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Abstract
Making accurate predictions of rainfall extremes is challenging because rainfall fields are highly variable in space and
time, which limits the quality of discharge simulations. Crowdsourced personal weather stations have a high spatio-
temporal resolution but are prone to errors. The study aims to assess the accuracy of quality-controlled (QC) personal
weather stations (PWS) in observing rainfall and predicting discharge in a Dutch lowland catchment, the Oude
IJssel. The accuracy of rainfall observations was tested by (1) quantifying the available data before and after quality
control, (2) validating individual personal weather stations, (3) validating catchment-averaged time series including
a comparison with the operational weather radar (unadjusted and real-time) w.r.t. a reference radar product (gauge-
adjusted and offline) and (4) investigating the effect of PWS network density. The four quantitative precipitation
estimates were used as input for rainfall-runoff model WALRUS where four corresponding discharge simulations were
(5) validated w.r.t. the reference input for the study period of 11 months and two precipitation events in winter and
summer and (6) investigated how rainfall measurement errors propagated in the predicted discharge. The unadjusted
radar systematically underestimated the reference 5 min averaged rainfall depths with a bias of -0.164 mm, while
catchment-averaged rainfall depths measured by personal weather stations slightly overestimated the reference with
a bias of only 0.025mm. No less bias was registered after quality control of PWS, however time series varied less
and correlated better relative to the reference. Validation individual stations on the other hand yielded 10.6% bias
reduction in absolute terms after quality control while 85.1% of the data remained. Discharge simulations were the
best for the quality-controlled personal weather stations (NSE = 0.98, averaged over the catchments during study
period; NSE = 0.91, averaged over the catchments and events), followed by the input of personal weather stations
before quality control (NSE = 0.95; NSE = 0.82) and lastly the operational weather radar during both the study
period and the two selected events (NSE = 0.70; NSE = 0.78) where more accurate rainfall observations resulted
in more accurate discharge predictions. To conclude, quality-controlled personal weather stations better observe
rainfall and predict discharge on a catchment-scale compared to the operational weather radar and thus enlarge
the potential for operational hydrological applications in the Netherlands. Assessment over a full year or longer is
recommended considering multiple catchments where their respective network layout is taken into account. Lastly, it
is recommended to investigate the potential of quality-controlled PWSs as correction method for real-time weather
radar where it could potentially observe rainfall extremes and predict local floods more accurately in the future.
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1 | Introduction

Climate change is increasing the frequency and magni-
tude of extreme rainfall events globally (Alexander et al.,
2006; Trenberth, 2011; Westra et al., 2014). and it is
expected that these will increase even more in the fu-
ture (Easterling et al., 2000). Lenderink and Van Mei-
jgaard (2008) and Klein Tank et al. (2015) found that
hourly precipitation extremes occur more often as a re-
sult of global warming in the Netherlands. Inevitably,
short-duration extreme rainfall events could induce local
floods (Madsen et al., 2014), which cause substantial
damage.

Hydrometeorological forecasts with a high spatial and
temporal resolution reduce damage by accurately pre-
dicting rainfall and streamflow which enable adequate
warning when measures are needed. However, it is diffi-
cult to make accurate rainfall predictions as rainfall fields
are highly variable in space and time (Emmanuel et al.,
2012; Berenguer et al., 2005). Lobligeois et al. (2014)
evaluated the conditions enhancing hydrological model
performance with higher spatial resolution for a large
set of catchments representing a variety of sizes and cli-
mate conditions. It was found that the impact of spa-
tial rainfall information on discharge simulation depends
on scale, catchment characteristics and event character-
istics and concluded that the spatial representation of
rainfall becomes more important for catchments with a
high rainfall variability in the spatial domain. The tem-
poral pattern of rainfall dominantly impacts both timing
and magnitude of discharge peaks where its largest sen-
sitivity can be found in small quickly responding catch-
ments (e.g. Ball (1994) and Fabry et al. (1994)). For
example, Berne et al. (2004) found hat a small urban
catchment in the order of 10 km2, requires rainfall sam-
pling every 5 minutes, with a spatial resolution of 3 km
indicating that the required sampling resolutions depend
on catchment size relative to the spatial scale of a rainfall
event. Thus, depending on the spatiotemporal require-
ments of a catchment, the quality of hydrometeorologi-
cal forecasts is limited by the quality of their forcing in-
put. Many hydrological studies acknowledged that inad-
equate streamflow simulations are caused by erroneous
precipitation input (Krajewski and Smith, 2002; Borga
et al., 2006; Bárdossy and Das, 2008; Moulin et al., 2009;
Brauer et al., 2016).

Rain gauges and weather radar

Currently, weather radar and rain gauges are used as a
common source to make quantitative precipitation es-
timates (QPE). Rain gauge networks provide accurate

ground-based measurements, but are unable to capture
the spatial variability of rainfall fields as their sampling
resolutions are often coarse (Villarini et al., 2008). The
national rain gauge network, employed by the Royal
Netherlands Meteorological Institute (KNMI), consists
of a manual gauge every 100 km2 and an automatic
rain gauge every 1000 km2 reporting once per day and
once per 10 minutes respectively. In small catchments,
where it is plausible that no gauges are present at all,
one is often forced to referred to the nearest available
gauges outside the catchment (Brauer et al., 2016). A
denser network and/or larger temporal measurement in-
tervals would return more accurate QPEs (Villarini et al.,
2008).

In contrast, weather radars are less limited by their
spatial representation. In many countries, such as the
Netherlands, radars retrieve rainfall information every
5 minutes on a nationwide grid with a spatial resolu-
tion of only 1 km2. However, a major disadvantage of
radar QPE is the considerable biases with respect to the
true rainfall. Radars measure rainfall indirectly from re-
flectivity of sampled atmospheric volumes and are prone
to multiple systematic and random errors (e.g. Uijlen-
hoet and Berne (2008), Krajewski et al. (2010), Hazen-
berg et al. (2013)). Usually, radar QPE underestimates
real rainfall fields with a factor two (Overeem et al.,
2009a,b), especially during stratiform events with low
clouds in summer that are missed by the radar beam. In
addition, the presence of ice crystals in the atmosphere
results in systematic underestimations (e.g. Borga and
Tonelli (2000)) which is often the case for convective
situations with a high cloud base. These examples of
biases prove that radar QPE may be less representative
for ground level rainfall, while hydrologists are interested
in rainfall observations at the surface.

Personal weather stations

Crowdsourcing is a non-traditional alternative which has
potential to overcome issues related to spatial and tem-
poral representativeness of rainfall observations made by
traditional rainfall measurement techniques. A large
and increasing amount of weather enthusiasts obtain
rainfall data through non-traditional rainfall measure-
ment sources. Crowdsourcing has already been inves-
tigated as a strategy to expand the set of traditional
rainfall measurement techniques and potentially com-
pensate for the known biases and limited availability of
those techniques and equipment. An overview, state
of the art and future prospective of crowdsourcing data
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collection methods are presented in atmospheric sciences
(Muller et al., 2015) and geophysics (Zheng et al., 2018).
Amongst those are crowdsourced automatic citizen or
personal weather stations (PWS) which are deployed by
weather station owners and placed on their private prop-
erties. From there, stations upload real-time precipi-
tation data every 5 minutes to online platforms such
as Netatmo Weathermap, WOW-NL and Wundermap
by the company Weather Underground (Muller et al.,
2015). The stations measure more meteorological vari-
ables than rainfall (Meier et al., 2017), see also Section
2.4.1. Since PWSs are mainly located in densely popu-
lated regions, the highest network densities can be found
in urban areas.

The accuracy of PWS had been investigated in previ-
ous studies (Jenkins, 2014; Bell et al., 2015; Meier et al.,
2017; de Vos et al., 2017). Since network densities are
highest in urban areas, the potential of PWS to moni-
tor rainfall in urban areas has been explored in Amster-
dam (Netherlands) (de Vos et al., 2017), the province of
South Holland (Netherlands) (Golroudbary et al., 2018)
and Norfolk (Virginia) (Chen et al., 2018). All studies
concluded that the PWSs estimate true rainfall fields
more accurately than their comparison real-time QPE.

Despite their potential for operational rainfall mon-
itoring, the large-scale real-time application of PWS in
meteorology and hydrology is constrained by limited data
quality. Observation errors can be caused by instrumen-
tal errors, a compromised set-up and data processing
issues (de Vos et al., 2017). For this reason, de Vos
et al. (2019) developed a quality control (QC) method
which is potentially applicable in real-time and excludes
inaccurate measurements that are caused by typical er-
rors of this data source with the ability to flag erroneous
values and unflag once reliable data are produced again.
The PWS network in Amsterdam was re-evaluated by
the QC algorithm where data of one year was obtained
from Netatmo Weathermap. This method improved the
overall accuracy of a year of hourly rainfall depths with
11.3% bias reduction while maintaining 88% of the orig-
inal dataset. In addition, nationwide application of the
QC filter yielded high-resolution rainfall maps where the
average density is found to be 1 station per 10 km2

thus proving their potential to complement existing op-
erational QPE, such as radar and traditional rain gauge
networks.

Furthermore, crowdsourced measurements can be
used to force hydrological models (Fletcher et al., 2013;
Muller et al., 2015; Liu et al., 2016). Niemi et al. (2017)
assessed the feasibility of open source rain gauges in
Helsinki to force a rainfall-runoff model and Naus (2017)
investigated multiple opportunistic data sources, includ-
ing PWSs, to force a conceptual urban flood model in

Amsterdam and Eindhoven (the Netherlands). Both
studies emphasized that data quality enhancements of
the crowdsourced observations are required to improve
model outputs.

Although the density of PWSs is higher in urban
areas and proof of its potential to be applied for urban
hydrometeorological applications is given, little is known
about this potential on the catchment scale, including
rural regions where PWS densities are lower. van der
Valk (2019) investigated the added value of calibrating
QC-checked PWSs (using the method of de Vos et al.
(2019)) to an operational radar product of consultancy
firm Nelen & Schuurmans on national scale. He found
that the with PWS calibrated product improved relative
to the uncalibrated radar composite. Besides, a recent
study in Germany explored the use of PWS to improve
precipitation estimates and interpolation in the province
of Baden-Württemberg (Bárdossy et al., 2020). This
study performed an alternative QC check and concluded
that filtering erroneous observations was necessary in or-
der to make improvements relative to the German radar
composite.

Recently, the Dutch water board Rijn & IJssel started
a pilot study to enhance the coverage of their rain gauge
network by placing extra PWSs from Netatmo in their
management area (Scrumteam, 2020). With this pi-
lot they aim to compensate for the shortcomings of the
real-time available weather radar product, as explained
before. Besides, the PWS are financially more attrac-
tive than traditional rain gauges. A vast network of Ne-
tatmo stations is already placed by weather enthusiasts
in the region of Rijn & IJssel which are privately mon-
itored and maintained by their owners. From the 405
stations, approximately 300 retrieve sufficient data (van
den Houten, 2021). About a 100 stations will be added
in 2021, leading to one station every ∼9 km2.

The emergence of a QC filter for crowdsourced PWSs
and growing interest of water managers to apply PWSs
for operational purposes gives rise to assess the poten-
tial of quality-controlled personal weather stations (QC-
PWSs) for hydrometeorological forecasting on the catch-
ment scale. The QC filter allows for detection and fil-
tering of erroneous data in a network of PWSs. The
question remains whether data availability is sufficient
after performing a QC check in a region with lower sta-
tion density compared to urban areas. So far, the perfor-
mance of PWSs has not been assessed within the bound-
aries of Dutch lowland catchments and no hydrological
application studies have been performed on the catch-
ment scale yet.
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Research objectives

The objective of this study is to assess the accuracy of
QC-PWSs in observing rainfall and predicting discharge
in a lowland catchment. The study will focus on the
Oude IJssel catchment including a sub-catchment, sit-
uated in the management area of water board Rijn &
IJssel. Results contribute to making QC-PWSs opera-
tional for streamflow forecasting in the Netherlands.

Research questions

In order to reach the objective, the following supporting
questions need to be answered:
Precipitation

• What is the data availability of PWS precipita-
tion estimates in time after applying the QC filter
with parameter settings suitable for the Oude IJssel
catchment?

