater
level with respect to surface (dG). The groundwater level
responds to soil moisture deficit variation, which can be
caused by precipitation, evapotranspiration, interaction
with surface water or seepage. The quickflow reservoir
accounts for fast flow through drain pipes, animal bur-
rows and soil cracks. The amount of precipitation that
becomes quickflow (overland runoff) is determined by
the wetness index (W ) of the vadose zone.

The surface water state is characterized by the sur-
face water level (hS) state. The corresponding discharge
(Q) is calculated via a Q-hS relation. The head of the
surface water is affected by: precipitation, evaporation,
discharge, extraction or supply, quickflow and ground-
water exfiltration into the surface water (Brauer et al.,
2014a).

WALRUS is originally coded and used in R. How-
ever, a C++ version of WALRUS is implemented in the
SOBEK modelling suite, through which it can be cou-
pled to a SOBEK 1D-flow model (Deltares, 2018). In
this way open channel flow from SOBEK and rainfall-
runoff from WALRUS can be combined. SOBEK is a
modelling suite used to study on hydrodynamics, rain-
fall runoff and real time control. However, for this study
SOBEK is only used as interface for WALRUS in FEWS.

3.1.2 DELFT-FEWS

DELFT-FEWS (from here on referred to as FEWS)
is a modelling framework that provides a platform
in which operational forecasting systems can be con-
structed (Werner et al., 2013). FEWS is the abbrevi-
ation of Flood Early Warning System. The framework
has no modelling capabilities and solely relies on exter-
nal models. The predictions from FEWS can be used
as guidance for decision makers to issue warnings. It is



8 | CHAPTER 3. METHODOLOGY

used by several water authorities, including Water Au-
thority Rijn en IJssel, for discharge forecasting. The sys-
tem links models to input data and allows data assimi-
lation with observations by third party software. It also
contains data processing functions such as data valida-
tion, interpolation, aggregation and disaggregation. The
communication between FEWS and external models is
done by an XML based interface that consists of time se-
ries data, parameters, states, meta-information and run
diagnostics (Werner et al., 2013). The combination of
WALRUS rainfall-runoff and SOBEK 1D channel flow is
already implemented in FEWS and also used for data as-
similation in former studies (Izeboud, 2017; Valk, 2019;
Sun et al., 2020).

3.1.3 OpenDA

OpenDA is open source software that facilitates data
assimilation in external models (Weerts and van Os-
nabrugge, 2020). It consists of three building blocks:
the algorithm or method, modeller and observer. These
building blocks can be configured to the needs of the
user by XML configuration files. OpenDA contains sev-
eral data assimilation methods such as the Particle Filter,
several Ensemble Kalman filter types and the Ensemble
Square Root Filter. The software needs input variables
and observations and is already incorporated in FEWS
(Weerts and van Osnabrugge, 2020).

3.2 Analysis

The analysis is split into four parts linked to the research
questions given in the introduction. At first the relation
between the different observation types is determined us-
ing correlation and cross-correlation. This is necessary to
see if these relations affect forecasting performance and
to determine the input for the observation model. In the
next part the observation model is created to convert
point observations to catchment scale variables that can
be used as WALRUS input. This model is calibrated and
used to prepare the observations for data assimilation by
using the validation outputs. The third step involves the
preparation of the model configuration and data, creat-
ing forecasts with the FEWS configurations and deter-
mining the forecasting efficiency over lead time. Finally
the forecasts made by assimilating different groundwa-
ter observations and the observation model output are
compared. The methodology is further explained in this
paragraph and summarized in Figure 3.2 (next page).

3.2.1 Observation analysis

The input variables for the Hupsel Brook catchment are
compared to determine the relation between groundwa-
ter level, precipitation and discharge. The catchment
response time is estimated by using the cross-correlation
between precipitation and discharge. The correlation be-
tween groundwater level and discharge is estimated for
comparison with forecast efficiency when using assimila-
tion with the given state. The degree of correlation can
possibly be used to select the most effective groundwa-
ter measurement location for updating the groundwa-
ter state for assimilation. Further, the lag between the
groundwater level and discharge is estimated with cross-
correlation. This shows the delay between discharge and
groundwater fluctuations in time which can be an impor-
tant indicator for the selection of the optimal observation
for assimilation.

3.2.2 Observation model

One of the main difficulties in using observed groundwa-
ter levels for updating states in WALRUS is that these
observations are point measurements while WALRUS
calculates a groundwater level at the catchment scale. In
addition, the groundwater level in WALRUS represents
the slow seasonal variation while the fast response of
the groundwater table to rainfall events is represented in
the quickflow reservoir. This means that the groundwa-
ter level observations have to be translated to a catch-
ment scale average. For this a multiple linear regression
model, referred to as observation model, is created. This
model uses the modelled state by WALRUS as depen-
dent variable and the observed groundwater levels as
explanatory variables (left section of Figure 3.2 on the
next page).

yi = β0 + β1xi1 + β2xi2 + βnxin (3.1)

The storage deficit (dV ) state output from WAL-
RUS is used as dependent variable yi in equation 3.1.
The explanatory variables, xin in the formula are the ob-
served groundwater levels which are fitted with βn to the
modelled storage deficit state. Storage deficit can be up-
dated with observed groundwater levels due to the direct
relation between groundwater and the storage deficit of
the vadose zone in WALRUS (see Table 1 in Brauer
et al., 2014a). Ogilvie (2016) used the same method for
updating the storage deficit state from WALRUS suc-
cessfully. The observation model is fitted on data of



3.2. ANALYSIS | 9

Input data 

and Qobs 

2015

Groundwater

observations

2015

Input 

data

2013

WALRUS

model

Calibrated 

observation 

model

Observation 

model

dV state

dV estimated 

with 

observations

WALRUS

model

dV state

Modeller: WALRUS 

in SOBEK

Groundwater

observations

2013

OpenDA

Algorithm: 

EnKF/AEnKF

Observer: 

Observation for 

Assimilation

FEWS

Updated

model

Updated

model states

Input data

Forecasts

External

input data

Output used 

as input

Model / 

Algorithm

Observation model setup

Calibrated

parameters

WALRUS 

model

Figure 3.2: Flowchart that summarizes the analysis sections of the observation model and FEWS configuration. The
flowchart starts on the left with input data and observed discharge for 2015 and continues to the right. The input
data of 2013 is only used to estimate the correlation between the observation model output and WALRUS output
and for the forecast with FEWS.

2015 as calibration. After this the observation model is
validated with data of 2013. The output of the valida-
tion year is used for updating the storage deficit (dV )
state of WALRUS in FEWS. Missing groundwater data
are interpolated using linear interpolation (Appendix B).

3.2.3 FEWS-OpenDA configuration

The existing FEWS-OpenDA configuration of Water Au-
thority Rijn en IJssel is used to predict discharge for the
Hupsel Brook catchment. A single channel branch is
made in SOBEK to which the WALRUS rainfall-runoff
model discharges. The SOBEK model is only used as
interface for WALRUS in FEWS. The parameter values
for the WALRUS models in R, used for the observation
model, and SOBEK, used for assimilation and forecast-
ing, are the same (Table 4.1 in section 4.1) and cali-
brated for 2015.

