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Abstract
Many reservoirs have been constructed in Brazil during the past decades. These reservoirs are often not included
in hydrological models, while they have a large impact on catchment hydrology. This study aimed to investigate
the effects of including reservoirs in two hydrological models on model performance, measured by the Kling Gupta
Efficiency (KGE). 403 catchments across Brazil were modeled using the HBV and GR4J models. Two scenarios, with
and without reservoir, were simulated and compared to each other. For the HBV model, a significant increase in
model performance was found when the reservoirs were included in the model, but overall performance was poor.
The mean KGE increased from 0.21 to 0.40 when reservoirs were added. The GR4J model, on the other hand,
showed better overall performance, but without the improvement when including reservoirs. Here, the mean KGEs
were 0.57 without and 0.56 with reservoirs. In the catchments with the largest/most reservoirs, the HBV reservoir
scenario outperformed both GR4J scenarios. The results are promising, because they show that model performance
can increase when the reservoirs are included. Better model performance can still be obtained with a smaller spatial
scale or other methods of including reservoirs, which might require more data.
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1 | Introduction

Catchments around the world are being modeled for a
variety of purposes like improving water management,
forecasting hydrological extremes and understanding
hydrological processes in the catchment (Blöschl, 2006).
Many different hydrological models are available. The
suitable model to use depends on local circumstances
in the catchment and the aim of the modeling exercise
(Holländer et al., 2014).

Models are simplifications of reality and therefore
always come with uncertainties. To be able to make
predictions, it is important to limit these uncertainties.
This can be done in several ways, for example by
using the right model that can simulate the important
processes, calibrating the model to local circumstances
and providing enough data with a good quality as input
for the model. However, some scholars also consider
it important that models do not become needlessly
complex and over-parameterized (Perrin et al., 2001;
Seibert et al., 2019; Whittaker et al., 2010). This
could especially cause problems when data availability
is limited. On the other hand, if enough detailed data
is available, more complex models can have a higher
fidelity. A high model fidelity means that simulations
give a more realistic representation of processes in the
real world and thus the results correspond well with
reality (high model performance), or as Kirchner (2006,
p.1) states, to “get the right answers for the right
reasons”.

The most important natural processes are already
included in hydrological models and efforts are made to
increase their realism (Clark et al., 2011). However,
there is something else going on in many catchments
that is often not included in hydrological models. People
are interfering with natural hydrological systems, for
example by abstracting water from various sources
and building dams. De Graaf et al. (2019) found
that unsustainable groundwater pumping for irrigation
purposes is occurring around the world, depleting this
water resource quickly. Ye et al. (2003) studied the Lena
river catchment in the Arctic, where a hydropower dam
was constructed. Because of this dam, the seasonality
of the streamflow changed, with increasing low-flows
and decreasing high-flows. These are two examples
of how people are changing the natural hydrological
system. Human interference in catchments can thus
cause significant changes in streamflow (Van Loon

et al., 2019; Wada et al., 2017; Wanders and Wada,
2015; Woo et al., 2008). This development causes
an increasing interest in including such processes
in hydrological studies. New concepts have been
introduced like socio-hydrology (Sivapalan et al., 2012)
and water science in the antropocene (Savenije et al.,
2014; Van Loon et al., 2016). Furthermore, there
is an increasing interest in incorporating this human
interference into hydrological models to increase model
fidelity. This is not an easy task, since there
are many challenges, including (but not limited to)
how to incorporate human influences in models and
data availability regarding water management (Wada
et al., 2017; Zhou et al., 2016). Because of these
challenges, improved model realism does not always lead
to improved model performance (DelSole and Shukla,
2010).

Over the past decades, many dams have been
constructed in Brazil (Cavalcante et al., 2020;
Souza Filho, 2009). These dams can be used for
flow regulation, providing water during dry periods in
the semi-arid northeast of Brazil (Braga et al., 2012).
Another purpose of many dams in the rest of the country
is hydro-power production, which is an important energy
source for Brazil (Braga et al., 2012). Several studies
have found that these dams have a significant impact
on downstream hydrology (e.g. Almeida et al., 2020;
Cavalcante et al., 2020; Dantas et al., 2020; Fantin-Cruz
et al., 2015; Souza Filho, 2009). Therefore, this process
seems important to be included in hydrological modeling
of Brazilian catchments.

The new CAMELS-BR (Catchment Attributes and
MEteorology for Large-sample Studies - Brazil) data set,
introduced by Chagas et al. (2020), contains information
on total reservoir capacity in Brazilian catchments
next to other relevant data used in hydrological
modeling. According to Wanders and Wada (2015), this
human factor has an important impact on hydrology.
Consequently, this data set provides a great opportunity
to investigate how reservoirs impact hydrological model
performance in a large-scale modeling exercise.