• What is the accuracy of QC-PWS precipitation esti-
mates relative to the catchment-averaged reference
radar rainfall product in the Oude IJssel catchment?

• What is the accuracy of the catchment-averaged
QC-PWS precipitation estimates relative to the
national operational and reference radar rainfall
products in the Oude IJssel catchment and sub-
catchment?

• What is the effect of network density on the data
availability of PWS precipitation estimates in space
and time after applying the QC filter?

• What is the effect of network density on the accu-
racy of QC-PWS precipitation estimates?

Discharge
• What is the accuracy of discharge predictions forced

by QC-PWS precipitation estimates relative to dis-
charge prediction forced by the raw PWS, national
operational and reference radar rainfall products in
the Oude IJssel catchment and sub-catchment?

• How do errors in rainfall measurements propagate
in the predicted discharge during two events?
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2 | Data and study area

This chapter discusses the data sources and study area
consulted for this research. First, the three quantitative
precipitation estimates will be described (Section 2.1)
where the catchment (Section 2.2), discharge (Section
2.3) and evapotranspiration data (Section 2.4) used in
this study will be presented.

2.1 Precipitation estimates

In this study, three precipitation data sources will be
evaluated for the period between 01-09-2019 and 01-
09-2020 within the boundaries of catchment the Oude
IJssel. They originate from (1) personal weather sta-
tions (PWS), (2) real-time weather radar data and (3)
weather radar data adjusted by rain gauge data (Table
2.1). The dataset length is limited by the availability
of PWS data and are therefore no longer than the pre-
scribed year that will from now on be referred as Sept.
2019 - Sept. 2020. Rainfall measured by Personal
Weather Stations are subject to erroneous measurements
which require elimination through quality-control filter-
ing. Both raw and quality-controlled (QC) data from
PWSs and real-time radar data were validated against
the rain gauge-corrected radar and their performance
was compared. Though QC-PWS data and raw PWS
data were both validated, they originate from the same
data source. The following sections provide a description
of the three precipitation data sources.

Table 2.1: Overview the three different precipitation
products, their spatiotemporal resolution and data la-
tency.

QPE Temporal
resolution

Spatial
resolution

Data
latency

PWS ∼5 min ∼3 km x 3 km Real-time
Unadjusted

radar 5 min 1 km x 1 km Real-time
Gauge

-adjusted
radar

5 min 1 km x 1 km 1-2 months

2.1.1 Personal weather stations

Personal weather stations are privately deployed and
monitored and retrieve a time series (UTC) with cor-
responding rainfall estimates. The PWSs that are sub-
ject of this study are from the brand Netatmo which
are equipped with sensors measuring temperature, rel-
ative humidity and barometric pressure. Additionally,

Figure 2.1: Topview of a Netatmo rain gauge mod-
ule. Source: http://www.atsmartliving.com/netatmo-
rain-gauge-clouds-pass-but-rain-remains/. (Published:
May 21, 2019).

modules are available that measure rain and wind. Ac-
cording to the Netatmo product specifications the rain
module is a tipping bucket with a collection funnel of
13 cm in diameter that observes in multiples of 0.101
mm, has a measurement range of 0.2-150 mm h−1 and
a measurement accuracy of 1 mm h−1 according to the
specifications of Netatmo.

The average density of Netatmo PWSs including a
rainfall module in the Netherlands was 1 per ∼10 km 2

in 2018 (de Vos et al., 2019). At the time of writing,
it is uncertain what the national resolution of the PWS
network is for the studied year. However, the spatial
resolution in 2018 is assumed to be a good approxima-
tion for its succeeding year at the start of the study
period. As a growing number of PWSs are linked the
Netatmo platform, it is expected that the average PWS
density will increase every year. The pilot study from
water board Rijn & IJssel aims to place a PWS every
∼3 by 3 km, that corresponds to 1 per ∼9 km2, in their
management area and the upstream areas in Germany.

Netatmo has its own online platform collecting and
visualizing data from all operational Netatmo stations
distributed globally which is called Netatmo Weath-
ermap (https://weathermap.netatmo.com/). All Ne-
tatmo stations upload their real-time observations every
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5 minutes to the Netatmo Weathermap, though exact
measurement intervals vary per time step (de Vos et al.,
2017, 2019).

In the Netherlands, there are two other on-
line platforms collecting and visualizing PWS
data: WOW-NL (https://wow.knmi.nl/) and
Wundermap of company Weather Underground
(https://www.wunderground.com/wundermap).
Weather station owners can link their device to
these platforms. This results in networks of various
types of PWS devices. Before 2018 there was an
agreement between Netatmo and Weather Under-
ground where all Netatmo PWS measurements were
automatically linked from the Netatmo Weathermap
to the Wundermap, with some processing effects like
rounding and delays in the rainfall observations as
presented on the Wundermap (de Vos et al., 2017).
All Netatmo devices are automatically linked to the
Netatmo Weathermap, and the station owners can
decide to link them to other platforms manually as well.
Both Netatmo Weathermap and Wundermap provide
an Application Programming interface (API) to retrieve
data from, which is not the case for the WOW-NL
platform.

Netatmo Weathermap is favoured over the other two
platforms since it provides the highest measurement and
network density and the use of an API. While anyone can
obtain PWS data using this API, for this study, raw PWS
data is retrieved and made available by KNMI in the large
quantities of the study period according to agreed terms.
This holds that the dataset is not public.

2.1.2 Unadjusted radar

An unadjusted real-time radar product (Rrad), that is
applied operationally, was consulted and used to com-
pare with the other real-time rainfall estimate; the net-
work of personal rain gauges. The radar composites orig-
inate from two C-band dual-polarized weather radars op-
erated by KNMI, located in Den Helder and Herwijnen.
The most detailed composite of KNMI, the NL-radar
NL25, will be used for this study. It has a grid cell size of
1 km2 and measures with 5 min intervals. The domain of
this radar product extends over the Dutch national bor-
der. Besides, the water board uses this extension oper-
ationally for making hydrological forecasts for the Oude
IJssel and is therefore taken in study as well. The radar
product is available as open-source data that can be
retrieved from https://dataplatform.knmi.nl/open-data-
info/.

2.1.3 Gauge-adjusted radar

The gauge-adjusted radar product is described in
Overeem et al. (2009a; 2009b) and upgraded more re-
cently (Beekhuis & Mathijssen, 2018). This radar prod-
uct is adjusted by 31 automatic rain gauges and post
processed by spatial adjustments using the manual net-
work of 325 rain gauges. These data are made available
by the KNMI with a delay of 1-2 months and there-
fore only applicable for studies of past events. In or-
der to validate the performance of the PWS network,
this gauge-adjusted product will be used as a refer-
ence (Rref ). The spatiotemporal resolution is equal
to the unadjusted radar product and is also avail-
able as open-source data that can be retrieved from
https://dataplatform.knmi.nl/open-data-info/. For the
German part of the Oude IJssel, a gauge-adjusted radar
product from Germany was used for the period Sept.
2019 - Sept. 2020. This is a similar offline gauge-
adjusted product, named RADKLIM-YW (YW = 5 min)
which has a spatial resolution of 1 km2. Also, the Ger-
man radar composite is open source and made available
by the Deutsche Wetterdienst (DWD), via their web por-
tal (https://opendata.dwd.de/).

2.2 Oude IJssel catchment

The Oude IJssel catchment is chosen as study area. It
is situated on the border between the Netherlands and
Germany (Figure 2.1). Reasons for this choice are sup-
ported by the demand of Water board Rijn & IJssel to
extend their rain gauge network that could compensate
for the challenges they face with the operational radar
products near the edge of the Dutch radar domain. Fur-
thermore, a vast network of PWS were already placed in
this catchment that has a suitable size.

The catchment is 1210 km2 of which 363 km2 is
located in the Netherlands and 847 km2 in Germany
(en Ijssel, 2014b; Drost, 2016). The Oude IJssel springs
in Germany, south of Borken. Across the border the Aa
Strang and the Slinge connect to the main stream and
discharge their surface water in the IJssel near Doesburg.
Elevation differences are minor where the gradient grad-
ually decreases from east to west from 70 m in Heiden
and 10 m in Doesburg (AHN Viewer, 2021) where the
Oude IJssel drains freely with an average stream gradient
of ∼ 0.8 m km −1.

The Oude IJssel consists of 140 sub-catchments
where the water board assigned 10 lumped sub-
catchments for hydrological modelling. Model parame-
ters of those lumped sub-catchments have already been
estimated by the water board and are granted for this
study (refer to Section 3.5). This research considered
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Figure 2.1: Location and spatial overview of the Oude IJssel catchment (yellow) and Rhedebrugge sub-catchment
(purple), outlets (dark purple triangles and PWS locations in the region (red dots).

one sub-catchment, Rhedebrugge (Figure 2.1). Rhede-
brugge is 224 km2 and completely situated in Germany
where the Aa Strang springs. This upstream part of the
German stream was chosen for three reasons. Firstly,
Rhedebrugge is not connected to the other head waters
in the catchment. Hydrograph characteristics from this
upstream region can be compared with the main catch-
ment outlet in the downstream end. Secondly, it was
the largest calibrated lumped sub-catchment available.
Thirdly, most PWSs are located in Rhedebrugge sub-
catchment.

2.3 Discharge

The catchment of the Oude IJssel has a larger buffer-
ing capacity south-east of the German border. During
precipitation peak events, water is retained in the soil
that causes a delay in the runoff peak. The Aa strang
in Rhedebrugge on the other hand, is more canalised
and therefore shows much sharper runoff peaks than the
German Oude IJssel. The Slinge, located in the northern
upstream part of the catchment, drains all year around.
On average, discharge is 10.5 m3 at the outlet in Does-
burg and 1.6 m3 in the Aa Strang (en Ijssel, 2014a).
Hourly summations of discharge data (in mm) from the
outlet and weir in Rhedebrugge are freely accessible and

obtained from the open data portal of water board Rijn
& IJssel (https://waterdata.wrij.nl/).

The outlet in Doesburg consists of a weir and sluice.
The weir controls the water surface level upstream of
the outlet meaning that the discharge is affected by this
weir. Even when no rain has fallen, varying discharge
peaks may occur as a result of deviating valve positions.
The resulting noise in the discharge is filtered out by a
moving average window of 12 hours based on the method
of Drost (2016), so that visible observed discharge peaks
are caused by rainfall events.

2.4 Evapotranspiration

Reference evapotranspiration (ETref ) data were made
available by the water board which retrieves ET data
from a KNMI automatic weather station located in
Hupsel. Though the location is a single ground truth
measurement ∼20 km away from the catchment centre,
ETref in Hupsel is assumed to be the same as ETref
in the Oude IJssel. Although, nearly 50 % of the land
use is dominated by agriculture in the catchment (Drost,
2016), ETref was not corrected with crop factors and
therefore assumed to approximate the potential evapo-
transpiration (ETpot). Since this study used one evap-
otranspiration time series with four precipitation input
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datasets, it was assumed that the effect of an uncor-
rected ETref was negligible in the validation and com-
parison of the four precipitation estimates.
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3 | Methods

This chapter discusses the methodological steps of this
study. First, the methodology of the PWS quality-
control filter and how it is applied to the Oude IJssel
is given in Section 3.1. Next, steps taken to derive
catchment-averaged time series are given in Section 3.2.
Validation methods of the rainfall products are described
in Section 3.3. Then, hydrological model initiation and
calibration are described in Section 3.4 followed by vali-
dation methods of discharge simulations in Section 3.5.
Lastly, the effect of the PWS network density is given in
Section 3.6.

3.1 Quality-controlled PWS

In this section, the methods of the QC filter for PWS
are explained (3.1.1), followed by an elaboration about
the filter design applied to the Oude IJssel PWS network
(3.1.2).