The right part of Figure 3.2 shows the forecasting
process by FEWS with OpenDA. The imported data con-
sist of: precipitation, evapotranspiration and discharge
for WALRUS. For state updating the groundwater ob-
servations from the Camping (Ca), Meteoveld (Mv) and
Ten Barge (Tb) locations are imported. The storage
deficit output from the observation model is also im-
ported into FEWS. These observations are used by the
observer in OpenDA. The forecasting interval is one day

with a forecast duration of 5 days. This is done in se-
quence for every day of 2013. Uncertainty in the model
output is created by perturbing precipitation which is
given a standard deviation with a factor of 0.25. This is
done by selecting 16 precipitation values from a proba-
bility density function using Monte Carlo simulation and
running the model with these values. The resulting en-
semble output for a given model state is compared with
the observed state variable using the Ensemble Kalman
Filter Algorithm (EnKF). If using the probability den-
sity function of the observation improves the model out-
put the observed variable will be used to update model
states (Weerts and Serafy, 2006). For the experiments
the EnKF and Asynchronous Ensemble Kalman Filter
(AEnKF) are used. The Asynchronous filter makes it
possible to update the model with observations by a
given interval larger than the temporal resolution of the
observed variable. This reduces the computational time
substantially due to the lower number of updates.
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Table 3.1: Simulations made with the FEWS-OpenDA
configuration. For each simulation the name, assimilated
state(s), used standard deviation(s) (Sd) and update in-
terval (Int) of the configuration are described.

Name State 1 Sd 1 State 2 Sd 2 Int
Q Q 2.5% - - 1h
dV dV 2.5% - - 1h
QdV Q 2.5% dV 2.5% 1h
Mv Mv 25mm - - 1h
Ca Ca 25mm - - 1h
Q 6h Q 2.5% - - 6h
QdV 6h Q 2.5% dV 2.5% 6h
Q 12h Q 2.5% - - 12h
QdV 12h Q 2.5% dV 2.5% 12h
Sd5 Q 2.5% dV 5mm 1h
Sd15 Q 2.5% dV 15mm 1h
Sd25 Q 2.5% dV 25mm 1h
Sd32 Q 2.5% dV 32mm 1h

3.2.4 FEWS-OpenDA simulations

To assess the forecasting performance increase when us-
ing groundwater observations and the observation model
outputs for data assimilation several simulations are car-
ried out (Table 3.1). First the WALRUS outputs be-
tween FEWS and the observation model are compared.
After this, the first five simulations as given in Table
3.1 where made to estimate the effect of using different
states for assimilation.

For the first run only discharge is assimilated. The
second simulation used the storage deficit state from the
observation model to update the storage deficit state
(dV ) of WALRUS. The third simulation is a combina-
tion of storage deficit and discharge assimilation to ex-
plore the potential of combining these observed variables
for data assimilation. In addition, two model runs with
the observed groundwater level at the Camping and Me-
teoveld locations are used to see if there is a relation be-
tween assimilation efficiency and the used groundwater
location (Table 3.1). Finally, an Asynchronous Ensem-
ble Kalman Filter with 6 and 12-hour intervals is used
to see if lower updating frequencies increase forecasting
efficiency when assimilating both discharge and storage
deficit (middle section in Table 3.1).

The effect of uncertainty in the observation on fore-
cast skill is studied by using different values for the stan-
dard deviation. The standard deviation of the observed
discharge is not changed and is set to 2.5% of the ob-
served value. The forecast efficiency over lead time is
determined as well as the effect on an event of 5 days

starting on the 10th of September 2013. The precip-
itation amount for this event was exceptionally large
(Brauer et al., 2016) and WALRUS estimated the dis-
charge peak poorly with open loop simulations. Several
simulation runs are made to explore the effect of differ-
ent standard deviations in more detail (last section of
Table 3.1). The QdV model run is also used for this
analysis. All simulations start at the 25th of January
2012 and end at the first of January 2014.

3.3 Estimation of forecast skill

The Continuous Ranked Probability Score (CRPS) and
Receiver Operator Characteristics curve (ROC) are used
to determine forecast skill. The effect of different stan-
dard deviations on forecast skill is also visually estimated
by comparing the forecast discharge and storage deficit
with the observations.

3.3.1 CRPS over lead time

The Continuous Ranked Probability Score (CRPS) is a
verification tool used to determine the skill of ensem-
ble forecasts. The CRPS is a continuous version of the
Ranked Probability Score (RPS) which means that the
CRPS is not proportional to the number of classes by
which the forecast missed the observation (Hersbach,
2000). For deterministic forecasts the CRPS is equal to
the Mean Absolute Error (MAE) and ranges from 0 (per-
fect forecast) to 1 (no relation) (Hersbach, 2000). The
CRPS uses a heaviside function for the observed value
and compares the forecast ensemble with this function.
For a more detailed description see Hersbach (2000).

The CRPS score for a given lead time is deter-
mined with the "crps" function from the "Verification"
R-package. This function uses the mean and standard
deviation of the forecast ensembles and the observed
discharge for a given lead time as input. However, the
overall CRPS could not be calculated due to missing
CRPS values for some instances. This was resolved by
manually recalculating the average CRPS without the
use of missing values. A more detailed description of
the CRPS calculation in R is given in Appendix C.
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Figure 3.3: Methodology for creating an ROC curve: a) determining the observed (black) and forecast (red) discharge
for a given lead time above the threshold level (gray line), b) Indicate threshold exceedance with 1 and non-exceedane
with 0 and c) create an ROC curve with the exceedance probability and the ensemble means of forecast discharge
and calculate the AROC.

3.3.2 AROC over lead time

ROC (Receiver Operator Characteristic) curves are per-
formance indicators that are widely used to measure the
skill of dichotomous (binary) forecasts. These curves are
used to compare the hit rate (HR) and false alarm rate
(FAR) for different probability thresholds (Alfieri et al.,
2012). The closer the curve is to the upper left corner
of the graph, the higher the accuracy of the forecast
(Figure 3.3c). The overall performance of the ensemble
forecast can be determined by calculating the area under
the ROC curve, which summarizes the system skill for
all the probability thresholds (Alfieri et al., 2013). For a
perfect forecast the AROC = 1. If the curve is close to
the x=y line it is considered a random forecast and not
able to predict an event (AROC = 0.5) (Alfieri et al.,
2012). An AROC of 0.7 is assumed to be the limit for
a useful prediction system Buizza et al. (1999). For this
study the mean of the ensembles is used to calculate the
AROC for lead times up to five days.