The aim of this study was to investigate the effect
of increasing hydrological model realism by including
reservoirs on model performance across catchments in
Brazil. To reach this aim, 403 Brazilian catchments
were modelled with two commonly used hydrological
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models. The model performance was compared between
two scenarios, one with and one without reservoirs.
This made it possible to study the effect of including
reservoirs on model performance for different model
structures across a variety of catchments with different
characteristics.
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2 | Methods

2.1 Study area and data

The study area consists of 403 catchments across Brazil,
as shown in Figure 2.1. These 403 catchments were
selected from the CAMELS-BR data set (Chagas et al.,
2020), only including catchments with reservoirs. This
was done by selecting the catchments with a total
reservoir capacity that is not equal to zero. The
white parts in Figure 2.1 were either not included in
the data set or excluded because there is no reservoir
there. The colors of the catchments show the total
reservoir capacity relative to annual streamflow per
catchment. Brazil is an interesting study area to
investigate reservoirs, because of the large number of
them (thousands, although the exact number is unknown
(Mulligan et al., 2020)). Therefore, reservoirs are likely
to have a large impact on the hydrological system. They
are used for the purpose of water availability in the dry
season or hydro-power production (Braga et al., 2012).
The large size of Brazil allows this study to consider a
great variety in catchments in for example size, climate,
topography and land use. Elevations of the land surface
of Brazil vary from around sea level in the northwest to
approximately 2000 m above sea level in the southeast.
The land is covered mostly by forests in the northwest
of Brazil, while cropland and shrubs are most common
in the rest of the country. The northwest region receives
most precipitation, up to 3000 mm/year. The least
precipitation is found in the semi-arid northeast with
400-800 mm/year. In the south, the annual precipitation
is around 1000-2000 mm. Average annual temperatures
are high in general, ranging from 20◦C in the south
to 30◦C in the north (FAO, 2021). Because of these
large variations, the findings of this study are widely
applicable.

The CAMELS-BR data set provides catchment
properties and daily forcing data from 1980 to 2018.
However, the streamflow time-series are smaller for
some catchments. Data was used from 1990 to 2008,
which made it possible to include all catchments with
reservoirs. This period was still long enough for proper
calibration and validation of the model. It should
be noted that in the CAMELS-BR data set, only
the total reservoir capacity of the catchment is given.
This is only one fixed value, instead of a time series
of reservoir volumes, for example. This study also

aimed to assess whether this information is enough for
including the reservoirs in a hydrological model or more
information should be gathered for that purpose. Next
to the reservoir capacities, the CAMELS-BR data about
consumptive water use are available and may be included
in the modeling structures as an extra outflow of water.
However, this outflow was small compared to other
outflows. Its influence on the model performance was
negligible and therefore, it was not included in this study.

The other data that were necessary for modeling
the catchments included time-series with a daily
timescale of precipitation (P), potential evaporation
(PE, which also includes transpiration), minimum
and maximum temperatures (Tmin and Tmax) and
other relevant catchment characteristics (e.g. soil,
land use and topography). The CAMELS-BR data
set contains different types of data for precipitation
(Climate Prediction Center (CPC), Multi-Source
Weighted-Ensemble Precipitation (MSWEP) and
Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS)). These data are all similar,
but with different collection methods as well as spatial
and temporal scales. CHIRPS precipitation have been
used in this study. These data have the highest spatial

Figure 2.1: Catchments in the study area, with different
colors showing the reservoir capacity as percentage of
the total annual streamflow. The boundary of Brazil is
shown in yellow.
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resolution (0.05◦) and are based on a combination of
gauge data and remote sensing (Chagas et al., 2020).
Therefore, it is assumed that these data are most
realistic. Luo et al. (2019) also show that CHIRPS
precipitation data perform well.

2.2 Modeling

In this section, the modeling methods for this study
are explained and an overview is given in Figure 2.2.
The two selected models are described, followed by
the modeling scenarios as well as the calibration and
validation methods and data analysis.

To reach the objective of this study, two
hydrological modeling structures were compared, using
the RAVEN modular modeling framework (Craig et al.,
2020). This is a flexible framework, which allows many
different algorithms to be used for different parts of
the water cycle as well as usage of a variety of routing
mechanisms. Several hydrological modeling structures
can be reproduced nearly exact: UBCWM (Quick,
1995), HBV-EC model (Bergström, 1995), HMETS
(Martel et al., 2017), MOHYSE (Fortin and Turcotte,
2006), and GR4J (Perrin et al., 2003). This framework
was chosen because it includes some modules that allow
modeling of human interference. It can thus be adapted
easily to include reservoirs.

2.2.1 Models

The two models that were selected in this study are the
RAVEN interpretations of HBV-EC and GR4J. HBV-EC
has a slightly more complex model structure than GR4J,
but both are relatively simple and widely used. These
models have been used in many previous studies with
good performance (e.g. Engeland and Hisdal, 2009;
Payan et al., 2008; Unduche et al., 2018). The structures
of both models as implemented in RAVEN are shown in
Figure A.1 and A.2. An overview of both models is given
in Table 2.1.

HBV-EC is a Canadian version of the HBV
(Hydrologiska Byråns Vattenbalansavdelning) model
(Bergström, 1995; Lindström et al., 1997) and is referred
to as the HBV model in this study. It is a partially
distributed conceptual model with sixteen parameters,
but in this study it was used as a lumped model, by using
only one "sub"-catchment. GR4J is a somewhat simpler
model, developed by Perrin et al. (2003). This is a
four-parameter lumped conceptual rainfall-runoff model.

Table 2.1: Overview of the RAVEN interpretation of the
HBV-EC and GR4J models

GR4J HBV-EC
Water
inflow rain + snow rain + snow

Surface
water

- Ponded water
- Water flowing to
catchment outlet
- Reservoir

- Ponded water
- Water flowing to
catchment outlet
- Reservoir

Soil

4 conceptual layers
- Product store (top soil)
- Temporary store
- Routing store
- Groundwater

- Top soil
- Fast and slow
reservoir from
where baseflow
originates

Snow Simple balance between
snow and ponded water

More complex
snow balance with
liquid snow that
can refreeze
between snow and
ponded water.