3.1.1 Quality-control filter

For this study, the QC filter of de Vos et al. (2019)
isused that is specifically designed to filter typical errors
associated with crowdsourced PWS rainfall observations.
The method relies on the assumption that nearby sta-
tions should measure similar rainfall dynamics, and that
the network is dense enough that the majority of a clus-
ter of stations is able to accurately capture the event.
Therefore, erroneous measurements can be recognized
from comparisons with nearby observations. The QC
algorithm compares the observations of a given station
with the median observations of its neighbouring sta-
tions and is for this reason not dependent on other data
sources. The filter is designed to attribute flags to mea-
surements where a 0 represents “no error”, 1 “error” and
-1 “not enough information available to determine error”.
The algorithm does this for four types of typical errors:
faulty zeroes (FZ), high influx (HI) and station outliers
(SO) and station bias (BC). The filter design consists
of four corresponding modules which rely on a set of
11 self-provided parameters indicating the range within
stations are considered neighbours, the minimum num-
ber of observations to determine median values of the
neighbours, minimum period of comparison and other
threshold values. Those four modules are:
1. Faulty zeroes (FZ) filter

Faulty zeroes are communicated to the platform
when the tipping bucket mechanism is completely
obstructed due to e.g. a tilted rain gauge or physi-
cal obstructions and no tip occurs, also during rain-

fall. All stations within a range of d meter around
a given station are selected to compute the median
rainfall over the surrounding area. If fewer than
nstat neighbouring stations with rainfall measure-
ments are available, the median cannot be calcu-
lated and the FZ flag is set to -1. The FZ flag is
set to 1 if the median rainfall is larger than zero
for at least nint time intervals while the station it-
self reports zero rainfall. Until the stations report
non-zero rainfall, the FZ flag remains 1.

2. High influx (HI) filter
High influx measurements that are unrelated to
weather, e.g. caused by the owner when liquid is
poured through the rain gauge for calibration and
cleaning of the device or sprinklers in the vicinity.
Also, the filter for high influxes makes use of a com-
parison with the median rainfall from all stations
within a radius of d meter around a given station.
If the median amount does not exceed the thresh-
old value φA, the HI flag is set to 1 for any rainfall
value from the station itself above threshold φB .
During more intense rainfall, when the median of
surrounding stations report of φA or higher, the
threshold becomes variable. Only if the station’s
measurements exceed the median times φB/φA, a
1 will be assigned to the HI flag. If fewer than nstat
neighbouring stations report observations, HI flag is
set to -1.

3. Station outlier (SO) filter
Station outliers measured by PWSs do not corre-
spond with local rainfall dynamics e.g. when the re-
ported station location is incorrect or in the rare oc-
casion where for a period of time, rainfall is recorded
in repeated daily cumulative amounts, thus result-
ing in far too high values. To determine whether a
station yields nonsensical measurements for that lo-
cation, it is compared with time series of neighbour-
ing stations within a range d. mint intervals pre-
viously to the current measurement, or any longer
interval where the station reports at least mrain in-
tervals of non-zero rainfall measurements, are com-
pared. There need to be at least nstat stations with
at least mmatch intervals overlapping with the eval-
uated station to compute the SO flag. The Pearson
correlation (r) (Equation 3.3) and bias (Equation
3.4) with all neighbouring stations are calculated.
If the median of the Pearson correlation of all neigh-
bouring stations is below threshold value γ, the SO
flag is set to 1.
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4. Bias Correction (BC)

Individual PWSs can systematically over- or underesti-
mate rainfall, with a possible overall bias in the network.
The filter makes use of a bias correction method to com-
pensate for this systematic instrumental error. The filter
makes use of a bias correction method to compensate
for this systematic instrumental error. The initial bias
correction factor (BCF) is called the default bias correc-
tion factor (DBC). The DBC is a single value proxy of
the correction needed by an existing PWS network deter-
mined over a period with typical rainfall for the local cli-
mate prior to application of the QC-filter. In this study,
the DBC is calculated one-off offline by the mean bias
of the 5 min catchment-averaged PWS time series dur-
ing the month preceding the start of study period, when
compared with the catchment-averaged gauge-adjusted
radar time series. Since the dataset starts at 01-09-2019,
the month September was used as warm-up period for
the QC filter and therefore excluded in the validation
study. Prior to the derivation of the PWS catchment-
averaged time series (Section 3.2.2), intervals were ex-
cluded that were flagged -1 and 1 for FZ and HI. In this
way, the DBC (Table 3.1) becomes:

DBC =
1

1 +median(bias)
(3.1)

where the bias is given in Equation 3.4 in Section
3.3.2. The BCF is dynamic for individual stations and
in time. A new BCF of a station is calculated provided
the median of the Pearson correlation from all neigh-
bouring stations exceeds threshold γ. BCFnew is calcu-
lated by the median bias of all neighbouring stations. If
log BCFnew

BCFold
> log (1 + β), BCFold will be replaced by

BCFnew.
The QC filter provides two options to filter data: one

can decide to include all measurements unless they are
flagged as erroneous by at least one module, i.e. include
all intervals with flags 0 and -1 (“Filtered Flex”), or
also exclude the intervals where there was too limited
information to allocate a flag, i.e. include all intervals
with flags 0 (“Filtered Strict”). “Filtered Flex” where all
time intervals flagged with 1 and and “Filtered Strict”
where all intervals flagged with both 1 and -1, are left
out from the dataset and marked as ‘NA’.

A detailed description of the filter, parameter defi-
nition and default settings and supporting information
visualizing the iterative steps of the filter modules are
provided in the documentation of de Vos et al. (2019).
The code is freely accessible and can be found on
https://github.com/LottedeVos/PWSQC.

Table 3.1: Parameter settings of the QC filter

Filter parameter Value
d (m) 10,000
nstat 5
nint 6
φA 0.4
φB 10
mint 4,032
mrain 100
mmatch 200
γ 0.15
β 0.2
DBC [September 2019] 0.92

3.1.2 Application to the Oude IJssel
catchment

The QC filter is applicable to any gauge network pro-
vided that a minimal number of stations is present in
the network where a group of neighbouring stations mea-
sures similar rainfall dynamics. Those conditions are de-
fined in the filter parameter settings that should be con-
sidered carefully for each network. The default values of
the filter parameter settings are based on the validation
of the QC on the PWS dataset (1 May 2017 till 1 June
2018) in the Amsterdam metropolitan area and can be
found in de Vos et al. (2019). This study concerns a
relatively sparse network compared to the city of Ams-
terdam and therefore it was tested whether the default
parameter settings are applicable to the network of the
Oude IJssel as well. The filter requires a sufficient num-
ber of neighbours in order to attribute flags, defined by
the number of observations within d distance that need
to exceed at least nstat.

From the PWS dataset, a subset of the national net-
work was created covering all stations in the catchment
area including the German region within the catchment
boundaries. A distance of 10 km around the catchment
boundaries, equal to d, was chosen as starting value of
the buffer zone that created the dataset used in this
study. At the time of pre-processing, only the PWS
data from September until November 2019 were made
available. For this reason, metadata used to determine
the filter parameter settings are based on this smaller
dataset and contained 300 stations.

The minimum number of stations to compare with
(nstat) should be sufficiently large for reliable medians
that represent actual weather. The range d should not
be too large as stations within this distance should rep-
resent similar rainfall patterns at these time scales. This
network includes all stations within the catchment area
plus a boundary equal to 10 km around the border. For
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this network, the number of neighbours that each sta-
tion has was calculated for a number of choices for range
d. As long as a large fraction of stations has more than
nstat neighbours, the expectation is that for the majority
of the dataset, the requirements are met for a flag to be
attributed.

The default range of 10 km included a single group of
stations that could not meet the minimum required con-
dition of nstat = 5 with only 2 neighbours present within
this group (Figure 3.1). This means that if the QC filter
would be applied, only 2 stations would be filtered out
of the dataset regardless the quality of the observations.
The majority of the stations met the requirements while
still having over 20 neighbours, thus even though those
stations contain intervals with no data, the requirement
of 5 stations is reached. This outcome was considered
sufficient and so it was concluded that all parameters,
except for the DBC, were applicable for this network
(Table 3.1).

Figure 3.1: Histogram of the number of neighbours dis-
tributed per neighbour group with d = 10 km and nstat
= 5.

3.2 Catchment-averaged time series

For the Oude IJssel and Rhedebrugge sub-catchment a
precipitation time series were made for Rrad, Rref and
RQC−PWS . The two radar products, Rrad and Rref ,
were clipped with the catchment boundaries of the Oude
IJssel and Rhedebrugge and converted to catchment-
averaged rainfall time series. Point measurements re-
trieved by all PWSs are interpolated in space prior to
generating an averaged time series.

3.2.1 Radar products

The catchment-averaged gauge-adjusted radar combines
both Dutch (Rref,Dutch) and German reference data
(Rref,German). RADKLIM composites are projected
in RADOLAN stereographic projection system (DWD,
2021). Before any clipping could have taken place,
Rref,German first needed to be re-projected to the same
coordinate reference system as Rref,Dutch: RD new.
Next, a sample of the Rref,German raster file around
the German part of the catchment was created. Both
Rref,Dutch and Rref,German could be clipped to Dutch
and German part of the Oude IJssel catchment. They
are respectively 388 and 914 pixels of 1 km2 in mag-
nitude, so that the catchment-averaged time series of
Rref becomes:

Rref = 388
1302 Rref,Dutch+ 914

1302 Rref,German (3.2)

The domain of Rrad extends far enough over the German
border to cover the entire study area. Therefore, Rraw
was clipped to the complete catchment boundaries of
the Oude IJssel and Rhedebrugge. Over all 1302 pixels
of 1 km2, average rainfall sums for all 5 min intervals
were calculated.

3.2.2 Interpolation of PWS

The PWS dataset over the complete study period
(1 Oct. 2019 – 1 Sept. 2020), contains 5 min accu-
mulated time series where a total of >300 PWSs are
located within the area of catchment plus a boundary of
distance equal to range d, with >100 PWSs within the
catchment boundaries.

Rainfall measured by the extended subset were in-
terpolated in space through the Thiessen method. Sta-
tions outside the borders can contribute to the average
if their Thiessen polygon crosses the catchment bound-
ary. Next, catchment-averaged rainfall time series were
created from the area within the catchment boundaries
for the raw PWS data, QC-PWS data filtered from -
1 flags and QC-PWS data filtered from both -1 and
1 flags. Before average rainfall sums per interval were
calculated, Thiessen polygons were drawn around the
stations with remaining measurements for that time in-
terval. Subsequently, each interpolation step is unique
in time because of the unique set of the retained QC-
PWS dataset where 0,-1 and 1 flags are attributed to
each time interval. To illustrate, Figure 3.1 gives a vi-
sual representation of QC-PWS rainfall sums during two
precipitation events for two 5 min intervals that ended
at 09/02/2020 22:00 and 06/05/2020 11:00.



12 | CHAPTER 3. METHODS

(a) 09/02/2020 22:00

(b) 06/05/2020 11:00

Figure 3.1: Two examples of QC-PWS 5min rainfall
sums uniquely distributed in space by the Thiessen
method.

3.3 Validation and comparison of rainfall
products

This section first evaluates the available data before
and after the quality control (Section 3.3.1). Next,
validation methods that describe how well the quality-
controlled PWSs measure rainfall with respect to the
gauge-adjusted radar are explained (Section 3.3.2), fol-
lowed by validation methods evaluating the performance
of quality-controlled PWSs on a catchment scale (Sec-
tion 3.3.3).

3.3.1 Data availability of quality-controlled
PWS

The raw crowdsourced PWS observations are known to
contain data gaps. Applying the QC filter will reduce the
number of observations even more. Since catchment-
averaged precipitation estimates were used to force the
hydrological model (Section 3.5.1), it is important to

evaluate the magnitude and variability of rainfall obser-
vations in space and time. Therefore, the data avail-
ability before and after QC were evaluated for the Oude
IJssel and Rhedebrugge sub-catchment over the study
period. The study period entails the length of the
PWS dataset minus the warm up period which is from
1 Oct. 2019 till 1 Sept. 2020.

3.3.2 Validation of quality-controlled PWS

First, rainfall measurements made by the PWSs in the
network were validated on individual basis. This holds
that every 5 min accumulated rainfall measurement of
each PWS (RPWS) will be validated against the av-
eraged 5 min accumulated measurement of the gauge-
adjusted radar R̄ref .