For the calculation of the AROC for a given lead
time the observed discharge has to be evaluated over a
given threshold to determine the occurrence of a flood
(Figure 3.3a). All observed hourly discharges above the
threshold are indicated with 1 and discharges below the
threshold are indicated with 0 (Figure 3.3b). The R-
package "pROC" uses the dichotomous and forecast dis-
charge to create an ROC curve by determining the HR
and FAR and calculates the AROC as can be seen in Fig-
ure 3.3c. This method is used to calculate the AROC for
all lead times. The mean of the AROC over all lead times
is also calculated for easier comparison. A more detailed
description of the AROC calculation in R is given in Ap-
pendix C.
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4 | Results

The first section contains the calibration of the WALRUS
model which is used to make forecasts and to calibrate
the observation model. This is followed by the relation
between input variables. Section 4.3 describes the cal-
ibration and validation of the observation model. The
next section contains an analysis of the updated model
performance when updating different states. Section 4.5
shows the results of using different states, update in-
tervals and standard deviations for the storage deficit
state. Finally, the forecast efficiency between runs is
compared by using the CRPS (Continuous Ranked Prob-
ability Score) and AROC (Area below the Receiver Op-
erator Characteristics curve) over lead time.

4.1 Calibration of WALRUS model

The WALRUS parameters found with calibration are
given in table 4.1. The cW , cV , cG and cQ parameter
values are optimized by using the Levenberg-Marquardt
optimization algorithm included in the R package "min-
pack.lm". The model is calibrated with data from the
year 2015 and validated with data from 2013 by using
the Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe,
1970). The WALRUS model output is given in Appendix
D. The skill is further evaluated by using the Kling-
Gupta efficiency (KGE, Gupta et al., 2009). The two
efficiency scores use different fundamentals to estimate
model efficiency and decomposition of the KGE allows
to better understand model performance (Knoben et al.,
2019). The starting parameter values for calibration are
from Brauer et al. (2014a). For the initial groundwa-
ter level a fraction of 0.8 is used for the Gfrac param-
eter. The soil type (cal_H) and Q-hS relation where
already available for this catchment. The Q-hS relation
for WALRUS in SOBEK is added as table with a dis-
charge value for every millimetre water depth between 0
and 1500 millimetres.

Table 4.1: This table lists the used WALRUS parameter
values for the Hupsel Brook catchment. The values for
cW , cV , cG and cQ are found with auto-calibration.

cW cV cG cQ aS cD st

356 0.21 5e6 3.3 0.01 1500 cal_H

Table 4.2: This table shows the NSE and decomposed
KGE values for the WALRUS model calibration (cal) and
validation (val) for the Hupsel Brook catchment.

Indicator cal (2015) val (2013)
NSE 0.78 0.72
KGE 0.79 0.85
KGE (r) 0.89 0.86
KGE (β) 0.85 0.97
KGE (α) 0.91 0.99

The NSE and KGE scores are given in Table 4.2.
The KGE is decomposed into the Pearson correlation
(r), bias (β) and relative variability (α) components
(Gupta et al., 2009). For the calibration run the NSE
and KGE scores are similar. The NSE score for the cali-
bration period (0.78) is assumed to be good. The model
has a lower, but still acceptable, NSE score for the val-
idation run (0.72) (Ritter and Muñoz-Carpena, 2013).
However, the KGE score for the validation run is higher
and decomposition shows that the correlation (r) is the
only component at which the validation run scored lower.
Therefore, the validation run is assumed to be sufficient.

4.2 Relation between input variables

This section describes the relation between the observed
precipitation, discharge and groundwater levels. The re-
lation between precipitation and discharge is used to es-
timate the response time. The correlation and cross-
correlation between discharge and groundwater level is
also estimated. Data between January 2012 and May
2017 is used for this part of the analysis.

4.2.1 Response time

For the cross-correlation function, missing values are re-
moved. The response time is estimated to be 12 hours
based on the lag times with the highest correlation (Ap-
pendix E). However, it was found that the response
time depends on the momentary catchment conditions
and varies over the year, which was also found by Brauer
et al. (2018). Also, the overall correlation is low (maxi-
mum: R2 = 0.21). Therefore, the response time is also
verified by single events (Appendix E). The estimated
response time with this method was 5 to 12 hours de-
pendent on discharge conditions before the event.
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Figure 4.1: Cross-correlation between groundwater level
and discharge for Camping (Ca), Meteoveld (Mv) and
Ten Barge (Tb). Note: the maximum cross-correlation
for Ca is not visible in this figure.

4.2.2 Discharge and groundwater

The relation between groundwater level and discharge is
estimated with correlation. The relation with discharge
is the strongest for the Meteoveld location (R2 = 0.71).
The Ten Barge (Tb) piezometer also shows a relatively
high correlation of R2 = 0.65. The Camping (Ca) loca-
tion yields the lowest correlation with only R2 = 0.34.
Figure 4.1 shows the cross-correlation between discharge
and groundwater level. The locations of Meteoveld (Mv)
and Ten Barge (Tb) locations have a lag time of −7 and
0 hours. The Camping (Ca) has a far larger and positive
lag time between 500 and 1500 hours. This indicates
that fluctuations in groundwater level at Ca are delayed
compared to fluctuations in discharge. The negative lag
time for Mv indicates that the discharge follows ground-
water level in time. The positive lag time at Ca indicates
that the groundwater level follows discharge. The lag
time of 0 hours for Tb can be caused by the close prox-
imity of the Hupsel Brook and temporary inundations by
the brook.

4.3 Observation model

This section shows the calibration and validation of the
observation model. This observation model is used to
calculate a catchment scale storage deficit value used for
updating WALRUS. The observation model used to esti-
mate storage deficit (dV ) from WALRUS with observed
groundwater levels uses all three groundwater measure-
ment locations.
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Figure 4.2: Fitted observation model for the calibration
year (2015) with simulated storage deficit of WALRUS.

4.3.1 Calibration

Two data inputs are needed to calibrate teh observa-
tion model. As dependent variable the storage deficit
state (dV ) with a one hour resolution for 2015 from the
WALRUS model is used. All three observation locations
are significant when used in the linear regression model.
Therefore, all three observation locations are used. Fig-
ure 4.2 shows the fitted observation model and simulated
dV by WALRUS. The correlation between the storage
deficit output from WALRUS and the observation model
is high (R2 = 0.92). Other methods of increasing the
observation model accuracy by reducing hysteresis and
variability where not satisfactory (Appendix F). Other
regression model shapes did not increase the relation be-
tween the modelled storage deficit and observed ground-
water level and a linear model showed to be sufficient
(Figure 4.3). Valk (2019) also showed that quadratic
and logarithmic regression models do not increase the fit
substantially. An observation model with the WALRUS

15
0

20
0

25
0

30
0

35
0

−1300 −1000 −700 −400
Mean observed groundwater level [mm]

W
A

R
U

S
 s

to
ra

ge
 d

ef
ic

it 
[m

m
]

Figure 4.3: Fitted linear regression model (blue line) for
the relation between modelled storage deficit by WAL-
RUS and observed groundwater level for 2015.
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Figure 4.4: Calculated storage deficit by the observation
model and WALRUS for 2013.

groundwater state (dG) as dependent variable was also
created. However, dG is a dependent variable in WAL-
RUS which can limit assimilation effectiveness. There-
fore, the observation model for dG is not used for the
analysis. The calibration and validation of this observa-
tion model are given in Appendix G.