Routing
to outlet

Fixed 10% fast (through
temporary soil store)
and 90% slow runoff
(through routing store)

Separated fast and
slow runoff based
on parameters

Water
outflow

Evaporation from:
- Soil
- Reservoirs
Catchment outlet
Groundwater

Evaporation from:
- Soil
- Canopy
- Reservoirs
Catchment outlet

Number of
parameters

16
(17 with reservoir)

6
(7 with reservoir)

However, the RAVEN emulation contains two additional
parameters to add a snow routine to the model. The
parameters are given in Table A.1 (HBV-EC) and A.2
(GR4J).

To run the models in RAVEN, five input files
are needed. For this study, the initial conditions
file (.rvc) was kept empty and instead a warm-up
time of three years (1990-1992) was used. For the
primary input file (.rvi), the readily available templates
for HBV-EC and GR4J models were used (Craig
et al., 2020). For GR4J, the process for open water
evaporation was added in this file to account for
evaporation from reservoirs. The hydrological response
units (HRU)/basin definition file (.rvh) contains one
"sub"-basin and one HRU per catchment or two HRUs
when reservoirs are added, because the open water
requires its own HRU. The time-series file (.rvt) contains
time-series of observed streamflow, precipitation,
minimum temperature, maximum temperature and
snowfall. Snowfall was initially set at zero mm/d,
but later recalculated by the models. The parameters
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GR4J
Benchmark: 
no human 

interference

Reservoir: 
Including 
reservoirs

-1993-2000
-2001-2008
-DDS algorithm
-Objective function = 
KGE
-Single best parameter 
set

-2001-2008
-1993-2000
-Evaluate on KGE, r, ? 
and ?
-Paired sample t-test
-Evaluate different 
classes (Table A.1)

ScenariosModels

HBV-EC

Calibration Validation

Figure 2.2: Overview of methods

file (.rvt) contains the model parameters. Part of the
information in this file was taken from the catchment
properties of the CAMELS-BR data or default values
were used. The remaining parameters (shown in Table
A.1 (HBV-EC) and A.2) (GR4J) were calibrated. Some
assumptions and simplifications had to be made about
the information in this file regarding vegetation and
land use. Where possible, CAMELS-BR data or default
values were used. If both were unavailable, values from
the RAVEN tutorial files were used, as this was the
best guess to apply for all catchments. This can have
an impact on the performance of especially HBV-EC,
while GR4J requires less information. It was assumed
that this did not influence the results about changes
in model performance when a reservoir is added to
the model, since the same assumptions were made for
all catchments. It can have an influence, however,
on overall model performance, which was taken into
account in the analysis of the results.

2.2.2 Scenarios

Two modeling scenarios were used in this study;
with and without reservoirs. The benchmark model
performance was assessed by running the model without
reservoirs. Then reservoirs were included using the
:Reservoir function in the hydrological response unit
file. A lake-like reservoir was created, which required
information about the weir coefficient (C, default 0.6),
crest width (calibrated), maximum depth (h) and surface
area (A). A and h can be calculated from the reservoir
capacity (V ) by reversing the equations given by Chagas
et al. (2020):

V = 0.678× (Ah)0.9229 (2.1)

V = 30.682×A0.9578 (2.2)

In the same file, a separate lake HRU was created with
the area of the reservoir to account for evaporation.
Otherwise, evaporation from the reservoir would be
assumed negligible in RAVEN (Craig et al., 2020). The
reservoir is always placed automatically at the outlet of
a subbasin. In this case, there is only one "subbasin",
so the position of the reservoir is at the outlet of the
catchment.

2.2.3 Calibration and cross-validation

Calibration was performed on streamflow at the
catchment outlet using the model-independent,
multi-algorithm optimization and calibration tool
Ostrich (Matott, 2017). After a warm-up period of
three years (1990-1992), the models were calibrated for
the years 1993 to 2000 (8 years), which is the number
of years recommended by Yapo et al. (1996). The rest
of the data set (the years 2001 to 2008) was used for
validation. Then cross-validation was performed where
the calibration and validation periods were swapped.
For calibration, the Dynamically Dimensioned Search
(DDS) algorithm (Tolson and Shoemaker, 2007) was
used and the objective function was the Kling-Gupta
efficiency (KGE ) (Gupta et al., 2009). Particle Swarm
Optimization (PSO) was also tested as an alternative
calibration algorithm, but this algorithm only found
better results for one out of six calibration runs (the
two modeling scenarios for three random catchments,
selected to test the methods). The run time was over
thirty minutes for three catchments compared to just
a few minutes with DDS. The best parameters found
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through calibration were then used for validation. There
are sixteen and six parameters that were calibrated for
the HBV and GR4J model, respectively (Table A.1
and A.2). When the reservoir was added, an extra
parameter was calibrated that represents the unknown
crest width. The range for this parameter was 1-50 m.
This extra parameter could be the reason for better
model performance instead of the reservoir itself, which
makes the results from this study more uncertain.
However, Perrin et al. (2001) argue that more complex
models may perform better in the calibration period,
but not in the validation period, which would mean
that the extra parameter does not influence the results.
Nevertheless, this is taken into account in the analysis
of the results.