In order to validate observations, the Pearson corre-
lation (r), the relative bias (called bias from now on),
and the coefficient of variation of the errors (CV ) are
calculated using the following equations:

r =
cov(RPWS , R̄ref )

sd(RPWS) · sd(R̄ref )
(3.3)

bias =
∆R

R̄ref
(3.4)

with
∆R = RPWS − R̄ref (3.5)

CV =
sd(∆R)

R̄ref
(3.6)

where RPWS represents the individual PWSs time se-
ries and R̄ref the catchment-averaged time series of
the gauge-adjusted radar. Along with these performance
metrics, the percentage of available data over the com-
plete study period was calculated before and after quality
control. At last, all metrics were calculated for all indi-
viduals filters as well (Faulty zeroes, High influx, Stations
outliers and Bias corrected).

3.3.3 Validation methods
catchment-averaged rainfall

The catchment-averaged time series of the QC-PWS,
raw PWS and unadjusted radar data are validated with
respect to the gauge adjusted radar. Just as in Section
3.3.2, the r, bias and CV are calculated according to
the following equations:

r =
cov(R̄qpe, R̄ref )

sd(R̄qpe) · sd(R̄ref )
(3.7)

bias =
∆R

R̄ref
(3.8)
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with

∆R = R̄qpe − R̄ref (3.9)

CV =
sd(∆R)

R̄ref
(3.10)

where (R̄qpe) represent the three quantitative precip-
itation estimates. The discharge simulations forced by
these R̄qpe were also validated (Section 3.6).

3.4 PWS network density

To analyse the effect of network density, the spatial res-
olution of the existing PWS network in the study area
was varied. Since the total network of existing PWSs
was already employed, it was only possible to decrease
the network size. A sample size of one third of the orig-
inal PWS network in the study area was chosen (includ-
ing the buffer zone of 10 km) through a random sample
test. Multiple samples with one sample size were chosen
in order to compensate for the unique network layout of
the random selected samples and balance with the time
needed for the datasets to be quality-controlled.

In total, 13 random samples were made and com-
pared using histograms as was done in Section 3.1.2.
The QC filter parameters of Table 3.1 were taken, so no
parameter adjustments were made for the sample selec-
tion. The aim was to find samples that (1) meet the
parameter requirement of nstat best and that did worst
in meeting the requirements of the minimum number of
stations within a range of 10 km. The percentage of
stations within the sample that did not meet the param-
eter requirement nstat was calculated for all 13 samples.
Samples with the best and two worst results were, from
best to worst: sample 1 yielded 6.84%, sample 2 9.40%
and sample 3 11.11% (Table 3.1). The histograms rep-
resenting the number of stations distributed per neigh-
bour group including maps with the spatial distribution
of the three samples within the study area are presented
in Figure 3.1.

Sample 1, 2 and 3 were chosen for QC filter appli-
cation. First, datasets of selected samples were created
that were one third in size of the total PWS dataset.
Then, all steps to filter the raw PWS data were re-
peated according to Section 3.1. As explained in Section
3.1.1, the Default Bias Correction (DBC) is a unique
correction factor for each network layout. Therefore,
it was calculated for samples 1, 2 and 3 (Table 3.1)
according to Equation 3.1. This meant that the inter-
polated averaged time series of the sampled PWS data
was excluding -1 and 1 flagged intervals for FZ and HI
was used to calculate the DBC. After full application of

the QC filter, a selection of the best and worst sam-
ple was made after assessment of available data (Sec-
tion 3.1.1.) and validation of quality-controlled PWS
(Section 3.3.2). Rainfall measurements of the two re-
maining PWS samples are interpolated in space (Sec-
tion 3.3.2) after which the raw (R̄PWS,SMP ) and fil-
tered (R̄QC−PWS,SMP ) catchment-averaged time series
are validated with respect to the gauge-adjusted radar
(R̄ref ) (Section 3.3.2) and compared with the original
PWS network (R̄QC−PWS)and R̄rad .

Table 3.1: The percentage of stations within the sample
that did not meet parameter requirement nstat; DBC
values of the sample datasets calculated over the R̄PWS

time series in September 2019 exluding intervals that
were flagged -1 and 1 for FZ and HI,.

Sample number [-] Percentage [%] < nstat DBC [-]
Sample 1 6.8 0.88
Sample 2 9.4 0.96
Sample 3 11.1 0.95

3.5 Hydrological application

3.5.1 WALRUS

To make discharge predictions from the QC-PWS and
radar precipitation estimates, the Wageningen Lowland
Runoff Simulator (WALRUS) was used as hydrological
model. There are multiple reasons for the choice for
this model. First, WALRUS is a lumped rainfall-runoff
model especially designed for lowland catchments such
as the Oude IJssel. Important couplings and processes
for lowland catchments that are included in WALRUS are
the groundwater-unsaturated zone coupling, wetness-
dependent flow routes, groundwater-surface water feed-
backs, seepage and surface water supply (Figure 3.1)
(Brauer et al., 2014). Secondly, water board Rijn & IJs-
sel uses WALRUS when making hydrological forecasts
and already estimated the model parameters for Rhede-
brugge sub-catchment. WALRUS requires at least rain-
fall (P ) and potential evapotranspiration (ETpot) as in-
put and simulates groundwater depth (dG), actual evap-
otranspiration (ETact) and discharge (Q). The latter
output variable, discharge, is the only variable of inter-
est during this study.

3.5.2 Calibration

Model parameters for the Oude IJssel and Rhedebrugge
sub-catchment had already been estimated (Drost, 2016;
WRIJ, 2021). Four parameters and one initial condi-
tion required automatic recalibration. This was done for
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Figure 3.1: Histograms of the number of neighbours distributed per neighbour group with nstat = 5 and the spatial
distribution of the PWS locations of samples 1, 2 and 3 .

both catchments for the wetness index paramater cW ,
the groundwater reservoir constant cG, the quickflow
reservoir constant cQ and the surface water parameter
cS. Since no groundwater data were available, an indi-
rect value of the initial groundwater table was supplied
and included in the calibration which is the fraction of
initial discharge originating from drainage Gfrac (Table
3.1). Since the model is relatively unsensitive to the cV
parameter, it was decided to not automatically recali-
brate cV . The precalibrated values from literature were
used as starting values for the automatic recalibration.
For the calibration and validation of WALRUS, R̄ref and
ETpot were used as input data and Q as observed tar-
get. The calibration started at 01-01-2019 and lasted
till 01-04-2020 and the validation period was between
01-09-2019 and 01-09-2020. Despite the overlap with
the validation period, it was decided to include the au-
tumn season of 2019 and summer season of 2020. A
calibration period of one year could give well calibrated
parameter values (Brauer et al., 2014b). Besides, cali-
bration results improved significantly when two summer
seasons were included in the calibration period. Auto-
matic calibration was executed applying the Levenberg-
Marquardt optimisation algorithm on a temporal resolu-

tion of 1 hour. The four parameters were slightly ad-
justed during 6 iteration steps retrieving the least de-
viation between observed and modelled discharge. The
Nash-Sutcliffe efficiency (NSE) was used as measure of
goodness of fit of the WALRUS model (Brauer, 2017).
A NSE value of 0.93 and 0.86 were retrieved for the
main and sub-catchment respectively. Graphical output
including performance metrics of the calibration can be
found in Appendix A.1.

Table 3.1: Calibrated WALRUS parameters for the Oude
IJssel and Rhedebrugge sub-catchment. * = values re-
trieved by automatic calibration.

Parameter Oude IJssel Rhedebrugge
(Drost, 2016) (WRIJ, 2021)

cW [mm] 472.27* 449.30*
cV [h] 2 51
cG [mm h] 1.00*106* 17*106*
cQ [h] 33.57* 3.64*
cS [mm h−1] 0.495* 0.63*
cD [mm] 1600 2300
Gfrac [-] 0.1* 1*
as [-] 0.01 0.01
st Sand Loamy sand
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Figure 3.1: Overview of the model structure with the
five compartments: land surface (purple), vadose zone
within the soil reservoir (yellow/red hatched), ground-
water zone within the soil reservoir (orange), quick
flow reservoir (green) and surface water reservoir (blue).
Fluxes are black arrows, model parameters brown dia-
monds and states in the colour of the reservoir they be-
long to (Brauer et al., 2014a)

.

3.5.3 Event Selection

Two precipitation events were selected during the study
period, one during summer and one during summer sea-
son. Visual assessment of gauge-adjusted radar data
resulted in the selection of two precipitation peaks: on
February 23rd and on June 5th. Though June 5th does
not fall in summer yet, the simulated groundwater table
was low at the start of the event with 2.15 m in depth.
On February 23rd the simulated groundwater level was
just 1.16 m below surface. The dates, duration and pre-
cipitation sums of the selected event are visualized in
Table 3.2.

The lag time was computed in two ways. For event 1,
it was the time difference between the centre of mass of
the rainfall event (TPc,m) and the moment of maximum
discharge (TQmax). For event 2 it was the time differ-
ence between the centre of mass of the rainfall event
and the centre of mass of the discharge peak TQc,m.
The centre of mass is defined as half the precipitation
or discharge sum during the event of target. Different
methods were chosen because the maximum discharge
peak of the second event already had reached after one
hour and would have been too short for analysis. The

events’ precipitation sums were calculated over the start
of the event till TQc,m or TQmax. The lag time, timing
of the discharge peak and sum during the runoff period
are visualized in Table 3.3.

Table 3.2: Start and end dates, duration and precip-
itation sums (Psum) of the two selected precipitation
events in winter (event 1) and summer (event 2).

Oude IJssel Rhedebrugge
Dates Duration [h] Psum [mm] Psum [mm]

Event 1 23-02-2020
00:00 – 16:00 16 28.1 27.9

Event 2 05-06-2020
08:00 – 20:00 12 15.4 16.5

Table 3.3: Dates at which the maximum discharge
(TQmax/cm) occurred and discharge sums for the Oude
IJssel and Rhedebrugge during events 1 and 2.

Event 1 Lag time [h] TQmax [date] Qsum

Oude IJssel 14 23-02-2020 22:00 2.35
Rhedebrugge 11 23-02-2020 19:00 4.24
Event 2 Lag time [h] TQcm [date] Qsum

Oude IJssel 13 06-06-2020 00:00 0.175
Rhedebrugge 11 05-06-2020 22:00 0.501

3.6 Validation methods discharge

The hydrological validation of quality-controlled PWS
consisted of investigating its performance as rainfall in-
put data in WALRUS hydrological model relative to that
of the gauge-adjusted radar. Just as for the validation
of rainfall data, the catchment-averaged gauge-adjusted
radar precipitation time series (R̄ref ) served as refer-
ence input data for hydrological modelling. Along with
the catchment-averaged QC-PWS precipitation time se-
ries (R̄QC−PWS), the catchment-averaged raw PWS
(R̄PWS) and the unadjusted radar (R̄rad) precipitation
time series were validated against R̄ref as well. WAL-
RUS ran with hourly rainfall accumulations aggregated
from the catchment-averaged 5 min time series of R̄ref ,
R̄QC−PWS , R̄PWS and R̄rad using the same potential
evapotranspiration as forcing and identical initial condi-
tions. The difference between using hourly instead of a 5
min resolution is negligible given the response time of the
catchment (Table 4.1). Besides, none of the hydrolog-
ical processes in the model depend on rainfall intensity
directly (Brauer et al., 2016).



16 | CHAPTER 3. METHODS

3.6.1 Study period

The study period for discharge validation is between 01-
10-2019 and 09-09-2020. The simulated groundwater
depth at the start of the validation period, retrieved
through calibration, was taken as initial condition for
dG. The start of the validation period is at the end
of the summer where groundwater level dropped below
2.35 m according to the calibrated output. A known
model limitation of WALRUS is that its reservoirs could
drop too far in summer when little rainfall input is given
and too little reduction of evapotranspiration is taken
into account (Lubben, 2020). Therefore, a groundwater
level 20 cm closer to land surface, 2.15 m, was chosen
as initial value of dG in the study period forecast of the
Oude IJssel catchment. For Rhedebrugge a 20 cm higher
groundwater level was set at 2.20 m.