4.3.2 Validation

To be able to update the storage deficit state (dV ) of
WALRUS before making a new prediction, the storage
deficit values for state updating need to be estimated
from groundwater level observations. This is done with
the observation model that uses the measured ground-
water levels to estimate storage deficit as used by WAL-
RUS. The observation model was able to estimate the
storage deficit state from WALRUS with a correlation of
R2 = 0.90 (see Figure 4.4). However, there is a devia-
tion of on average 50 millimetres storage deficit between
the outputs of WALRUS and the observation model dur-
ing the first months.

4.4 FEWS state updating

This section shows the effect of assimilation on the out-
put of the updated model. Also, the use of observations
for assimilation is studied by comparing the modelled dV
state of different runs. The updated models are used to
make the forecasts described in the next section.

4.4.1 Updated model output

The output from the updated models is compared with
the model without assimilation using the NSE and KGE
to see if updated models perform better than the non-
updated (open loop) model (Table 4.3). The updated

Table 4.3: The NSE and KGE scores of the updated
discharge from the WALRUS model used to make pre-
dictions. The model output without update (Open Loop
Simulation; Ols) is given for reference.

Run Q dV QdV Mv Ca Ols
NSE 0.95 0.69 0.95 0.83 -0.04 0.80
KGE 0.92 0.70 0.90 0.80 0.41 0.74
KGE r 0.98 0.90 0.98 0.92 0.68 0.91
KGE β 0.93 0.80 0.91 0.85 1.35 0.81
KGE α 0.96 1.20 0.97 0.89 1.35 0.85

models with discharge and discharge with storage deficit
perform the best and both have a NSE of 0.95. This
is an increase when compared to the open loop model
without assimilation. Overall, the models updated with
only storage deficit (NSE = 0.69) or groundwater level
from Ca (NSE = −0.04) perform worse than the open
loop run. Both models have a larger relative variability
(α) and Ca also has a larger bias (β) when compared
to the open loop simulation which is also indicated by a
negative NSE (McCuen et al., 2006).

The simulated hydrographs from the updated mod-
els for the event starting at the 10th of September are
shown in Figure 4.5. This shows that updating stor-
age deficit (dV ) results in an overestimation of the dis-
charge peak with more than 100%. Assimilation of only
the Meteoveld (Mv) or Camping (Ca) observations leads
to an underestimation of discharge. Overall, assimila-
tion of only discharge (Q) and discharge with storage
deficit (QdV) from the observation model seem to per-
form equally well.
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Figure 4.5: Updated discharge for September 2013 from
models with assimilation of only discharge (Q), only
storage deficit (dV), both discharge and storage deficit
(QdV) and groundwater levels of Meteoveld (Mv) and
Camping (Ca; purple line at bottom of graph). With
observed (Qobs) and open loop discharge for reference.
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Figure 4.6: Updated storage deficit state of WALRUS for assimilation of only discharge (Q), only storage deficit (dV)
and both discharge and storage deficit (QdV). The storage deficit from the observation model (dVobs) and open
loop simulation (Open loop) are given for reference.

4.4.2 Updated storage deficit

To see if the storage deficit observations are used for
state updating the simulated storage deficit states from
different runs are compared. In Figure 4.6 can be seen
that the state with only discharge updated (Q) and with
both discharge and storage deficit updated (QdV) are
similar. The state with only storage deficit updated
followed the observed storage deficit more closely than
the other two simulations. However, simulated storage
deficit of the run for assimilation of Q with dV (QdV) is
mostly between the Q and dV simulations. This shows
that the storage deficit observations are used when both
updating the storage deficit and discharge, but not with
large effects on the simulated state. Similar performance
of QdV and Q can be caused by the already high per-
formance of Q resulting in dV not being used for updat-
ing. In addition, the uncertainty in the dV observation
is given as 2.5% of the observation (same as discharge).
This means that a larger deficit results in a larger as-
sumed error in the observation, because a fraction of the
observed is used as standard deviation. For example, a
storage deficit of 350 millimetre will have a standard de-
viation of 350 ∗ 0.025 = 8.75 millimetres. The effect on
forecast skill is examined further in section 4.5.4.

4.5 Forecast comparison

In this paragraph the forecasting efficiency of different
observations, 6-hour and 12-hour interval for state up-
dating and the effect of different standard deviations for
the observed variables are shown. All forecasts are com-
pared by using the AROC and CRPS over lead time.
For this the AROC threshold levels of 200, 100 and
10 l s−1 are used. The results for the CRPS and AROC
for 100 l s−1 are shown in Figure 4.8. The figures with
AROC scores for 10 l s-1 and 200 l s-1 can be found in
Appendix H.

4.5.1 AROC thresholds

The alarm levels are relatively low because only a few
larger discharge peaks are available for 2013. The alarm
level of 200 l s−1 is exceeded for 5.9% of the time. This
resulted in an highly variable output for AROC over lead
time due to the low number of discharges above the
threshold. A lower threshold level of 100 l s−1 is ex-
ceeded by 16% of the observed discharge values. This is
enough data to estimate the AROC over lead time. The
third threshold of 10 l s−1 was exceeded by 69% of the
observations and is also used for calculating the AROC.
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4.5.2 Forecast skill for different observations

Figures 4.8a and b show the CRPS and AROC scores
for the five assimilation runs with only discharge, only
storage deficit, discharge and storage deficit and ground-
water levels of Camping and Meteoveld. All predictions
have an AROC score of more than 0.7 during the whole
prediction period. However, there is a 24-hour period-
icity visible which is likely a result of the used FEWS
settings. By making forecasts every 24 hours and calcu-
lating the CRPS and AROC for every hour of the fore-
cast, only parts of discharge peaks are captured. The
CRPS and AROC for Ca show the lowest skill of all
runs. Overall, the assimilation run with both discharge
and storage deficit updated, show slightly higher CRPS
and AROC scores over longer lead times compared to the
run with only discharge assimilation (Figure 4.8a and b).
However, this may also be an effect related to random-
ness (further explained in chapter 5). The Mv and dV
runs show both a lower initial skill compared to the Q
and QdV runs. However, they seem to be more constant
over longer lead times. With a threshold level of 10 l s−1

(Appendix H Figure a) these runs show the highest skill,
which might indicate that updating only storage deficit
or groundwater level is useful for low discharge condi-
tions.

4.5.3 Reduced updating frequency

Assimilation of only discharge and discharge with storage
deficit is compared for different update intervals. Figures
4.8c and d show the effect of an updating interval of 6
hours. Overall, both the CRPS and AROC show the
same pattern and all forecasts are relatively similar. The
QdV with an update interval of 6 hours seems to perform
the least followed by the Q with an interval of 1 hour
according to the CRPS.

With a 12-hour interval the forecast for which only
discharge is assimilated has the lowest performance (Fig-
ures 4.8e and f) which may be related to the response
time of the catchment. This difference is likely a result
of making a forecast 12 hours after the update just be-
fore the model receives a new observation. The QdV run
with a 1-hour interval has a slightly higher skill compared
to the 12-hour interval for both the CRPS and AROC
(100 l s−1). However, for a lower threshold of 10 l s−1

the QdV with a 12-hour interval has a better score than
the 1-hour interval simulation (QdV 1h). This shows
that there is no direct relation between the updating
interval and model performance for this period.