Model performance was assessed using the KGE,
which was also used for calibration. Its separate
components were also assessed to determine which
was the main cause for lower performances. These
components are the linear correlation coefficient (r), bias
(β) and variability (α) and are all optimal at 1, with r
always being lower than (or equal to) 1, while α and
β can also be higher. The components all have equal
weights for the performance, as seen in the following
equation (Gupta et al., 2009):

KGE = 1−
√
(r − 1)2 + (α− 1)2 + (β − 1)2 (2.3)

2.2.4 Model performance analysis

The changes in KGE between the scenarios were
assessed with a paired samples t-test. This showed
if including reservoirs increased model performance
significantly. This was assessed for all 403 catchments
and for classes of the catchments, with similar aridity
(ar), seasonality (sea), asynchronicity (asy), land use
(lu), catchment area (ca), total reservoir capacity
(tc), total relative reservoir capacity (cap), latitude
(lat) or longitude (lon), to see if these catchment
characteristics influence the model performance A.3.
For each catchment characteristic the data set was
split into three classes, which in total contain all 403
catchments. To assess if there is a significant difference
in model performance between the three classes of the
same characteristic an ANOVA test was performed. The
classes were all taken from the catchment properties
in the CAMELS data set (Chagas et al., 2020). A
more detailed description can be found in the documents
of this data set. Relative reservoir capacity is called

regulation degree by Chagas et al. (2020) and is the
ratio of the total reservoir capacity compared to the
annual streamflow. Next to the effect of using two
different scenarios and multiple classes, the effect of
model structure is analysed by performing this study with
two different models.
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3 | Results and discussion

In this chapter, the results are shown and discussed for
the HBV and GR4J models. The results are given in
detail for the HBV model, starting with the general
results and then some more specific results are discussed
regarding the different classes and the different KGE
components. These results are then compared to the
results of the GR4J model. At the end of this chapter,
the findings are compared to existing literature.

3.1 Calibration periods

The result analysis is focused on one of the
two cross-validation (calibrated for 1993-2000 and
validated for 2001-2008). In this section, the both
cross-validations are discussed to explain this choice.
Figure 3.1a shows the KGE of the validation period
(KGEval) corresponding to the different calibration
periods. This shows that there are no large differences
between the two. It should be noted, however, that
there is a significant difference for the reservoir scenario,
which gives better results for the first calibration period.
The mean difference in KGEval for all catchments is
0.03, which is considered small enough to neglect.
Furthermore, the conclusions would not change if the

second calibration period or both calibration periods
were used. Therefore, it is clearer to only focus on one
calibration period in the remainder of this chapter.

The KGE in the calibration period (KGEcal) is
significantly higher than the KGEval (3.1b). The mean
differences are 0.06 and 0.05 for the benchmark and
reservoir scenarios, respectively. This could mean that
the model is suffering from some over-parameterization,
as also found by Orth et al. (2015) for the HBV-EC
model. However, it also makes sense that the model
performs somewhat better for the calibration period and
the differences found here are assumed to be reasonable,
since differences in this range are also found in other
studies (e.g. Orth et al., 2015; Wallner et al., 2012).

3.2 HBV model performance

Figure 3.2 shows boxplots with the distribution of the
KGE for the two simulation scenarios by the HBV
model and the difference between them. The reservoir
scenario has a significantly better performance than the
benchmark scenario, with mean KGEs of 0.40 and 0.21
respectively. This makes the mean difference 0.19 (Table
A.4). Despite this difference, a mean KGE of 0.40 is

(a) (b)

Figure 3.1: (a) KGE of the validation period corresponding to calibration periods 1 and 2 for the benchmark and
reservoir scenario and (b) KGEcal plotted against KGEval for calibration period 1 of both scenarios
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Figure 3.2: KGE of the validation period for the benchmark and reservoir scenario. On the right, the difference
between the reservoir and benchmark scenario is shown. The gray dots represent the means of all values. (HBV)

still low and is not considered a good overall model
performance (Pechlivanidis et al., 2014). However, there
are catchments for which the KGE is higher, indicating
a good model performance. The hydrographs of ten
random catchments show that the simulated benchmark
streamflow often had higher, narrower peaks and lower
base-flows than the observed streamflow. Examples of
hydrographs and the corresponding flow duration curves
of two of these catchments are given in Figure A.3,
which indeed indicate lower simulated low-flows more
often than observed and the highest streamflow is also
higher. Including a reservoir in the model solves this
problem in some catchments and therefore improves
the performance (Figure A.3b and d), but for most
catchments the performance remains poor (Figure A.3a
and c).

It is not the purpose of this study to optimize the
model performance. Therefore, some choices were made
that can negatively impact the KGE. Firstly, because
of the large number of catchments, a relatively simple
calibration period was chosen, which may not lead to
the best parameters. It can require more time to obtain
optimal parameters. Secondly, there was no focused
study of one of the catchments, looking at it in full
detail. The data was taken from the CAMELS data
set without having a very close look at whether or not
it is correct, because that would be too time-consuming
considering the number of catchments. Thirdly, the data
set itself was a limiting factor, because of limited details

on vegetation (e.g. height/leaf area index) and reservoirs
(only total and relative capacity were available).

HBV was found to overestimate low-flows by
Unduche et al. (2018), but it works well for estimating
peaks in their study. However, their study area, a
Canadian Prairie catchment, was completely different
than the catchments in this study and they focused
on flood forecasting, making the peak flows the most
important aspect. Engeland and Hisdal (2009) also
report relatively poor performance of the HBV model
for low-flows, but not necessarily an overestimation.
Due to the variability of catchment characteristics in
this study, it cannot be said that either low-flows or
peak flows would have a larger influence on the model
performance. However, it is certain that this study
includes several catchments in the semi-arid region in
the northeast of Brazil, where low-flows are common.
This could therefore also be (part of) the reason for
the relatively low model performance. In this study,
the HBV model seems to underestimate low-flows,
rather than overestimating them.The logarithm of the
KGE quantifies the model performance with a focus
on low-flows. This gives mean values of -1.81 for the
benchmark scenario and -0.83 for the reservoir scenario.
This indeed shows a bad model performance for low
flows.