Four simulations were made over the study period
with the four rainfall time series so that four hydrographs
were obtained. To validate these discharge simulations,
the Nash-Sutcliffe Efficiency (NSE) was taken as mea-
sure of goodness of fit. The NSE measures the ability
to predict variables different from the mean observation,
and gives the proportion of the initial variance accounted
for by the model (Nash and Sutcliffe, 1970). During cal-
ibration, the performance of the reference run was val-
idated against the observed discharge. This study aims
to quantify the accuracy of discharge prediction forced
by R̄PWS relative to R̄ref . Where the Nash-Sutcliffe
Efficiency is originally defined with the difference be-
tween observed and simulated data by Nash and Sutcliffe
(1970), it is now defined with respect to the simulated
reference run. Thus, NSE becomes:

NSE = 1−
∑n

t=1(Qref (t)−Qqpe(t))
2∑n

t=1(Qref (t)− Q̄ref (t))2
(3.11)

where t is the time [T] in hours, n the total number
of time steps [-], Qref the simulated reference discharge
and Qref the simulated discharge forced by the other
three quantitative precipitation estimates [mm].

3.6.2 Events

The two selected events were simulated with WALRUS.
A larger forecast period than the rainfall-runoff event was
chosen to allow the model to warm up (∼ 1 day for both
events) and a few days after the right time boundary of
peak discharge (TQmax; event 1 and TQc,m; event 2) to
allow visualization of the recession period. Two forecasts
were made between 22-02-2020 till 29-02-2020 (event
1) and 04-06-2020 till 08-06-2020 (event 2). For these
runs, the calibrated parameters from section 3.3.2 were
used as well. Initial groundwater depths at the event

start dates were taken for each QPE that were retrieved
through the study period validation runs. The perfor-
mance of simulations were also evaluated by calculating
the NSE over the forecast period as is described in
Equation 3.11.

3.7 Error propagation rainfall and
discharge

We are also interested in how well the simulated dis-
charge peak approximates the simulated discharge peak
that was forced by the reference rainfall product, which
is assumed to describe true rainfall fields the best. This
is done by evaluating how errors in rainfall measurements
propagated through the hydrological system. The Rel-
ative Rainfall volume Error (RRE) and Relative Dis-
charge volume Error (RDE) were chosen as error met-
ric. The RRE was calculated between the start of the
precipitation event and the time of the defined discharge
peak and defines the percentage difference in hourly ac-
cumulated rainfall sums between Rref and the other
QPE:

RRE = 100 ·
∑n

t=1(R̄qpe(t)− R̄ref (t))∑n
t=1 R̄ref (t)

(3.12)

The RDE was calculated over the defined lag time
period and defines the percentage difference in the dis-
charged volume of water betweenQref and the discharge
simulations of the other QPE:

RDE = 100 ·
∑n

t=1(Qqpe(t)−Qref (t))∑n
t=1Qref (t)

(3.13)

Note that the time frame over which RRE and RDE
were calculated is not unique for a single event due to
the recognition of lag time between a precipitation event
that is always prior to the discharge event. For this rea-
son, the method that evaluates rainfall error propagation
in the simulated discharge is only applied to the selected
events.
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4 | Results

This chapter reviews the results of the retained data
available after quality control (Section 4.1.1), validation
and comparison of rainfall products (Section 4.1.2 and
4.1.3), the effect of PWS network density on the retained
quality-controlled PWS dataset (Section 4.2), the vali-
dation and comparison of discharge simulations during
the study period and selected events (Section 4.3) and
analysis of how errors in rainfall measurements propa-
gated in the predicted discharge (Section 4.4).

4.1 Validation and comparison of rainfall
products

4.1.1 Data availability of quality-controlled
PWS

A 24-hour moving average of the number of available
measurements over the study period is calculated for
the raw PWS and QC-PWS data that were placed in
the study area (Figure 4.1). In other words, the data
availability refers to how much data were not "Not a
Value (’NA’)" in the PWS dataset. After application of
the QC filter, the number of observations is reduced by
filtering measurements that were flagged with 1 (QC-
PWS flex) or flagged with 1 and -1 (QC-PWS strict).
The attribution of flags was done for each time interval
per station meaning that the available data per station
is distributed over each time interval.

The number of available measurements is logically
the highest for the raw PWS data, followed by the QC-
PWS flex and QC-PWS strict. Important note is that the
number of PWSs in the study area increased by ∼20%
from December 2019 till September 2020. That includes
the stations placed in the boundary of 10 km around the
Oude IJssel catchment (Section 3.1.2). From the start
in October 2019 till about March 2020, the raw PWS
data obtained ∼ 250 measurements per time step. The
flex filtered observations move in a range of ∼220-240
stations were ∼0-10 observations less per time step were
recorded by the strict filter with many location deviations
per time step. Note that Figure 4.1 is a daily moving
average of the 5 min time intervals that showed much
more noise in the available data. This proves that each
time step is uniquely evaluated in space on the presence
of nonsensical data. From March till the end of the
study period in September, the number of raw obser-
vations gradually increased to ∼300 measurements over
time. The flex and strict QC-PWS start to observe less
from the spring season with a minimum around the start
of June where a deviation of ∼80 stations between the
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Figure 4.1: PWS data availibility over time for the raw
(green) and strict quality-controlled (blue) PWSs in the
Oude IJssel catchment including the time frame of two
selected precipitation events (grey), Section 3.6.2

raw PWS and QC-PWS strict can be observed. After a
strong inclination of both QC-PWS flex and strict grow-
ing towards a deviation of ∼10 observations again with
raw PWS, a steep decline started around 08-07-2020.
The decay lasted till 01-09-2020 where only half of the
observations, ∼150 measurements, were left in QC-PWS
left and strict.

4.1.2 Validation quality-controlled PWS

The quality control filter was applied to the PWS dataset
over the complete study period. Cumulative sums
of the individual PWS time series RPWS are plotted
against the catchment-averaged gauge-adjusted radar
R̄ref (Figure 4.2). In the raw double mass curve, faulty
zeroes (FZ) measurements are visualized as horizontal
line segments (red) and are flagged successfully by the
FZ filter. The vertical line segments (orange) indicate
measured rainfall by a personal weather station during
the time intervals averaged reference product did not
register rainfall which were successfully flagged by the
high influx filter (HI). At last, the station outlier (SO)
filter successfully flagged the rainfall measurements that
deviated from the one-to-one line with the reference and
are visualized as fluctuating lines (green). Stations with
a bias deviate from the grey one-to-one line with the
reference data. Though not all horizontal, vertical and
fluctuating line segments are flagged by the QC filter,
less bias is visible after the application of the QC filter
in the right panel of Figure 4.2. This indicates that the
deviating segments were corrected by the dynamical bias
correction (BC) in the quality control filter.

PWS data can be filtered in flex and strict manner
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Figure 4.2: Double mass curves of > 300 personal weather stations situated in the study area of the Oude IJssel
catchment for the raw dataset flagged by FZ, HI, and SO filters and are shown as horizontal line segments, vertical
line segments, and fluctuating lines deviating from the diagonal, respectively. After removal of the flagged time
interval, the remaining segments are visualized under Filtered Strict in the right panel.

.

where less data is retained by applying the strict filter,
because only measurements attributed with 0 remained
in the strict filtered dataset (Section 4.1.1). The val-
idation metrics of and remaining fraction of the origi-
nal observations of the 5 min PWS time series, before
and after quality control were calculated of the individ-
ual filters (in strict manner), and all combined filters
applied (in both flex and strict manner) for the PWS
network in the Oude IJssel catchment including a 10 km
boundary. (Table 4.1). The flex filtered dataset retained
87.49% and the strict filtered dataset 85.11% of all in-
tervals during the study period (Table 4.1). The small
percentage difference indicates that only 2.38% of all
available rainfall measurements, i.e. raw data that were
not ’NA’, got attributed with a flag expressing that the
interval did not have sufficient information available to
determine an error. The 85.11% of strict-filtered and
87.49% of flex-filtered intervals without any error flag
reveal great improvement in bias, coefficient of variation
(CV) and Pearson correlation (r) as compared to the
metrics of the raw 5 min PWS data. The bias improved
from 0.104 to -0.092 (flex) and -0.093 (strict), the CV
from 130.7 to 7.095 (flex) and 7.003 (strict) and r from
0.025 to 0.411 (flex) and 0.415 (strict). Only the bias
improved slightly more for the flex filtered dataset than
for the strict filtered dataset. The individual filters, that
were applied in strict manner, yielded an accuracy im-
provement too except for the faulty zeroes (FZ) filter.

The largest impact was made by filtering high influx (HI)
intervals given the small fraction of excluded HI intervals
(Table 4.1).

Given the low percentage difference between flex and
strict filter options, and to guarantee that no erroneous
data is remained in the quality-controlled data, it was
decided to only include the strict filtered PWS dataset
in validating the catchment-averaged rainfall and dis-
charge simulations. From now, strict quality-controlled
PWS rainfall time series will be referred to as quality-
controlled PWS rainfall time series (RQC−PWS).

4.1.3 Validation and comparison of
catchment-averaged rainfall

The 5 min PWS time series before (Raw PWS) and after
quality-control (QC-PWS) have been averaged in space
through the Thiessen method and yielded catchment-
averaged time series R̄PWS and R̄QC−PWS . An aver-
age rainfall sum of the pixels of the unadjusted (R̄rad)
and gauge-adjusted radar 5 min time series (R̄ref ) were
calculated for both the main catchment the Oude IJs-
sel and sub-catchment Rhedebrugge. Subsequently, the
validation metrics of R̄rad, R̄PWS and R̄QC−PWS were
calculated over the study period Oct. 2019 – Sept 2020
over the intervals where both PWSs and reference radar
and unadjusted radar and reference radar contained mea-
surements (Table 4.2). When reviewing both the 5 min
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Table 4.1: Validation metrics and remaining fraction of original observations of the 5 min PWS time series, before
(Raw) and after quality control of the individual filters (in strict manner), and all combined filters applied (in both
flex and strict manner) for the PWS network in the Oude IJssel catchment including a 10 km boundary.

Time
Interval Dataset Filter type Bias CV r Remaining

(%)

5 min Oct 2019
- Sept 2020 Raw 0.104 130.7 0.025 100.0

FZ-filtered 0.170 136.1 0.026 95.74
HI-filtered 0.033 10.17 0.307 99.57
SO-filtered 0.031 113.6 0.030 86.46
Bias-corrected -0.064 83.84 0.035 100.0
Flex -0.092 7.095 0.411 87.49
Strict -0.093 7.003 0.415 85.11

Table 4.2: Validation metrics of the catchment-averaged 5 min and hourly PWS time series, before (Raw PWS)
and after quality control (QC-PWS) and the unadjusted radar in the Oude IJssel catchment and Rhedebrugge sub-
catchment. Only the intervals where 1) both PWSs and the reference and 2) unadjusted radar and the reference
contain measurements.

Oude IJssel Rhedebrugge
Time Interval Dataset QPE Bias CV r Bias CV r
5 min Oct 2019 - Unadjusted radar -0.164 1.875 0.914 -0.167 2.962 0.812

Sept 2020 Raw PWS 0.025 2.048 0.893 0.097 4.100 0.629
QC-PWS 0.025 1.857 0.914 -0.036 3.091 0.790

1 hour Oct 2019 - Unadjusted radar -0.155 1.717 0.916 -0.156 2.270 0.863
Sept 2020 Raw PWS 0.040 1.474 0.937 0.112 2.448 0.844

QC-PWS 0.040 1.421 0.942 -0.019 1.952 0.905

and hourly accumulated time series, one can see there
is no difference in bias between the catchment-averaged
raw and quality-controlled PWS where they both slightly
overestimated the gauge-adjusted radar. Though, the
quality control improved the CV and r of the PWS 5 min
(from 2.048 to 1.857) and hourly (from 1.474 to 1.421)
accumulations on a catchment-scale. The unadjusted
radar correlated well with the gauge-adjusted radar too
on both temporal resolutions (r of 0.914 and 0.916), but
underestimated the reference with greater magnitude on
both a 5 min and hourly aggregations with a bias of -
0.164 and -0.155. Averaged rainfall time series of the
sub-catchment show similar results, only the differences
between R̄QC−PWS and R̄PWS were far greater where
R̄PWS varied twice as much and correlated 26% less
than in the Oude IJssel.