4.5.4 Observation uncertainty

From the updated storage deficit and discharge was
found that the standard deviation is an important pa-
rameter when using the Ensemble Kalman Filter. Khaki
et al. (2017) also found that changing the observation
uncertainty can alter the results substantially. There-
fore, the effect of different standard deviations for the
dV observations used for the QdV run is examined. This
is done by using the CRPS and AROC for the whole pe-
riod (Figure 4.8 g and h) and for an precipitation event
in September 2013 (Figure 4.7). The standard deviation
as 2.5% of the observation shows the highest skill for the
CRPS and AROC (100 l s−1). However, with the lower
AROC threshold level of 10 l s−1 a standard deviation
of 5 millimetres for the storage deficit shows more skill.

For the precipitation event in September (Figure
4.7) the forecast with a standard deviation of 15 mil-
limetres for the observation uncertainty estimates the
maximum observed peak height the closest. Standard
deviations of 25 millimetre, 32 millimetre and as 2.5%
overestimate the largest peak while a deviation of 5 mil-
limetre leads to an underestimation. All forecasts have
perform better compared to the run without assimilation.
The figure also does show that forecast peak height is
influenced by storage deficit. Overall, all forecasts with
assimilation did perform better than the open loop run.
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Figure 4.8: CRPS and AROC (100 l s-1 threshold) over lead time for the first five runs (a and b), assimilation of Q
and Q with dV with a 1 and 6 hour interval for state updating (c and d) and assimilation of Q and Q with dV with
a 1 and 12 hour interval for state updating (e and f). Figures g and h show the effect of using different standard
deviations for the storage deficit observation when updating both discharge and storage deficit. Note: panels b and
f are multipanel plots with different y-axis scales to increase readability.
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5 | Discussion

5.1 Groundwater-discharge relation and
assimilation efficiency

The relation between groundwater level and discharge
largely determines the skill of the forecast when using the
groundwater observations for state updating. Ground-
water level from the Camping location has a low cor-
relation and large positive lag time with discharge and
the run with assimilation of Ca shows the lowest skill
of all forecasts. In contrast, the Meteoveld location
has the highest correlation and a negative lag time of
only 7 hours with discharge and has the highest skill
from all forecasts which do not use discharge for assim-
ilation (Figure 4.8a and b). The similar performance
of the Mv (groundwater level) and dV (storage deficit)
observations is caused by the use of Mv for the obser-
vation model. The response time for this catchment
is between 5 and 12 hours and may be related to the
skill increase by using groundwater assimilation. Valk
(2019) studied groundwater and discharge assimilation
for the Regge catchment using different filters and found
a skill increase when using both states compared to only
discharge. This catchment has a similar response time
as the Hupsel Brook (7 to 10 hours; Heuvelink et al.,
2020). This indicates that response time may not be
a suitable characteristic to determine assimilation effi-
ciency. Therefore, it is recommended to estimate fore-
cast skill with groundwater assimilation for catchments
with other characteristics, such as soil type, catchment
slope and a larger base flow.

5.2 Relation between observations

Response time is estimated with cross-correlation be-
tween precipitation and discharge and individual rain-
fall events. Both methods yielded different results and
response time varied depending on catchment wetness
which is according to Brauer et al. (2018) the main
predictor for discharge response. The cross-correlation
analysis showed a response time of 12 hours where the
individual events showed a values ranging between 5 and
12 hours. These results differ from Brauer et al. (2011)
who also found a response time for this catchment by
analysing an extreme event. They found that discharge
started to increase after 7 hours and that the peak was
reached at 23 hours after the event. The difference in

results is likely caused by the used methodology, since
Brauer et al. (2011) studied one extreme event in sum-
mer and this study focused on the response time over
more than 5 years and different wetness conditions.

In addition, forecasts made with the observation
model output had lower skill than forecasts with assim-
ilation of Meteoveld time series data. This shows that
using one observation to explain a catchment scale av-
erage state can be sufficient. However, for larger catch-
ments the observation model can be useful to estimate
a catchment averaged state from observed groundwa-
ter levels, that still contains a portion of the observed
variability.

5.3 Observation model

The observation model is used to convert point observa-
tions to a catchment average. Positive lag times (Camp-
ing) can be of limited use for making predictions because
of the delayed response of groundwater. However, this
location is still used for the observation model because,
it has the same significance as the Meteoveld and Ten
Barge observations. This shows that a weak relation
between groundwater level and discharge can still be of
value for the observation model.

The difference of 50 millimetre at the start of the
prediction for 2013 is caused by the used simulation pe-
riod and the effects of freezing. During January, Febru-
ary and March of 2013, 41 days with a daily average tem-
perature below zero degrees Celsius are recorded at the
Hupsel station (KNMI, 2020). During these days a to-
tal of 32.7 millimetres of precipitation was recorded with
non-freezing days in between. This can lead to a smaller
storage deficit in WALRUS because the snow module
was not used and thus precipitation was always assumed
to be rain. In contrast, the observed groundwater level
can remain lower due to a reduced infiltration capacity
by frozen soil. However, this does not explain the dif-
ference in storage deficit over a longer period. This is
caused by the used simulation period for WALRUS in R
for 2015 used to calibrate the observation model. Ap-
pendix I shows the observation model result when using
a longer spin-up time. This increases the correlation of
the observation model further to R2 = 0.96 for both the
dG and dV state. The root mean square error (RMSE)
between WALRUS storage deficit and the observation
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model for 2013 decreases from 36.87 to 26.35 millime-
tres when using a simulation period with one year spin-up
time.

Two additional observation models were made to
estimate both the groundwater level (dG) and quickflow
reservoir level (hQ) state and from observed groundwa-
ter levels. However, the dG observation model was not
used because updating the storage deficit (dV ) state was
expected to yield better results, because the ground-
water level in WALRUS is calculated with the storage
deficit from the vadose zone as input (Brauer et al.,
2014a). However, OpenDA updates all states of the
model instead of only states for which observations are
available. This is different from the method used by
Ogilvie (2016) who found that the updated discharge
state quickly returned to pre-update levels because the
other model states where not updated. Therefore, up-
dating the WALRUS groundwater level with OpenDA
can still be useful for assimilation. An attempt was
made to use fast groundwater fluctuations for updat-
ing the quickflow reservoir of WALRUS. However, this
observation model yielded no significant correlation for
the validation year due to the zero inflated data from
the quickflow reservoir. A more detailed description can
be found in Appendix J.

The mean and standard deviation (32.49 millime-
tre) of the error in storage deficit between the observa-
tion model and the WALRUS state were expected to be
used as the uncertainty in the observation for FEWS.
The error is considered Gaussian and needed a bias cor-
rection of -17.77 millimetres. Appendix K shows a his-
togram with the difference. However, this standard devi-
ation made the observation too uncertain and the obser-
vations were not used to update the model due to the
model uncertainty being smaller. Therefore, the stan-
dard deviation is reduced and the effect of varying the
standard deviation is explored.