Despite the overall poor model performance, it
is interesting to see that the performance increases
significantly for the reservoir scenario. This shows that
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Figure 3.3: KGE of the different classes of reservoir capacity relative to streamflow (HBV)

it helps to add this information to the HBV model, even
if not a lot of data about it is available.

3.2.1 Catchment Classes

The classes described in Section 2.2.4 and Table A.3
were investigated to see whether differences in model
performance could be found for different classes based on
several catchment characteristics. Most classes show the
same general trend that the KGE was significantly higher
for the reservoir scenario (Table A.4). The only classes
that did not result in a significant improvement were
the random sample class and the class with the smallest
relative reservoir capacities. The random sample class
was only used to check if the methods work for 3 random
catchments and was not actually meant for analysis. It
makes sense that the class with the smallest reservoir
capacities does not show a significant improvement,
since the difference that is made between the scenarios
is adding the reservoir. Therefore, a smaller difference
in performance is expected when there are relatively less
reservoirs. This also shows that the improvement of
the model performance is actually caused by adding the
reservoir and not by adding the extra parameter in the
reservoir scenario.

The largest increase in KGE between the scenarios
is seen for the largest total reservoir capacity (tc3:
0.37) and the relative reservoir capacity (cap3: 0.33)
(green cells in Table A.4). Figure 3.3 shows a boxplot
of the three classes of relative reservoir capacity to

visualize this. The benchmark scenario performance
decreases with relatively larger reservoir capacities, while
the reservoir scenario performance increases. However,
for both total and relative reservoir capacity, the middle
class (tc2 and cap2 in Table A.4) have a higher mean
KGE in the reservoir scenario than the class with the
largest (relative) reservoir capacity (tc3 and cap3 in
Table A.4). This is likely due to other catchment
characteristics, such as climate and land use, since the
benchmark scenario also showed higher performance for
these middle classes.

3.2.2 KGE components

All mean KGE components are better in the reservoir
scenario than in the benchmark scenario. When the
reservoir was included, the mean r increased from 0.57
to 0.67, mean α decreased from 1.22 to 1.01 and
mean β increased from 0.53 to 0.65. This shows
that all improved and the mean variability is almost
perfect when reservoirs are included. The reason for
the poor overall performance are thus mostly related
to the correlation and bias, meaning the linear relation
between the simulated and observed hydrographs and
their means. Nevertheless, it should be noted that
all KGE components range from very bad (near 0 or
higher than 2) to (almost) perfect. This is only a
general analysis and not true for every single catchment
in this study. The values of β are below 1 for over
80% of the catchments for both scenarios, so in general,
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the simulated mean streamflow is underestimated. The
values of α are mostly (slightly) above 1, which means
that the standard deviation is in general overestimated
in the simulations. However, since this is only the case
for 64% and 55% of the catchments for the benchmark
and reservoir scenarios, respectively, this difference is less
clear. Nevertheless, it is in line with the description of
the hydrographs in Section 3.2.

All KGE components for all of the relative reservoir
capacity classes (not shown) have better mean values
for the reservoir scenario, except for α of cap1, which
is slightly better for the benchmark scenario. The mean
value for β was best for cap3, while r and α had better
values for cap2. This is in line with what was described
in Section 3.2.1 about the overall higher performance
of cap2. However, this analysis adds the information
that still the mean bias is lower for cap3. All of these
classes still have a large range of values for the KGE
components.

3.3 Another model

The same analysis can also be done using other models.
RAVEN is a useful tool for this because of its flexibility.
Many existing models can be used and easily modified
(Craig et al., 2020). For this study, one other model
(GR4J) was used to see if this led to different results.
In this section the results of this model are shown and

compared to the results of the HBV model.

3.3.1 GR4J

The GR4J model results in different performance than
the HBV model. The benchmark scenario performs
significantly better than the reservoir scenario when all
catchments are considered, with mean KGEs of 0.57 and
0.56, respectively (Table A.5). However, the difference
of the mean KGE (-0.013) is small and the difference
is not significant for the other calibration period (not
shown). It is more interesting to consider the differences
in model performance for the relative reservoir capacity
classes (Figure 3.4, Table A.5). The red cells in
Table A.5 show that the difference in mean KGE is
lowest (highest negative difference) for the tc3 and cap3
classes, which are the classes with the absolutely and
relatively largest total reservoir capacity. The difference
in model performance between the classes of relative
reservoir capacity is also significant, with the lowest
performance for both scenarios for the relatively largest
reservoir capacity (Figure 3.4). Although the reservoir
scenario does not result in different performance for most
scenarios and otherwise a (slightly) lower performance,
it can still be considered important to include reservoirs
in the model, because the overall performance is
lower when with a (relatively) larger total reservoir
capacity. However, the way in which the reservoirs
are implemented for this study does not increase the

Figure 3.4: KGE of all catchments (white, with the grey dots representing the mean) and the different classes of
reservoir capacity relative to streamflow (GR4J)
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(a) (b)

Figure 3.5: KGE of the HBV model plotted against the KGE of the GR4J model for the benchmark (a) and reservoir
scenario (b)

performance, but rather decreases it. Therefore, this
way of including reservoirs does not work well for the
GR4J model. The different components of the KGE were
all significantly better for the benchmark scenario, but
again with very small differences (smaller than 0.1).