The hourly catchment-averaged time series and dou-
ble mass curves of R̄QC−PWS , R̄PWS and R̄rad are
plotted against R̄ref (Figure 4.3a,b) along with cumu-
lative time series of all four quantitative precipitations
estimates (Figure 4.3b). Just as the Pearson correla-
tion, the coefficient of determination (R2) (Figure 4.3a)
is highest for R̄QC−PWS , followed by R̄PWS and R̄rad

where all catchment-averaged rainfall products underes-

timate the reference product. Though, the cumulative
sums of both R̄QC−PWS and R̄PWS over the study pe-
riod are equal and 26 mm more than of R̄ref . Those
sums coincide with the equal biases that were calculated
for the quality-controlled and raw PWS data. The cu-
mulative time series of R̄PWS and especially R̄QC−PWS

caught up on the R̄ref from ∼ start of July 2020 which
is also visible in the double mass curve on the left (Figure
4.3b). Likewise, more deviation from the one-to-one line
can be seen for the raw PWS data which yielded a higher
coefficient of variation. On contrary to the overestima-
tion of catchment-averaged PWSs, the R̄rad registered
103 mm less rainfall than R̄ref which is visible in both
the double mass curve and the cumulative time series
(Figure 4.3b). The unadjusted radar systematically re-
ports less rainfall over the complete study period that
is in correspondence with the found bias of -0.155 for
hourly time series (Table 4.2).
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(a) The hourly accumulated time series plotted against R̄ref .
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with R̄ref inluding total sums over the study period of 11 months.

Figure 4.3: Time series comparison between hourly rainfall accumulations of rainfall registered by catchment-averaged
QC-PWS (blue), raw PWS(green) and the unadjusted radar (orange) w.r.t. the gauge-adjusted radar (red) over the
study period.
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4.2 Effect of PWS network density

4.2.1 Quality-controlled PWS

The effect of PWS network density was analysed by de-
creasing the size of the PWS dataset to one third of the
stations that already were employed in the Oude IJssel
catchment including the boundary of 10 km. The three
selected samples were quality-controlled by the filter of
de Vos et al. (2019) over the study period. Cumulative
sums of the individual 5 min PWS time series RPWS are
plotted against the catchment-averaged gauge-adjusted
radar R̄ref (Figure 4.2).

In the raw double mass curve, FZ, HI, and SO er-
rors are shown as horizontal line segments (red), vertical
line segments (orange), and fluctuating lines deviating
from the diagonal (green), respectively. Different sta-
tions were selected in sample 1 (Figure 4.2a) and sam-
ple 2 (Figure 4.2b) given the unique cumulative patterns
of the raw time series. Both samples show significantly
less deviating from the one-to-one line after application
of the quality control, in strict manner.

The strict filtered dataset of sample 1 retained
72.01% while only 65.60% of the raw data in sample
2 were remained after quality control over the study pe-
riod (Table 4.3). In contrast, 90.19% and 87.59 % re-
mained in the flex filtered datasets of samples 1 and 2
respectively. In Appendix A.3, one can see that more
cumulative time series of the stations significantly de-
viated from the perfect fit where in general, PWSs in
sample 1 underestimated and PWSs in sample 2 overes-
timated the gauge-adjusted radar. Those lines represent
the intervals that did not contain sufficient information
to determine error. More stations in sample 2 overesti-
mated the reference than sample 1 underestimated the
reference. However, reducing the dataset of sample 2
to strict filtered data still yielded a bias of only -0.068
over 65.60% of the raw data relative to sample 1 that
retrieved a bias of -0.136 over 72.01% of the raw data
which is exactly twice as negative. Most SO flagged
intervals were excluded and the least for HI flagged in-
tervals. Excluding High influx errors made the largest
impact given the smallest fraction of excluded intervals
and most improvement in coefficient of variation (CV)
and the Pearson correlation r relative to the FZ and SO
flagged intervals.

4.2.2 Data availability in space and time

As mentioned before, the difference in flex and strict fil-
tered data is attributed to the number of observations
measured by PWSs in the network that did not contain
sufficient information to determine an error or not. Given
that two samples were randomly selected in space out

of all stations within the study area, differences between
samples 1 and 2 were found in meeting the parameter
requirement of nstat in Section 3.4. 6.8% and 9.4% of
the PWSs did not have at least 5 neighbouring stations
within a range of 10 km around the station. The per-
centage of available data measured by the thinned PWS
networks over the study period is given per station for
sample 1 (Figure 4.3a) and 2 (Figure 4.3b. Each station
yielded a percentage of available data for the raw PWS
measurements (green), flex filtered (purple) and strict
filtered (blue) sample data. The number of neighbour-
ing stations within range d (10 km) were found in Section
3.4 for samples 1 and 2 (Figure 3.1). The percentages of
available data per station are plotted against the neigh-
bour groups which are sorted on size from smallest to
largest in Figure 3.1. From these bar plots it can be
seen that more stations contained low percentages of
strict filtered data (< 60 %) from 1 till 7 neighbouring
stations in sample 2 compared to sample 1. This larger
reduction of measurement intervals means that more of
those intervals contained data which did not have suffi-
cient information to determine error.

It should be noted that differences in data availability
in space between samples after quality control strongly
depend on the data available of the raw PWS measure-
ments that were selected during sampling. Therfore, it
was investigated how the share in available data before
and after quality control differed for the two samples.
This is done in strict manner where the difference is ex-
pressed as the relative error between the percentages of
available data before and after quality control over time.
A comparison of the relative error found for the total
PWS network is calculated accordingly and presented in
Figure 4.1. The time series show that the two samples
systematically retrieved a larger error, i.e. filter more
data over time compared to the total PWS dataset. The
sudden decline in available data from July 2020 was also
observed in the two samples. Most of the time, sample
2 filtered more data per time step than sample 1 did
which corresponds to the observation that sample 2 fil-
tered more data in spatial context; less measurements
remained in the strict filtered dataset of stations that
contained less than 7 neighbours over a radial distance
of range d.
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Table 4.3: Validation Metrics and remaining fraction of original observations of 5 min PWS time series, before (Raw)
and after quality control of the individual filters (in strict manner), and all combined filters applied (in both flex and
strict manner) for the PWS network in the Oude IJssel catchment including a 10 km boundary.

Sample 1 Sample 2 Sample 1 Sample 2
Time Interval Dataset Filter type Bias CV R Bias CV R Remaining [%] Remaining [%]
5 min Oct 2019 Raw 0.113 178.569 0.018 0.206 180.588 0.017 100 100

- Sept 2020 FZ-filtered 0.203 203.664 0.018 0.308 188.189 0.018 80.869 76.909
HI-filtered 0.039 10.786 0.303 0.109 12.769 0.242 83.736 80.167
SO-filtered 0.088 199.753 0.017 0.053 183.585 0.018 75.675 68.728
Bias-corrected -0.076 84.72 0.033 0.016 101.483 0.029 100 100
Flex -0.142 6.662 0.419 -0.031 86.192 0.036 90.185 87.592
Strict -0.136 6.618 0.435 -0.068 7.249 0.416 72.005 65.596
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Figure 4.1: Relative error between Strict filtered and raw PWS data availability for the total PWS dataset and
samples 1 and 2 over the study period.
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(a) Sample 1

(b) Sample 2

Figure 4.2: Double mass curves of > 100 personal weather stations situated in the study area of the Oude IJssel
catchment for the raw dataset flagged by FZ, HI, and SO filters and are shown as horizontal line segments, vertical
line segments, and fluctuating lines deviating from the diagonal, respectively. After removal of the flagged time
interval, the remaining segments are visualized under filtered strict in the right panel.
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Figure 4.3: Bar plots of percentage available data measured by the thinned PWS networks (samples 1 and 2) over
the study period calculated per station with the total number of time intervals (grey), the raw available data (green),
the flex filtered (purple) and strict filtered (blue) available data. Percentage bars overlap with the total dataset in
the back and the strict filtered dataset in the front. These percentages are plotted over the number of neighbouring
stations within range d sorted from smallest to largest neighbour group.
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4.3 Validation and comparison of
discharge simulations

The accuracy of discharge predictions forced by
catchment-averaged QC-PWS is determined by calcu-
lating the Nash-Sutcliffe efficiency relative to the sim-
ulation with catchment-averaged gauge-adjusted radar
used as reference forcing data. Accordingly, a compar-
ison with the raw PWS and unadjusted radar as input
was made. The validation and comparison were executed
over the study period of 11 months (Section 4.3.1) and
the two selected events during summer and winter (Sec-
tion 4.3.2). Furthermore, the simulated events were ex-
amined on whether errors in rainfall measurements prop-
agated through the hydrological system (Section 4.3.3).

4.3.1 Study period

The catchment-averaged hourly precipitation sums
of the gauge-adjusted radar (R̄ref ), strict QC-PWS
(R̄QC−PWS), raw PWS (R̄PWS) and the unadjusted
radar (R̄rad) were compared for the Oude IJssel and
Rhedebrugge. In Section 4.1.3 it was found that the
hourly accumulations of both R̄PWS and R̄QC−PWS

slightly overestimated R̄ref (mean bias = 0.04). R̄rad

underestimated the reference product with a larger mag-
nitude (mean bias = -0.155) on the catchment-scale of
the Oude IJssel. In time, this mean bias was reflected
in the hourly accumulations of the three quantitative
precipitation estimates where the highest rainfall peaks
were mostly dominated by the gauge-adjusted radar and
QC-PWS (Figure A.1). The mean bias of the average
hourly accumulations deviated slightly for Rhedebrugge
(Table 4.2) which can also be seen in the average hourly
accumulated rainfall values over time (Figure A.1). Dur-
ing higher rainfall peak events, R̄ref dominated even
more in the sub catchment. With the bare eye, hardly
any differences can be observed between the residuals of
R̄QC−PWS , R̄PWS and R̄rad. For further information
on validation of the rainfall estimates one is referred to
Sections 4.1 and 4.2.

The observed discharge at the outlet in Doesburg
is plotted in time along with the base run Qref ,
QQC−PWS , QPWS and Qrad for the Oude IJssel (Fig-
ure 4.1a) and Rhedebrugge (Figure 4.1b). The large
discharge peaks of the sub-catchment (> 0.10 mm/h)
are much sharper and approximately twice as high as
of the main catchment. When looking at the mod-
elled discharge, the simulation of the three QPEs show
large deviations in their residuals w.r.t. the base run
(Figure 4.1 panels 2-4). In agreement with the bias of
the catchment-averaged QPEs, the discharge simulation
forced by the unadjusted radar product underestimated
the base run the most. This is especially true for the
autumn, summer and early spring months, followed by
QPWS and QQC−PWS at last. For Rhedebrugge, this
observation also holds, only anomalies were even sharper
and more negative during the large and sharp discharge
peaks, as was mentioned before. However, all simula-
tions did perform well as they retrieved a NSE of 0.70
or higher taken over the complete study period where
QQC−PWS is most similar to the base run with an NSE
value of nearly 1 on the main catchment scale.

4.3.2 Events

Discharge simulations of Qref , QQC−PWS , QPWS and
Qrad for the Oude IJssel and Rhedebrugge catchments
were made for the winter event (Figure 4.2a) and the
summer event (Figure 4.2b). The precipitation and dis-
charge sums during events 1 and 2 have been calculated
for both catchments (Table 4.1). During the winter
event, the main catchment outlet registered a discharge
sum of 2.21 mm and the weir in Rhedebrugge a sum of
3.94 mm. The peak registered at the outlet is topped
off at a maximum of 0.21 mm h−1 (Figure 4.2b, bot-
tom left panel) while the peak in the sub-catchment is
sharper with a maximum of 0.43 mm h−1. During the
summer event, a discharge sum of 0.182 and 0.482 were
measured by the Oude IJssel and Rhedebrugge respec-
tively. While multiple peaks were registered by the outlet
with a maximum of 0.023 mm h−1, a single peak with a
maximum of 0.052 mm h−1 was seen in Rhedebrugge.

In Section 4.1.3, it was found that cumulative sum-
mations of R̄QC−PWS were slightly higher than R̄ref

during the major part of the study period where it was
followed by R̄PWS and R̄rad. During both events and
in both catchments the averaged rainfall sums of the
gauge-adjusted radar dominates followed by the QC-
PWS, raw PWS and unadjusted radar product. The
same order can be noticed for the simulated maxi-
mum discharge peak (Figure 4.2) and sums (Table 4.1.
Though, two exceptions can be noted. During the last
day of the winter event in the Oude IJsel, QC-PWS
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caught up with the gauge-adjusted radar which is also
reflected in the recession period of the discharge event
where higher values were simulated for QQC−PWS than
for Qref . The other remarkable observation is that the
R̄rad underestimated R̄ref less than R̄PWS in the Oude
IJssel during the summer event and also R̄QC−PWS

in the sub-catchment. R̄rad of Rhedebrugge measured
about 22.5 mm of rainfall between the start of the sim-
ulation and the moment a maximum peak discharge of
0.41 mm h−1 got reached relative to R̄QC−PWS that
measured 21 mm until a peak of 0.039 mm h−1 was
predicted.