5.4 FEWS configuration

The WALRUS models for the forecast in FEWS and for
the observation model are compared to be sure that they
give the same results. However, after making simula-
tions there was a discrepancy between both models at
the beginning of 2013. This difference was caused by
a reduced the spin-up time of the FEWS simulation.
Also, a one-hour shift between both model outputs was
found. This can be related to the way WALRUS in R
stores the simulated discharge. A graph with the dif-

ference is given in appendix L. This error is consistent
for all runs which makes them still comparable. How-
ever, the score of the open loop simulation is different
when using a longer spin-up time for the configuration.
This results in a higher NSE of the WALRUS model in
FEWS (NSE = 0.8) than the R-version used for the
observation model (NSE = 0.72), see Table 4.3.

The importance of updating groundwater levels can
be more related to low flow scenarios. However, due to
perturbation of precipitation, the uncertainty of model
output becomes very low during periods without pre-
cipitation. Therefore, the groundwater is not updated
during these situations and the value of groundwater
observations for predicting low flows could not be quan-
tified properly. Perturbing other non-zero state(s) in-
stead of precipitation, like potential evapotranspiration
or the groundwater state itself, can keep the model un-
certainty larger and more constant when no precipitation
is available.

The precipitation event starting on the 10th of
September 2013 was used to estimate the effect of differ-
ent observations for assimilation on updated discharge.
Sun et al. (2020) studied the updated model output
for the Regge over the first 8 days of August in 2006.
Their results also show that the open loop (non-updated)
model underestimates peak discharge compared to the
observation and that the EnKF simulated discharge re-
sembles observed discharge more closely. This shows
that discharge assimilation for WALRUS is especially
useful for the correction of model states, during a fast
(several days) decrease in storage deficit.

5.5 CRPS and AROC

To evaluate forecast performance the area under the Re-
ceiver Operator Characteristic curve (AROC) and Con-
tinuous Ranked Probability Score (CRPS) over lead time
are calculated. The resulting figures are used to com-
pare different states, intervals and standard deviations
for assimilation. However, Monte Carlo sampling of
precipitation in FEWS, used to estimate uncertainty in
model outputs, adds randomness to the results. There-
fore, small differences in forecast skill cannot be directly
linked to a the changed configuration input.

The AROC and CRPS in Figure 4.8 show a 24-hour
periodicity. However, forecast skill is expected to de-
creases towards longer lead times. Therefore, the used
function was rebuilt but no related error in the post-
processing steps could be found. So, the periodicity is
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most likely caused by the calculation over lead time in
hours for forecasts made every 24 hours. Sun et al.
(2020) used an forecast interval of 2 days with discharge
assimilation for the Regge catchment. Their calculated
MAE and CRPS with lead time show an 48-hour peri-
odicity resulting in two peaks of skill increase between
1 and 120 hours lead time for the EnKF filter. There-
fore, the periodicity in skill over lead time can be related
to the used forecast interval. This periodicity can be
avoided by using the same temporal scale for skill over
lead time and the forecast interval.

The AROC for a threshold of 200 l s−1 showed a
strong temporary decrease in skill that can be related to
the low number of discharge peaks in one year. There-
fore, lower AROC thresholds are used which makes the
comparison between forecasts still possible. The num-
ber of discharge values for the AROC is further reduced
by the 24-hour interval discussed before. Therefore, a
longer simulation period and forecast interval of 1 hour
is needed to estimate the AROC for higher thresholds
which are more realistic for flood warning. In addition,
another forecast skill estimator such as the CRPS can
be used which uses all available forecast data.

5.6 Recommendations

WALRUS is a rainfall-runoff model that fills the gap be-
tween parametric and distributed models. It is capa-
ble of modelling multiple states including surface water
level and related discharge, groundwater level and stor-
age deficit. However, hydrological models calibrated on
discharge can show high efficiency while the other model
states are vastly different from the observations. This
depends on model structure and the degree in which
physical processes are incorporated. This has been stud-
ied for WALRUS by Brauer et al. (2014b) and it was
found that WALRUS estimates other states such as
groundwater level and unsaturated zone processes well.
WALRUS can also be calibrated on groundwater levels.
Therefore, updating the WALRUS groundwater and stor-
age deficit states is possible. However, results may differ
with other hydrological models because of differences in
model structure and the representation of physical pro-
cesses.

The forecast skill when only using discharge for as-
similation is already high. This means that skill increase
is limited when also using groundwater level observa-
tions. This can be caused by the fast response time of
this catchment. It is possible that the effect of ground-

water assimilation can be more substantial in catchments
that have a slower response time and are more dependent
on groundwater (larger baseflow). Valk (2019) found
that a combination of storage deficit and groundwater
level performed the best when updating two states for
the Regge catchment (1015 km2). Therefore, the small
increase in forecast skill for the Hupsel catchment can
be significant and show that groundwater assimilation
does increase forecast skill.

Initially, the Groenlose Slinge catchment in the
management area of Water Authority Rijn en IJssel was
also chosen to estimate assimilation effectivity. For this
194 km2 large catchment a response time between 17
and 41 hours was found. Also, other catchment charac-
teristics such as catchment slope, soil type and size may
affect assimilation performance. Unfortunately, building
the FEWS configuration for the Groenlose Slinge was
not possible due to time constraints. However, the vari-
able relations and observation model results are added
in Appendix M. This combined with the results of pre-
vious studies (Valk, 2019; Ogilvie, 2016) shows that this
method can be used to convert point measurements into
a catchment average.
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6 | Conclusion

In this study the effect of using groundwater observations
for data assimilation on flow forecast skill is investigated.
Forecasts that use different observations, update inter-
vals and observation uncertainties for assimilation are
compared. Results show that assimilating groundwater
in addition to assimilating discharge only results in a
small increase in forecast skill. A possible explanation
for this can be the fast response time and high tempo-
ral variation in groundwater level of this catchment. In
addition, the already high forecast skill with only dis-
charge assimilation likely limits skill increase. Forecast
skill remains more constant over lead time when using
only groundwater observations compared to discharge.
Combining groundwater and discharge gives a higher
overall skill that is more constant over lead time. This
is confirmed by former studies were also a significant
skill increase was found when assimilating groundwa-
ter in addition to assimilating discharge. However, the
skill increase of groundwater assimilation for the Hupsel
Brook catchment is uncertain because the small increase
in forecast skill can be a result of Monte Carlo simula-
tions. Therefore, it is recommended to estimate the
potential of groundwater assimilation for other lowland
catchments with different characteristics and a longer
simulation period (more than one year).