3.3.2 Differences between HBV and GR4J

The differences between the performance of the two
models can be observed by comparing Figures 3.2, 3.3
and 3.4. As an overview of the main differences between
the results, Figure 3.5 shows the KGE for both models
with different colors for the relative reservoir capacity
classes. Overall, GR4J performs significantly better than
HBV, both with and without reservoir. The difference
is smaller for the reservoir scenario. For some classes
the HBV reservoir scenario performance is better than
the GR4J performance, but this is never significant. The
most interesting result is found for the relative reservoir
capacity classes again. For the reservoir scenario, the
difference between the performance of the two models is
largest for cap1, with GR4J performing better. However,
the cap3 class shows one of the largest differences

between the two models in favor of HBV. The mean
KGE of this class is slightly (but not significantly)
higher for the HBV than for GR4J. This is visualised
in Figure 3.5b, where the points for cap3 lay around
the 1:1 line. Although no clear conclusions can be
drawn from this, it suggests that with a larger relative
total reservoir capacity, the reservoir scenario of HBV
might work better than GR4J. Possible reasons for these
different results, overall and with the added reservoirs,
are discussed below. Model structures, parameters and
results of other studies that used these models are
considered.

The main differences between the models are
the structure and the number of parameters. HBV
has a more complex model structure, including more
processes. One of these processes is related to snow,
but this is assumed to be negligible because of the
low amounts of snowfall in the catchments. Next to
that, canopy is included in the HBV model, which
causes increased evaporation. The soil reservoirs are also
represented differently in both models, but it is not clear
how this would impact the simulation, since both have
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conceptual instead of physical soil layers. One of these
layers for GR4J is the groundwater layer, which can be
a source or sink of water. This helps to close the water
balance, although it may not be physically correct. The
more complex HBV model also has more parameters,
16 compared to 6 for GR4J. If the snow parameters
are excluded these numbers are 7 and 4, respectively.
It might be expected that a more complex model has
a better performance, but this also depends on the
availability of data. With lower data availability, less
complex models are likely to perform better ((Grayson
and Blöschl, 2001)). In this study, the data about
canopy is limited, which could lead to lower performance
for HBV. Nevertheless, the increase in information by
including the reservoir may be handled better by this
more complex model.

In other studies that compare these two models,
but are not focused on reservoirs, varying results are
found. Demirel et al. (2015) and Faiz et al. (2018)
found that the performance of HBV is higher, but
Piotrowski et al. (2017) found that it depends on the
catchment. In this study, enough catchments are used
that this catchment dependency should be negligible.
Therefore, it seems more likely that the HBV model
would perform better. However, in all of these studies,
one or a limited number of catchments were studied.
For this reason, they may have had more data available
or were better able to estimate values if data was
unavailable. Ayzel et al. (2020) found that GR4J had a
better performance in their large-scale study. Therefore,
the overall difference in performance between the two
models can be attributed to data availability and the
large number of catchments used in this study.

3.4 Synthesis

This study shows that it is important to include
reservoirs in hydrological models. However, it is not
straightforward to do so. The model performance can
improve when reservoirs are included, but it remains poor
in most of the catchments. Savenije et al. (2014) and
Van Loon et al. (2016) have also identified the need
to improve the understanding of complex interactions
between people and water. People have had a huge
impact on water systems over the past decades in many
ways. Construction of reservoirs is only one aspect,
but it is a good start to attempt to understand them.
Reservoirs contain large amounts of water and are easily
visible. It is easier to get data about reservoirs than

for example groundwater. Nevertheless, Savenije et al.
(2014) and Van Loon et al. (2016) also mention that new
data should be collected to achieve better understanding
of the human-water system. For reservoirs, information
about operation rules would be useful. In this study, it
was found that with limited data it is difficult to obtain
good performance when modeling reservoirs.

Other studies have used similar data sets to
simulate river flows without including reservoirs
(Berghuijs et al., 2014; Valipour, 2015). The results
of these studies could be reasonable, but this study
suggests that the performance of the models could be
poor for some catchments with large/many reservoirs.
Berghuijs et al. (2014) disregarded results from some
agricultural and more arid areas because of poorer
model performance. These are areas where reservoirs
can be expected. Including those in the model could
have improved the performance. Hiep et al. (2018)
studied one catchment without including upstream
reservoirs in it. They also found that this probably
caused an underestimation of low-flows. These studies
strengthen the idea that reservoirs should be included in
hydrological models.

Nevertheless, there have also been studies where
reservoirs are included in hydrological models on various
spatial scales. The scale used in this study is unique,
because it is at the same time a small scale (catchment
scale) and a large scale (because of the number of
catchments). Other studies about reservoirs usually
either use a global scale (Van Beek et al., 2011; Wanders
and Wada, 2015), or a focus on one or a few catchment
(Rougé et al., 2019; Turner et al., 2020). When
using a global scale, processes are usually simplified
more. This study shows that studying reservoirs in
such a simplified way, does not result in great model
performance. Therefore, the quality of the results of
these global scale studies could be questionable. In
smaller scale studies, reservoir operation can be modeled
in more detail. Using more data to model a reservoir is
beneficial for model performance (Turner et al., 2020).