This indicates that the magnitude of the cumulative
precipitation sums directly influences the magnitude of
the simulated discharge forced by the four quantitative
precipitation estimates. Similar to the discharge volume
results, best performance was retrieved by QQC−PWS

with a NSE value of 0.97 and 0.93 for the Oude IJssel
and Rhedebrugge during event 1 and a NSE of 0.97 dur-
ing event 2 in the main catchment while Qrad did best
with a NSE of 0.88 in the sub-catchment.

Table 4.1: Sums of precipitation and discharge during
events 1 and 2 in the Oude IJssel and Rhedebrugge (refer
to Section 3.5.3 for definitions of event duration).

Event 1 Oude IJssel Rhedebrugge
Psum

[mm]
Qsum

[mm]
Psum

[mm]
Qsum

[mm]
Observed discharge - 2.21 - 3.94
Gauge-adjusted radar 28.2 2.10 28.1 3.57
Strict QC-PWS 27.2 1.87 26.4 2.82
Raw PWS 24.7 1.80 22.8 2.46
Unadjusted radar 19.9 1.65 17.7 2.05
Event 2
Observed discharge - 0.182 - 0.482
Gauge-adjusted radar 15.4 0.116 16.5 0.445
Strict QC-PWS 13.9 0.098 13.5 0.340
Raw PWS 12.8 0.089 11.3 0.313
Unadjusted radar 13.2 0.094 13.6 0.370
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Figure 4.1: Comparing the simulated discharge of rainfall inputs QC-PWS strict, raw PWS and the unadjusted radar
to the modelled discharge of the base run (with the gauge-adjusted radar data). In each of the three sub figures, the
base situation is plotted on top and the deviation from the base run (i.e. the residuals) for each of the three QPE
below it.
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Figure 4.2: Hourly catchment-averaged precipitation cumulative sums (top) and simulated discharge (bottom) of the
Oude IJssel (left) and Rhedebrugge (right).
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4.4 Error propagation rainfall and
discharge

The relative rainfall volume error and the relative peak
volume error percentages were calculated by the sums of
R̄QC−PWS , R̄PWS and R̄rad and QQC−PWS , QPWS

and Qrad (from Table 4.1) for the Oude IJssel and
Rhedebrugge catchments during the winter and summer
events visualized in Figure 4.1. The symbols indicate
the name of the quantitative precipitation estimates and
the colours the events and catchment names.

All catchment-averaged rainfall sums underestimated
R̄ref and all simulated discharge sums underestimated
Qref during event 1 and 2. There is a positive corre-
lation between the relative rainfall volume error (RRE)
and relative peak volume error (RDE) in Figure 4.1,
where Qrad (triangles) showed the largest errors fol-
lowed by QPWS and QQC−PWS . The winter event in
the Oude IJssel showed the lowest relative errors where
QC-PWS underestimated the least with a RRE value of
3.6% and a RDE of 11.1%. On the other hand, Rhede-
brugge gave the largest negative percentage values with
a RRE value of 37% and a RDE of 42.4% calculated
for the unadjusted radar during the winter event. This
simulation also gave the largest differences between the
three QPE. The relative error percentages of the Oude
IJssel and Rhedebrugge deviated less during the summer
event with a RRE value of 9.29% and a RDE value of
15.2% for QQC−PWS while the QPWS gave the largest
errors with a RRE of 31.6% and a RDE of 29.5%.

A one-to-one line is plotted in Figure 4.1. Though
each calculated error percentage is represented by differ-
ent events, catchments and model forcing data, it can
be noted that the relative peak volume error percentage
has a tendency to have a larger negative magnitude than
the relative rainfall volume error percentage since 9 out
of the 12 RRE percentage values are lower than the 9
corresponding RDE percentages.
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Figure 4.1: The relative rainfall volume error against the
relative peak volume error during the summer event(1)
and summer event (2) for the Oude IJssel (winter: blue,
summer: red) and Rhedebrugge (winter: green, summer:
orange). QC-PWS strict, raw PWS and the unadjusted
radar are distinguished by a cross, star and triangle re-
spectively.
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5 | Discussion

5.1 Comparison and validation of rainfall
products

The comparison and validation of rainfall products were
done for individual 5 min PWS time series and for the
catchment-averaged 5 min and hourly rainfall sums. A
difference of only 2.38% in the retained available data
between filtered strict and flex was found indicating that
there were only few measurements that did not con-
tain sufficient information to determine the error (Sec-
tion 4.1.2). The difference between the two filter op-
tions completely rely on parameters nstat and range d
in the quality control filter (de Vos et al., 2019). The
value of nstat should be evaluated carefully for a sparse
PWS network before quality control. Validation of the
national PWS dataset by de Vos et al. (2019) found
that fewer observations (before and after quality con-
trol) were made by PWS in regions with a lower pop-
ulation density. The Oude IJssel catchment is a rural
region in East Netherlands with only 9 % of the land
covered with urban area (Drost, 2016) which is low rel-
ative to the West Netherlands and thus less Personal
Weather Stations are placed there by citizens. Yet, an
average network density of ∼9 km2 in the Oude IJssel
catchment proved to remain sufficient data distributed
in space given the small percentage difference of 2.38%
between the two filter options that is comparable to the
percentage difference of 1.20% found for PWS network
in Amsterdam (de Vos et al., 2019). Furthermore, a
bias reduction of 10.6% was yielded in absolute terms
after quality control of individual PWS time series com-
pared to 11.3% improvement for the city of Amsterdam.
Therefore, the application of the PWS quality control fil-
ter to rural lowland catchment the Oude IJSsel did not
underperform the application of the filter to a city with
high PWS network density.

The quality control filter did not make any differ-
ence in the bias of catchment-averaged time series w.r.t.
the catchment-averaged gauge-adjusted radar (Section
4.1.3). More measurement intervals were taken into ac-
count for generating the raw catchment-averaged PWS
timeseries which could have had a smoothening effect
on systematic deviation of raw PWS w.r.t. the refer-
ence product. Both the filtered and unfiltered data even
yielded a slight positive bias w.r.t. the gauge-adjusted
radar where earlier research by de Vos et al. (2017) and
de Vos et al. (2019) found that PWS have a general ten-
dency to underestimate rainfall. No evident explanation
can be given but a notifiable observation in the PWS
data availability over time (Section 4.1.1) could explain

why the filtered catchment-averaged PWS time series
measured almost 4% more rainfall during the study pe-
riod. After quality control, the amount of measurements
by PWSs over time suddenly decreased massively from
July 2020 till September 2020 after quality control. The
cumulative precipitation sums of catchment-averaged
quality-controlled PWS catch up on the gauge-adjusted
the moment available data declined significantly for the
filtered dataset.

Compared to the unadjusted radar, which is used in
real-time, significantly less bias was registered by the
raw PWSs per time step and also over the study pe-
riod which is reflected in the cumulative rainfall sums
of the catchment-averaged time series. This suggests
that unfiltered PWS data, also available in real-time,
could be chosen over the unadjusted radar product for
rainfall monitoring. The application of the quality con-
trol filter requires prerequisite knowledge about the PWS
network layout and a reference dataset to determine the
default bias correction factor (DBC). Although, no aux-
iliary data are needed and the DBC can be determined
offline, no DBC is taken into account if no reference is
available (DBC is set to 1) (de Vos et al., 2019). The
quality-control filter can also be applied in real-time and
is preferred over the raw PWSs given their better per-
formance over all other metrics for both individual and
catchment-averaged time series, but under two condi-
tions: a reference dataset and sufficient data after qual-
ity control are available.

5.2 Effect of PWS network density

The quality-controlled PWS are expected to be influ-
enced by the PWS network density in space, since the fil-
ter inhibits spatial parameters which determine whether
a rainfall observation by PWS is excluded or remained in
the dataset. The effect of PWS network density is anal-
ysed by randomly taking three samples of the existing
PWS network which were one third of the original net-
work size. Two samples were validated with the method-
ological steps of Sections 3.3.1 and 3.3.2 were more data
were filtered and larger differences were found between
the flex and strict filtered data compared to the existing
network of PWSs. Since the difference between flex and
strict filtered data only depends on the filter parame-
ters having a spatial character, nstat and range d, this
difference can completely be attributed to the network
layout of of samples 1 and 2. Thus, the degree of equal
distribution of PWSs in space might cause the share of
measurement intervals flagged with -1. Figure 3.1 shows
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that some stations are less equally distributed in space
for the second sample compared to the first sample, es-
pecially in the centre of the catchment.

Even though, more data were filtered in the sec-
ond sample where stations were distributed less equally
in space, the validation metrics proofed that sample 2
yielded similar results with a bias that was even twice
as small compared to sample 1. Accordingly to de Vos
et al. (2018), the CV and bias would grow and the r
decline when less stations are present in the PWS net-
work. Results did not provide the same relation between
network density and performance metrics. Though it
is important to note that this study only compared the
original network to two thinned networks with the same
sample size, while de Vos et al. (2018) selected 50 ran-
dom samples of n PWSs present in the total network in
Amsterdam.

5.3 Methods rainfall

Multiple methodological assumptions were made includ-
ing limitations for execution during this study w.r.t.
the quality control, preprocessing of catchment-averaged
time series, validation of rainfall observations and the
analysis of PWS network density. This research inter-
played between individual, - and catchment averaged
time series during validation of Personal Weather Sta-
tions in the PWs network of the Oude IJssel. Since the
aim of this study was to validate and compare rainfall
time series and relate it to hydrological application, it
was decided to validate individual PWS 5 min time series
against the catchment-averaged gauge-adjusted. These
averaged reference data were assumed to be a proxy of
the observed rainfall registered by radar pixels within
the catchment. Furthermore, catchment-averaged PWS
time series know the advantage that they do not con-
tain ’NA’ data unless there were intervals were not any
station reported measurements. validating catchment-
averaged PWS against catchment-averaged reference
radar resulted in a larger validation dataset relative to
the validation dataset of individual PWSs.

Secondly, the run time of the quality control took
over 3 days to completely filter the PWS time series
over the study period of 11 months. The long run time
is especially caused by flagging the station outlier (SO)
intervals and dynamical bias correction which were eval-
uated for every time step per station in the network.
The long run time of the quality control filter made
me decide to not filter the stations within Rhedebrugge
sub-catchment. Instead, individual time series located
in Rhedebrugge including the 10 km boundary were ex-
tracted from the quality-controlled PWS time series in
the total network of the Oude IJssel. Therefore, results

for the observed rainfall by PWS in Rhedebrugge were
only validated on a catchment-scale.

The analysis of the network density only included
thinning of the existing network to multiple samples
with one sample size. Since each sample did have to
be quality-controlled with the filter, it was decided to
reduce the uncertainty in network layout by analysing
the extent of three samples before quality control. This
method was chosen rather than sampling over n stations
present in the existing network to save much time in the
preprocessing of quality-controlled PWS data.

5.4 Precipitation data

This research was limited in the availability and source
of quantitative precipitation estimates data.

Firstly, only one year of PWS data was available that
limited the temporal extend of this study. No seasonal-
ity analysis could have taken place while this is impor-
tant for hydrological forecasting like was investigated in
Brauer et al. (2016). Besides, the number of PWS in
the network had grown during the study period, thus no
independent judgement could be made of the PWS data
availability over time and validation of quality-controlled
PWS time series.