Groundwater level observations with the strongest
correlation with discharge yielded the highest forecast
skill when used for assimilation. In addition, an observa-
tion model was established to convert the measurements
into a catchment average state that can be used for up-
dating the model. Using the output from this model
for assimilation yielded similar results as the groundwa-
ter time series that has the highest correlation with dis-
charge. This can be related to the small size of the used
catchment and indicates that only using the groundwa-
ter observations with the strongest correlation with dis-
charge could be sufficient for smaller catchments. In this
case, the correlation and cross-correlation between dis-
charge and groundwater level can be used as predictor
for forecast skill. However, these results show that the
observation model is capable of representing the model
states used for assimilation with observed groundwater
levels which can be useful for (larger) catchments with
more spatial variability.
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A | Used abbreviations

AEnKF Asynchronous Ensemble Kalman Filter

AROC Area under the Receiver Operator Characteristic curve

Ca Camping, name of groundwater level measurement location

CRPS Continuous Ranked Probability Score

EnKF Ensemble Kalman Filter

(Delft-)FEWS Flood Early Warning System

KNMI Royal Netherlands Meteorological Institute

MAE Mean absolute error

Mv Meteoveld, name of groundwater level measurement location

RMSE Root Mean Square Error

Tb Ten Barge, name of groundwater level measurement location

WALRUS WAgeningen Lowland RUnoff Simulator
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B | Missing observation data

2013 2014 2015 2016 2017

observation

P
ET
T
Q
Ca_GWL
Mv_GWL
Tb_GWL
Peff

Data gaps for meteorological, discharge and groundwater data between January 2012 and May 2017 (including
effective precipitation). Note: the precipitation data does not contain gaps.
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C | Calculation of CRPS and AROC in R

This appendix gives a more detailed description of the calculation of the CRPS and AROC scores from forecast and
observation data. The forecasts from FEWS are converted from NetCDF to CSV format by using the "Dataset"
function from the Python package "netCDF4". These CSV files with the five day forecasts are then loaded in R. The
following sections give a description of the steps needed for the calculation.

CRPS

This describes the methodology used to calculate the CRPS scores from the FEWS forecast outputs and observed
discharge for a given lead time.
1. Determine mean and standard deviation of the ensembles for each forecasted hour for each forecast.

2. Store the means and standard deviations in two separate matrices with as rows the forecasted hour and as
columns the means or standard deviations of the five day forecast. This results in two matrices with with 120
rows (5 day forecast with 1 hour interval) and 361 columns (forecasts made in one year).

3. Create a similar matrix for the observations by selecting 5 days of hourly data starting at the beginning of the
forecast and placing this in a column. The next column is filled with similar data but shifted 24 hours (forecasting
interval) to line up with the forecasting data.

4. Select the observed and forecasted data for a given lead time with the row index and store the observed discharge
in a vector and the forecasted data in a matrix with two vectors containing the mean and standard deviations.

5. Use the vector with observed discharges and the matrix with the mean and standard deviation for the "crps"
function of the "Verification" R-package to calculate the CRPS.

AROC

This section describes the methodology used to calculate the AROC scores from the FEWS forecast outputs and
observed discharge for a given lead time.
1. Determine mean of the ensembles for each forecasted hour for each forecast.

2. Store the means in a matrix with as rows the forecasted hour and as columns the means or standard deviations
of the five day forecast. This results in a matrix with 120 rows (5 day forecast with 1 hour interval) and 361
columns (forecasts made in one year).

3. Create a similar matrix for the observations by selecting 5 days of hourly data starting at the beginning of the
forecast and placing this in a column. The next column is filled with similar data but shifted 24 hours (forecasting
interval) to line up with the forecasting data.

4. Select the observed and forecasted data for a given lead time with the row index and store the observed discharge
and the ensemble means of the forecasted discharge in two vectors.

5. Use the two vectors with observed discharges and the vector with the ensemble means for the "ROC" function
of the "pROC" R-package to calculate the AROC with a graph or with the "AUC" if only the area under the
curve is needed.
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D | WALRUS model Calibration and Validation
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WALRUS model calibration output for 2015 for the Hupsel brook. The cW , cV , CG and cQ parameter values are
optimized with the Levenberg-Marquardt algorithm. The resulting dV , dG and hS states are used to calibrate the
observation model.
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the observation model efficiency.
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E | Estimation of response time

The response time is estimated with cross-correlation between discharge and precipitation and with multiple events
by comparing the delay between precipitation and discharge peaks.
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July 2013.
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F | Improving the observation model

The accuracy of the observation model can possibly be increased by decreasing the hysteresis and by reducing the
variability of the observation. This has been tried by using a weighted moving average function to decrease variability,
using a rolling average function and by shifting the groundwater observations with the lag time at which correlation
is at maximum. This analysis is carried out for the period between November 2013 and April 2014.

Linear model with rolling average of observations

This method uses the rolling average function "rollmean" in R to calculate the rolling average over a given interval.
The rolling averages of the Meteoveld and Ten Barge observations are calculated with a 1 hour resolution and used
as explanatory variables in a linear model that has storage deficit from WALRUS as dependent variable. The output
from the linear model had a correlation of R2 = 0.90 over these 5 months with a rolling average window of 250
hours backwards in time (forwards not possible for forecast). This was an increase when compared to the normal
observation model (R2 = 0.72). However, this method also removes a lot of variability which could be needed for
assimilation. Also, it introduces extra parameters for the averaging window which may be affected by catchment
conditions that vary over time (wetness).

Comparison of moving average and lagged moving average

For the given period the moving average and lagged moving weighted average from different locations is compared
with the WALRUS output. The correlations for this analysis are given in the table below. The lag of Ca is not used
because the groundwater level reacts slower than discharge. The correlation was the highest with the moving weighted
average of the lagged observations from Meteoveld. However, this methodology is not used for the final observation
model for several reasons. The use of the MWA function introduces two extra parameters to the observation model
(averaging window and weight) which is not preferred when taking in account the limited increase of accuracy. Also,
the lag time varies over the year due to different degrees of wetness and therefore has to be estimated again for each
new simulation period.

Conclusion

Due to the extra parameters needed for these methodologies and the limited increase in correlation between observed
and modeled groundwater these methods are not used for the final observation model. The final model uses only the
observed groundwater levels without any modifications for the linear model. However, These results show that is may
be possible to increase the correlation between modeled and observed groundwater by using the moving weighted
average function rolling average (also found by Verschaeren (2015)) and by shifting data with the lag time when
maximal correlation occurs.

A table with the correlation between WALRUS groundwater level and observed groundwater level.

Observation R2

WALRUS 1.00
Ca 0.47
Tb 0.67
Mv 0.82
MWA Tb 0.74
MWA Mv 0.87
MWA Tb lagged 0.78
MWA Mv lagged 0.90
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G | Observation model for groundwater state
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Fitted observation model for the calibration year (2015) with simulated groundwater level by WALRUS.
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Calibration of observation model used to estimate the dG state with observed groundwater level. The model is
calibrated with WALRUS groundwater level output (dG) for 2015.
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Predicted groundwater state for WALRUS by observation model for 2013.
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H | AROC for 10 and 200 l s-1
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of Q and Q with dV with a 1 and 12 hour interval for state updating (e and f). The effect of changing the standard
deviation for dV is given in sub-figures g and h.
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I | Observation model with longer spin-up time
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Observation model for dV with a longer WALRUS run reducing the effect of the initial states.
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J | Observation model for quickflow reservoir
At first was attempted to separate slow and fast processes in groundwater into seasonality and faster fluctuations.
For this the relation between groundwater level and the quickflow reservoir level was estimated for the year 2013 for
the Hupsel Brook catchment. However, the correlation was low (R2 = 0.14) due to the large amount of zero’s in the
quickflow reservoir level data. When adding the effective precipitation (P-ETpot) to the linear model the correlation
increased to (R2 = 0.30. It was found that the level of the quickflow reservoir is not directly linked to groundwater
levels but rather to the change in groundwater level.

several methods have been tried to estimate this relation:
1. Using a Poisson model
2. Using the change in groundwater level
3. Using a function that separates the fast and slow groundwater fluctuations

These methodologies will be explained in more detail in this section.