3.5 Outlook

As mentioned before, there are different ways of
implementing reservoirs in a hydrological model. For
this study, the reservoirs are included as a lake-type
reservoir using RAVEN (Craig et al., 2020). This is a
very simple approach, requiring only the surface area
and depth of the reservoir, the weir coefficient (default
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0.6) and the crest width (calibrated). It is also possible
to include a man-made reservoir in RAVEN, but this
requires information about the relation between the
reservoir stage and its discharge, volume and area.
If even more information is known about reservoir
management, this can also be added (e.g. maximum
monthly storage or discharge). Therefore, RAVEN will
also be a useful tool for more detailed studies. In
RAVEN, the reservoir is always placed at the outlet of
a subbasin. In this case this was the same as the outlet
of the catchment, because of the lumped models used.
Spatially distributed models can better account for the
placement of a reservoir. However, Payan et al. (2008)
introduced a different method of including reservoirs in a
lumped model (GR4J), without accounting for the exact
location with good results. This method does not add
additional functions of parameters, but requires storage
volumes as additional input data.

To be able to improve hydrological modeling of
areas with a lot of reservoirs, more data is crucial.
The CAMELS-BR data set is the first CAMELS data
set that includes some form of reservoir data (Craig
et al., 2020). This is not enough data to obtain
great model performance, but it is a step in the right
direction. Another potential source for reservoir data
is the Global Reservoir and Dam (GRanD) database
(Lehner et al., 2011). This is probably currently the most
complete global database about reservoirs and can thus
be an important factor in improving model performance.
Furthermore, more detailed data could be obtained from
local institutions. An increasing data availability would
allow for more complex methods of implementing the
reservoir. This can in turn improve model performance.

There are great opportunities and much ongoing
research about the place of reservoirs in hydrological
systems. However, there is also still a lot unknown.
Future research will show better methods of including
reservoirs in hydrological models and the data required
to do so.
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4 | Conclusions and recommendations

The aim of this study was to investigate the effect
of including reservoirs in hydrological models on their
performance across catchments in Brazil. This was
done by including reservoirs in two lumped models
(HBV-EC and GR4J) in a simplified way. Lake type
reservoirs were implemented using the modular modeling
framework RAVEN. Model performance was measured
using the Kling Gupta Efficiency (KGE). These are the
main findings of this study:

• It is possible to improve model performance by
including reservoirs in the model structure. This
is seen for the HBV-EC model which showed a
significant improvement of model performance with
the reservoir scenario. Adding the reservoir caused
an increasing mean KGE from 0.21 to 0.40.

• The largest improvement of model performance
occurred in the catchments with relatively the
most/largest reservoirs. In these catchments,
the benchmark performance was poor in both
models (mean KGEs of 0.07 for HBV and 0.35
for GR4J), so improvement was also needed the
most there. This shows the importance of including
reservoirs in hydrological models and the promising
improvement of model performance of HBV-EC,
where the mean KGE increased to 0.40 for these
catchments (For GR4J the KGE decreased to 0.31).

• The improvement of model performance also
depends on the model structure. While improved
model performance was found using the HBV-EC
model, this cannot be concluded for GR4J. Overall
performance was higher using GR4J, with a mean
benchmark KGE of 0.57, but the performance
decreased slightly to a mean KGE of 0.56 when
reservoirs were added. This decrease was the worst
with the largest/most reservoirs, with a difference
in mean KGE of 0.07 between the scenarios.
Therefore, HBV-EC seems more promising for
modeling reservoirs at this scale.

For future research, it is recommended to focus on
getting the best model performance possible for specific
catchments. Different models could be compared
or different ways of implementing the reservoir.
Furthermore, it is strongly recommended to gather

more data related to reservoirs in data sets like the
CAMELS-BR data used in this study. This would
allow for application of more sophisticated methods for
reservoir modelling to improve model performance.
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Figure A.2: Structure of the GR4J model in RAVEN((Craig, 2020; Perrin et al., 2003)). This is one of the models
used in this study and is shortly described in Section 2.2.1
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Table A.1: Parameters and ranges used for calibration of the HBV-EC model. Adapted from Mährlein (2016) with
value ranges from, Beck et al. (2016), Carlyle-Moses and Gash (2011) and Craig et al. (2020). These are referred to
in Sections 2.2.1 and 2.2.3
Parameter Description Range
TFr(ain) Fraction of rainfall not lost by interception 0.7 - 1
TFs(now) Fraction of snowfall not lost by interception 0.7 - 1
Tlapse Temperature lapse rate 0 - 7
TT Threshold temperature limit for snow/rain [◦C] -1 - 1
TTi Temperature interval for mixture of snow and rain [◦C] 0 - 4
Cmin Minimum melt factor [mm/◦C/d] 1.5 - 2.5
Cmax Maximum melt factor [mm/◦C/d] 3 - 4
MRF Ratio between the melt factor in forest to open areas 0 - 1
CRFR Melt factor for freezing of liquid water in snow 2 - 4
WHC Macimum liquid water content of smow 0.04 - 0.07
AM Aspect melt factor 0 - 1
FC Field capacity [mm] 0 - 1
BETA Exponent in soil drainage function 1 - 6
K1 Outflow coefficient fast reservoir 0.01 - 0.8
ALPHA Exponent in outflow for fast reservoir 1 - 10
K2 Outflow coefficient for slow reservoir 0.001 - 0.15