Secondly, the gauge-adjusted radar data were used
as the reference rainfall product during this study. Us-
ing these data as reference data source knows two
disadvantages. First disadvantage is that this study
assumed that the gauge-adjusted radar product cur-
rently is the most accurate method available to de-
scribe rainfall fields in space and time (van Beekhuis
et al., 2018; Overeem et al., 2009a, 2009b), while the
method proposed in this study has potential to out-
perform the reference product. Only 7 rain gauges
are placed within the Oude IJsel catchment with the
nearest automatic rain gauge placed 20 km away from
the catchment’s centre (https://www.knmi.nl/kennis-
en-datacentrum/uitleg/vrijwillige-neerslagmeters). One
does not know how the network of PWSs ability to mea-
sure rainfall relates to that of the rain gauge network
deployed and used by the KNMI for weather radar cor-
rection. Certain is that Personal Weather Stations are
placed with a far greater spatial resolution than the tra-
ditional rain gauges are. Therefore, additional research
would be needed to investigate how well rain gauges
used for correction measure rainfall relative to the net-
work of PWSs where ultimately investigation to the po-
tential of Personal Weather Stations as correction for
weather radar images is required to answer this ques-
tion. Secondly and a more explicit disadvantage of the
reference data used is that they were not independent.
Data from both the Dutch Royal meteorological Institute
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(KNMI) in the Netherlands and the Deutsche Wetterdi-
enst (DWD) in Germany were consulted which are two
different data sources retrieved by different radars and
methods. Furthermore, it took some extra preprocessing
steps to convert the German reference data to data with
the same properties to that of the KNMI.

At last, the unadjusted radar was retrieved from the
Dutch institute completely which was assumed to ob-
serve similar rainfall as the German radar east of the
German borders in the catchment.

5.5 Comparison and validation of
discharge

Discharge simulations were made forced by catchment-
averaged time series of Personal Weather Stations before
and after quality control and for the unadjusted real-
time radar over the complete study period and the two
selected events in the Oude IJssel and sub-catchment
Rhedebrugge. The residuals of the discharge simula-
tions w.r.t. the reference run forced by the catchment-
averaged time series were the smallest for the filtered
PWS followed by the input of PWSs before quality con-
trol and lastly the unadjusted weather radar. This result
is what you would expect to find given that the op-
erational real-time observes rainfall the least accurate.
Brauer et al. (2016) found that the unadjusted radar
also systematically underestimates the reference run, es-
pecially during peak discharges. In this study, residuals
became larger during peak discharge for all input data
for main and sub-catchment.

During the winter and summer event it becomes clear
why one should compare different rainfall input data
w.r.t. a reference run instead of the observed discharge.
The second maximum peak during the winter event at
the outlet in Doesburg is not what you would expect
given the cumulative rainfall time series during the event.
It is unclear why the hydrological model did not simulate
this second peak, though it is unlikely that the under-
estimation is caused by systematic errors in the rainfall
input data because the unadjusted radar and Personal
Weather Stations are independent rainfall data sources.
Modifications of the weir at the outlet or influence fur-
ther upstream could cause this horizontal peak where
more water was retained in the system preventing the
evolution of a higher discharge peak than was observed.
During the summer event though, it is evident that the
observed discharge is influenced by modifications of the
weir valve in Doesburg. The simulated discharge forced
by personal weather stations underestimates the simu-
lated discharge forced by the unadjusted radar during
the summer event. No evident cause can be attributed
to this unexpected output, however the PWs data avail-

ability before and after quality control might play a role
since the peaks of both inputs understimated the real-
time radar in Rhedebrugge.

Errors in rainfall measurements propagated in the
predicted discharge over the two events, the two catch-
ments and all input data. Likewise to Brauer et al.
(2016), the errors in predicted discharge are systemat-
ically lower than the reference run. Furthermore, the
relative predicted discharge peak volume errors showed
a tendency to take a larger negative magnitude than the
relative rainfall volume errors as was found in the sim-
ulations of Brauer et al. (2016). An average of -14.2%
in the relative rainfall volume error percentage resulted
in an average discharge peak volume error percentage
of -17.3% in the Oude IJssel catchment and an aver-
age percentage of -21.6% observed rainfall error resulted
in -27.3% predicted discharge error in Rhedebrugge sub
catchment during the two selected events. Hence, the
lower reliability of catchment-averaged rainfall time se-
ries generated for the sub catchment propagated in the
hydrological system. Though, it should be noted that
this research included an independent investigation of
the error propagation of rainfall by introducing imposed
errors in the rainfall forcing data.

5.6 Hydrological model and input data

The Wageningen Lowland Simulator (WALRUS) is a
lumped rainfall-runoff model. Despite, this study fo-
cussed on precipitation data with high spatial resoluions,
a lumped model was preferred over a spatially distributed
model. This choice was mainly based on the signifi-
cantly shorter run and calibration times for a lumped
model. The run time of the PWS quality control filter
was a constraining factor in the preprocessing steps of
this study, thus reducing the run time of the hydrological
model was highly preferred. Supporting the choice for
WALRUS were that parameters were already automat-
ically calibrated for the weir in Rhedebrugge by water
board Rijn & IJssel and by Drost (2016) for the outlet
in Doesburg both retrieving good results.

Furthermore, assumptions were made for the evapo-
ration and discharge data that functioned as input for the
hydrological model. Reference evaporation data from
a single automatic weather station (monitored by the
KNMI) was assumed to approximate the evaporation in
the Oude IJssel catchment. Besides, these ETref data
were not corrected by crop factors to retrieve the po-
tential evaporation and were assumed to be a proxy of
ETpot in the study area. Since no seasonality analysis
was inclueded in this study, the uncorrected evaporation
data were assumed to approximate the potential evapo-
ration sufficiently.
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Thirdly, discharge data were measured at the outlet
in Doesburg that was heavily influenced by valve modifi-
cations done by local water managers. Although a mov-
ing average of 12 hours was calculated over the hourly
discharge sums, the influence of of weir effects was not
integrated in the hydrological model.

5.7 Methods discharge

Methodological assumptions in simulating the discharge
time series were made.

Firstly, the short study period of PWS data made
me decide to overlap the calibration period in WALRUS
with the validation period. Furthermore, a calibration
period of one year could give well calibrated parameter
values (Brauer et al., 2014b). Besides, calibration results
improved significantly when two summer seasons were
included in the calibration period and the calibration did
not end during a peruiod with little water avaiable in
virtual reservoirs of WALRUS.

Four state variables (dG0, dV 0, hQ0 and hS0) could
have been attributed as initial conditions in WALRUS.
The warm-up period of the validation runs were short
at the end of the summer (study period). Water levels
can drop too far in summer when little rainfall input
is given and too little reduction of evapotranspiration is
taken into account. Since, the groundwater level is most
sensitive to the length of the warm-up period, it was
decided to only set the dG0 as initial condition before
running WALRUS.
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In this study, the accuracy of quality-controlled (QC)
Personal Weather Stations (PWS) in observing rainfall
and predicting discharge were assessed in a Dutch low-
land catchment. The QC filter developed by de Vos
et al. (2019) was applied to the network of PWS lo-
cated in a defined boundary around the the Oude IJssel
catchment. All stations were evaluated in time where
the QC filter identified and filtered intervals containing
erroneous measurements.

Rainfall measurements by PWSs were evaluated in
space and time before (raw PWS) and after quality-
control (QC-PWS). Validation studies of both individual
and catchment-averaged time series of raw and QC-PWS
were performed including a comparison with catchment-
averaged time series of the operational weather radar
(unadjusted and real-time) w.r.t. a reference radar prod-
uct (gauge-adjusted and offline). Accordingly, the effect
of a thinned PWS network density on individual and
catchment-averaged rainfall measured by PWSs was in-
vestigated.

The Wageningen Lowland Runoff Simulator (WAL-
RUS) was used as rainfall-runoff model to make dis-
charge simulations using catchment-averaged time se-
ries of raw PWS, QC-PWS, the unadjusted and gauge-
adjusted radar as rainfall forcing where simulations were
validated w.r.t. the reference input for the main catch-
ment and a sub catchment situated in the upstream re-
gion.

Quality control yielded a bias reduction of 10.6% in
the 5 min rainfall sums measured by Personal Weather
Stations while 85.1% of the original data remained which
are similar results that were found in the PWS network in
the capital city of the Netherlands that had a far greater
network density.

The spatial density of PWS in the existing network
was sufficient for application of a QC check, since only
2.38% of the original data in the network was filtered
because spatial requirements of the quality control filter
were not met. 20.0% of the data did not meet the spatial
requirements on average when 1/3rd of the original net-
work size was taken. Yet, a bias reduction of 20.6 % was
yielded on average. Though the thinned PWS networks
are not neutrally chosen and contain much sample un-
certainty, metrics have shown that no significant differ-
ence in QC filter performance was found when network
density reduced considerably.

The unadjusted radar systematically underestimated
the reference 5 min averaged rainfall depths with a bias
of -0.164 mm, while catchment-averaged rainfall depths
measured by personal weather stations slightly overesti-

mated the reference with a bias of only 0.025mm. No
less bias was registered after quality control of PWS,
however time series varied less and correlated better per
time step and over the study period relative to the ref-
erence.

Discharge simulations were made over the study pe-
riod of 11 months and two precipitation events in winter
and summer and best simulations were made forcedby
the quality-controlled personal weather stations (NSE =
0.98, averaged over the catchments during study pe-
riod; NSE = 0.91, averaged over the catchments and
events), followed by the input of personal weather sta-
tions before quality control (NSE = 0.95; NSE = 0.82)
and lastly the operational weather radar during both the
study period and the two selected events (NSE = 0.70;
NSE = 0.78) where more accurate rainfall observations
resulted in more accurate discharge predictions. Resid-
uals became larger during peak discharge events for all
input data for main and sub-catchment that resulted in
lower NSE values. Only the unadjusted radar did better
describe the peak discharge during the summer event re-
sulting in a higher average NSE of the events. Errors in
rainfall measurements propagated in the predicted dis-
charge over the two events, the main and sub catchment
and all input data with a relative higher error found in
the peak discharge volumes. Hence, a lower reliability
of the catchment-averaged rainfall time series for the
sub catchment resulted in higher relative peak discharge
volume error percentages.

In a broader perspective, it is concluded that quality-
controlled personal weather stations observe rainfall and
predict discharge far more accurate on the catchment-
scale compared to the operational weather radar and
thus enlarge the potential for operational hydrological
applications in the Netherlands. Even without quality
control, PWSs outperformed the operational weather
radar on the catchment scale. Proof was found that
quality of discharge simulations is strongly influenced by
the quality of their forcing input as was acknowledged
by multiple hydrological studies in the past.

Two considerations should be made for future re-
search where firstly explicit methodological recommen-
dations are made and secondly an implicit research ex-
tension is suggested. First, assessment over a full year or
longer is recommended considering multiple catchments
where their respective network layout is taken into ac-
count. Enabling seasonality analysis and the inclusion of
multiple events where error propagation analysis by in-
troducing imposed errors in the rainfall forcing data are
recommended. On the other hand, multiple catchments
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and a longer study period could compensate for the mea-
surement uncertainty in observed discharge and can be
insightful in the ability of PWS in accurately predicting
the observed discharge.

Secondly, the gauge-adjusted radar was used as a
reference precipitation data source, while the method
proposed in this study has potential to outperform the
reference product. Personal weathers stations, which
have proof to provide high-quality rainfall measurements
in real-time when undergone a quality control check,
have a similar temporal and far greater spatial resolu-
tion than traditional rain gauges have in the Neterlands.
Furthermore, the worldwide network of deployed stations
is growing till the present day that raises ability and po-
tential of this research to extend over Dutch national
borders. Hence, investigating the potential of PWS as
correction method for real-time weather radar is strongly
recommended. Eventually a PWS-adjusted radar prod-
uct may be developed that is, in contrast to the gauge-
adjusted radar dataset used for validation, applicable in
near real-time that could potentially observe rainfall ex-
tremes and predict local floods more accurately in the
future.
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A.1 Calibration in WALRUS
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Figure A.1: WALRUS output for the automatic calibration run for the Oude IJssel catchment.
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Figure A.2: WALRUS output for the automatic calibration run for Rhedebrugge sub-catchment.
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A.2 Double mass curves of total PWS
dataset: flex filtered
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A.3 Double mass curves of samples 1
and 2: flex filtered

(a) Sample 1

(b) Sample 2
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A.4 Effect of PWS network density:
sample 3
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A.5 Precipitation time series
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(b) Rhedebrugge

Figure A.1: Comparing the residuals of QC-PWS strict, raw PWS and the unadjusted radar precipitation time series
in the three sub figures relative to the gauge-adjusted radar in the top panel.