Poisson model

A poisson model was fitted to account for the zero’s in the quickflow reservoir data. A Poisson regression model can
deal with zero inflated data by assuming that these are generated by a different non-related process. However, this
is not the case with reservoir levels which are always dependent on the same processes. Also, the Poisson regression
is mainly used for count data without an internal relation. This is not the case for a reservoir because the reservoir
state is dependent on the previous state and is subjected to hysteresis. When using the Poisson model the correlation
increased to 0.55 when using: Ca, Mv, Tb, Peff (P − PET ) and P.

Groundwater level change

The change in groundwater level is estimated by making a function that subtracts the groundwater level at time
n+1 over the groundwater level of time n. This change in groundwater level was used to estimate the relation with
quickflow. However, this resulted in poor correlation (R2 = 0.06).

Function for separation of variability

Finally a function was created that uses the observation with the highest correlation with discharge and subtracts
the moving average from that observation to reside with only the fast fluctuations. This function needs the observed
groundwater data, the modelled hQ for comparison and the averaging time and weight for the weighted average.
The positive fluctuations (rise in groundwater level) are used and fitted using the correlation and RMSE by adjusting
the weight and averaging time of the moving average function. This resulted in a relatively good fit comparable to
the poisson function (R2 = 0.52 , RMSE = 0.72). However, there are important downsides to this method:
1. It fully describes hQ by the observed groundwater level, however WALRUS also uses runoff from precipitation

for this based on the wetness parameter.
2. The units do not work out because the estimated hQ state value with the function is two orders of magnitude

larger.
3. Extra parameter values are needed which have to be estimated for other simulation periods which is not desired

for prediction purposes.
4. All data is used to create the fit which means that it cannot be used for predictions unless this relation is valid

for more simulation periods and the correlation is high with the calibration dataset.
5. Making a function to estimate hQ is not possible because this variable is dependent on the W variable in

WALRUS which is dependent on other model variables.
For these reasons the fast fluctuations in groundwater levels are not used for state updating of the hQ reservoir.
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K | Storage deficit difference observation model
and WALRUS
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Difference between simulated storage deficit and estimated storage deficit by the observation model for 2013. The
data in this figure is not bias corrected.
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L | Difference in WALRUS discharge between
FEWS and R

The difference between R and SOBEK discharge output is caused by the short spin-up time used for the SOBEK
simulation. For earlier simulations a 2 month spin-up period was used for WALRUS in SOBEK which yielded almost
the same result as the output from WALRUS in R (Figure ??). It was found that the small difference (1 hour shifted)
can be caused by the way WALRUS in R stores the output. However, the decreased spin-up time for the model runs
used in this study resulted in the large difference as seen in Figure ??. Unfortunately, no time was available to redo
these simulations.
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This figure shows the modeled discharge of WALRUS from SOBEK and WALRUS from R with the same model
parameters for an event in September 2013 with a 2 month spin-up time.
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This figure shows the modeled discharge of WALRUS from SOBEK and WALRUS from R with the same model
parameters for an event in February 2013.
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M | Relations and observation model Groenlose
Slinge

Used data

The groudwater observations are selected based on their proximity to the Groenlose Slinge river and data availability.
The used data is measured between 28 October 2018 and 20 October 2020. Five groundwater locations are used: Bel-
trum Kempersweg (Bk), Mulliersweg Winterswijk (Mw), Walienseweg Huppel (Wh), Oude Schooldijk Stelkampsveld
(Os) and Wiechersweg Stelkampsveld (Sw). Discharge of the Hagenbeekbrug location near Borculo is used. For
precipitation an average precipitation was calculated using Voronoi or Thiessen polygons because radar data from
the KNMI was temporary unavailable. For this the following stations were used: Harreveld (13.6% of catchment
area), Hengelo (GLD;5%), Hupsel (29.5%), Ratum-Henxel (39.2%) and VredenKA (Germany; 12.8%). The potential
evapotraspiration is estimated from the Hupsel station similar to the analysis for the Hupsel Brook catchment. The
discharge from the water treatment plant of Winterswijk is not used because it did not yield a significant increase in
model efficiency.

Variable relations

The response time of the Groenlose Slinge catchment is estimated to be 21 hours based on lag time from cross-
correlation between precipitation and discharge.Also, the delay between certain precipitation events and resulting
discharge peaks are evaluated. This showed a variable response time of 17 to 41 hours. The correlation between
discharge and the groundwater observations ranges between 0.78 - 0.84 for the five selected groundwater observations.
The cross-correlation lag times, between discharge and groundwater level, for the locations are: 18 hours (Sw), 2
hours (Mw), 0 hours (Kb) and -4 hours (Os and Wh). This shows that most groundwater locations have a delayed
response compared to discharge.

WALRUS model

The parameters for the WALRUS model are given in the table below. The Gfrac calibration parameter was set to
0.9 for auto-calibration. The model is calibrated by using one year of data from October 2018 to October 2019.
The NSE value for simulated discharge over the calibration period was 0.94. The model is validated with observed
discharge from October 2019 to October 2020 which yielded a NSE score of 0.78. A catchment area of 188 km2 is
used with the default Q− hS relation.

This table shows the WALRUS parameter values for the Groenlose Slinge catchment.

Par cW cV cG cQ cS cD aS st
Val 366 1 1.25e6 30 1.6 2300 0.01 loamy sand

Observation model

All 5 groundwater locations are used for the observation model. The correlation for the fitted model for 2018-2019
was R2 = 0.93. For the validation the predicted storage deficit and groundwater both had a correlation of R2 = 0.90

with the simulated WALRUS states. Due to the effect of hysteresis two clear differences in groundwater level are
visible. Therefore, it can be preferable to separate the summer and winter discharge and use two separate observation
models to get a better approximation of the catchment average groundwater level and storage deficit. The calibrated
and validated observation models for the Groenlose Slinge are shown on the next page.
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Calibrated groundwater level observation model for the
year (2018-2019) calibrated on the simulated groundwa-
ter level (dG) of WALRUS.
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(2018-2019) calibrated on the simulated storage deficit
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Fitted regression model as observation model used to
estimate the dG state from observed groundwater level.
The model is calibrated with WALRUS groundwater level
output (dG) for 2018-2019.
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Fitted regression model as observation model used to es-
timate the dV state from observed groundwater levels.
The model is calibrated with WALRUS storage deficit
output (dV ) for 2018-2019.
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Validation of observation model for updating the ground-
water state (dG) of WALRUS for 2019-2020.
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Validation of observation model for updating the storage
deficit state (dV ) of WALRUS for 2019-2020.