Table A.2: Parameters and ranges used for calibration of the GR4J model, ranges from Huard (2020). These are
referred to in Sections 2.2.1 and 2.2.3
Parameter Description Range
x1 Maximum soil moisture content (production store) [m] 0.01 - 2.5
x2 Water exchange coefficient with groundwater [mm/d] -15 - 10
x3 Reference capacity of the routing store [mm] 10 - 700
x4 lag between rainfall and runoff [d] 0 - 7
x5 Melt factor [mm/d/◦C] 1 - 30
x6 Air snow coefficient 0 - 1
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Table A.3: Classes with a short description and the number of catchments in the class. Model performance was
assessed for all of these different classes to assess the influence of different catchment characteristics on change of
model performance between the benchmark and reservoir scenarios. A more detailed description can be found in the
document that comes with the attributes of the CAMELS-BR data set (Chagas et al., 2020)

class Description Number of catchments
all All 403 catchments 403
rand Random sample 3
ar1 Aridity < 0.5 33
ar2 Aridity 0.5-1.0 262
ar3 Aridity > 1.0 108
sea1 Seasonality < 0 74
sea2 Seasonality 0-0.8 157
sea3 Seasonality > 0.8 172
asy1 Asynchronicity < 0.05 128
asy2 Asynchronicity 0.05-0.15 151
asy3 Asynchronicity > 0.15 124
lu1 Land use = Forest 151
lu2 Land use = Crops + Crop Mosaic 219
lu3 Land use = Shrub 33
ca1 Catchment area < 1000 km² 32
ca2 Catchment area 1000-10000 km² 172
ca3 Catchment area > 10000 km² 199
tc1 Reservoir capacity < 100 hm³ 178
tc2 Reservoir capacity 100 - 1000 hm³ 129
tc3 Reservoir capacity > 1000 hm³ 96
cap1 Relative reservoir capacity < 2% 120
cap2 Relative reservoir capacity 2-20% 136
cap3 Relative reservoir capacity > 20% 147
lat1 latitude < -20 182
lat2 latitude -20 - -10 121
lat3 latitude > -10 100
lon1 longitude < -50 131
lon2 longitude -50 - -45 86
lon3 longitude > -45 186
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(a) (b)

(c) (d)

Figure A.3: Example hydrographs with streamflow in m3/s on the y axis (a,b) and flow duration curves(c,d) of two
catchments with the observed streamflow and the two scenarios simulated using the HBV-EC model of one catchment
with relatively poor performance (a,c, KGE benchmark = 0.21, KGE reservoir = 0.29) and one with relatively good
performance in the reservoir scenario (b,d, KGE benchmark = -0.05, KGE reservoir = 0.76). These figures visualise
the description in Section 3.2
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Table A.4: Mean KGE of all catchments and different classes for the two scenarios and the difference between them
using the HBV-EC model. Significance: *: p = 0.01-0.05, **: p = 0.001-0.01, ***: p < 0.001. Green cells show
the largest improvement of model performance and red cells the smallest improvement. These results are explained
and discussed in Section 3.2

Class Benchmark Reservoir Difference Significance
all 0.209 0.401 0.192 ***
rand 0.421 0.475 0.054 -
ar1 0.453 0.593 0.140 ***
ar2 0.209 0.396 0.187 ***
ar3 0.110 0.340 0.230 ***
sea1 0.275 0.393 0.118 ***
sea2 0.271 0.419 0.148 ***
sea3 0.128 0.389 0.261 ***
asy1 0.194 0.407 0.213 ***
asy2 0.227 0.450 0.224 ***
asy3 0.204 0.331 0.127 ***
lu1 0.193 0.398 0.205 ***
lu2 0.224 0.408 0.184 ***
lu3 0.194 0.370 0.176 ***
ca1 0.175 0.370 0.195 ***
ca2 0.230 0.343 0.113 ***
ca3 0.197 0.456 0.259 ***
tc1 0.270 0.308 0.039 *
tc2 0.209 0.486 0.277 ***
tc3 0.097 0.466 0.370 ***
cap1 0.290 0.314 0.023 -
cap2 0.264 0.484 0.219 ***
cap3 0.071 0.397 0.326 ***
lat1 0.220 0.416 0.196 ***
lat2 0.160 0.392 0.233 ***
lat3 0.247 0.381 0.134 ***
lon1 0.295 0.440 0.146 ***
lon2 0.141 0.349 0.208 ***
lon3 0.175 0.397 0.221 ***
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Table A.5: Mean KGE of all catchments and different classes for the two scenarios and the difference between them
using the GR4J model. Significance: *: p = 0.01-0.05, **: p = 0.001-0.01, ***: p < 0.001. Green cells show the
largest improvement of model performance and red cells show the largest decrease. These results are explained and
discussed in Section 3.3.1

Class Benchmark Reservoir Difference Significance
all 0.573 0.560 -0.013 *
rand 0.464 0.488 0.024 -
ar1 0.735 0.715 -0.020 -
ar2 0.682 0.680 -0.002 -
ar3 0.234 0.195 -0.040 *
sea1 0.468 0.444 -0.025 -
sea2 0.631 0.620 -0.011 -
sea3 0.564 0.553 -0.011 -
asy1 0.654 0.664 0.010 -
asy2 0.560 0.535 -0.025 *
asy3 0.502 0.477 -0.025 *
lu1 0.618 0.617 -0.001 -
lu2 0.573 0.555 -0.019 *
lu3 0.324 0.281 -0.042 -
ca1 0.519 0.524 0.005 -
ca2 0.533 0.539 0.007 -
ca3 0.617 0.584 -0.034 ***
tc1 0.638 0.636 -0.002 -
tc2 0.526 0.534 0.008 -
tc3 0.512 0.447 -0.065 ***
cap1 0.730 0.742 0.012 -
cap2 0.660 0.659 -0.001 -
cap3 0.353 0.305 -0.048 ***
lat1 0.645 0.646 0.001 -
lat2 0.513 0.489 -0.024 -
lat3 0.510 0.483 -0.027 *
lon1 0.737 0.733 -0.004 -
lon2 0.590 0.590 0.001 -
lon3 0.445 0.418 -0.027 *
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